Correctness proof for the Reload pass.
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Op.
Require Import Locations.
Require Import Conventions.
Require Import Allocproof.
Require Import RTLtyping.
Require Import LTLin.
Require Import LTLintyping.
Require Import Linear.
Require Import Parallelmove.
Require Import Reload.
Exploitation of the typing hypothesis
Remark arity_ok_rec_incr_1:
forall tys it itmps ftmps,
arity_ok_rec tys itmps ftmps =
true ->
arity_ok_rec tys (
it ::
itmps)
ftmps =
true.
Proof.
induction tys; intros until ftmps; simpl.
tauto.
destruct a.
destruct itmps. congruence. auto.
destruct ftmps. congruence. auto.
Qed.
Remark arity_ok_rec_incr_2:
forall tys ft itmps ftmps,
arity_ok_rec tys itmps ftmps =
true ->
arity_ok_rec tys itmps (
ft ::
ftmps) =
true.
Proof.
induction tys; intros until ftmps; simpl.
tauto.
destruct a.
destruct itmps. congruence. auto.
destruct ftmps. congruence. auto.
Qed.
Remark arity_ok_rec_decr:
forall tys ty itmps ftmps,
arity_ok_rec (
ty ::
tys)
itmps ftmps =
true ->
arity_ok_rec tys itmps ftmps =
true.
Proof.
Lemma arity_ok_enough_rec:
forall locs itmps ftmps,
arity_ok_rec (
List.map Loc.type locs)
itmps ftmps =
true ->
enough_temporaries_rec locs itmps ftmps =
true.
Proof.
Lemma arity_ok_enough:
forall locs,
arity_ok (
List.map Loc.type locs) =
true ->
enough_temporaries locs =
true.
Proof.
Lemma enough_temporaries_op_args:
forall (
op:
operation) (
args:
list loc) (
res:
loc),
(
List.map Loc.type args,
Loc.type res) =
type_of_operation op ->
enough_temporaries args =
true.
Proof.
Lemma enough_temporaries_addr:
forall (
addr:
addressing) (
args:
list loc),
List.map Loc.type args =
type_of_addressing addr ->
enough_temporaries args =
true.
Proof.
intros.
apply arity_ok_enough.
rewrite H.
destruct addr;
compute;
reflexivity.
Qed.
Lemma enough_temporaries_cond:
forall (
cond:
condition) (
args:
list loc),
List.map Loc.type args =
type_of_condition cond ->
enough_temporaries args =
true.
Proof.
intros.
apply arity_ok_enough.
rewrite H.
destruct cond;
compute;
reflexivity.
Qed.
Lemma arity_ok_rec_length:
forall tys itmps ftmps,
(
length tys <=
length itmps)%
nat ->
(
length tys <=
length ftmps)%
nat ->
arity_ok_rec tys itmps ftmps =
true.
Proof.
induction tys; intros until ftmps; simpl.
auto.
intros. destruct a.
destruct itmps; simpl in H. omegaContradiction. apply IHtys; omega.
destruct ftmps; simpl in H0. omegaContradiction. apply IHtys; omega.
Qed.
Lemma enough_temporaries_length:
forall args,
(
length args <= 2)%
nat ->
enough_temporaries args =
true.
Proof.
Lemma not_enough_temporaries_length:
forall src args,
enough_temporaries (
src ::
args) =
false ->
(
length args >= 2)%
nat.
Proof.
Lemma not_enough_temporaries_addr:
forall (
ge:
genv)
sp addr src args ls v m,
enough_temporaries (
src ::
args) =
false ->
eval_addressing ge sp addr (
List.map ls args) =
Some v ->
eval_operation ge sp (
op_for_binary_addressing addr) (
List.map ls args)
m =
Some v.
Proof.
Some additional properties of reg_for and regs_for.
Lemma regs_for_cons:
forall src args,
exists rsrc,
exists rargs,
regs_for (
src ::
args) =
rsrc ::
rargs.
Proof.
intros.
unfold regs_for.
simpl.
destruct src.
econstructor;
econstructor;
reflexivity.
destruct (
slot_type s);
econstructor;
econstructor;
reflexivity.
Qed.
Lemma reg_for_not_IT2:
forall l,
loc_acceptable l ->
reg_for l <>
IT2.
Proof.
intros.
destruct l;
simpl.
red;
intros;
subst m.
simpl in H.
intuition congruence.
destruct (
slot_type s);
congruence.
Qed.
Correctness of the Linear constructors
This section proves theorems that establish the correctness of the
Linear constructor functions such as add_move. The theorems are of
the general form ``the generated Linear instructions execute and
modify the location set in the expected way: the result location(s)
contain the expected values; other, non-temporary locations keep
their values''.
Section LINEAR_CONSTRUCTORS.
Variable ge:
genv.
Variable stk:
list stackframe.
Variable f:
function.
Variable sp:
val.
Lemma reg_for_spec:
forall l,
R(
reg_for l) =
l \/
In (
R (
reg_for l))
temporaries.
Proof.
intros.
unfold reg_for.
destruct l.
tauto.
case (
slot_type s);
simpl;
tauto.
Qed.
Lemma reg_for_diff:
forall l l',
Loc.diff l l' ->
Loc.notin l'
temporaries ->
Loc.diff (
R (
reg_for l))
l'.
Proof.
Lemma add_reload_correct:
forall src dst k rs m,
exists rs',
star step ge (
State stk f sp (
add_reload src dst k)
rs m)
E0 (
State stk f sp k rs'
m) /\
rs' (
R dst) =
rs src /\
forall l,
Loc.diff (
R dst)
l ->
loc_acceptable src \/
Loc.diff (
R IT1)
l ->
Loc.notin l destroyed_at_move ->
rs'
l =
rs l.
Proof.
Lemma add_reload_correct_2:
forall src k rs m,
loc_acceptable src ->
exists rs',
star step ge (
State stk f sp (
add_reload src (
reg_for src)
k)
rs m)
E0 (
State stk f sp k rs'
m) /\
rs' (
R (
reg_for src)) =
rs src /\
(
forall l,
Loc.notin l temporaries ->
rs'
l =
rs l) /\
rs' (
R IT2) =
rs (
R IT2).
Proof.
Lemma add_spill_correct:
forall src dst k rs m,
exists rs',
star step ge (
State stk f sp (
add_spill src dst k)
rs m)
E0 (
State stk f sp k rs'
m) /\
rs'
dst =
rs (
R src) /\
forall l,
Loc.diff dst l ->
Loc.notin l destroyed_at_move ->
rs'
l =
rs l.
Proof.
Remark notin_destroyed_move_1:
forall r, ~
In r destroyed_at_move_regs ->
Loc.notin (
R r)
destroyed_at_move.
Proof.
intros. simpl in *. intuition congruence.
Qed.
Remark notin_destroyed_move_2:
forall s,
Loc.notin (
S s)
destroyed_at_move.
Proof.
intros. simpl in *. destruct s; auto.
Qed.
Lemma add_reloads_correct_rec:
forall srcs itmps ftmps k rs m,
locs_acceptable srcs ->
enough_temporaries_rec srcs itmps ftmps =
true ->
(
forall r,
In (
R r)
srcs ->
In r itmps ->
False) ->
(
forall r,
In (
R r)
srcs ->
In r ftmps ->
False) ->
(
forall r,
In (
R r)
srcs -> ~
In r destroyed_at_move_regs) ->
list_disjoint itmps ftmps ->
list_norepet itmps ->
list_norepet ftmps ->
list_disjoint itmps destroyed_at_move_regs ->
list_disjoint ftmps destroyed_at_move_regs ->
exists rs',
star step ge
(
State stk f sp (
add_reloads srcs (
regs_for_rec srcs itmps ftmps)
k)
rs m)
E0 (
State stk f sp k rs'
m) /\
reglist rs' (
regs_for_rec srcs itmps ftmps) =
map rs srcs /\
(
forall r, ~(
In r itmps) -> ~(
In r ftmps) -> ~(
In r destroyed_at_move_regs) ->
rs' (
R r) =
rs (
R r)) /\
(
forall s,
rs' (
S s) =
rs (
S s)).
Proof.
Lemma add_reloads_correct:
forall srcs k rs m,
enough_temporaries srcs =
true ->
locs_acceptable srcs ->
exists rs',
star step ge (
State stk f sp (
add_reloads srcs (
regs_for srcs)
k)
rs m)
E0 (
State stk f sp k rs'
m) /\
reglist rs' (
regs_for srcs) =
List.map rs srcs /\
forall l,
Loc.notin l temporaries ->
rs'
l =
rs l.
Proof.
Transparent destroyed_at_move_regs.
intros.
unfold enough_temporaries in H.
exploit add_reloads_correct_rec.
eauto.
eauto.
intros.
generalize (
H0 _ H1).
unfold loc_acceptable.
generalize H2.
simpl.
intuition congruence.
intros.
generalize (
H0 _ H1).
unfold loc_acceptable.
generalize H2.
simpl.
intuition congruence.
intros.
generalize (
H0 _ H1).
unfold loc_acceptable.
simpl.
intuition congruence.
red;
simpl;
intros.
intuition congruence.
unfold int_temporaries.
NoRepet.
unfold float_temporaries.
NoRepet.
red;
simpl;
intros.
intuition congruence.
red;
simpl;
intros.
intuition congruence.
intros [
rs' [
EX [
RES [
OTH1 OTH2]]]].
exists rs'.
split.
eexact EX.
split.
exact RES.
intros.
destruct l.
generalize (
Loc.notin_not_in _ _ H1);
simpl;
intro.
apply OTH1;
simpl;
intuition congruence.
apply OTH2.
Qed.
Lemma add_move_correct:
forall src dst k rs m,
exists rs',
star step ge (
State stk f sp (
add_move src dst k)
rs m)
E0 (
State stk f sp k rs'
m) /\
rs'
dst =
rs src /\
forall l,
Loc.diff l dst ->
Loc.diff l (
R IT1) ->
Loc.diff l (
R FT1) ->
Loc.notin l destroyed_at_move ->
rs'
l =
rs l.
Proof.
Lemma effect_move_sequence:
forall k moves rs m,
let k' :=
List.fold_right (
fun p k =>
add_move (
fst p) (
snd p)
k)
k moves in
exists rs',
star step ge (
State stk f sp k'
rs m)
E0 (
State stk f sp k rs'
m) /\
effect_seqmove moves rs rs'.
Proof.
induction moves;
intros until m;
simpl.
exists rs;
split.
constructor.
constructor.
destruct a as [
src dst];
simpl.
set (
k1 :=
fold_right
(
fun (
p :
loc *
loc) (
k :
code) =>
add_move (
fst p) (
snd p)
k)
k moves)
in *.
destruct (
add_move_correct src dst k1 rs m)
as [
rs1 [
A [
B C]]].
destruct (
IHmoves rs1 m)
as [
rs' [
D E]].
exists rs';
split.
eapply star_trans;
eauto.
econstructor;
eauto.
red.
tauto.
Qed.
Lemma parallel_move_correct:
forall srcs dsts k rs m,
List.length srcs =
List.length dsts ->
Loc.no_overlap srcs dsts ->
Loc.norepet dsts ->
Loc.disjoint srcs temporaries ->
Loc.disjoint dsts temporaries ->
exists rs',
star step ge (
State stk f sp (
parallel_move srcs dsts k)
rs m)
E0 (
State stk f sp k rs'
m) /\
List.map rs'
dsts =
List.map rs srcs /\
forall l,
Loc.notin l dsts ->
Loc.notin l temporaries ->
rs'
l =
rs l.
Proof.
Lemma parallel_move_arguments_correct:
forall args sg k rs m,
List.map Loc.type args =
sg.(
sig_args) ->
locs_acceptable args ->
exists rs',
star step ge (
State stk f sp (
parallel_move args (
loc_arguments sg)
k)
rs m)
E0 (
State stk f sp k rs'
m) /\
List.map rs' (
loc_arguments sg) =
List.map rs args /\
forall l,
Loc.notin l (
loc_arguments sg) ->
Loc.notin l temporaries ->
rs'
l =
rs l.
Proof.
Lemma parallel_move_parameters_correct:
forall params sg k rs m,
List.map Loc.type params =
sg.(
sig_args) ->
locs_acceptable params ->
Loc.norepet params ->
exists rs',
star step ge (
State stk f sp (
parallel_move (
loc_parameters sg)
params k)
rs m)
E0 (
State stk f sp k rs'
m) /\
List.map rs'
params =
List.map rs (
loc_parameters sg) /\
forall l,
Loc.notin l params ->
Loc.notin l temporaries ->
rs'
l =
rs l.
Proof.
End LINEAR_CONSTRUCTORS.
Agreement between values of locations
The predicate agree states that two location maps
give compatible values to all acceptable locations,
that is, non-temporary registers and Local stack slots.
The notion of compatibility used is the Val.lessdef ordering,
which enables a Vundef value in the original program to be refined
into any value in the transformed program.
A typical situation where this refinement of values occurs is at
function entry point. In LTLin, all registers except those
belonging to the function parameters are set to Vundef. In
Linear, these registers have whatever value they had in the caller
function. This difference is harmless: if the original LTLin code
does not get stuck, we know that it does not use any of these
Vundef values.
Definition agree (
rs1 rs2:
locset) :
Prop :=
forall l,
loc_acceptable l ->
Val.lessdef (
rs1 l) (
rs2 l).
Lemma agree_loc:
forall rs1 rs2 l,
agree rs1 rs2 ->
loc_acceptable l ->
Val.lessdef (
rs1 l) (
rs2 l).
Proof.
auto.
Qed.
Lemma agree_locs:
forall rs1 rs2 ll,
agree rs1 rs2 ->
locs_acceptable ll ->
Val.lessdef_list (
map rs1 ll) (
map rs2 ll).
Proof.
induction ll; simpl; intros.
constructor.
constructor. apply H. apply H0; auto with coqlib.
apply IHll; auto. red; intros. apply H0; auto with coqlib.
Qed.
Lemma agree_exten:
forall rs ls1 ls2,
agree rs ls1 ->
(
forall l,
Loc.notin l temporaries ->
ls2 l =
ls1 l) ->
agree rs ls2.
Proof.
Remark undef_temps_others:
forall rs l,
Loc.notin l temporaries ->
LTL.undef_temps rs l =
rs l.
Proof.
Remark undef_op_others:
forall op rs l,
Loc.notin l temporaries ->
undef_op op rs l =
rs l.
Proof.
Lemma agree_undef_temps:
forall rs1 rs2,
agree rs1 rs2 ->
agree (
LTL.undef_temps rs1)
rs2.
Proof.
Lemma agree_undef_temps2:
forall rs1 rs2,
agree rs1 rs2 ->
agree (
LTL.undef_temps rs1) (
LTL.undef_temps rs2).
Proof.
Lemma agree_set:
forall rs1 rs2 rs2'
l v,
loc_acceptable l ->
Val.lessdef v (
rs2'
l) ->
(
forall l',
Loc.diff l l' ->
Loc.notin l'
temporaries ->
rs2'
l' =
rs2 l') ->
agree rs1 rs2 ->
agree (
Locmap.set l v rs1)
rs2'.
Proof.
Lemma agree_set2:
forall rs1 rs2 rs2'
l v,
loc_acceptable l ->
Val.lessdef v (
rs2'
l) ->
(
forall l',
Loc.diff l l' ->
Loc.notin l'
temporaries ->
rs2'
l' =
rs2 l') ->
agree rs1 rs2 ->
agree (
Locmap.set l v (
LTL.undef_temps rs1))
rs2'.
Proof.
Lemma agree_find_funct:
forall (
ge:
Linear.genv)
rs ls r f,
Genv.find_funct ge (
rs r) =
Some f ->
agree rs ls ->
loc_acceptable r ->
Genv.find_funct ge (
ls r) =
Some f.
Proof.
Lemma agree_postcall_1:
forall rs ls,
agree rs ls ->
agree (
LTL.postcall_locs rs)
ls.
Proof.
Lemma agree_postcall_2:
forall rs ls ls',
agree (
LTL.postcall_locs rs)
ls ->
(
forall l,
loc_acceptable l -> ~
In l destroyed_at_call -> ~
In l temporaries ->
ls'
l =
ls l) ->
agree (
LTL.postcall_locs rs)
ls'.
Proof.
intros;
red;
intros.
generalize (
H l H1).
unfold LTL.postcall_locs.
destruct l.
destruct (
In_dec Loc.eq (
R m)
temporaries).
intro;
constructor.
destruct (
In_dec Loc.eq (
R m)
destroyed_at_call).
intro;
constructor.
intro.
rewrite H0;
auto.
intro.
rewrite H0;
auto.
simpl.
intuition congruence.
simpl.
intuition congruence.
Qed.
Lemma agree_postcall_call:
forall rs ls ls'
sig,
agree rs ls ->
(
forall l,
Loc.notin l (
loc_arguments sig) ->
Loc.notin l temporaries ->
ls'
l =
ls l) ->
agree (
LTL.postcall_locs rs)
ls'.
Proof.
Lemma agree_init_locs:
forall ls dsts vl,
locs_acceptable dsts ->
Loc.norepet dsts ->
Val.lessdef_list vl (
map ls dsts) ->
agree (
LTL.init_locs vl dsts)
ls.
Proof.
induction dsts;
intros;
simpl.
red;
intros.
unfold Locmap.init.
constructor.
simpl in H1.
inv H1.
inv H0.
apply agree_set with ls.
apply H;
auto with coqlib.
auto.
auto.
apply IHdsts;
auto.
red;
intros;
apply H;
auto with coqlib.
Qed.
Lemma call_regs_parameters:
forall ls sig,
map (
call_regs ls) (
loc_parameters sig) =
map ls (
loc_arguments sig).
Proof.
Lemma return_regs_preserve:
forall ls1 ls2 l,
~
In l temporaries ->
~
In l destroyed_at_call ->
return_regs ls1 ls2 l =
ls1 l.
Proof.
Lemma return_regs_arguments:
forall ls1 ls2 sig,
tailcall_possible sig ->
map (
return_regs ls1 ls2) (
loc_arguments sig) =
map ls2 (
loc_arguments sig).
Proof.
Lemma return_regs_result:
forall ls1 ls2 sig,
return_regs ls1 ls2 (
R (
loc_result sig)) =
ls2 (
R (
loc_result sig)).
Proof.
Preservation of labels and gotos
Lemma find_label_add_spill:
forall lbl src dst k,
find_label lbl (
add_spill src dst k) =
find_label lbl k.
Proof.
intros.
destruct dst;
simpl;
auto.
destruct (
mreg_eq src m);
auto.
Qed.
Lemma find_label_add_reload:
forall lbl src dst k,
find_label lbl (
add_reload src dst k) =
find_label lbl k.
Proof.
intros.
destruct src;
simpl;
auto.
destruct (
mreg_eq m dst);
auto.
Qed.
Lemma find_label_add_reloads:
forall lbl srcs dsts k,
find_label lbl (
add_reloads srcs dsts k) =
find_label lbl k.
Proof.
Lemma find_label_add_move:
forall lbl src dst k,
find_label lbl (
add_move src dst k) =
find_label lbl k.
Proof.
Lemma find_label_parallel_move:
forall lbl srcs dsts k,
find_label lbl (
parallel_move srcs dsts k) =
find_label lbl k.
Proof.
Hint Rewrite find_label_add_spill find_label_add_reload
find_label_add_reloads find_label_add_move
find_label_parallel_move:
labels.
Opaque reg_for.
Ltac FL :=
simpl;
autorewrite with labels;
auto.
Lemma find_label_transf_instr:
forall lbl sg instr k,
find_label lbl (
transf_instr sg instr k) =
if LTLin.is_label lbl instr then Some k else find_label lbl k.
Proof.
intros.
destruct instr;
FL.
destruct (
is_move_operation o l);
FL;
FL.
FL.
destruct (
enough_temporaries (
l0 ::
l)).
destruct (
regs_for (
l0 ::
l));
FL.
FL.
FL.
destruct s0;
FL;
FL;
FL.
destruct s0;
FL;
FL;
FL.
destruct (
ef_reloads e).
FL.
FL.
FL.
destruct o;
FL.
Qed.
Lemma find_label_transf_code:
forall sg lbl c,
find_label lbl (
transf_code sg c) =
option_map (
transf_code sg) (
LTLin.find_label lbl c).
Proof.
Lemma find_label_transf_function:
forall lbl f c,
LTLin.find_label lbl (
LTLin.fn_code f) =
Some c ->
find_label lbl (
Linear.fn_code (
transf_function f)) =
Some (
transf_code f c).
Proof.
Semantic preservation
Section PRESERVATION.
Variable prog:
LTLin.program.
Let tprog :=
transf_program prog.
Hypothesis WT_PROG:
LTLintyping.wt_program prog.
Let ge :=
Genv.globalenv prog.
Let tge :=
Genv.globalenv tprog.
Lemma functions_translated:
forall v f,
Genv.find_funct ge v =
Some f ->
Genv.find_funct tge v =
Some (
transf_fundef f).
Proof (@
Genv.find_funct_transf _ _ _ transf_fundef prog).
Lemma function_ptr_translated:
forall v f,
Genv.find_funct_ptr ge v =
Some f ->
Genv.find_funct_ptr tge v =
Some (
transf_fundef f).
Proof (@
Genv.find_funct_ptr_transf _ _ _ transf_fundef prog).
Lemma symbols_preserved:
forall id,
Genv.find_symbol tge id =
Genv.find_symbol ge id.
Proof (@
Genv.find_symbol_transf _ _ _ transf_fundef prog).
Lemma varinfo_preserved:
forall b,
Genv.find_var_info tge b =
Genv.find_var_info ge b.
Proof (@
Genv.find_var_info_transf _ _ _ transf_fundef prog).
Lemma sig_preserved:
forall f,
funsig (
transf_fundef f) =
LTLin.funsig f.
Proof.
destruct f; reflexivity.
Qed.
Lemma find_function_wt:
forall ros rs f,
LTLin.find_function ge ros rs =
Some f ->
wt_fundef f.
Proof.
The
match_state predicate relates states in the original LTLin
program and the transformed Linear program. The main property
it enforces are:
-
Agreement between the values of locations in the two programs,
according to the agree or agree_arguments predicates.
-
Agreement between the memory states of the two programs,
according to the Mem.lessdef predicate.
-
Lists of LTLin instructions appearing in the source state
are always suffixes of the code for the corresponding functions.
-
Well-typedness of the source code, which ensures that
only acceptable locations are accessed by this code.
-
Agreement over return types during calls: the return type of a function
is always equal to the return type of the signature of the corresponding
call. This invariant is necessary since the conventional location
used for passing return values depend on the return type. This invariant
is enforced through the third parameter of the match_stackframes
predicate, which is the signature of the called function.
Inductive match_stackframes:
list LTLin.stackframe ->
list Linear.stackframe ->
signature ->
Prop :=
|
match_stackframes_nil:
forall sig,
sig.(
sig_res) =
Some Tint ->
match_stackframes nil nil sig
|
match_stackframes_cons:
forall res f sp c rs s s'
c'
ls sig,
match_stackframes s s' (
LTLin.fn_sig f) ->
c' =
add_spill (
loc_result sig)
res (
transf_code f c) ->
agree (
LTL.postcall_locs rs)
ls ->
loc_acceptable res ->
wt_function f ->
is_tail c (
LTLin.fn_code f) ->
match_stackframes
(
LTLin.Stackframe res f sp (
LTL.postcall_locs rs)
c ::
s)
(
Linear.Stackframe (
transf_function f)
sp ls c' ::
s')
sig.
Inductive match_states:
LTLin.state ->
Linear.state ->
Prop :=
|
match_states_intro:
forall s f sp c rs m s'
ls tm
(
STACKS:
match_stackframes s s' (
LTLin.fn_sig f))
(
AG:
agree rs ls)
(
WT:
wt_function f)
(
TL:
is_tail c (
LTLin.fn_code f))
(
MMD:
Mem.extends m tm),
match_states (
LTLin.State s f sp c rs m)
(
Linear.State s' (
transf_function f)
sp (
transf_code f c)
ls tm)
|
match_states_call:
forall s f args m s'
ls tm
(
STACKS:
match_stackframes s s' (
LTLin.funsig f))
(
AG:
Val.lessdef_list args (
map ls (
loc_arguments (
LTLin.funsig f))))
(
PRES:
forall l, ~
In l temporaries -> ~
In l destroyed_at_call ->
ls l =
parent_locset s'
l)
(
WT:
wt_fundef f)
(
MMD:
Mem.extends m tm),
match_states (
LTLin.Callstate s f args m)
(
Linear.Callstate s' (
transf_fundef f)
ls tm)
|
match_states_return:
forall s res m s'
ls tm sig
(
STACKS:
match_stackframes s s'
sig)
(
AG:
Val.lessdef res (
ls (
R (
loc_result sig))))
(
PRES:
forall l, ~
In l temporaries -> ~
In l destroyed_at_call ->
ls l =
parent_locset s'
l)
(
MMD:
Mem.extends m tm),
match_states (
LTLin.Returnstate s res m)
(
Linear.Returnstate s'
ls tm).
Lemma match_stackframes_change_sig:
forall s s'
sig1 sig2,
match_stackframes s s'
sig1 ->
sig2.(
sig_res) =
sig1.(
sig_res) ->
match_stackframes s s'
sig2.
Proof.
intros. inv H. constructor. congruence.
econstructor; eauto. unfold loc_result. rewrite H0. auto.
Qed.
Ltac ExploitWT :=
match goal with
| [
WT:
wt_function _,
TL:
is_tail _ _ |-
_ ] =>
generalize (
wt_instrs _ WT _ (
is_tail_in TL));
intro WTI
end.
The proof of semantic preservation is a simulation argument
based on diagrams of the following form:
st1 --------------- st2
| |
t| *|t
| |
v v
st1'--------------- st2'
It is possible for the transformed code to take no transition,
remaining in the same state; for instance, if the source transition
corresponds to a move instruction that was eliminated.
To ensure that this cannot occur infinitely often in a row,
we use the following
measure function that just counts the
remaining number of instructions in the source code sequence.
Definition measure (
st:
LTLin.state) :
nat :=
match st with
|
LTLin.State s f sp c ls m =>
List.length c
|
LTLin.Callstate s f ls m => 0%
nat
|
LTLin.Returnstate s ls m => 0%
nat
end.
Theorem transf_step_correct:
forall s1 t s2,
LTLin.step ge s1 t s2 ->
forall s1' (
MS:
match_states s1 s1'),
(
exists s2',
plus Linear.step tge s1'
t s2' /\
match_states s2 s2')
\/ (
measure s2 <
measure s1 /\
t =
E0 /\
match_states s2 s1')%
nat.
Proof.
Lemma transf_initial_states:
forall st1,
LTLin.initial_state prog st1 ->
exists st2,
Linear.initial_state tprog st2 /\
match_states st1 st2.
Proof.
Lemma transf_final_states:
forall st1 st2 r,
match_states st1 st2 ->
LTLin.final_state st1 r ->
Linear.final_state st2 r.
Proof.
intros. inv H0. inv H. inv STACKS. econstructor.
unfold loc_result in AG. rewrite H in AG. inv AG. auto.
Qed.
Theorem transf_program_correct:
forward_simulation (
LTLin.semantics prog) (
Linear.semantics tprog).
Proof.
End PRESERVATION.