Different flavours of robustness in weighted timed games

Submitted by Nathalie BERTRAND on
Team
Date of the beginning of the PhD (if already known)
01/09/2025
Place
Rennes
Laboratory
IRISA - UMR 6074
Description of the subject

Weighted timed games allow to represent situations in which several
agents interact under real-time constraints, and in which one of the
players aims at optimizing a quantity (such as energy, cost, or time).

To avoid unrealistic behaviours induced by a mathematical model of
countinuous-time, and to encompass imprecisions in time measurements,
notions robustness must be integrated in weighted timed games. For
instance, an optimal strategy should resist small delay perturbations,
while guaranteeing good performances.

In this PhD, we propose to explore several relevant notions of
robustness for weighted timed games: 1) perturbations controlled by
the opponent [BMS15,MPR24] 2) random perturbations within some chosen
interval [ORS14,MPR21] 3) fully random delays [BBB+14]. These settings
have been considered independently in the literature, with various
approaches. The relationship between these notions is unknown. Our
objective is to compare the three above notions of robustness: we will
investigate how the hypotheses differ, and whether some techniques be
lifted from one notion to the other, aiming at solving open
optimization problems.

Bibliography

[BMS15] Patricia Bouyer, Nicolas Markey and Ocan
  Sankur: Robust reachability in timed automata and games: A
  game-based approach. Theoretical Computer Science, volume 563,
  pp.43--74, 2015.

[MPR24] Benjamin Monmege, Julie Parreaux and
    Pierre-Alain Reynier: Synthesis of Robust Optimal Real-Time
    Systems. In Proceedings of MFCS'24: pp.74:1-74:15. 2024.

[ORS14] Youssouf Oualhadj, Pierre-Alain
    Reynier and Ocan Sankur: Probabilistic Robust Timed
    Games. CONCUR'14: pp.203-217. 2014.

[MPR21] Benjamin Monmege, Julie Parreaux and
    Pierre-Alain Reynier: Playing Stochastically in Weighted Timed
    Games to Emulate Memory. ICALP'21: pp.137:1-137:17. 2021.

[BBB+14] Nathalie Bertrand, Patricia Bouyer,
  Thomas Brihaye, Quentin Menet, Christel Baier, Marcus Größer and
  Marcin Jurdzinski: Stochastic Timed Automata. Logical Methods in
  Computer Science, 10(4). 2014.

Researchers

Lastname, Firstname
Bertrand, Nathalie
Type of supervision
Director
Laboratory
UMR 6074
Team

Lastname, Firstname
Parreaux, Julie
Type of supervision
Supervisor (optional)
Laboratory
UMR 6074
Team
Contact·s
Nom
Bertrand, Nathalie
Email
nathalie.bertrand@inria.fr
Nom
Parreaux, Julie
Email
julie.parreaux@irisa.fr
Keywords
2-player games, timed games, weighted automata, robustness, randomization