Module Errors


Error reporting and the error monad.

Require Import String.
Require Import Coqlib.

Close Scope string_scope.

Set Implicit Arguments.

Representation of error messages.


Compile-time errors produce an error message, represented in Coq as a list of either substrings or positive numbers encoding a source-level identifier (see module AST).

Inductive errcode: Type :=
  | MSG: string -> errcode
  | CTX: positive -> errcode
  | CTXL: positive -> errcode.

Definition errmsg: Type := list errcode.

Definition msg (s: string) : errmsg := MSG s :: nil.

The error monad


Compilation functions that can fail have return type res A. The return value is either OK res to indicate success, or Error msg to indicate failure.

Inductive res (A: Type) : Type :=
| OK: A -> res A
| Error: errmsg -> res A.

Implicit Arguments Error [A].

To automate the propagation of errors, we use a monadic style with the following bind operation.

Definition bind (A B: Type) (f: res A) (g: A -> res B) : res B :=
  match f with
  | OK x => g x
  | Error msg => Error msg
  end.

Definition bind2 (A B C: Type) (f: res (A * B)) (g: A -> B -> res C) : res C :=
  match f with
  | OK (x, y) => g x y
  | Error msg => Error msg
  end.

The do notation, inspired by Haskell's, keeps the code readable.

Notation "'do' X <- A ; B" := (bind A (fun X => B))
 (at level 200, X ident, A at level 100, B at level 200)
 : error_monad_scope.

Notation "'do' ( X , Y ) <- A ; B" := (bind2 A (fun X Y => B))
 (at level 200, X ident, Y ident, A at level 100, B at level 200)
 : error_monad_scope.

Remark bind_inversion:
  forall (A B: Type) (f: res A) (g: A -> res B) (y: B),
  bind f g = OK y ->
  exists x, f = OK x /\ g x = OK y.
Proof.
  intros until y. destruct f; simpl; intros.
  exists a; auto.
  discriminate.
Qed.

Remark bind2_inversion:
  forall (A B C: Type) (f: res (A*B)) (g: A -> B -> res C) (z: C),
  bind2 f g = OK z ->
  exists x, exists y, f = OK (x, y) /\ g x y = OK z.
Proof.
  intros until z. destruct f; simpl.
  destruct p; simpl; intros. exists a; exists b; auto.
  intros; discriminate.
Qed.

Assertions

Definition assertion (b: bool) : res unit :=
  if b then OK tt else Error(msg "Assertion failed").

Remark assertion_inversion:
  forall b x, assertion b = OK x -> b = true.
Proof.
  unfold assertion; intros. destruct b; inv H; auto.
Qed.

Remark assertion_inversion_1:
  forall (P Q: Prop) (a: {P}+{Q}) x,
  assertion (proj_sumbool a) = OK x -> P.
Proof.
  intros. exploit assertion_inversion; eauto.
  unfold proj_sumbool. destruct a. auto. congruence.
Qed.

Remark assertion_inversion_2:
  forall (P Q: Prop) (a: {P}+{Q}) x,
  assertion (negb(proj_sumbool a)) = OK x -> Q.
Proof.
  intros. exploit assertion_inversion; eauto.
  unfold proj_sumbool. destruct a; simpl. congruence. auto.
Qed.

This is the familiar monadic map iterator.

Open Local Scope error_monad_scope.

Fixpoint mmap (A B: Type) (f: A -> res B) (l: list A) {struct l} : res (list B) :=
  match l with
  | nil => OK nil
  | hd :: tl => do hd' <- f hd; do tl' <- mmap f tl; OK (hd' :: tl')
  end.

Remark mmap_inversion:
  forall (A B: Type) (f: A -> res B) (l: list A) (l': list B),
  mmap f l = OK l' ->
  list_forall2 (fun x y => f x = OK y) l l'.
Proof.
  induction l; simpl; intros.
  inversion_clear H. constructor.
  destruct (bind_inversion _ _ H) as [hd' [P Q]].
  destruct (bind_inversion _ _ Q) as [tl' [R S]].
  inversion_clear S.
  constructor. auto. auto.
Qed.

Reasoning over monadic computations


The monadInv H tactic below simplifies hypotheses of the form
        H: (do x <- a; b) = OK res
By definition of the bind operation, both computations a and b must succeed for their composition to succeed. The tactic therefore generates the following hypotheses: x: ... H1: a = OK x H2: b x = OK res

Ltac monadInv1 H :=
  match type of H with
  | (OK _ = OK _) =>
      inversion H; clear H; try subst
  | (Error _ = OK _) =>
      discriminate
  | (bind ?F ?G = OK ?X) =>
      let x := fresh "x" in (
      let EQ1 := fresh "EQ" in (
      let EQ2 := fresh "EQ" in (
      destruct (bind_inversion F G H) as [x [EQ1 EQ2]];
      clear H;
      try (monadInv1 EQ2))))
  | (bind2 ?F ?G = OK ?X) =>
      let x1 := fresh "x" in (
      let x2 := fresh "x" in (
      let EQ1 := fresh "EQ" in (
      let EQ2 := fresh "EQ" in (
      destruct (bind2_inversion F G H) as [x1 [x2 [EQ1 EQ2]]];
      clear H;
      try (monadInv1 EQ2)))))
  | (assertion (negb (proj_sumbool ?a)) = OK ?X) =>
      let A := fresh "A" in (generalize (assertion_inversion_2 _ H); intro A);
      clear H
  | (assertion (proj_sumbool ?a) = OK ?X) =>
      let A := fresh "A" in (generalize (assertion_inversion_1 _ H); intro A);
      clear H
  | (assertion ?b = OK ?X) =>
      let A := fresh "A" in (generalize (assertion_inversion _ H); intro A);
      clear H
  | (mmap ?F ?L = OK ?M) =>
      generalize (mmap_inversion F L H); intro
  end.

Ltac monadInv H :=
  match type of H with
  | (OK _ = OK _) => monadInv1 H
  | (Error _ = OK _) => monadInv1 H
  | (bind ?F ?G = OK ?X) => monadInv1 H
  | (bind2 ?F ?G = OK ?X) => monadInv1 H
  | (assertion _ = OK _) => monadInv1 H
  | (?F _ _ _ _ _ _ _ _ = OK _) =>
      ((progress simpl in H) || unfold F in H); monadInv1 H
  | (?F _ _ _ _ _ _ _ = OK _) =>
      ((progress simpl in H) || unfold F in H); monadInv1 H
  | (?F _ _ _ _ _ _ = OK _) =>
      ((progress simpl in H) || unfold F in H); monadInv1 H
  | (?F _ _ _ _ _ = OK _) =>
      ((progress simpl in H) || unfold F in H); monadInv1 H
  | (?F _ _ _ _ = OK _) =>
      ((progress simpl in H) || unfold F in H); monadInv1 H
  | (?F _ _ _ = OK _) =>
      ((progress simpl in H) || unfold F in H); monadInv1 H
  | (?F _ _ = OK _) =>
      ((progress simpl in H) || unfold F in H); monadInv1 H
  | (?F _ = OK _) =>
      ((progress simpl in H) || unfold F in H); monadInv1 H
  end.