Module Allocproof


Correctness proof for the Allocation pass (translation from RTL to LTL).

Require Import FSets.
Require Import SetoidList.
Require Import Coqlib.
Require Import Errors.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Smallstep.
Require Import Globalenvs.
Require Import Op.
Require Import Registers.
Require Import RTL.
Require Import RTLtyping.
Require Import Locations.
Require Import Conventions.
Require Import Coloring.
Require Import Coloringproof.
Require Import Allocation.

Properties of allocated locations


We list here various properties of the locations alloc r, where r is an RTL pseudo-register and alloc is the register assignment returned by regalloc.

Section REGALLOC_PROPERTIES.

Variable f: function.
Variable env: regenv.
Variable live: PMap.t Regset.t.
Variable alloc: reg -> loc.
Hypothesis ALLOC: regalloc f live (live0 f live) env = Some alloc.

Lemma regalloc_noteq_diff:
  forall r1 l2,
  alloc r1 <> l2 -> Loc.diff (alloc r1) l2.
Proof.
  intros. apply loc_acceptable_noteq_diff.
  eapply regalloc_acceptable; eauto.
  auto.
Qed.

Lemma regalloc_notin_notin:
  forall r ll,
  ~(In (alloc r) ll) -> Loc.notin (alloc r) ll.
Proof.
  intros. apply loc_acceptable_notin_notin.
  eapply regalloc_acceptable; eauto. auto.
Qed.

Lemma regalloc_notin_notin_2:
  forall l rl,
  ~(In l (map alloc rl)) -> Loc.notin l (map alloc rl).
Proof.
  induction rl; simpl; intros. auto.
  split. apply Loc.diff_sym. apply regalloc_noteq_diff. tauto.
  apply IHrl. tauto.
Qed.
  
Lemma regalloc_norepet_norepet:
  forall rl,
  list_norepet (List.map alloc rl) ->
  Loc.norepet (List.map alloc rl).
Proof.
  induction rl; simpl; intros.
  apply Loc.norepet_nil.
  inversion H.
  apply Loc.norepet_cons.
  eapply regalloc_notin_notin; eauto.
  auto.
Qed.

Lemma regalloc_not_temporary:
  forall (r: reg),
  Loc.notin (alloc r) temporaries.
Proof.
  intros. apply temporaries_not_acceptable.
  eapply regalloc_acceptable; eauto.
Qed.

Lemma regalloc_disj_temporaries:
  forall (rl: list reg),
  Loc.disjoint (List.map alloc rl) temporaries.
Proof.
  intros.
  apply Loc.notin_disjoint. intros.
  generalize (list_in_map_inv _ _ _ H). intros [r [EQ IN]].
  subst x. apply regalloc_not_temporary; auto.
Qed.

End REGALLOC_PROPERTIES.

Semantic agreement between RTL registers and LTL locations


Require Import LTL.
Module RegsetP := Properties(Regset).

Section AGREE.

Variable f: RTL.function.
Variable env: regenv.
Variable flive: PMap.t Regset.t.
Variable assign: reg -> loc.
Hypothesis REGALLOC: regalloc f flive (live0 f flive) env = Some assign.

Remember the core of the code transformation performed in module Allocation: every reference to register r is replaced by a reference to location assign r. We will shortly prove the semantic equivalence between the original code and the transformed code. The key tool to do this is the following relation between a register set rs in the original RTL program and a location set ls in the transformed LTL program. The two sets agree if they assign identical values to matching registers and locations, that is, the value of register r in rs is the same as the value of location assign r in ls. However, this equality needs to hold only for live registers r. If r is dead at the current point, its value is never used later, hence the value of assign r can be arbitrary.

Definition agree (live: Regset.t) (rs: regset) (ls: locset) : Prop :=
  forall (r: reg), Regset.In r live -> rs#r = ls (assign r).

What follows is a long list of lemmas expressing properties of the agree_live_regs predicate that are useful for the semantic equivalence proof. First: two register sets that agree on a given set of live registers also agree on a subset of those live registers.

Lemma agree_increasing:
  forall live1 live2 rs ls,
  RegsetLat.ge live1 live2 -> agree live1 rs ls ->
  agree live2 rs ls.
Proof.
  unfold agree; intros.
  apply H0. apply H. auto.
Qed.

Lemma agree_succ:
  forall n s rs ls live i,
  analyze f = Some live ->
  f.(RTL.fn_code)!n = Some i ->
  In s (RTL.successors_instr i) ->
  agree live!!n rs ls ->
  agree (transfer f s live!!s) rs ls.
Proof.
  intros.
  apply agree_increasing with (live!!n).
  eapply DS.fixpoint_solution. unfold analyze in H; eauto.
  unfold RTL.successors, Kildall.successors_list.
  rewrite PTree.gmap1. rewrite H0. simpl. auto.
  auto.
Qed.

Some useful special cases of agree_increasing.

Lemma agree_reg_live:
  forall r live rs ls,
  agree (reg_live r live) rs ls -> agree live rs ls.
Proof.
  intros. apply agree_increasing with (reg_live r live); auto.
  red. apply RegsetP.subset_add_2. apply RegsetP.subset_refl.
Qed.

Lemma agree_reg_list_live:
  forall rl live rs ls,
  agree (reg_list_live rl live) rs ls -> agree live rs ls.
Proof.
  induction rl; simpl; intros.
  assumption.
  apply agree_reg_live with a. apply IHrl. assumption.
Qed.

Lemma agree_reg_sum_live:
  forall ros live rs ls,
  agree (reg_sum_live ros live) rs ls -> agree live rs ls.
Proof.
  intros. destruct ros; simpl in H.
  apply agree_reg_live with r; auto.
  auto.
Qed.

Agreement over a set of live registers just extended with r implies equality of the values of r and assign r.

Lemma agree_eval_reg:
  forall r live rs ls,
  agree (reg_live r live) rs ls -> rs#r = ls (assign r).
Proof.
  intros. apply H. apply Regset.add_1. auto.
Qed.

Same, for a list of registers.

Lemma agree_eval_regs:
  forall rl live rs ls,
  agree (reg_list_live rl live) rs ls ->
  rs##rl = List.map ls (List.map assign rl).
Proof.
  induction rl; simpl; intros.
  auto.
  f_equal.
  apply agree_eval_reg with live.
  apply agree_reg_list_live with rl. auto.
  eapply IHrl. eexact H.
Qed.

Agreement is insensitive to the current values of the temporary machine registers.

Lemma agree_exten:
  forall live rs ls ls',
  agree live rs ls ->
  (forall l, Loc.notin l temporaries -> ls' l = ls l) ->
  agree live rs ls'.
Proof.
  unfold agree; intros.
  rewrite H0. apply H. auto. eapply regalloc_not_temporary; eauto.
Qed.

Lemma agree_undef_temps:
  forall live rs ls,
  agree live rs ls -> agree live rs (undef_temps ls).
Proof.
  intros. apply agree_exten with ls; auto.
  intros. apply Locmap.guo; auto.
Qed.

If a register is dead, assigning it an arbitrary value in rs and leaving ls unchanged preserves agreement. (This corresponds to an operation over a dead register in the original program that is turned into a no-op in the transformed program.)

Lemma agree_assign_dead:
  forall live r rs ls v,
  ~Regset.In r live ->
  agree live rs ls ->
  agree live (rs#r <- v) ls.
Proof.
  unfold agree; intros.
  case (Reg.eq r r0); intro.
  subst r0. contradiction.
  rewrite Regmap.gso; auto.
Qed.

Setting r to value v in rs and simultaneously setting assign r to value v in ls preserves agreement, provided that all live registers except r are mapped to locations other than that of r.

Lemma agree_assign_live:
  forall live r rs ls v,
  (forall s,
     Regset.In s live -> s <> r -> assign s <> assign r) ->
  agree (reg_dead r live) rs ls ->
  agree live (rs#r <- v) (Locmap.set (assign r) v ls).
Proof.
  unfold agree; intros. rewrite Regmap.gsspec.
  destruct (peq r0 r).
  subst r0. rewrite Locmap.gss. auto.
  rewrite Locmap.gso. apply H0. apply Regset.remove_2; auto.
  eapply regalloc_noteq_diff. eauto. apply sym_not_equal. apply H. auto. auto.
Qed.

This is a special case of the previous lemma where the value v being stored is not arbitrary, but is the value of another register arg. (This corresponds to a register-register move instruction.) In this case, the condition can be weakened: it suffices that all live registers except arg and res are mapped to locations other than that of res.

Lemma agree_move_live:
  forall live arg res rs (ls: locset),
  (forall r,
     Regset.In r live -> r <> res -> r <> arg ->
     assign r <> assign res) ->
  agree (reg_live arg (reg_dead res live)) rs ls ->
  agree live (rs#res <- (rs#arg)) (Locmap.set (assign res) (ls (assign arg)) ls).
Proof.
  unfold agree; intros. rewrite Regmap.gsspec. destruct (peq r res).
  subst r. rewrite Locmap.gss. apply H0.
  apply Regset.add_1; auto.
  destruct (Reg.eq r arg).
  subst r.
  replace (Locmap.set (assign res) (ls (assign arg)) ls (assign arg))
     with (ls (assign arg)).
  apply H0. apply Regset.add_1. auto.
  symmetry. destruct (Loc.eq (assign arg) (assign res)).
  rewrite <- e. apply Locmap.gss.
  apply Locmap.gso. eapply regalloc_noteq_diff; eauto.

  rewrite Locmap.gso. apply H0. apply Regset.add_2. apply Regset.remove_2. auto. auto.
  eapply regalloc_noteq_diff; eauto. apply sym_not_equal. apply H; auto.
Qed.

Yet another special case corresponding to the case of a redundant move.

Lemma agree_redundant_move_live:
  forall live arg res rs (ls: locset),
  (forall r,
     Regset.In r live -> r <> res -> r <> arg ->
     assign r <> assign res) ->
  agree (reg_live arg (reg_dead res live)) rs ls ->
  assign res = assign arg ->
  agree live (rs#res <- (rs#arg)) ls.
Proof.
  intros.
  apply agree_exten with (Locmap.set (assign res) (ls (assign arg)) ls).
  eapply agree_move_live; eauto.
  intros. symmetry. rewrite H1. destruct (Loc.eq l (assign arg)).
  subst l. apply Locmap.gss.
  apply Locmap.gso. eapply regalloc_noteq_diff; eauto.
Qed.

This complicated lemma states agreement between the states after a function call, provided that the states before the call agree and that calling conventions are respected.

Lemma agree_postcall:
  forall live args ros res rs v (ls: locset),
  (forall r,
    Regset.In r live -> r <> res ->
    ~(In (assign r) destroyed_at_call)) ->
  (forall r,
    Regset.In r live -> r <> res -> assign r <> assign res) ->
  agree (reg_list_live args (reg_sum_live ros (reg_dead res live))) rs ls ->
  agree live (rs#res <- v) (Locmap.set (assign res) v (postcall_locs ls)).
Proof.
  intros.
  assert (agree (reg_dead res live) rs ls).
  apply agree_reg_sum_live with ros.
  apply agree_reg_list_live with args. assumption.
  red; intros. rewrite Regmap.gsspec. destruct (peq r res).
  subst r. rewrite Locmap.gss. auto.
  rewrite Locmap.gso. transitivity (ls (assign r)).
  apply H2. apply Regset.remove_2; auto.
  unfold postcall_locs.
  assert (~In (assign r) temporaries).
    apply Loc.notin_not_in. eapply regalloc_not_temporary; eauto.
  assert (~In (assign r) destroyed_at_call).
    apply H. auto. auto.
  caseEq (assign r); auto. intros m ASG. rewrite <- ASG.
  destruct (In_dec Loc.eq (assign r) temporaries). contradiction.
  destruct (In_dec Loc.eq (assign r) destroyed_at_call). contradiction.
  auto.
  eapply regalloc_noteq_diff; eauto. apply sym_not_eq. auto.
Qed.

Agreement between the initial register set at RTL function entry and the location set at LTL function entry.

Lemma agree_init_regs:
  forall live rl vl,
  (forall r1 r2,
    In r1 rl -> Regset.In r2 live -> r1 <> r2 ->
    assign r1 <> assign r2) ->
  agree live (RTL.init_regs vl rl)
             (LTL.init_locs vl (List.map assign rl)).
Proof.
  intro live.
  assert (agree live (Regmap.init Vundef) (Locmap.init Vundef)).
    red; intros. rewrite Regmap.gi. auto.
  induction rl; simpl; intros.
  auto.
  destruct vl. auto.
  assert (agree live (init_regs vl rl) (init_locs vl (map assign rl))).
  apply IHrl. intros. apply H0. tauto. auto. auto.
  red; intros. rewrite Regmap.gsspec. destruct (peq r a).
  subst r. rewrite Locmap.gss. auto.
  rewrite Locmap.gso. apply H1; auto.
  eapply regalloc_noteq_diff; eauto.
Qed.

Lemma agree_parameters:
  forall vl,
  let params := f.(RTL.fn_params) in
  agree (live0 f flive)
        (RTL.init_regs vl params)
        (LTL.init_locs vl (List.map assign params)).
Proof.
  intros. apply agree_init_regs.
  intros. eapply regalloc_correct_3; eauto.
Qed.

End AGREE.

Preservation of semantics


We now show that the LTL code reflecting register allocation has the same semantics as the original RTL code. We start with standard properties of translated functions and global environments in the original and translated code.

Section PRESERVATION.

Variable prog: RTL.program.
Variable tprog: LTL.program.
Hypothesis TRANSF: transf_program prog = OK tprog.

Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.

Lemma symbols_preserved:
  forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof.
  intro. unfold ge, tge.
  apply Genv.find_symbol_transf_partial with transf_fundef.
  exact TRANSF.
Qed.

Lemma varinfo_preserved:
  forall b, Genv.find_var_info tge b = Genv.find_var_info ge b.
Proof.
  intro. unfold ge, tge.
  apply Genv.find_var_info_transf_partial with transf_fundef.
  exact TRANSF.
Qed.

Lemma functions_translated:
  forall (v: val) (f: RTL.fundef),
  Genv.find_funct ge v = Some f ->
  exists tf,
  Genv.find_funct tge v = Some tf /\ transf_fundef f = OK tf.
Proof (Genv.find_funct_transf_partial transf_fundef _ TRANSF).

Lemma function_ptr_translated:
  forall (b: block) (f: RTL.fundef),
  Genv.find_funct_ptr ge b = Some f ->
  exists tf,
  Genv.find_funct_ptr tge b = Some tf /\ transf_fundef f = OK tf.
Proof (Genv.find_funct_ptr_transf_partial transf_fundef _ TRANSF).

Lemma sig_function_translated:
  forall f tf,
  transf_fundef f = OK tf ->
  LTL.funsig tf = RTL.funsig f.
Proof.
  intros f tf. destruct f; simpl.
  unfold transf_function.
  destruct (type_function f).
  destruct (analyze f).
  destruct (regalloc f t).
  intro. monadInv H. inv EQ. auto.
  simpl; congruence. simpl; congruence. simpl; congruence.
  intro EQ; inv EQ. auto.
Qed.

The proof of semantic preservation is a simulation argument based on diagrams of the following form:
           st1 --------------- st2
            |                   |
           t|                   |t
            |                   |
            v                   v
           st1'--------------- st2'
Hypotheses: the left vertical arrow represents a transition in the original RTL code. The top horizontal bar is the match_states relation defined below. It implies agreement between the RTL register map rs and the LTL location map ls over the pseudo-registers live before the RTL instruction at pc. Conclusions: the right vertical arrow is an exec_instrs transition in the LTL code generated by translation of the current function. The bottom horizontal bar is the match_states relation.

Inductive match_stackframes: list RTL.stackframe -> list LTL.stackframe -> Prop :=
  | match_stackframes_nil:
      match_stackframes nil nil
  | match_stackframes_cons:
      forall s ts res f sp pc rs ls env live assign,
      match_stackframes s ts ->
      wt_function f env ->
      analyze f = Some live ->
      regalloc f live (live0 f live) env = Some assign ->
      (forall rv,
        agree assign (transfer f pc live!!pc)
              (rs#res <- rv)
              (Locmap.set (assign res) rv ls)) ->
      match_stackframes
        (RTL.Stackframe res f sp pc rs :: s)
        (LTL.Stackframe (assign res) (transf_fun f live assign) sp ls pc :: ts).

Inductive match_states: RTL.state -> LTL.state -> Prop :=
  | match_states_intro:
      forall s f sp pc rs m ts ls live assign env
      (STACKS: match_stackframes s ts)
      (WT: wt_function f env)
      (ANL: analyze f = Some live)
      (ASG: regalloc f live (live0 f live) env = Some assign)
      (AG: agree assign (transfer f pc live!!pc) rs ls),
      match_states (RTL.State s f sp pc rs m)
                   (LTL.State ts (transf_fun f live assign) sp pc ls m)
  | match_states_call:
      forall s f args m ts tf,
      match_stackframes s ts ->
      transf_fundef f = OK tf ->
      match_states (RTL.Callstate s f args m)
                   (LTL.Callstate ts tf args m)
  | match_states_return:
      forall s v m ts,
      match_stackframes s ts ->
      match_states (RTL.Returnstate s v m)
                   (LTL.Returnstate ts v m).

The simulation proof is by case analysis over the RTL transition taken in the source program.

Ltac CleanupHyps :=
  match goal with
  | H: (match_states _ _) |- _ =>
      inv H; CleanupHyps
  | H1: (PTree.get _ _ = Some _),
    H2: (agree _ (transfer _ _ _) _ _) |- _ =>
      unfold transfer in H2; rewrite H1 in H2; simpl in H2; CleanupHyps
  | _ => idtac
  end.

Ltac WellTypedHyp :=
  match goal with
  | H1: (PTree.get _ _ = Some _),
    H2: (wt_function _ _) |- _ =>
      let R := fresh "WTI" in (
      generalize (wt_instrs _ _ H2 _ _ H1); intro R)
  | _ => idtac
  end.

Ltac TranslInstr :=
  match goal with
  | H: (PTree.get _ _ = Some _) |- _ =>
      simpl in H; simpl; rewrite PTree.gmap; rewrite H; simpl; auto
  end.

Ltac MatchStates :=
  match goal with
  | |- match_states (RTL.State _ _ _ _ _ _) (LTL.State _ _ _ _ _ _) =>
      eapply match_states_intro; eauto; MatchStates
  | H: (PTree.get ?pc _ = Some _) |- agree _ _ _ _ =>
      eapply agree_succ with (n := pc); eauto; MatchStates
  | |- In _ (RTL.successors_instr _) =>
      unfold RTL.successors_instr; auto with coqlib
  | _ => idtac
  end.

Lemma transl_find_function:
  forall ros f args lv rs ls alloc,
  RTL.find_function ge ros rs = Some f ->
  agree alloc (reg_list_live args (reg_sum_live ros lv)) rs ls ->
  exists tf,
    LTL.find_function tge (sum_left_map alloc ros) ls = Some tf /\
    transf_fundef f = OK tf.
Proof.
  intros; destruct ros; simpl in *.
  assert (rs#r = ls (alloc r)).
    eapply agree_eval_reg. eapply agree_reg_list_live; eauto.
  rewrite <- H1. apply functions_translated. auto.
  rewrite symbols_preserved. destruct (Genv.find_symbol ge i).
  apply function_ptr_translated. auto. discriminate.
Qed.

Theorem transl_step_correct:
  forall s1 t s2, RTL.step ge s1 t s2 ->
  forall s1', match_states s1 s1' ->
  exists s2', LTL.step tge s1' t s2' /\ match_states s2 s2'.
Proof.
  induction 1; intros; CleanupHyps; WellTypedHyp.

  econstructor; split.
  eapply exec_Lnop. TranslInstr. MatchStates.

  generalize (PTree.gmap (transf_instr f live assign) pc (RTL.fn_code f)).
  rewrite H. simpl.
  caseEq (Regset.mem res live!!pc); intro LV;
  rewrite LV in AG.
  generalize (Regset.mem_2 LV). intro LV'.
  generalize (regalloc_correct_1 f env live _ _ _ _ ASG H).
  unfold correct_alloc_instr, is_redundant_move.
  caseEq (is_move_operation op args).
  intros arg IMO CORR.
  generalize (is_move_operation_correct _ _ IMO).
  intros [EQ1 EQ2]. subst op; subst args.
  injection H0; intro.
  destruct (Loc.eq (assign arg) (assign res)); intro CODE.
  econstructor; split. eapply exec_Lnop; eauto.
  MatchStates.
  rewrite <- H1. eapply agree_redundant_move_live; eauto.
  econstructor; split. eapply exec_Lop; eauto. simpl. eauto.
  MatchStates.
  rewrite <- H1. set (ls1 := undef_temps ls).
  replace (ls (assign arg)) with (ls1 (assign arg)).
  eapply agree_move_live; eauto.
  unfold ls1. eapply agree_undef_temps; eauto.
  unfold ls1. simpl. apply Locmap.guo. eapply regalloc_not_temporary; eauto.
  intros INMO CORR CODE.
  assert (eval_operation tge sp op (map ls (map assign args)) m = Some v).
    replace (map ls (map assign args)) with (rs##args).
    rewrite <- H0. apply eval_operation_preserved. exact symbols_preserved.
    eapply agree_eval_regs; eauto.
  econstructor; split. eapply exec_Lop; eauto. MatchStates.
  apply agree_assign_live with f env live; auto.
  eapply agree_undef_temps; eauto.
  eapply agree_reg_list_live; eauto.
  intro CODE. econstructor; split. eapply exec_Lnop; eauto.
  MatchStates. apply agree_assign_dead; auto.
  red; intro. exploit Regset.mem_1; eauto. congruence.

  caseEq (Regset.mem dst live!!pc); intro LV;
  rewrite LV in AG.
  exploit Regset.mem_2; eauto. intro LV'.
  assert (eval_addressing tge sp addr (map ls (map assign args)) = Some a).
    replace (map ls (map assign args)) with (rs##args).
    rewrite <- H0. apply eval_addressing_preserved. exact symbols_preserved.
    eapply agree_eval_regs; eauto.
  econstructor; split.
  eapply exec_Lload; eauto. TranslInstr. rewrite LV; auto.
  generalize (regalloc_correct_1 f env live _ _ _ _ ASG H).
  unfold correct_alloc_instr. intro CORR.
  MatchStates.
  eapply agree_assign_live; eauto.
  eapply agree_undef_temps; eauto.
  eapply agree_reg_list_live; eauto.
  econstructor; split.
  eapply exec_Lnop. TranslInstr. rewrite LV; auto.
  MatchStates. apply agree_assign_dead; auto.
  red; intro; exploit Regset.mem_1; eauto. congruence.

  assert (eval_addressing tge sp addr (map ls (map assign args)) = Some a).
    replace (map ls (map assign args)) with (rs##args).
    rewrite <- H0. apply eval_addressing_preserved. exact symbols_preserved.
    eapply agree_eval_regs; eauto.
  assert (ESRC: rs#src = ls (assign src)).
    eapply agree_eval_reg. eapply agree_reg_list_live. eauto.
  econstructor; split.
  eapply exec_Lstore; eauto. TranslInstr.
  rewrite <- ESRC. eauto.
  MatchStates.
  eapply agree_undef_temps; eauto.
  eapply agree_reg_live. eapply agree_reg_list_live. eauto.

  exploit transl_find_function; eauto. intros [tf [TFIND TF]].
  generalize (regalloc_correct_1 f env live _ _ _ _ ASG H). unfold correct_alloc_instr. intros [CORR1 [CORR2 CORR3]].
  assert (rs##args = map ls (map assign args)).
    eapply agree_eval_regs; eauto.
  econstructor; split.
  eapply exec_Lcall; eauto. TranslInstr.
  rewrite (sig_function_translated _ _ TF). eauto.
  rewrite H1.
  econstructor; eauto.
  econstructor; eauto.
  intros. eapply agree_succ with (n := pc); eauto.
  simpl. auto.
  eapply agree_postcall; eauto.

  exploit transl_find_function; eauto. intros [tf [TFIND TF]].
  assert (rs##args = map ls (map assign args)).
    eapply agree_eval_regs; eauto.
  econstructor; split.
  eapply exec_Ltailcall; eauto. TranslInstr.
  rewrite (sig_function_translated _ _ TF). eauto.
  rewrite H1. econstructor; eauto.

  econstructor; split.
  eapply exec_Lbuiltin; eauto. TranslInstr.
  replace (map ls (@map reg loc assign args)) with (rs##args).
  eapply external_call_symbols_preserved; eauto.
  exact symbols_preserved. exact varinfo_preserved.
  eapply agree_eval_regs; eauto.
  generalize (regalloc_correct_1 f env live _ _ _ _ ASG H).
  unfold correct_alloc_instr. intro CORR.
  MatchStates.
  eapply agree_assign_live; eauto.
  eapply agree_reg_list_live; eauto.

  assert (COND: eval_condition cond (map ls (map assign args)) m = Some b).
    replace (map ls (map assign args)) with (rs##args). auto.
    eapply agree_eval_regs; eauto.
  econstructor; split.
  eapply exec_Lcond; eauto. TranslInstr.
  MatchStates. destruct b; simpl; auto.
  eapply agree_undef_temps; eauto.
  eapply agree_reg_list_live. eauto.

  assert (rs#arg = ls (assign arg)). apply AG. apply Regset.add_1. auto.
  econstructor; split.
  eapply exec_Ljumptable; eauto. TranslInstr. congruence.
  MatchStates. eapply list_nth_z_in; eauto.
  eapply agree_undef_temps; eauto.
  eapply agree_reg_live; eauto.

  econstructor; split.
  eapply exec_Lreturn; eauto. TranslInstr; eauto.
  replace (regmap_optget or Vundef rs)
     with (locmap_optget (option_map assign or) Vundef ls).
  econstructor; eauto.
  inv WTI. destruct or; simpl in *.
  symmetry; eapply agree_eval_reg; eauto.
  auto.

  generalize H7. simpl. unfold transf_function.
  caseEq (type_function f); simpl; try congruence. intros env TYP.
  assert (WTF: wt_function f env). apply type_function_correct; auto.
  caseEq (analyze f); simpl; try congruence. intros live ANL.
  caseEq (regalloc f live (live0 f live) env); simpl; try congruence.
  intros alloc ALLOC EQ. inv EQ. simpl in *.
  econstructor; split.
  eapply exec_function_internal; simpl; eauto.
  simpl. econstructor; eauto.
  change (transfer f (RTL.fn_entrypoint f) live !! (RTL.fn_entrypoint f))
    with (live0 f live).
  eapply agree_parameters; eauto.

  injection H7; intro EQ; inv EQ.
  econstructor; split.
  eapply exec_function_external; eauto.
  eapply external_call_symbols_preserved; eauto.
  exact symbols_preserved. exact varinfo_preserved.
  eapply match_states_return; eauto.

  inv H4.
  econstructor; split.
  eapply exec_return; eauto.
  econstructor; eauto.
Qed.

The semantic equivalence between the original and transformed programs follows easily.

Lemma transf_initial_states:
  forall st1, RTL.initial_state prog st1 ->
  exists st2, LTL.initial_state tprog st2 /\ match_states st1 st2.
Proof.
  intros. inversion H.
  exploit function_ptr_translated; eauto. intros [tf [FIND TR]].
  exists (LTL.Callstate nil tf nil m0); split.
  econstructor; eauto.
  eapply Genv.init_mem_transf_partial; eauto.
  rewrite symbols_preserved.
  rewrite (transform_partial_program_main _ _ TRANSF). auto.
  rewrite <- H3. apply sig_function_translated; auto.
  constructor; auto. constructor.
Qed.

Lemma transf_final_states:
  forall st1 st2 r,
  match_states st1 st2 -> RTL.final_state st1 r -> LTL.final_state st2 r.
Proof.
  intros. inv H0. inv H. inv H4. econstructor.
Qed.

Theorem transf_program_correct:
  forward_simulation (RTL.semantics prog) (LTL.semantics tprog).
Proof.
  eapply forward_simulation_step.
  eexact symbols_preserved.
  eexact transf_initial_states.
  eexact transf_final_states.
  exact transl_step_correct.
Qed.

End PRESERVATION.