This file presents the specification of the SSA validator, in
terms of a type system. Auxiliary definitions may be found in Utilsvalidproof
Require Import Coq.Unicode.Utf8.
Require Recdef.
Require Import FSets.
Require Import Coqlib.
Require Import Ordered.
Require Import Errors.
Require Import Maps.
Require Import Lattice.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Globalenvs.
Require Import Events.
Require Import Smallstep.
Require Import Op.
Require Import Registers.
Require Import RTLt.
Require Import Kildall.
Require Import KildallComp.
Require Import Conventions.
Require Import SSA.
Require Import SSAutils.
Require Import SSAvalid.
Require Import Utilsvalidproof.
Require Import LightLive.
Require Import Utils.
Require Import Classical.
Require Import Path.
Typing phi-blocks
Section WT_PHI.
Variable funct:
SSA.function.
Inductive wt_phid (
block:
phiblock) (γ1 γ2:
Registers.reg ->
index) (
live:
Regset.t) :
Prop :=
|
wt_phid_intro :
forall
(
ASSIG:
forall ri r i,
assigned ri block ->
ri = (
r,
i) -> γ2
r =
i)
(
LIVE:
forall ri r i,
assigned ri block ->
ri = (
r,
i) ->
Regset.In r live )
(
NASSIG:
forall r,
(
forall ri i,
ri = (
r,
i) ->
not (
assigned ri block)) ->
(γ2
r = γ1
r) \/ ~ (
Regset.In r live)),
wt_phid block γ1 γ2
live.
Inductive phiu (
r:
Registers.reg) :
list reg -> (
list (
Registers.reg ->
index)) ->
Prop :=
|
phiu_nil :
phiu r nil nil
|
phiu_cons:
forall arg g args gl
(
PHIU:
phiu r args gl)
(
GARG: (
exists i, (
arg = (
r,
i)) /\
g r =
i)),
phiu r (
arg::
args) (
g::
gl).
Lemma phiu_nth :
forall r k args gammas ri g,
phiu r args gammas ->
nth_error args k =
Some ri ->
nth_error gammas k =
Some g ->
exists i,
ri = (
r,
i) /\
g r =
i.
Proof.
induction k; intros.
inv H; simpl in *; inv H0. inv H1 ; eauto.
destruct args ; simpl in * ; inv H0.
destruct gammas ; simpl in * ; inv H1.
inv H ; eauto.
Qed.
Inductive wt_phiu (
preds:
list node) (
block:
phiblock) (Γ:
tgamma) :=
|
wt_phiu_intro:
forall
(
USES: (
forall args dst r i,
In (
Iphi args dst)
block ->
dst = (
r,
i) ->
phiu r args (
map Γ
preds))),
wt_phiu preds block Γ.
End WT_PHI.
Typing edges
Section WT_EDGE.
Variable funct:
SSA.function.
Inductive wt_edge (
live:
Regset.t) :
tgamma ->
node ->
node ->
Prop :=
|
wt_edge_not_jp:
forall (Γ:
tgamma) (
i j :
node) (
ins:
instruction)
(
EDGE:
is_edge funct i j)
(
INS: (
fn_code funct)!
i =
Some ins)
(
NOPHI: (
fn_phicode funct)!
j =
None)
(
EIDX:
wt_eidx (Γ (
fn_entrypoint funct))
ins)
(
WTI:
wt_instr (Γ
i)
ins (Γ
j)),
(
wt_edge live Γ
i j)
|
wt_edge_jp:
forall (Γ:
tgamma) (
i j:
node) (
predsj:
list node) (
ins:
instruction) (
block:
phiblock) (
dft:
positive)
(
EDGE:
is_edge funct i j)
(
INS: (
fn_code funct)!
i =
Some ins)
(
PHI: (
fn_phicode funct)!
j =
Some block)
(
PREDS:
predsj = (
make_predecessors (
fn_code funct)
successors_instr)!!!
j)
(
EIDX:
wt_eidx (Γ (
fn_entrypoint funct))
ins)
(
PEIDX:
wt_ephi (Γ (
fn_entrypoint funct))
block)
(
WTPHID:
wt_phid block (Γ
i) (Γ
j)
live)
(
WTPHID:
wt_phiu predsj block Γ),
(
wt_edge live Γ
i j).
End WT_EDGE.
Arguments Lout [
A].
Well-typed functions
Inductive wt_function (
f:
RTLt.function)
(
tf:
function) (
live:
PMap.t Regset.t) (Γ:
tgamma):
Prop :=
|
wt_fun_intro :
forall
(
WTE:
forall i j, (
is_edge tf i j) -> (
wt_edge tf (
Lin f j (
Lout live)) Γ
i j))
(
WTO:
forall i,
is_out_node tf i ->
wt_out tf Γ
i),
wt_function f tf live Γ.
Overall specification of a validated function
Definition normalised_function (
f :
RTLt.function) :
Prop :=
check_function_inv f (
make_predecessors (
RTLt.fn_code f)
RTLt.successors_instr) =
true.
Definition check_function_spec (
f:
RTLt.function) (
live:
PMap.t Regset.t) (
tf:
SSA.function) Γ :=
(
structural_checks_spec f tf)
/\ (
wf_init tf Γ)
/\ (
wt_function f tf live Γ)
/\ (
wf_live f (
Lout live)).