Next: List of Tables
Up: Thesis
Previous: Contents
  Contents
  Index
- Le problème de surentraînement en utilisant ANN.
- La performance d'un ANN et d'un RNN à interpoler et à extrapoler pour des nombres différents des neurones cachés.
- La corrélation entre les valeurs réelles et prévues de MOS (langage arabe).
- La corrélation entre les valeurs réelles et prévues de MOS (langage espagnol).
- La corrélation entre les valeurs réelles et prévues de MOS (langage français).
- La corrélation entre les valeurs réelles et prévues de MOS
pour les deux BD.
- L'architecture du mécanisme proposé de contrôle.
- Les débits suggérés par TFRC et l'économie obtenue en
utilisant des règles de contrôle en changeant le codec dans le cas de la parole.
- Les valeurs de MOS avec et sans notre contrôleur en changeant le codec dans le cas de la parole.
- Les débits suggérés par TFRC et ceux de l'expéditeur
- Les valeurs de MOS en changeant FR et ceux en changeant QP.
- Une représentation de boîte noire de notre outil pour prévoir en temps
réel le futur trafic
- Le trafic réel contre celui prévu pour la totalité de deux semaines suivantes.
- Le trafic réel contre celui prévu pour les troisième et quatrièmes jours de la troisième semaine.
- La différence entre le trafic réel et prévu pour les suivantes deux semaines complètes.
- Un histogramme de la distribution entre la différence de
trafic réel et prévu
- La différence entre le trafic réel et prévu pour les suivantes deux semaines complètes une fois que les échantillons spiky sont retirés.
- L'effet de variables et sur la performance de
l'algorithme AM-LM pour un RNN. Les résultats sont pour le premier problème.
- Les performances des algorithmes GD, LM, LM2 et AM-AM d'apprentissage du premier problème.
- Les performances des algorithmes GD, LM, LM1, et LM2
d'apprentissage du deuxième problème.
- Comparaison entre les performances de GD et d'AM-LM lors de
l'apprentissage du problème de la qualité de la vidéo présenté en section 1.4.
- Architecture of a three-layer feedforward neural network.
- The overall architecture of the new method to evaluate real-time speech, audio and/or video quality in real time.
- A schematic diagram of our method showing the steps in the
design phase.
- Eleven-point quality scale.
- ITU 5-point impairment scale
- Stimulus presentation timing in ACR method.
- Stimulus presentation timing in DCR method.
- A portion of quality rating form using continuous scales.
- A portion of quality rating form using continuous scales for DSCQS method.
- The problem of overtraining using ANN
- Performance of ANN and RNN to interpolate and extrapolate for different number of hidden neurons
- The run-time mode of our method.
- The current existing model of objective methods.
- Operation mode for the tool in real-time video system.
- Maximum and minimum percentage loss rates as a function of the playback buffer length between Rennes and the other different sites.
- Minimum rates for one-to-ten consecutively lost packets as a function of the playback buffer length between Rennes and the other different sites.
- Maximum rates for one-to-ten consecutively lost packets as a function of the playback buffer length between Rennes and the other different sites.
- Actual vs. Predicted MOS values on the Arabic training database.
- Actual vs. Predicted MOS values on the Spanish training database.
- Actual vs. Predicted MOS values on the French training database.
- Actual vs. Predicted MOS values on the testing databases.
- Scatter plots to show the correlation between Actual and Predicted MOS values (Arabic Language).
- Scatter plots to show the correlation between Actual and Predicted MOS values (Spanish Language).
- Scatter plots to show the correlation between Actual and Predicted MOS values (French Language).
- MNB2 and E-model results against the MOS subjective values in evaluating a set of speech samples distorted by both encoding and network impairments. Source is [57].
- A screen dump showing an instance during the subjective quality test evaluation.
- The 95% confidence intervals before and after removing the rate
of two unreliable subjects.
- Actual and Predicted MOS scores for the training database.
- Actual and Predicted MOS scores for the testing database.
- Scatter plots showing the correlation between Actual and Predicted MOS scores.
- The performance of the ITS metric to evaluate video quality.
- Quality assessment by MPQM as a function of the bitrate and the loss rate.
- MPQM quality assessment of MPEG-2 video as a function of the bit rate.
- The quality assessment by the ITS model of MPEG-2 video as a function of the bit rate.
- CMPQM quality assessment of MPEG-2 video as a function of the bit rate.
- NVFM quality assessment of MPEG-2 video as a function of the bit rate.
- Comparison of the subjective data against MPQM, CMPQM and NVFM
metrics for the video sequence ``Mobile & Calendar''.
- Comparison of the subjective data against MPQM, CMPQM, NVFM and
ITS metrics for the video sequence ``Basket Ball''.
- A screen dump showing manual mode for Stefan
- A screen dump showing manual mode for Children
- A screen dump showing manual mode for Foreman
- A screen dump showing Automatic Mode for Stefan
- On the left, we show the impact of LR and CLP on speech quality for the different codecs and PI=20 ms. On the right we show the effect of LR and PI on speech quality for CLP=1.
- The impact of CLP and LR on speech quality when LR=5 % (left)
and when LR=10 %(right) for PCM, ADPCM and GSM codecs.
- The variations of the quality as a function of the LR and the employed speech codec in both languages for PI=20 ms and CLP=2.
- The impact of BR and FR on video quality.
- The impact of BR and LR on video quality.
- The impact of BR and CLP on video quality.
- The impact of BR and RA on video quality.
- The impact of FR and LR on video quality.
- The impact of FR and CLP on video quality.
- The impact of FR and RA on video quality.
- The impact of LR and CLP on video quality.
- The impact of LR and RA on video quality.
- The impact of CLP and RA on video quality.
- RA is more benefic than FR for lower values of BR.
- Architecture of the proposed control mechanism.
- Rates suggested by TCP-friendly and the saving using control rules when changing the codec in the case of Speech
- MOS values with and without our control when changing the
codec in the case of Speech (CM stands for Control Mechanism)
- The supposed rates suggested by TCP-friendly and that of the sender
- MOS values when changing frame rate and those when changing the quantization parameter to meet the bit rates shown in Figure 8.4
- A black-box representation of our tool to predict in real time
the future traffic.
- Our best architecture employing both short- and long-range dependencies in traffic prediction for the ENSTB Network.
- The actual traffic against the predicted one for the whole complete next two weeks.
- The Normalized actual against that predicted for the third and fourth days from the third week.
- The difference between the actual and the predicted traffic for the complete next two weeks.
- The histogram of the distribution of difference between actual and prediction with a step of 0.1.
- The difference between the actual and the predicted traffic for the complete next two weeks once the spiky samples are removed.
- Predicting 2nd step ahead: the difference between the actual traffic and the predicted one for the complete next two weeks, including the spikes.
- The traditional NN model that has been widely used to predict
network traffic. This Figure is taken from [56, p. 115],
where represents a unit-step delay function.
- The actual against the NN prediction when training and testing it by data generated by Eqn. 9.1. This Figure is taken from [56].
- The 7-5-2 feedforward RNN network architecture.
- The fully-connected recurrent RNN network architecture.
- The RNN network architecture used to solve the XOR problem.
- The impact of the two variables and on the performance of the adaptive momentum LM training algorithm for RNN. The results for the first problem.
- The performance of the GD, LM, LM2 and AM-LM training algorithms on the first problem.
- The performance of the GD, LM, LM1, and LM2 training algorithms on the second problem.
- Comparsion between the performance of GD and that of AM-LM on the video quality database presented in Chapter 6.
Samir Mohamed
2003-01-08