Correctness proof for expression simplification.
Require Import Coq.Program.Equality.
Require Import Axioms.
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Errors.
Require Import Integers.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Smallstep.
Require Import Globalenvs.
Require Import Csyntax.
Require Import Csem.
Require Import Cstrategy.
Require Import Clight.
Require Import SimplExpr.
Require Import SimplExprspec.
Section PRESERVATION.
Variable prog:
C.program.
Variable tprog:
Clight.program.
Hypothesis TRANSL:
transl_program prog =
OK tprog.
Let ge :=
Genv.globalenv prog.
Let tge :=
Genv.globalenv tprog.
Invariance properties.
Lemma symbols_preserved:
forall (
s:
ident),
Genv.find_symbol tge s =
Genv.find_symbol ge s.
Proof
(
Genv.find_symbol_transf_partial transl_fundef _ TRANSL).
Lemma function_ptr_translated:
forall b f,
Genv.find_funct_ptr ge b =
Some f ->
exists tf,
Genv.find_funct_ptr tge b =
Some tf /\
transl_fundef f =
OK tf.
Proof
(
Genv.find_funct_ptr_transf_partial transl_fundef _ TRANSL).
Lemma functions_translated:
forall v f,
Genv.find_funct ge v =
Some f ->
exists tf,
Genv.find_funct tge v =
Some tf /\
transl_fundef f =
OK tf.
Proof
(
Genv.find_funct_transf_partial transl_fundef _ TRANSL).
Lemma varinfo_preserved:
forall b,
Genv.find_var_info tge b =
Genv.find_var_info ge b.
Proof
(
Genv.find_var_info_transf_partial transl_fundef _ TRANSL).
Lemma block_is_volatile_preserved:
forall b,
block_is_volatile tge b =
block_is_volatile ge b.
Proof.
Lemma type_of_fundef_preserved:
forall f tf,
transl_fundef f =
OK tf ->
type_of_fundef tf =
C.type_of_fundef f.
Proof.
intros.
destruct f;
monadInv H.
exploit transl_function_spec;
eauto.
intros [
A [
B [
C D]]].
simpl.
unfold type_of_function,
C.type_of_function.
congruence.
auto.
Qed.
Lemma function_return_preserved:
forall f tf,
transl_function f =
OK tf ->
fn_return tf =
C.fn_return f.
Proof.
Lemma type_of_global_preserved:
forall b ty,
Csem.type_of_global ge b =
Some ty ->
type_of_global tge b =
Some ty.
Proof.
Translation of simple expressions.
Lemma tr_simple_nil:
(
forall le dst r sl a tmps,
tr_expr le dst r sl a tmps ->
dst =
For_val \/
dst =
For_effects ->
simple r =
true ->
sl =
nil)
/\(
forall le rl sl al tmps,
tr_exprlist le rl sl al tmps ->
simplelist rl =
true ->
sl =
nil).
Proof.
assert (
A:
forall dst a,
dst =
For_val \/
dst =
For_effects ->
final dst a =
nil).
intros.
destruct H;
subst dst;
auto.
apply tr_expr_exprlist;
intros;
simpl in *;
try discriminate;
auto.
rewrite H0;
auto.
simpl;
auto.
rewrite H0;
auto.
simpl;
auto.
destruct H1;
congruence.
destruct (
andb_prop _ _ H6).
inv H1.
rewrite H0;
auto.
simpl;
auto.
rewrite H9 in H8;
discriminate.
rewrite H0;
auto.
simpl;
auto.
rewrite H0;
auto.
simpl;
auto.
destruct (
andb_prop _ _ H7).
rewrite H0;
auto.
rewrite H2;
auto.
simpl;
auto.
rewrite H0;
auto.
simpl;
auto.
destruct (
andb_prop _ _ H13).
destruct (
andb_prop _ _ H14).
rewrite H2;
auto.
simpl;
auto.
destruct (
andb_prop _ _ H14).
destruct (
andb_prop _ _ H15).
intuition congruence.
destruct (
andb_prop _ _ H13).
destruct (
andb_prop _ _ H14).
intuition congruence.
destruct (
andb_prop _ _ H6).
rewrite H0;
auto.
Qed.
Lemma tr_simple_expr_nil:
forall le dst r sl a tmps,
tr_expr le dst r sl a tmps ->
dst =
For_val \/
dst =
For_effects ->
simple r =
true ->
sl =
nil.
Proof (
proj1 tr_simple_nil).
Lemma tr_simple_exprlist_nil:
forall le rl sl al tmps,
tr_exprlist le rl sl al tmps ->
simplelist rl =
true ->
sl =
nil.
Proof (
proj2 tr_simple_nil).
Evaluation of simple expressions and of their translation
Remark deref_loc_preserved:
forall ty m b ofs t v,
deref_loc ge ty m b ofs t v ->
deref_loc tge ty m b ofs t v.
Proof.
Remark assign_loc_preserved:
forall ty m b ofs v t m',
assign_loc ge ty m b ofs v t m' ->
assign_loc tge ty m b ofs v t m'.
Proof.
Lemma tr_simple:
forall e m,
(
forall r v,
eval_simple_rvalue ge e m r v ->
forall le dst sl a tmps,
tr_expr le dst r sl a tmps ->
match dst with
|
For_val =>
sl =
nil /\
C.typeof r =
typeof a /\
eval_expr tge e le m a v
|
For_effects =>
sl =
nil
|
For_test tyl s1 s2 =>
exists b,
sl =
makeif (
fold_left Ecast tyl b)
s1 s2 ::
nil
/\
C.typeof r =
typeof b
/\
eval_expr tge e le m b v
end)
/\
(
forall l b ofs,
eval_simple_lvalue ge e m l b ofs ->
forall le sl a tmps,
tr_expr le For_val l sl a tmps ->
sl =
nil /\
C.typeof l =
typeof a /\
eval_lvalue tge e le m a b ofs).
Proof.
Opaque makeif.
intros e m.
apply (
eval_simple_rvalue_lvalue_ind ge e m);
intros until tmps;
intros TR;
inv TR.
auto.
auto.
exists a0;
auto.
inv H7;
try congruence.
exploit H0;
eauto.
intros [
A [
B C]].
subst sl1;
simpl.
assert (
eval_expr tge e le m a v).
eapply eval_Elvalue.
eauto.
congruence.
rewrite <-
B.
eapply deref_loc_preserved;
eauto.
destruct dst;
auto.
econstructor.
split.
simpl;
eauto.
auto.
exploit H0;
eauto.
intros [
A [
B C]].
subst sl1;
simpl.
assert (
eval_expr tge e le m (
Eaddrof a1 ty) (
Vptr b ofs)).
econstructor;
eauto.
destruct dst;
auto.
simpl;
econstructor;
eauto.
exploit H0;
eauto.
intros [
A [
B C]].
subst sl1;
simpl.
assert (
eval_expr tge e le m (
Eunop op a1 ty)
v).
econstructor;
eauto.
congruence.
destruct dst;
auto.
simpl;
econstructor;
eauto.
exploit H0;
eauto.
intros [
A [
B C]].
exploit H2;
eauto.
intros [
D [
E F]].
subst sl1 sl2;
simpl.
assert (
eval_expr tge e le m (
Ebinop op a1 a2 ty)
v).
econstructor;
eauto.
congruence.
destruct dst;
auto.
simpl;
econstructor;
eauto.
exploit H0;
eauto.
intros [
A [
B C]].
subst sl1;
simpl.
assert (
eval_expr tge e le m (
Ecast a1 ty)
v).
econstructor;
eauto.
congruence.
destruct dst;
auto.
simpl;
econstructor;
eauto.
exploit H2;
eauto.
intros [
A [
B C]].
subst sl1.
assert (
tr_expr le For_val (
if b then r2 else r3) (
if b then sl2 else sl3) (
if b then a2 else a3) (
if b then tmp2 else tmp3)).
destruct b;
auto.
exploit H5;
eauto.
intros [
D [
E F]].
assert (
eval_expr tge e le m (
Econdition a1 a2 a3 ty)
v).
econstructor;
eauto.
congruence.
rewrite <-
E.
auto.
destruct dst;
auto.
simpl;
econstructor;
eauto.
intuition congruence.
intuition congruence.
destruct dst.
split;
auto.
split;
auto.
constructor.
auto.
exists (
Esizeof ty1 ty).
split.
auto.
split.
auto.
constructor.
destruct dst.
split;
auto.
split;
auto.
constructor.
auto.
exists (
Ealignof ty1 ty).
split.
auto.
split.
auto.
constructor.
split;
auto.
split;
auto.
apply eval_Evar_local;
auto.
split;
auto.
split;
auto.
apply eval_Evar_global;
auto.
rewrite symbols_preserved;
auto.
eapply type_of_global_preserved;
eauto.
exploit H0;
eauto.
intros [
A [
B C]].
subst sl1.
split;
auto.
split;
auto.
constructor;
auto.
exploit H0;
eauto.
intros [
A [
B C]].
subst sl1.
split;
auto.
split;
auto.
rewrite B in H1.
eapply eval_Efield_struct;
eauto.
exploit H0;
eauto.
intros [
A [
B C]].
subst sl1.
split;
auto.
split;
auto.
rewrite B in H1.
eapply eval_Efield_union;
eauto.
Qed.
Lemma tr_simple_rvalue:
forall e m r v,
eval_simple_rvalue ge e m r v ->
forall le dst sl a tmps,
tr_expr le dst r sl a tmps ->
match dst with
|
For_val =>
sl =
nil /\
C.typeof r =
typeof a /\
eval_expr tge e le m a v
|
For_effects =>
sl =
nil
|
For_test tyl s1 s2 =>
exists b,
sl =
makeif (
fold_left Ecast tyl b)
s1 s2 ::
nil /\
C.typeof r =
typeof b /\
eval_expr tge e le m b v
end.
Proof.
Lemma tr_simple_lvalue:
forall e m l b ofs,
eval_simple_lvalue ge e m l b ofs ->
forall le sl a tmps,
tr_expr le For_val l sl a tmps ->
sl =
nil /\
C.typeof l =
typeof a /\
eval_lvalue tge e le m a b ofs.
Proof.
Lemma tr_simple_exprlist:
forall le rl sl al tmps,
tr_exprlist le rl sl al tmps ->
forall e m tyl vl,
eval_simple_list ge e m rl tyl vl ->
sl =
nil /\
eval_exprlist tge e le m al tyl vl.
Proof.
induction 1;
intros.
inv H.
split.
auto.
constructor.
inv H4.
exploit tr_simple_rvalue;
eauto.
intros [
A [
B C]].
exploit IHtr_exprlist;
eauto.
intros [
D E].
split.
subst;
auto.
econstructor;
eauto.
congruence.
Qed.
Commutation between the translation of expressions and left contexts.
Lemma typeof_context:
forall k1 k2 C,
leftcontext k1 k2 C ->
forall e1 e2,
C.typeof e1 =
C.typeof e2 ->
C.typeof (
C e1) =
C.typeof (
C e2).
Proof.
induction 1; intros; auto.
Qed.
Inductive compat_dest: (
C.expr ->
C.expr) ->
destination ->
destination ->
list statement ->
Prop :=
|
compat_dest_base:
forall dst,
compat_dest (
fun x =>
x)
dst dst nil
|
compat_dest_val:
forall C dst sl,
compat_dest C For_val dst sl
|
compat_dest_effects:
forall C dst sl,
compat_dest C For_effects dst sl
|
compat_dest_paren:
forall C ty dst'
dst sl,
compat_dest C dst' (
cast_destination ty dst)
sl ->
compat_dest (
fun x =>
C.Eparen (
C x)
ty)
dst'
dst sl.
Lemma compat_dest_not_test:
forall C dst'
dst sl,
compat_dest C dst'
dst sl ->
dst =
For_val \/
dst =
For_effects ->
dst' =
For_val \/
dst' =
For_effects.
Proof.
induction 1; intros; auto.
apply IHcompat_dest. destruct H0; subst; auto.
Qed.
Lemma compat_dest_change:
forall C1 dst'
dst1 sl1 C2 dst2 sl2,
compat_dest C1 dst'
dst1 sl1 ->
dst1 =
For_val \/
dst1 =
For_effects ->
compat_dest C2 dst'
dst2 sl2.
Proof.
Lemma compat_dest_test:
forall C tyl s1 s2 dst sl,
compat_dest C (
For_test tyl s1 s2)
dst sl ->
exists tyl',
exists tyl'',
dst =
For_test tyl''
s1 s2 /\
tyl =
tyl' ++
tyl''.
Proof.
intros.
dependent induction H.
exists (@
nil type);
exists tyl;
auto.
exploit IHcompat_dest;
eauto.
intros [
l1 [
l2 [
A B]]].
destruct dst;
simpl in A;
inv A.
exists (
l1 ++
ty ::
nil);
exists tyl0;
split;
auto.
rewrite app_ass.
auto.
Qed.
Scheme leftcontext_ind2 :=
Minimality for leftcontext Sort Prop
with leftcontextlist_ind2 :=
Minimality for leftcontextlist Sort Prop.
Combined Scheme leftcontext_leftcontextlist_ind from leftcontext_ind2,
leftcontextlist_ind2.
Lemma tr_expr_leftcontext_rec:
(
forall from to C,
leftcontext from to C ->
forall le e dst sl a tmps,
tr_expr le dst (
C e)
sl a tmps ->
exists dst',
exists sl1,
exists sl2,
exists a',
exists tmp',
tr_expr le dst'
e sl1 a'
tmp'
/\
sl =
sl1 ++
sl2
/\
compat_dest C dst'
dst sl2
/\
incl tmp'
tmps
/\ (
forall le'
e'
sl3,
tr_expr le'
dst'
e'
sl3 a'
tmp' ->
(
forall id, ~
In id tmp' ->
le'!
id =
le!
id) ->
C.typeof e' =
C.typeof e ->
tr_expr le'
dst (
C e') (
sl3 ++
sl2)
a tmps)
) /\ (
forall from C,
leftcontextlist from C ->
forall le e sl a tmps,
tr_exprlist le (
C e)
sl a tmps ->
exists dst',
exists sl1,
exists sl2,
exists a',
exists tmp',
tr_expr le dst'
e sl1 a'
tmp'
/\
sl =
sl1 ++
sl2
/\
match dst'
with For_test _ _ _ =>
False |
_ =>
True end
/\
incl tmp'
tmps
/\ (
forall le'
e'
sl3,
tr_expr le'
dst'
e'
sl3 a'
tmp' ->
(
forall id, ~
In id tmp' ->
le'!
id =
le!
id) ->
C.typeof e' =
C.typeof e ->
tr_exprlist le' (
C e') (
sl3 ++
sl2)
a tmps)
).
Proof.
Ltac TR :=
econstructor;
econstructor;
econstructor;
econstructor;
econstructor;
split; [
eauto |
split; [
idtac |
split; [
eauto |
split]]].
Ltac NOTIN :=
match goal with
| [
H1:
In ?
x ?
l,
H2:
list_disjoint ?
l _ |- ~
In ?
x _ ] =>
red;
intro;
elim (
H2 x x);
auto;
fail
| [
H1:
In ?
x ?
l,
H2:
list_disjoint _ ?
l |- ~
In ?
x _ ] =>
red;
intro;
elim (
H2 x x);
auto;
fail
end.
Ltac UNCHANGED :=
match goal with
| [
H: (
forall (
id:
ident), ~
In id _ -> ?
le' !
id = ?
le !
id) |-
(
forall (
id:
ident),
In id _ -> ?
le' !
id = ?
le !
id) ] =>
intros;
apply H;
NOTIN
end.
generalize compat_dest_change;
intro CDC.
apply leftcontext_leftcontextlist_ind;
intros.
TR.
rewrite <-
app_nil_end;
auto.
constructor.
red;
auto.
intros.
rewrite <-
app_nil_end;
auto.
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
subst sl1;
rewrite app_ass;
eauto.
auto.
intros.
rewrite <-
app_ass.
econstructor;
eauto.
inv H1.
exploit H0.
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
subst sl1;
rewrite app_ass;
eauto.
auto.
intros.
rewrite <-
app_ass.
econstructor;
eauto.
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
subst sl1;
rewrite app_ass;
eauto.
red;
eauto.
intros.
rewrite <-
app_ass;
econstructor;
eauto.
exploit typeof_context;
eauto.
congruence.
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
subst sl1;
rewrite app_ass;
eauto.
auto.
intros.
rewrite <-
app_ass.
econstructor;
eauto.
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
subst sl1;
rewrite app_ass;
eauto.
auto.
intros.
rewrite <-
app_ass.
econstructor;
eauto.
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
subst sl1.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor;
eauto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
inv H2.
assert (
sl1 =
nil)
by (
eapply tr_simple_expr_nil;
eauto).
subst sl1;
simpl.
exploit H1;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
subst sl2.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
change (
sl3 ++
sl2')
with (
nil ++
sl3 ++
sl2').
rewrite app_ass.
econstructor;
eauto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
subst sl1;
rewrite app_ass;
eauto.
auto.
intros.
rewrite <-
app_ass.
econstructor;
eauto.
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
subst sl1.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
auto.
auto.
eauto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
auto.
auto.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
rewrite Q.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
auto.
apply S;
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
auto.
auto.
auto.
auto.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
rewrite Q.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
auto.
auto.
apply S;
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
auto.
auto.
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
subst sl1.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
apply S;
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
subst sl1.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
apply S;
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
auto.
auto.
auto.
eapply typeof_context;
eauto.
auto.
inv H2.
assert (
sl1 =
nil)
by (
eapply tr_simple_expr_nil;
eauto).
subst sl1;
simpl.
exploit H1;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
subst sl2.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
change (
sl3 ++
sl2')
with (
nil ++ (
sl3 ++
sl2')).
rewrite app_ass.
econstructor.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
apply S;
auto.
auto.
auto.
auto.
assert (
sl1 =
nil)
by (
eapply tr_simple_expr_nil;
eauto).
subst sl1;
simpl.
exploit H1;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
subst sl2.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
change (
sl3 ++
sl2')
with (
nil ++ (
sl3 ++
sl2')).
rewrite app_ass.
econstructor.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
apply S;
auto.
auto.
auto.
auto.
auto.
auto.
auto.
auto.
eapply typeof_context;
eauto.
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
subst sl1.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
apply S;
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
symmetry;
eapply typeof_context;
eauto.
eauto.
auto.
auto.
auto.
auto.
auto.
auto.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
subst sl1.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
apply S;
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
eauto.
auto.
auto.
auto.
auto.
auto.
auto.
auto.
auto.
auto.
auto.
eapply typeof_context;
eauto.
inv H2.
assert (
sl1 =
nil)
by (
eapply tr_simple_expr_nil;
eauto).
subst sl1;
simpl.
exploit H1;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
subst sl2.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
change (
sl0 ++
sl2')
with (
nil ++
sl0 ++
sl2').
rewrite app_ass.
econstructor.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
apply S;
auto.
auto.
eauto.
auto.
auto.
auto.
auto.
auto.
auto.
assert (
sl1 =
nil)
by (
eapply tr_simple_expr_nil;
eauto).
subst sl1;
simpl.
exploit H1;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
subst sl2.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
change (
sl0 ++
sl2')
with (
nil ++
sl0 ++
sl2').
rewrite app_ass.
econstructor.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
apply S;
auto.
eauto.
auto.
auto.
auto.
auto.
auto.
auto.
auto.
auto.
auto.
auto.
auto.
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
rewrite Q;
rewrite app_ass;
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor;
eauto.
symmetry;
eapply typeof_context;
eauto.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
rewrite Q;
rewrite app_ass;
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor;
eauto.
eapply typeof_context;
eauto.
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
rewrite Q;
rewrite app_ass;
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
apply S;
auto.
eapply tr_exprlist_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
rewrite Q;
rewrite app_ass;
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
auto.
apply S;
auto.
eapply tr_exprlist_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
auto.
inv H2.
assert (
sl1 =
nil)
by (
eapply tr_simple_expr_nil;
eauto).
subst sl1;
simpl.
exploit H1;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
rewrite Q;
rewrite app_ass;
eauto.
destruct dst';
contradiction ||
constructor.
red;
auto.
intros.
rewrite <-
app_ass.
change (
sl3++
sl2')
with (
nil ++
sl3 ++
sl2').
rewrite app_ass.
econstructor.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
apply S;
auto.
auto.
auto.
auto.
assert (
sl1 =
nil)
by (
eapply tr_simple_expr_nil;
eauto).
subst sl1;
simpl.
exploit H1;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
rewrite Q;
rewrite app_ass;
eauto.
destruct dst';
contradiction ||
constructor.
red;
auto.
intros.
rewrite <-
app_ass.
change (
sl3++
sl2')
with (
nil ++
sl3 ++
sl2').
rewrite app_ass.
econstructor.
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
apply S;
auto.
auto.
auto.
auto.
auto.
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
rewrite Q;
rewrite app_ass;
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
apply S;
auto.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
rewrite Q.
rewrite app_ass.
eauto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor;
eauto.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
rewrite Q.
eauto.
constructor;
auto.
auto.
intros.
econstructor;
eauto.
inv H1.
exploit H0;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
subst sl1.
rewrite app_ass.
eauto.
exploit compat_dest_not_test;
eauto.
intros [
A|
A];
subst dst';
auto.
red;
auto.
intros.
rewrite <-
app_ass.
econstructor.
apply S;
auto.
eapply tr_exprlist_invariant;
eauto.
UNCHANGED.
auto.
auto.
auto.
inv H2.
assert (
sl1 =
nil)
by (
eapply tr_simple_expr_nil;
eauto).
subst sl1;
simpl.
exploit H1;
eauto.
intros [
dst' [
sl1' [
sl2' [
a' [
tmp' [
P [
Q [
U [
R S]]]]]]]]].
TR.
subst sl2.
eauto.
red;
auto.
intros.
change sl3 with (
nil ++
sl3).
rewrite app_ass.
econstructor.
eapply tr_expr_invariant;
eauto.
UNCHANGED.
apply S;
auto.
auto.
auto.
auto.
Qed.
Theorem tr_expr_leftcontext:
forall C le r dst sl a tmps,
leftcontext RV RV C ->
tr_expr le dst (
C r)
sl a tmps ->
exists dst',
exists sl1,
exists sl2,
exists a',
exists tmp',
tr_expr le dst'
r sl1 a'
tmp'
/\
sl =
sl1 ++
sl2
/\
compat_dest C dst'
dst sl2
/\
incl tmp'
tmps
/\ (
forall le'
r'
sl3,
tr_expr le'
dst'
r'
sl3 a'
tmp' ->
(
forall id, ~
In id tmp' ->
le'!
id =
le!
id) ->
C.typeof r' =
C.typeof r ->
tr_expr le'
dst (
C r') (
sl3 ++
sl2)
a tmps).
Proof.
Theorem tr_top_leftcontext:
forall e le m dst rtop sl a tmps,
tr_top tge e le m dst rtop sl a tmps ->
forall r C,
rtop =
C r ->
leftcontext RV RV C ->
exists dst',
exists sl1,
exists sl2,
exists a',
exists tmp',
tr_top tge e le m dst'
r sl1 a'
tmp'
/\
sl =
sl1 ++
sl2
/\
compat_dest C dst'
dst sl2
/\
incl tmp'
tmps
/\ (
forall le'
m'
r'
sl3,
tr_expr le'
dst'
r'
sl3 a'
tmp' ->
(
forall id, ~
In id tmp' ->
le'!
id =
le!
id) ->
C.typeof r' =
C.typeof r ->
tr_top tge e le'
m'
dst (
C r') (
sl3 ++
sl2)
a tmps).
Proof.
induction 1;
intros.
inv H2;
inv H1.
exists For_val;
econstructor;
econstructor;
econstructor;
econstructor.
split.
apply tr_top_val_val;
eauto.
split.
instantiate (1 :=
nil);
auto.
split.
constructor.
split.
apply incl_refl.
intros.
rewrite <-
app_nil_end.
constructor;
auto.
inv H2;
inv H1.
exists (
For_test tyl s1 s2);
econstructor;
econstructor;
econstructor;
econstructor.
split.
apply tr_top_val_test;
eauto.
split.
instantiate (1 :=
nil);
auto.
split.
constructor.
split.
apply incl_refl.
intros.
rewrite <-
app_nil_end.
constructor;
eauto.
subst r.
exploit tr_expr_leftcontext;
eauto.
intros [
dst' [
sl1 [
sl2 [
a' [
tmp' [
P [
Q [
R [
S T]]]]]]]]].
exists dst';
exists sl1;
exists sl2;
exists a';
exists tmp'.
split.
apply tr_top_base;
auto.
split.
auto.
split.
auto.
split.
auto.
intros.
apply tr_top_base.
apply T;
auto.
inv H1;
inv H0.
exists (
For_test tyl s1 s2);
econstructor;
econstructor;
econstructor;
econstructor.
split.
apply tr_top_paren_test;
eauto.
split.
instantiate (1 :=
nil).
rewrite <-
app_nil_end;
auto.
split.
constructor.
split.
apply incl_refl.
intros.
rewrite <-
app_nil_end.
constructor;
eauto.
exploit (
IHtr_top r0 C0);
auto.
intros [
dst' [
sl1 [
sl2 [
a' [
tmp' [
P [
Q [
T [
R S]]]]]]]]].
exists dst';
exists sl1;
exists sl2;
exists a';
exists tmp'.
split.
auto.
split.
auto.
split.
constructor;
auto.
split.
auto.
intros.
apply tr_top_paren_test.
apply S;
auto.
Qed.
Theorem tr_top_testcontext:
forall C tyl s1 s2 dst sl2 r sl1 a tmps e le m,
compat_dest C (
For_test tyl s1 s2)
dst sl2 ->
tr_top tge e le m (
For_test tyl s1 s2)
r sl1 a tmps ->
tr_top tge e le m dst (
C r) (
sl1 ++
sl2)
a tmps.
Proof.
Semantics of smart constructors
Lemma eval_simpl_expr_sound:
forall e le m a v,
eval_expr tge e le m a v ->
match eval_simpl_expr a with Some v' =>
v' =
v |
None =>
True end.
Proof.
induction 1;
simpl;
auto.
destruct (
eval_simpl_expr a);
auto.
subst.
rewrite H0.
auto.
inv H;
simpl;
auto.
Qed.
Lemma step_makeif:
forall f a s1 s2 k e le m v1 b,
eval_expr tge e le m a v1 ->
bool_val v1 (
typeof a) =
Some b ->
star step tge (
State f (
makeif a s1 s2)
k e le m)
E0 (
State f (
if b then s1 else s2)
k e le m).
Proof.
Lemma step_make_set:
forall id a ty m b ofs t v e le f k,
deref_loc ge ty m b ofs t v ->
eval_lvalue tge e le m a b ofs ->
typeof a =
ty ->
step tge (
State f (
make_set id a)
k e le m)
t (
State f Sskip k e (
PTree.set id v le)
m).
Proof.
Fixpoint Kseqlist (
sl:
list statement) (
k:
cont) :=
match sl with
|
nil =>
k
|
s ::
l =>
Kseq s (
Kseqlist l k)
end.
Remark Kseqlist_app:
forall sl1 sl2 k,
Kseqlist (
sl1 ++
sl2)
k =
Kseqlist sl1 (
Kseqlist sl2 k).
Proof.
induction sl1; simpl; congruence.
Qed.
Lemma step_tr_rvalof:
forall ty m b ofs t v e le a sl a'
tmp f k,
deref_loc ge ty m b ofs t v ->
eval_lvalue tge e le m a b ofs ->
tr_rvalof ty a sl a'
tmp ->
typeof a =
ty ->
exists le',
star step tge (
State f Sskip (
Kseqlist sl k)
e le m)
t (
State f Sskip k e le'
m)
/\
eval_expr tge e le'
m a'
v
/\
typeof a' =
typeof a
/\
forall x, ~
In x tmp ->
le'!
x =
le!
x.
Proof.
Matching between continuations
Inductive match_cont :
Csem.cont ->
cont ->
Prop :=
|
match_Kstop:
match_cont Csem.Kstop Kstop
|
match_Kseq:
forall s k ts tk,
tr_stmt s ts ->
match_cont k tk ->
match_cont (
Csem.Kseq s k) (
Kseq ts tk)
|
match_Kwhile2:
forall r s k s'
ts tk,
tr_if r Sskip Sbreak s' ->
tr_stmt s ts ->
match_cont k tk ->
match_cont (
Csem.Kwhile2 r s k)
(
Kwhile expr_true (
Ssequence s'
ts)
tk)
|
match_Kdowhile1:
forall r s k s'
ts tk,
tr_if r Sskip Sbreak s' ->
tr_stmt s ts ->
match_cont k tk ->
match_cont (
Csem.Kdowhile1 r s k)
(
Kfor2 expr_true s'
ts tk)
|
match_Kfor3:
forall r s3 s k ts3 s'
ts tk,
tr_if r Sskip Sbreak s' ->
tr_stmt s3 ts3 ->
tr_stmt s ts ->
match_cont k tk ->
match_cont (
Csem.Kfor3 r s3 s k)
(
Kfor2 expr_true ts3 (
Ssequence s'
ts)
tk)
|
match_Kfor4:
forall r s3 s k ts3 s'
ts tk,
tr_if r Sskip Sbreak s' ->
tr_stmt s3 ts3 ->
tr_stmt s ts ->
match_cont k tk ->
match_cont (
Csem.Kfor4 r s3 s k)
(
Kfor3 expr_true ts3 (
Ssequence s'
ts)
tk)
|
match_Kswitch2:
forall k tk,
match_cont k tk ->
match_cont (
Csem.Kswitch2 k) (
Kswitch tk)
|
match_Kcall_none:
forall f e C ty k tf le sl tk a dest tmps,
transl_function f =
Errors.OK tf ->
leftcontext RV RV C ->
(
forall v m,
tr_top tge e le m dest (
C (
C.Eval v ty))
sl a tmps) ->
match_cont_exp dest a k tk ->
match_cont (
Csem.Kcall f e C ty k)
(
Kcall None tf e le (
Kseqlist sl tk))
|
match_Kcall_some:
forall f e C ty k dst tf le sl tk a dest tmps,
transl_function f =
Errors.OK tf ->
leftcontext RV RV C ->
(
forall v m,
tr_top tge e (
PTree.set dst v le)
m dest (
C (
C.Eval v ty))
sl a tmps) ->
match_cont_exp dest a k tk ->
match_cont (
Csem.Kcall f e C ty k)
(
Kcall (
Some dst)
tf e le (
Kseqlist sl tk))
with match_cont_exp :
destination ->
expr ->
Csem.cont ->
cont ->
Prop :=
|
match_Kdo:
forall k a tk,
match_cont k tk ->
match_cont_exp For_effects a (
Csem.Kdo k)
tk
|
match_Kifthenelse_1:
forall a s1 s2 k ts1 ts2 tk,
tr_stmt s1 ts1 ->
tr_stmt s2 ts2 ->
match_cont k tk ->
match_cont_exp For_val a (
Csem.Kifthenelse s1 s2 k) (
Kseq (
Sifthenelse a ts1 ts2)
tk)
|
match_Kifthenelse_2:
forall a s1 s2 k ts1 ts2 tk,
tr_stmt s1 ts1 ->
tr_stmt s2 ts2 ->
match_cont k tk ->
match_cont_exp (
For_test nil ts1 ts2)
a (
Csem.Kifthenelse s1 s2 k)
tk
|
match_Kwhile1:
forall r s k s'
a ts tk,
tr_if r Sskip Sbreak s' ->
tr_stmt s ts ->
match_cont k tk ->
match_cont_exp (
For_test nil Sskip Sbreak)
a
(
Csem.Kwhile1 r s k)
(
Kseq ts (
Kwhile expr_true (
Ssequence s'
ts)
tk))
|
match_Kdowhile2:
forall r s k s'
a ts tk,
tr_if r Sskip Sbreak s' ->
tr_stmt s ts ->
match_cont k tk ->
match_cont_exp (
For_test nil Sskip Sbreak)
a
(
Csem.Kdowhile2 r s k)
(
Kfor3 expr_true s'
ts tk)
|
match_Kfor2:
forall r s3 s k s'
a ts3 ts tk,
tr_if r Sskip Sbreak s' ->
tr_stmt s3 ts3 ->
tr_stmt s ts ->
match_cont k tk ->
match_cont_exp (
For_test nil Sskip Sbreak)
a
(
Csem.Kfor2 r s3 s k)
(
Kseq ts (
Kfor2 expr_true ts3 (
Ssequence s'
ts)
tk))
|
match_Kswitch1:
forall ls k a tls tk,
tr_lblstmts ls tls ->
match_cont k tk ->
match_cont_exp For_val a (
Csem.Kswitch1 ls k) (
Kseq (
Sswitch a tls)
tk)
|
match_Kreturn:
forall k a tk,
match_cont k tk ->
match_cont_exp For_val a (
Csem.Kreturn k) (
Kseq (
Sreturn (
Some a))
tk).
Lemma match_cont_call:
forall k tk,
match_cont k tk ->
match_cont (
Csem.call_cont k) (
call_cont tk).
Proof.
induction 1; simpl; auto. constructor. econstructor; eauto. econstructor; eauto.
Qed.
Lemma match_cont_exp_for_test_inv:
forall tyl s1 s2 a a'
k tk,
match_cont_exp (
For_test tyl s1 s2)
a k tk ->
match_cont_exp (
For_test tyl s1 s2)
a'
k tk.
Proof.
intros. inv H; econstructor; eauto.
Qed.
Matching between states
Inductive match_states:
Csem.state ->
state ->
Prop :=
|
match_exprstates:
forall f r k e m tf sl tk le dest a tmps,
transl_function f =
Errors.OK tf ->
tr_top tge e le m dest r sl a tmps ->
match_cont_exp dest a k tk ->
match_states (
Csem.ExprState f r k e m)
(
State tf Sskip (
Kseqlist sl tk)
e le m)
|
match_regularstates:
forall f s k e m tf ts tk le,
transl_function f =
Errors.OK tf ->
tr_stmt s ts ->
match_cont k tk ->
match_states (
Csem.State f s k e m)
(
State tf ts tk e le m)
|
match_callstates:
forall fd args k m tfd tk,
transl_fundef fd =
Errors.OK tfd ->
match_cont k tk ->
match_states (
Csem.Callstate fd args k m)
(
Callstate tfd args tk m)
|
match_returnstates:
forall res k m tk,
match_cont k tk ->
match_states (
Csem.Returnstate res k m)
(
Returnstate res tk m)
|
match_stuckstate:
forall S,
match_states Csem.Stuckstate S.
Lemma push_seq:
forall f sl k e le m,
star step tge (
State f (
makeseq sl)
k e le m)
E0 (
State f Sskip (
Kseqlist sl k)
e le m).
Proof.
intros.
unfold makeseq.
generalize Sskip.
revert sl k.
induction sl;
simpl;
intros.
apply star_refl.
eapply star_right.
apply IHsl.
constructor.
traceEq.
Qed.
Additional results on translation of statements
Lemma tr_select_switch:
forall n ls tls,
tr_lblstmts ls tls ->
tr_lblstmts (
Csem.select_switch n ls) (
select_switch n tls).
Proof.
induction 1;
simpl.
constructor;
auto.
destruct (
Int.eq n0 n).
constructor;
auto.
auto.
Qed.
Lemma tr_seq_of_labeled_statement:
forall ls tls,
tr_lblstmts ls tls ->
tr_stmt (
Csem.seq_of_labeled_statement ls) (
seq_of_labeled_statement tls).
Proof.
induction 1; simpl. auto. constructor; auto.
Qed.
Commutation between translation and the "find label" operation.
Section FIND_LABEL.
Variable lbl:
label.
Definition nolabel (
s:
statement) :
Prop :=
forall k,
find_label lbl s k =
None.
Fixpoint nolabel_list (
sl:
list statement) :
Prop :=
match sl with
|
nil =>
True
|
s1 ::
sl' =>
nolabel s1 /\
nolabel_list sl'
end.
Lemma nolabel_list_app:
forall sl2 sl1,
nolabel_list sl1 ->
nolabel_list sl2 ->
nolabel_list (
sl1 ++
sl2).
Proof.
induction sl1; simpl; intros. auto. tauto.
Qed.
Lemma makeseq_nolabel:
forall sl,
nolabel_list sl ->
nolabel (
makeseq sl).
Proof.
assert (
forall sl s,
nolabel s ->
nolabel_list sl ->
nolabel (
makeseq_rec s sl)).
induction sl;
simpl;
intros.
auto.
destruct H0.
apply IHsl;
auto.
red.
intros;
simpl.
rewrite H.
apply H0.
intros.
unfold makeseq.
apply H;
auto.
red.
auto.
Qed.
Lemma small_stmt_nolabel:
forall s,
small_stmt s =
true ->
nolabel s.
Proof.
induction s;
simpl;
intros;
congruence || (
red;
auto).
destruct (
andb_prop _ _ H).
intros;
simpl.
rewrite IHs1;
auto.
apply IHs2;
auto.
Qed.
Lemma makeif_nolabel:
forall a s1 s2,
nolabel s1 ->
nolabel s2 ->
nolabel (
makeif a s1 s2).
Proof.
intros.
functional induction (
makeif a s1 s2);
auto.
red;
simpl;
intros.
rewrite H;
auto.
red;
simpl;
intros.
rewrite H;
auto.
Qed.
Lemma tr_rvalof_nolabel:
forall ty a sl a'
tmp,
tr_rvalof ty a sl a'
tmp ->
nolabel_list sl.
Proof.
destruct 1; simpl; intuition. red; simpl; auto.
Qed.
Definition nolabel_dest (
dst:
destination) :
Prop :=
match dst with
|
For_val =>
True
|
For_effects =>
True
|
For_test tyl s1 s2 =>
nolabel s1 /\
nolabel s2
end.
Lemma nolabel_final:
forall dst a,
nolabel_dest dst ->
nolabel_list (
final dst a).
Proof.
destruct dst;
simpl;
intros.
auto.
auto.
split;
auto.
destruct H.
apply makeif_nolabel;
auto.
Qed.
Lemma nolabel_dest_cast:
forall ty dst,
nolabel_dest dst ->
nolabel_dest (
cast_destination ty dst).
Proof.
unfold nolabel_dest; intros; destruct dst; auto.
Qed.
Ltac NoLabelTac :=
match goal with
| [ |-
nolabel_list nil ] =>
exact I
| [ |-
nolabel_list (
final _ _) ] =>
apply nolabel_final;
NoLabelTac
| [ |-
nolabel_list (
_ ::
_) ] =>
simpl;
split;
NoLabelTac
| [ |-
nolabel_list (
_ ++
_) ] =>
apply nolabel_list_app;
NoLabelTac
| [ |-
nolabel_dest For_val ] =>
exact I
| [ |-
nolabel_dest For_effects ] =>
exact I
| [
H:
_ ->
nolabel_list ?
x |-
nolabel_list ?
x ] =>
apply H;
NoLabelTac
| [ |-
nolabel _ ] =>
red;
intros;
simpl;
auto
| [ |-
_ /\
_ ] =>
split;
NoLabelTac
|
_ =>
auto
end.
Lemma tr_find_label_expr:
(
forall le dst r sl a tmps,
tr_expr le dst r sl a tmps ->
nolabel_dest dst ->
nolabel_list sl)
/\(
forall le rl sl al tmps,
tr_exprlist le rl sl al tmps ->
nolabel_list sl).
Proof.
Lemma tr_find_label_top:
forall e le m dst r sl a tmps,
tr_top tge e le m dst r sl a tmps ->
nolabel_dest dst ->
nolabel_list sl.
Proof.
Lemma tr_find_label_expression:
forall r s a,
tr_expression r s a ->
forall k,
find_label lbl s k =
None.
Proof.
Lemma tr_find_label_expr_stmt:
forall r s,
tr_expr_stmt r s ->
forall k,
find_label lbl s k =
None.
Proof.
Lemma tr_find_label_if:
forall r s1 s2 s,
tr_if r s1 s2 s ->
small_stmt s1 =
true ->
small_stmt s2 =
true ->
forall k,
find_label lbl s k =
None.
Proof.
Lemma tr_find_label:
forall s k ts tk
(
TR:
tr_stmt s ts)
(
MC:
match_cont k tk),
match Csem.find_label lbl s k with
|
None =>
find_label lbl ts tk =
None
|
Some (
s',
k') =>
exists ts',
exists tk',
find_label lbl ts tk =
Some (
ts',
tk')
/\
tr_stmt s'
ts'
/\
match_cont k'
tk'
end
with tr_find_label_ls:
forall s k ts tk
(
TR:
tr_lblstmts s ts)
(
MC:
match_cont k tk),
match Csem.find_label_ls lbl s k with
|
None =>
find_label_ls lbl ts tk =
None
|
Some (
s',
k') =>
exists ts',
exists tk',
find_label_ls lbl ts tk =
Some (
ts',
tk')
/\
tr_stmt s'
ts'
/\
match_cont k'
tk'
end.
Proof.
induction s;
intros;
inversion TR;
subst;
clear TR;
simpl.
auto.
eapply tr_find_label_expr_stmt;
eauto.
exploit (
IHs1 (
Csem.Kseq s2 k));
eauto.
constructor;
eauto.
destruct (
Csem.find_label lbl s1 (
Csem.Kseq s2 k))
as [[
s'
k'] | ].
intros [
ts' [
tk' [
A [
B C]]]].
rewrite A.
exists ts';
exists tk';
auto.
intro EQ.
rewrite EQ.
eapply IHs2;
eauto.
rename s'
into sr.
rewrite (
tr_find_label_expression _ _ _ H2).
exploit (
IHs1 k);
eauto.
destruct (
Csem.find_label lbl s1 k)
as [[
s'
k'] | ].
intros [
ts' [
tk' [
A [
B C]]]].
rewrite A.
exists ts';
exists tk';
intuition.
intro EQ.
rewrite EQ.
eapply IHs2;
eauto.
rewrite (
tr_find_label_if _ _ _ _ H7);
auto.
exploit (
IHs1 k);
eauto.
destruct (
Csem.find_label lbl s1 k)
as [[
s'
k'] | ].
intros [
ts' [
tk' [
A [
B C]]]].
exploit small_stmt_nolabel.
eexact H4.
instantiate (1 :=
tk).
congruence.
intros.
exploit (
IHs2 k);
eauto.
destruct (
Csem.find_label lbl s2 k)
as [[
s'
k'] | ].
intros [
ts' [
tk' [
A [
B C]]]].
exploit small_stmt_nolabel.
eexact H6.
instantiate (1 :=
tk).
congruence.
auto.
rename s'
into sr.
rewrite (
tr_find_label_if _ _ _ _ H1);
auto.
eapply IHs;
eauto.
econstructor;
eauto.
rename s'
into sr.
rewrite (
tr_find_label_if _ _ _ _ H1);
auto.
exploit (
IHs (
Kdowhile1 e s k));
eauto.
econstructor;
eauto.
destruct (
Csem.find_label lbl s (
Kdowhile1 e s k))
as [[
s'
k'] | ].
intros [
ts' [
tk' [
A [
B C]]]].
rewrite A.
exists ts';
exists tk';
intuition.
intro EQ.
rewrite EQ.
auto.
rename s'
into sr.
rewrite (
tr_find_label_if _ _ _ _ H4);
auto.
exploit (
IHs3 (
Csem.Kfor3 e s2 s3 k));
eauto.
econstructor;
eauto.
destruct (
Csem.find_label lbl s3 (
Csem.Kfor3 e s2 s3 k))
as [[
s'
k'] | ].
intros [
ts' [
tk' [
A [
B C]]]].
rewrite A.
exists ts';
exists tk';
intuition.
intro EQ.
rewrite EQ.
exploit (
IHs2 (
Csem.Kfor4 e s2 s3 k));
eauto.
econstructor;
eauto.
rename s'
into sr.
rewrite (
tr_find_label_if _ _ _ _ H3);
auto.
exploit (
IHs1 (
Csem.Kseq (
C.Sfor C.Sskip e s2 s3)
k));
eauto.
econstructor;
eauto.
econstructor;
eauto.
destruct (
Csem.find_label lbl s1
(
Csem.Kseq (
C.Sfor C.Sskip e s2 s3)
k))
as [[
s'
k'] | ].
intros [
ts' [
tk' [
A [
B C]]]].
rewrite A.
exists ts';
exists tk';
intuition.
intro EQ;
rewrite EQ.
exploit (
IHs3 (
Csem.Kfor3 e s2 s3 k));
eauto.
econstructor;
eauto.
destruct (
Csem.find_label lbl s3 (
Csem.Kfor3 e s2 s3 k))
as [[
s''
k''] | ].
intros [
ts' [
tk' [
A [
B C]]]].
rewrite A.
exists ts';
exists tk';
intuition.
intro EQ'.
rewrite EQ'.
exploit (
IHs2 (
Csem.Kfor4 e s2 s3 k));
eauto.
econstructor;
eauto.
auto.
auto.
auto.
rewrite (
tr_find_label_expression _ _ _ H0).
auto.
rewrite (
tr_find_label_expression _ _ _ H1).
apply tr_find_label_ls.
auto.
constructor;
auto.
destruct (
ident_eq lbl l).
exists ts0;
exists tk;
auto.
apply IHs;
auto.
auto.
induction s;
intros;
inversion TR;
subst;
clear TR;
simpl.
apply tr_find_label;
auto.
exploit (
tr_find_label s (
Csem.Kseq (
Csem.seq_of_labeled_statement s0)
k));
eauto.
econstructor;
eauto.
apply tr_seq_of_labeled_statement;
eauto.
destruct (
Csem.find_label lbl s
(
Csem.Kseq (
Csem.seq_of_labeled_statement s0)
k))
as [[
s'
k'] | ].
intros [
ts' [
tk' [
A [
B C]]]].
rewrite A.
exists ts';
exists tk';
auto.
intro EQ.
rewrite EQ.
eapply IHs;
eauto.
Qed.
End FIND_LABEL.
Anti-stuttering measure
There are some stuttering steps in the translation:
-
The execution of Sdo a where a is side-effect free,
which is three transitions in the source:
Sdo a, k ---> a, Kdo k ---> rval v, Kdo k ---> Sskip, k
but the translation, which is Sskip, makes no transitions.
-
The reduction C.Ecomma (C.Eval v) r2 --> r2.
-
The reduction C.Eparen (C.Eval v) --> C.Eval v in a For_effects context.
The following measure decreases for these stuttering steps.
Fixpoint esize (
a:
C.expr) :
nat :=
match a with
|
C.Eloc _ _ _ => 1%
nat
|
C.Evar _ _ => 1%
nat
|
C.Ederef r1 _ =>
S(
esize r1)
|
C.Efield l1 _ _ =>
S(
esize l1)
|
C.Eval _ _ =>
O
|
C.Evalof l1 _ =>
S(
esize l1)
|
C.Eaddrof l1 _ =>
S(
esize l1)
|
C.Eunop _ r1 _ =>
S(
esize r1)
|
C.Ebinop _ r1 r2 _ =>
S(
esize r1 +
esize r2)%
nat
|
C.Ecast r1 _ =>
S(
esize r1)
|
C.Econdition r1 _ _ _ =>
S(
esize r1)
|
C.Esizeof _ _ => 1%
nat
|
C.Ealignof _ _ => 1%
nat
|
C.Eassign l1 r2 _ =>
S(
esize l1 +
esize r2)%
nat
|
C.Eassignop _ l1 r2 _ _ =>
S(
esize l1 +
esize r2)%
nat
|
C.Epostincr _ l1 _ =>
S(
esize l1)
|
C.Ecomma r1 r2 _ =>
S(
esize r1 +
esize r2)%
nat
|
C.Ecall r1 rl2 _ =>
S(
esize r1 +
esizelist rl2)%
nat
|
C.Eparen r1 _ =>
S(
esize r1)
end
with esizelist (
el:
C.exprlist) :
nat :=
match el with
|
C.Enil =>
O
|
C.Econs r1 rl2 => (
esize r1 +
esizelist rl2)%
nat
end.
Definition measure (
st:
Csem.state) :
nat :=
match st with
|
Csem.ExprState _ r _ _ _ => (
esize r + 1)%
nat
|
Csem.State _ C.Sskip _ _ _ => 0%
nat
|
Csem.State _ (
C.Sdo r)
_ _ _ => (
esize r + 2)%
nat
|
Csem.State _ (
C.Sifthenelse r _ _)
_ _ _ => (
esize r + 2)%
nat
|
_ => 0%
nat
end.
Lemma leftcontext_size:
forall from to C,
leftcontext from to C ->
forall e1 e2,
(
esize e1 <
esize e2)%
nat ->
(
esize (
C e1) <
esize (
C e2))%
nat
with leftcontextlist_size:
forall from C,
leftcontextlist from C ->
forall e1 e2,
(
esize e1 <
esize e2)%
nat ->
(
esizelist (
C e1) <
esizelist (
C e2))%
nat.
Proof.
induction 1; intros; simpl; auto with arith. exploit leftcontextlist_size; eauto. auto with arith.
induction 1; intros; simpl; auto with arith. exploit leftcontext_size; eauto. auto with arith.
Qed.
Forward simulation for expressions.
Lemma tr_val_gen:
forall le dst v ty a tmp,
typeof a =
ty ->
(
forall tge e le'
m,
(
forall id,
In id tmp ->
le'!
id =
le!
id) ->
eval_expr tge e le'
m a v) ->
tr_expr le dst (
C.Eval v ty) (
final dst a)
a tmp.
Proof.
intros. destruct dst; simpl; econstructor; auto.
Qed.
Lemma estep_simulation:
forall S1 t S2,
Cstrategy.estep ge S1 t S2 ->
forall S1' (
MS:
match_states S1 S1'),
exists S2',
(
plus step tge S1'
t S2' \/
(
star step tge S1'
t S2' /\
measure S2 <
measure S1)%
nat)
/\
match_states S2 S2'.
Proof.
Forward simulation for statements.
Lemma tr_top_val_for_val_inv:
forall e le m v ty sl a tmps,
tr_top tge e le m For_val (
C.Eval v ty)
sl a tmps ->
sl =
nil /\
typeof a =
ty /\
eval_expr tge e le m a v.
Proof.
intros. inv H. auto. inv H0. auto.
Qed.
Lemma tr_top_val_for_test_inv:
forall s1 s2 e le m v ty sl a tmps,
tr_top tge e le m (
For_test nil s1 s2) (
C.Eval v ty)
sl a tmps ->
exists b,
sl =
makeif b s1 s2 ::
nil /\
typeof b =
ty /\
eval_expr tge e le m b v.
Proof.
intros. inv H. exists a0; auto.
inv H0. exists a0; auto.
Qed.
Lemma bind_parameters_preserved:
forall e m params args m',
bind_parameters ge e m params args m' ->
bind_parameters tge e m params args m'.
Proof.
Lemma sstep_simulation:
forall S1 t S2,
Csem.sstep ge S1 t S2 ->
forall S1' (
MS:
match_states S1 S1'),
exists S2',
(
plus step tge S1'
t S2' \/
(
star step tge S1'
t S2' /\
measure S2 <
measure S1)%
nat)
/\
match_states S2 S2'.
Proof.
induction 1;
intros;
inv MS.
inv H6.
inv H0.
econstructor;
split.
right;
split.
apply push_seq.
simpl.
omega.
econstructor;
eauto.
constructor.
auto.
inv H7.
inv H6.
inv H.
econstructor;
split.
right;
split.
apply star_refl.
simpl.
omega.
econstructor;
eauto.
constructor.
inv H6.
econstructor;
split.
left.
apply plus_one.
constructor.
econstructor;
eauto.
constructor;
auto.
inv H6;
inv H7.
econstructor;
split.
left.
apply plus_one;
constructor.
econstructor;
eauto.
inv H6;
inv H7.
econstructor;
split.
left.
apply plus_one;
constructor.
econstructor;
eauto.
constructor.
inv H6;
inv H7.
econstructor;
split.
left.
apply plus_one;
constructor.
econstructor;
eauto.
constructor.
inv H6.
inv H2.
econstructor;
split.
left.
eapply plus_left.
constructor.
apply push_seq.
traceEq.
econstructor;
eauto.
econstructor;
eauto.
inv H10.
econstructor;
split.
right;
split.
apply push_seq.
simpl.
omega.
econstructor;
eauto.
constructor;
auto.
inv H8.
exploit tr_top_val_for_val_inv;
eauto.
intros [
A [
B C]].
subst.
econstructor;
split.
left.
eapply plus_two.
constructor.
apply step_ifthenelse with (
v1 :=
v) (
b :=
b);
auto.
traceEq.
destruct b;
econstructor;
eauto.
exploit tr_top_val_for_test_inv;
eauto.
intros [
c [
A [
B C]]].
subst.
econstructor;
split.
left.
simpl.
eapply plus_left.
constructor.
apply step_makeif with (
v1 :=
v) (
b :=
b);
auto.
traceEq.
econstructor;
eauto.
destruct b;
auto.
inv H6.
inv H1.
econstructor;
split.
left.
eapply plus_left.
eapply step_while_true.
constructor.
auto.
eapply star_left.
constructor.
apply push_seq.
reflexivity.
traceEq.
econstructor;
eauto.
econstructor;
eauto.
econstructor;
eauto.
inv H8.
exploit tr_top_val_for_test_inv;
eauto.
intros [
b [
A [
B C]]].
subst.
econstructor;
split.
left.
simpl.
eapply plus_left.
constructor.
eapply star_trans.
apply step_makeif with (
v1 :=
v) (
b :=
false);
auto.
eapply star_two.
constructor.
apply step_break_while.
reflexivity.
reflexivity.
traceEq.
constructor;
auto.
constructor.
inv H8.
exploit tr_top_val_for_test_inv;
eauto.
intros [
b [
A [
B C]]].
subst.
econstructor;
split.
left.
simpl.
eapply plus_left.
constructor.
eapply star_right.
apply step_makeif with (
v1 :=
v) (
b :=
true);
auto.
constructor.
reflexivity.
traceEq.
constructor;
auto.
constructor;
auto.
assert (
ts =
Sskip \/
ts =
Scontinue).
destruct H;
subst s0;
inv H7;
auto.
inv H8.
econstructor;
split.
left.
apply plus_one.
apply step_skip_or_continue_while;
auto.
constructor;
auto.
constructor;
auto.
inv H6.
inv H7.
econstructor;
split.
left.
apply plus_one.
apply step_break_while.
constructor;
auto.
constructor.
inv H6.
econstructor;
split.
left.
apply plus_one.
apply step_for_true with (
Vint Int.one).
constructor.
auto.
constructor;
auto.
constructor;
auto.
assert (
ts =
Sskip \/
ts =
Scontinue).
destruct H;
subst s0;
inv H7;
auto.
inv H8.
inv H4.
econstructor;
split.
left.
eapply plus_left.
apply step_skip_or_continue_for2.
auto.
apply push_seq.
reflexivity.
traceEq.
econstructor;
eauto.
econstructor;
auto.
econstructor;
eauto.
inv H8.
exploit tr_top_val_for_test_inv;
eauto.
intros [
b [
A [
B C]]].
subst.
econstructor;
split.
left.
simpl.
eapply plus_left.
constructor.
eapply star_right.
apply step_makeif with (
v1 :=
v) (
b :=
false);
auto.
constructor.
reflexivity.
traceEq.
constructor;
auto.
constructor.
inv H8.
exploit tr_top_val_for_test_inv;
eauto.
intros [
b [
A [
B C]]].
subst.
econstructor;
split.
left.
simpl.
eapply plus_left.
constructor.
eapply star_right.
apply step_makeif with (
v1 :=
v) (
b :=
true);
auto.
constructor.
reflexivity.
traceEq.
constructor;
auto.
constructor;
auto.
inv H6.
inv H7.
econstructor;
split.
left.
apply plus_one.
apply step_break_for2.
constructor;
auto.
constructor.
inv H7.
congruence.
econstructor;
split.
left;
apply plus_one.
constructor.
econstructor;
eauto.
constructor;
auto.
econstructor;
eauto.
inv H6;
try congruence.
inv H2.
econstructor;
split.
left.
eapply plus_left.
apply step_for_true with (
Vint Int.one).
constructor.
auto.
eapply star_left.
constructor.
apply push_seq.
reflexivity.
traceEq.
econstructor;
eauto.
constructor;
auto.
econstructor;
eauto.
inv H8.
exploit tr_top_val_for_test_inv;
eauto.
intros [
b [
A [
B C]]].
subst.
econstructor;
split.
left.
simpl.
eapply plus_left.
constructor.
eapply star_trans.
apply step_makeif with (
v1 :=
v) (
b :=
false);
auto.
eapply star_two.
constructor.
apply step_break_for2.
reflexivity.
reflexivity.
traceEq.
constructor;
auto.
constructor.
inv H8.
exploit tr_top_val_for_test_inv;
eauto.
intros [
b [
A [
B C]]].
subst.
econstructor;
split.
left.
simpl.
eapply plus_left.
constructor.
eapply star_right.
apply step_makeif with (
v1 :=
v) (
b :=
true);
auto.
constructor.
reflexivity.
traceEq.
constructor;
auto.
constructor;
auto.
assert (
ts =
Sskip \/
ts =
Scontinue).
destruct H;
subst x;
inv H7;
auto.
inv H8.
econstructor;
split.
left.
apply plus_one.
apply step_skip_or_continue_for2.
auto.
econstructor;
eauto.
econstructor;
auto.
inv H6.
inv H7.
econstructor;
split.
left.
apply plus_one.
apply step_break_for2.
econstructor;
eauto.
constructor.
inv H6.
inv H7.
econstructor;
split.
left.
apply plus_one.
constructor.
econstructor;
eauto.
constructor;
auto.
inv H7.
econstructor;
split.
left.
apply plus_one.
econstructor;
eauto.
constructor.
apply match_cont_call;
auto.
inv H6.
inv H0.
econstructor;
split.
left;
eapply plus_left.
constructor.
apply push_seq.
traceEq.
econstructor;
eauto.
constructor.
auto.
inv H9.
exploit tr_top_val_for_val_inv;
eauto.
intros [
A [
B C]].
subst.
econstructor;
split.
left.
eapply plus_two.
constructor.
econstructor.
eauto.
replace (
fn_return tf)
with (
C.fn_return f).
eauto.
exploit transl_function_spec;
eauto.
intuition congruence.
eauto.
traceEq.
constructor.
apply match_cont_call;
auto.
inv H9.
assert (
is_call_cont tk).
inv H10;
simpl in *;
auto.
econstructor;
split.
left.
apply plus_one.
apply step_skip_call;
eauto.
rewrite <-
H0.
apply function_return_preserved;
auto.
constructor.
auto.
inv H6.
inv H1.
econstructor;
split.
left;
eapply plus_left.
constructor.
apply push_seq.
traceEq.
econstructor;
eauto.
constructor;
auto.
inv H7.
exploit tr_top_val_for_val_inv;
eauto.
intros [
A [
B C]].
subst.
econstructor;
split.
left;
eapply plus_two.
constructor.
econstructor;
eauto.
traceEq.
econstructor;
eauto.
apply tr_seq_of_labeled_statement.
apply tr_select_switch.
auto.
constructor;
auto.
assert (
ts =
Sskip \/
ts =
Sbreak).
destruct H;
subst x;
inv H7;
auto.
inv H8.
econstructor;
split.
left;
apply plus_one.
apply step_skip_break_switch.
auto.
constructor;
auto.
constructor.
inv H6.
inv H7.
econstructor;
split.
left;
apply plus_one.
apply step_continue_switch.
constructor;
auto.
constructor.
inv H6.
econstructor;
split.
left;
apply plus_one.
constructor.
constructor;
auto.
inv H7.
exploit transl_function_spec;
eauto.
intros [
A [
B [
C D]]].
exploit tr_find_label.
eexact A.
apply match_cont_call.
eauto.
instantiate (1 :=
lbl).
rewrite H.
intros [
ts' [
tk' [
P [
Q R]]]].
econstructor;
split.
left.
apply plus_one.
econstructor;
eauto.
econstructor;
eauto.
monadInv H7.
exploit transl_function_spec;
eauto.
intros [
A [
B [
C D]]].
econstructor;
split.
left;
apply plus_one.
eapply step_internal_function.
rewrite C;
rewrite D;
auto.
rewrite C;
rewrite D;
eauto.
rewrite C.
eapply bind_parameters_preserved;
eauto.
constructor;
auto.
monadInv H5.
econstructor;
split.
left;
apply plus_one.
econstructor;
eauto.
eapply external_call_symbols_preserved;
eauto.
exact symbols_preserved.
exact varinfo_preserved.
constructor;
auto.
inv H3.
econstructor;
split.
left;
apply plus_one.
constructor.
econstructor;
eauto.
econstructor;
split.
left;
apply plus_one.
constructor.
econstructor;
eauto.
Qed.
Semantic preservation
Theorem simulation:
forall S1 t S2,
Cstrategy.step ge S1 t S2 ->
forall S1' (
MS:
match_states S1 S1'),
exists S2',
(
plus step tge S1'
t S2' \/
(
star step tge S1'
t S2' /\
measure S2 <
measure S1)%
nat)
/\
match_states S2 S2'.
Proof.
Lemma transl_initial_states:
forall S,
Csem.initial_state prog S ->
exists S',
Clight.initial_state tprog S' /\
match_states S S'.
Proof.
Lemma transl_final_states:
forall S S'
r,
match_states S S' ->
Csem.final_state S r ->
Clight.final_state S'
r.
Proof.
intros. inv H0. inv H. inv H4. constructor.
Qed.
Theorem transl_program_correct:
forward_simulation (
Cstrategy.semantics prog) (
Clight.semantics tprog).
Proof.
End PRESERVATION.