This file defines a number of data types and operations used in
the abstract syntax trees of many of the intermediate languages.
Require Import Coqlib.
Require Import Errors.
Require Import Integers.
Require Import Floats.
Set Implicit Arguments.
Syntactic elements
Identifiers (names of local variables, of global symbols and functions,
etc) are represented by the type positive of positive integers.
Definition ident :=
positive.
Definition ident_eq :=
peq.
The intermediate languages are weakly typed, using only two types:
Tint for integers and pointers, and Tfloat for floating-point
numbers.
Inductive typ :
Type :=
|
Tint :
typ
|
Tfloat :
typ.
Definition typesize (
ty:
typ) :
Z :=
match ty with Tint => 4 |
Tfloat => 8
end.
Lemma typesize_pos:
forall ty,
typesize ty > 0.
Proof.
destruct ty; simpl; omega. Qed.
Lemma typ_eq:
forall (
t1 t2:
typ), {
t1=
t2} + {
t1<>
t2}.
Proof.
decide equality. Qed.
Lemma opt_typ_eq:
forall (
t1 t2:
option typ), {
t1=
t2} + {
t1<>
t2}.
Proof.
decide equality.
apply typ_eq. Qed.
Additionally, function definitions and function calls are annotated
by function signatures indicating the number and types of arguments,
as well as the type of the returned value if any. These signatures
are used in particular to determine appropriate calling conventions
for the function.
Record signature :
Type :=
mksignature {
sig_args:
list typ;
sig_res:
option typ
}.
Definition proj_sig_res (
s:
signature) :
typ :=
match s.(
sig_res)
with
|
None =>
Tint
|
Some t =>
t
end.
Memory accesses (load and store instructions) are annotated by
a ``memory chunk'' indicating the type, size and signedness of the
chunk of memory being accessed.
Inductive memory_chunk :
Type :=
|
Mint8signed :
memory_chunk (* 8-bit signed integer *)
|
Mint8unsigned :
memory_chunk (* 8-bit unsigned integer *)
|
Mint16signed :
memory_chunk (* 16-bit signed integer *)
|
Mint16unsigned :
memory_chunk (* 16-bit unsigned integer *)
|
Mint32 :
memory_chunk (* 32-bit integer, or pointer *)
|
Mfloat32 :
memory_chunk (* 32-bit single-precision float *)
|
Mfloat64 :
memory_chunk.
(* 64-bit double-precision float *)
The type (integer/pointer or float) of a chunk.
Definition type_of_chunk (
c:
memory_chunk) :
typ :=
match c with
|
Mint8signed =>
Tint
|
Mint8unsigned =>
Tint
|
Mint16signed =>
Tint
|
Mint16unsigned =>
Tint
|
Mint32 =>
Tint
|
Mfloat32 =>
Tfloat
|
Mfloat64 =>
Tfloat
end.
Initialization data for global variables.
Inductive init_data:
Type :=
|
Init_int8:
int ->
init_data
|
Init_int16:
int ->
init_data
|
Init_int32:
int ->
init_data
|
Init_float32:
float ->
init_data
|
Init_float64:
float ->
init_data
|
Init_space:
Z ->
init_data
|
Init_addrof:
ident ->
int ->
init_data.
(* address of symbol + offset *)
Information attached to global variables.
Record globvar (
V:
Type) :
Type :=
mkglobvar {
gvar_info:
V;
(* language-dependent info, e.g. a type *)
gvar_init:
list init_data;
(* initialization data *)
gvar_readonly:
bool;
(* read-only variable? (const) *)
gvar_volatile:
bool (* volatile variable? *)
}.
Whole programs consist of:
-
a collection of function definitions (name and description);
-
the name of the ``main'' function that serves as entry point in the program;
-
a collection of global variable declarations (name and information).
The type of function descriptions and that of additional information
for variables vary among the various intermediate languages and are
taken as parameters to the
program type. The other parts of whole
programs are common to all languages.
Record program (
F V:
Type) :
Type :=
mkprogram {
prog_funct:
list (
ident *
F);
prog_main:
ident;
prog_vars:
list (
ident *
globvar V)
}.
Definition funct_names (
F:
Type) (
fl:
list (
ident *
F)) :
list ident :=
map (@
fst ident F)
fl.
Lemma funct_names_app :
forall (
F:
Type) (
fl1 fl2 :
list (
ident *
F)),
funct_names (
fl1 ++
fl2) =
funct_names fl1 ++
funct_names fl2.
Proof.
Definition var_names (
V:
Type) (
vl:
list (
ident *
globvar V)) :
list ident :=
map (@
fst ident (
globvar V))
vl.
Lemma var_names_app :
forall (
V:
Type) (
vl1 vl2 :
list (
ident *
globvar V)),
var_names (
vl1 ++
vl2) =
var_names vl1 ++
funct_names vl2.
Proof.
Definition prog_funct_names (
F V:
Type) (
p:
program F V) :
list ident :=
funct_names p.(
prog_funct).
Definition prog_var_names (
F V:
Type) (
p:
program F V) :
list ident :=
var_names p.(
prog_vars).
Generic transformations over programs
We now define a general iterator over programs that applies a given
code transformation function to all function descriptions and leaves
the other parts of the program unchanged.
Section TRANSF_PROGRAM.
Variable A B V:
Type.
Variable transf:
A ->
B.
Definition transf_program (
l:
list (
ident *
A)) :
list (
ident *
B) :=
List.map (
fun id_fn => (
fst id_fn,
transf (
snd id_fn)))
l.
Definition transform_program (
p:
program A V) :
program B V :=
mkprogram
(
transf_program p.(
prog_funct))
p.(
prog_main)
p.(
prog_vars).
Lemma transform_program_function:
forall p i tf,
In (
i,
tf) (
transform_program p).(
prog_funct) ->
exists f,
In (
i,
f)
p.(
prog_funct) /\
transf f =
tf.
Proof.
simpl.
unfold transf_program.
intros.
exploit list_in_map_inv;
eauto.
intros [[
i'
f] [
EQ IN]].
simpl in EQ.
inversion EQ;
subst.
exists f;
split;
auto.
Qed.
End TRANSF_PROGRAM.
The following is a variant of transform_program where the
code transformation function can fail and therefore returns an
option type.
Open Local Scope error_monad_scope.
Open Local Scope string_scope.
Section MAP_PARTIAL.
Variable A B C:
Type.
Variable prefix_errmsg:
A ->
errmsg.
Variable f:
B ->
res C.
Fixpoint map_partial (
l:
list (
A *
B)) :
res (
list (
A *
C)) :=
match l with
|
nil =>
OK nil
| (
a,
b) ::
rem =>
match f b with
|
Error msg =>
Error (
prefix_errmsg a ++
msg)%
list
|
OK c =>
do rem' <-
map_partial rem;
OK ((
a,
c) ::
rem')
end
end.
Remark In_map_partial:
forall l l'
a c,
map_partial l =
OK l' ->
In (
a,
c)
l' ->
exists b,
In (
a,
b)
l /\
f b =
OK c.
Proof.
induction l;
simpl.
intros.
inv H.
elim H0.
intros until c.
destruct a as [
a1 b1].
caseEq (
f b1);
try congruence.
intro c1;
intros.
monadInv H0.
elim H1;
intro.
inv H0.
exists b1;
auto.
exploit IHl;
eauto.
intros [
b [
P Q]].
exists b;
auto.
Qed.
Remark map_partial_forall2:
forall l l',
map_partial l =
OK l' ->
list_forall2
(
fun (
a_b:
A *
B) (
a_c:
A *
C) =>
fst a_b =
fst a_c /\
f (
snd a_b) =
OK (
snd a_c))
l l'.
Proof.
induction l;
simpl.
intros.
inv H.
constructor.
intro l'.
destruct a as [
a b].
caseEq (
f b). 2:
congruence.
intro c;
intros.
monadInv H0.
constructor.
simpl.
auto.
auto.
Qed.
End MAP_PARTIAL.
Remark map_partial_total:
forall (
A B C:
Type) (
prefix:
A ->
errmsg) (
f:
B ->
C) (
l:
list (
A *
B)),
map_partial prefix (
fun b =>
OK (
f b))
l =
OK (
List.map (
fun a_b => (
fst a_b,
f (
snd a_b)))
l).
Proof.
induction l; simpl.
auto.
destruct a as [a1 b1]. rewrite IHl. reflexivity.
Qed.
Remark map_partial_identity:
forall (
A B:
Type) (
prefix:
A ->
errmsg) (
l:
list (
A *
B)),
map_partial prefix (
fun b =>
OK b)
l =
OK l.
Proof.
induction l; simpl.
auto.
destruct a as [a1 b1]. rewrite IHl. reflexivity.
Qed.
Section TRANSF_PARTIAL_PROGRAM.
Variable A B V:
Type.
Variable transf_partial:
A ->
res B.
Definition prefix_name (
id:
ident) :
errmsg :=
MSG "
In function " ::
CTX id ::
MSG ": " ::
nil.
Definition transform_partial_program (
p:
program A V) :
res (
program B V) :=
do fl <-
map_partial prefix_name transf_partial p.(
prog_funct);
OK (
mkprogram fl p.(
prog_main)
p.(
prog_vars)).
Lemma transform_partial_program_function:
forall p tp i tf,
transform_partial_program p =
OK tp ->
In (
i,
tf)
tp.(
prog_funct) ->
exists f,
In (
i,
f)
p.(
prog_funct) /\
transf_partial f =
OK tf.
Proof.
Lemma transform_partial_program_main:
forall p tp,
transform_partial_program p =
OK tp ->
tp.(
prog_main) =
p.(
prog_main).
Proof.
intros. monadInv H. reflexivity.
Qed.
Lemma transform_partial_program_vars:
forall p tp,
transform_partial_program p =
OK tp ->
tp.(
prog_vars) =
p.(
prog_vars).
Proof.
intros. monadInv H. reflexivity.
Qed.
End TRANSF_PARTIAL_PROGRAM.
The following is a variant of transform_program_partial where
both the program functions and the additional variable information
are transformed by functions that can fail.
Section TRANSF_PARTIAL_PROGRAM2.
Variable A B V W:
Type.
Variable transf_partial_function:
A ->
res B.
Variable transf_partial_variable:
V ->
res W.
Definition transf_globvar (
g:
globvar V) :
res (
globvar W) :=
do info' <-
transf_partial_variable g.(
gvar_info);
OK (
mkglobvar info'
g.(
gvar_init)
g.(
gvar_readonly)
g.(
gvar_volatile)).
Definition transform_partial_program2 (
p:
program A V) :
res (
program B W) :=
do fl <-
map_partial prefix_name transf_partial_function p.(
prog_funct);
do vl <-
map_partial prefix_name transf_globvar p.(
prog_vars);
OK (
mkprogram fl p.(
prog_main)
vl).
Lemma transform_partial_program2_function:
forall p tp i tf,
transform_partial_program2 p =
OK tp ->
In (
i,
tf)
tp.(
prog_funct) ->
exists f,
In (
i,
f)
p.(
prog_funct) /\
transf_partial_function f =
OK tf.
Proof.
Lemma transform_partial_program2_variable:
forall p tp i tg,
transform_partial_program2 p =
OK tp ->
In (
i,
tg)
tp.(
prog_vars) ->
exists v,
In (
i,
mkglobvar v tg.(
gvar_init)
tg.(
gvar_readonly)
tg.(
gvar_volatile))
p.(
prog_vars)
/\
transf_partial_variable v =
OK tg.(
gvar_info).
Proof.
intros.
monadInv H.
exploit In_map_partial;
eauto.
intros [
g [
P Q]].
monadInv Q.
simpl in *.
exists (
gvar_info g);
split.
destruct g;
auto.
auto.
Qed.
Lemma transform_partial_program2_main:
forall p tp,
transform_partial_program2 p =
OK tp ->
tp.(
prog_main) =
p.(
prog_main).
Proof.
intros. monadInv H. reflexivity.
Qed.
End TRANSF_PARTIAL_PROGRAM2.
The following is a variant of transform_partial_program2 where the
where the set of functions and global data is augmented, and
the main function is potentially changed.
Section TRANSF_PARTIAL_AUGMENT_PROGRAM.
Variable A B V W:
Type.
Variable transf_partial_function:
A ->
res B.
Variable transf_partial_variable:
V ->
res W.
Variable new_functs :
list (
ident *
B).
Variable new_vars :
list (
ident *
globvar W).
Variable new_main :
ident.
Definition transform_partial_augment_program (
p:
program A V) :
res (
program B W) :=
do fl <-
map_partial prefix_name transf_partial_function p.(
prog_funct);
do vl <-
map_partial prefix_name (
transf_globvar transf_partial_variable)
p.(
prog_vars);
OK (
mkprogram (
fl ++
new_functs)
new_main (
vl ++
new_vars)).
Lemma transform_partial_augment_program_function:
forall p tp i tf,
transform_partial_augment_program p =
OK tp ->
In (
i,
tf)
tp.(
prog_funct) ->
(
exists f,
In (
i,
f)
p.(
prog_funct) /\
transf_partial_function f =
OK tf)
\/
In (
i,
tf)
new_functs.
Proof.
intros.
monadInv H.
simpl in H0.
rewrite in_app in H0.
destruct H0.
left.
eapply In_map_partial;
eauto.
right.
auto.
Qed.
Lemma transform_partial_augment_program_main:
forall p tp,
transform_partial_augment_program p =
OK tp ->
tp.(
prog_main) =
new_main.
Proof.
intros. monadInv H. reflexivity.
Qed.
Lemma transform_partial_augment_program_variable:
forall p tp i tg,
transform_partial_augment_program p =
OK tp ->
In (
i,
tg)
tp.(
prog_vars) ->
(
exists v,
In (
i,
mkglobvar v tg.(
gvar_init)
tg.(
gvar_readonly)
tg.(
gvar_volatile))
p.(
prog_vars) /\
transf_partial_variable v =
OK tg.(
gvar_info))
\/
In (
i,
tg)
new_vars.
Proof.
intros.
monadInv H.
simpl in H0.
rewrite in_app in H0.
inversion H0.
left.
exploit In_map_partial;
eauto.
intros [
g [
P Q]].
monadInv Q.
simpl in *.
exists (
gvar_info g);
split.
destruct g;
auto.
auto.
right.
auto.
Qed.
End TRANSF_PARTIAL_AUGMENT_PROGRAM.
The following is a relational presentation of
transform_partial_augment_preogram. Given relations between function
definitions and between variable information, it defines a relation
between programs stating that the two programs have appropriately related
shapes (global names are preserved and possibly augmented, etc)
and that identically-named function definitions
and variable information are related.
Section MATCH_PROGRAM.
Variable A B V W:
Type.
Variable match_fundef:
A ->
B ->
Prop.
Variable match_varinfo:
V ->
W ->
Prop.
Inductive match_funct_entry:
ident *
A ->
ident *
B ->
Prop :=
|
match_funct_entry_intro:
forall id fn1 fn2,
match_fundef fn1 fn2 ->
match_funct_entry (
id,
fn1) (
id,
fn2).
Inductive match_var_entry:
ident *
globvar V ->
ident *
globvar W ->
Prop :=
|
match_var_entry_intro:
forall id info1 info2 init ro vo,
match_varinfo info1 info2 ->
match_var_entry (
id,
mkglobvar info1 init ro vo)
(
id,
mkglobvar info2 init ro vo).
Definition match_program (
new_functs :
list (
ident *
B))
(
new_vars :
list (
ident *
globvar W))
(
new_main :
ident)
(
p1:
program A V) (
p2:
program B W) :
Prop :=
(
exists tfuncts,
list_forall2 match_funct_entry p1.(
prog_funct)
tfuncts /\
(
p2.(
prog_funct) =
tfuncts ++
new_functs)) /\
(
exists tvars,
list_forall2 match_var_entry p1.(
prog_vars)
tvars /\
(
p2.(
prog_vars) =
tvars ++
new_vars)) /\
p2.(
prog_main) =
new_main.
End MATCH_PROGRAM.
Remark transform_partial_augment_program_match:
forall (
A B V W:
Type)
(
transf_partial_function:
A ->
res B)
(
transf_partial_variable :
V ->
res W)
(
p:
program A V)
(
new_functs :
list (
ident *
B))
(
new_vars :
list (
ident *
globvar W))
(
new_main :
ident)
(
tp:
program B W),
transform_partial_augment_program transf_partial_function transf_partial_variable new_functs new_vars new_main p =
OK tp ->
match_program
(
fun fd tfd =>
transf_partial_function fd =
OK tfd)
(
fun info tinfo =>
transf_partial_variable info =
OK tinfo)
new_functs new_vars new_main
p tp.
Proof.
External functions
For most languages, the functions composing the program are either
internal functions, defined within the language, or external functions,
defined outside. External functions include system calls but also
compiler built-in functions. We define a type for external functions
and associated operations.
Inductive external_function :
Type :=
|
EF_external (
name:
ident) (
sg:
signature)
A system call or library function. Produces an event
in the trace.
|
EF_builtin (
name:
ident) (
sg:
signature)
A compiler built-in function. Behaves like an external, but
can be inlined by the compiler.
|
EF_vload (
chunk:
memory_chunk)
A volatile read operation. If the adress given as first argument
points within a volatile global variable, generate an
event and return the value found in this event. Otherwise,
produce no event and behave like a regular memory load.
|
EF_vstore (
chunk:
memory_chunk)
A volatile store operation. If the adress given as first argument
points within a volatile global variable, generate an event.
Otherwise, produce no event and behave like a regular memory store.
|
EF_vload_global (
chunk:
memory_chunk) (
id:
ident) (
ofs:
int)
A volatile load operation from a global variable.
Specialized version of EF_vload.
|
EF_vstore_global (
chunk:
memory_chunk) (
id:
ident) (
ofs:
int)
A volatile store operation in a global variable.
Specialized version of EF_vstore.
|
EF_malloc
Dynamic memory allocation. Takes the requested size in bytes
as argument; returns a pointer to a fresh block of the given size.
Produces no observable event.
|
EF_free
Dynamic memory deallocation. Takes a pointer to a block
allocated by an EF_malloc external call and frees the
corresponding block.
Produces no observable event.
|
EF_memcpy (
sz:
Z) (
al:
Z)
Block copy, of sz bytes, between addresses that are al-aligned.
|
EF_annot (
text:
ident) (
targs:
list typ)
A programmer-supplied annotation. Takes zero, one or several arguments,
produces an event carrying the text and the values of these arguments,
and returns no value.
|
EF_annot_val (
text:
ident) (
targ:
typ).
Another form of annotation that takes one argument, produces
an event carrying the text and the value of this argument,
and returns the value of the argument.
The type signature of an external function.
Definition ef_sig (
ef:
external_function):
signature :=
match ef with
|
EF_external name sg =>
sg
|
EF_builtin name sg =>
sg
|
EF_vload chunk =>
mksignature (
Tint ::
nil) (
Some (
type_of_chunk chunk))
|
EF_vstore chunk =>
mksignature (
Tint ::
type_of_chunk chunk ::
nil)
None
|
EF_vload_global chunk _ _ =>
mksignature nil (
Some (
type_of_chunk chunk))
|
EF_vstore_global chunk _ _ =>
mksignature (
type_of_chunk chunk ::
nil)
None
|
EF_malloc =>
mksignature (
Tint ::
nil) (
Some Tint)
|
EF_free =>
mksignature (
Tint ::
nil)
None
|
EF_memcpy sz al =>
mksignature (
Tint ::
Tint ::
nil)
None
|
EF_annot text targs =>
mksignature targs None
|
EF_annot_val text targ =>
mksignature (
targ ::
nil) (
Some targ)
end.
Whether an external function should be inlined by the compiler.
Definition ef_inline (
ef:
external_function) :
bool :=
match ef with
|
EF_external name sg =>
false
|
EF_builtin name sg =>
true
|
EF_vload chunk =>
true
|
EF_vstore chunk =>
true
|
EF_vload_global chunk id ofs =>
true
|
EF_vstore_global chunk id ofs =>
true
|
EF_malloc =>
false
|
EF_free =>
false
|
EF_memcpy sz al =>
true
|
EF_annot text targs =>
true
|
EF_annot_val text targ =>
true
end.
Whether an external function must reload its arguments.
Definition ef_reloads (
ef:
external_function) :
bool :=
match ef with
|
EF_annot text targs =>
false
|
_ =>
true
end.
Function definitions are the union of internal and external functions.
Inductive fundef (
F:
Type):
Type :=
|
Internal:
F ->
fundef F
|
External:
external_function ->
fundef F.
Implicit Arguments External [
F].
Section TRANSF_FUNDEF.
Variable A B:
Type.
Variable transf:
A ->
B.
Definition transf_fundef (
fd:
fundef A):
fundef B :=
match fd with
|
Internal f =>
Internal (
transf f)
|
External ef =>
External ef
end.
End TRANSF_FUNDEF.
Section TRANSF_PARTIAL_FUNDEF.
Variable A B:
Type.
Variable transf_partial:
A ->
res B.
Definition transf_partial_fundef (
fd:
fundef A):
res (
fundef B) :=
match fd with
|
Internal f =>
do f' <-
transf_partial f;
OK (
Internal f')
|
External ef =>
OK (
External ef)
end.
End TRANSF_PARTIAL_FUNDEF.