Teaching

Master (M2 2017) : Introduction aux méthodes numérques pour les équations cinétiques  (in french)
  1. Chapter 1: Du problème à N corps aux modèles fluides
  2. Chapter 2: Méthodes semi-lagrangiennes
  3. Chapter 3: Equations de Vlasov avec champ magnétique fort                                                        

Master (M2 2015)
: Intégration géométrique numérique des équations différentielles ordinaires.
Examen corrigé 2016.

Master (M2 2003) : Geometric integration

You can download here (postscript file, 67 pages) the notes of a lecture (in french) on geometric integration and KAM theory given in june 2003, in collaboration with E. Faou. These notes are very much inspired by the book "Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations" written by E. Hairer, C. Lubich and G. Wanner and published by Springer.


Licence (L3 2017) : Introduction to the theory of  Ordinary Differential Equations (in french)
  1. Chapter 1: Introduction
  2. Chapter 2: General Theorems
  3. Chapter 3: Linear Systems and phase portraits in dimension 2
  4. Chapter 4 (slides) : Stability of nonlinear systems
  5. Chapter 5 (slides) : The flow map and some of its qualitative properties  
  6. Chapter 6 (slides) : The numerical flow and order conditions for some numerical methods