Module AST


This file defines a number of data types and operations used in the abstract syntax trees of many of the intermediate languages.

Require Import String.
Require Import Coqlib Maps Errors Integers Floats.
Require Archi.
Require AST_source.
Require Import Time.

Set Implicit Arguments.

Include AST_source.

Syntactic elements


Lemma typ_eq: forall (t1 t2: typ), {t1=t2} + {t1<>t2}.
Proof.
decide equality. Defined.
Global Opaque typ_eq.

Definition opt_typ_eq: forall (t1 t2: option typ), {t1=t2} + {t1<>t2}
                     := option_eq typ_eq.

Definition list_typ_eq: forall (l1 l2: list typ), {l1=l2} + {l1<>l2}
                     := list_eq_dec typ_eq.

Definition Tptr : typ := if Archi.ptr64 then Tlong else Tint.

Definition typesize (ty: typ) : Z :=
  match ty with
  | Tint => 4
  | Tfloat => 8
  | Tlong => 8
  | Tsingle => 4
  | Tany32 => 4
  | Tany64 => 8
  end.

Lemma typesize_pos: forall ty, typesize ty > 0.
Proof.
destruct ty; simpl; omega. Qed.

Lemma typesize_Tptr: typesize Tptr = if Archi.ptr64 then 8 else 4.
Proof.
unfold Tptr; destruct Archi.ptr64; auto. Qed.

All values of size 32 bits are also of type Tany32. All values are of type Tany64. This corresponds to the following subtyping relation over types.

Definition subtype (ty1 ty2: typ) : bool :=
  match ty1, ty2 with
  | Tint, Tint => true
  | Tlong, Tlong => true
  | Tfloat, Tfloat => true
  | Tsingle, Tsingle => true
  | (Tint | Tsingle | Tany32), Tany32 => true
  | _, Tany64 => true
  | _, _ => false
  end.

Fixpoint subtype_list (tyl1 tyl2: list typ) : bool :=
  match tyl1, tyl2 with
  | nil, nil => true
  | ty1::tys1, ty2::tys2 => subtype ty1 ty2 && subtype_list tys1 tys2
  | _, _ => false
  end.

Definition proj_sig_res (s: signature) : typ :=
  match s.(sig_res) with
  | None => Tint
  | Some t => t
  end.

Definition signature_eq: forall (s1 s2: signature), {s1=s2} + {s1<>s2}.
Proof.
  generalize opt_typ_eq, list_typ_eq, calling_convention_eq; decide equality.
Defined.
Global Opaque signature_eq.

Definition signature_main :=
  {| sig_args := nil; sig_res := Some Tint; sig_cc := cc_default |}.

Memory accesses (load and store instructions) are annotated by a ``memory chunk'' indicating the type, size and signedness of the chunk of memory being accessed.

Definition chunk_eq: forall (c1 c2: memory_chunk), {c1=c2} + {c1<>c2}.
Proof.
decide equality. Defined.
Global Opaque chunk_eq.

Definition Mptr : memory_chunk := if Archi.ptr64 then Mint64 else Mint32.

The type (integer/pointer or float) of a chunk.

Definition type_of_chunk (c: memory_chunk) : typ :=
  match c with
  | Mint8signed => Tint
  | Mint8unsigned => Tint
  | Mint16signed => Tint
  | Mint16unsigned => Tint
  | Mint32 => Tint
  | Mint64 => Tlong
  | Mfloat32 => Tsingle
  | Mfloat64 => Tfloat
  | Many32 => Tany32
  | Many64 => Tany64
  end.

Lemma type_of_Mptr: type_of_chunk Mptr = Tptr.
Proof.
unfold Mptr, Tptr; destruct Archi.ptr64; auto. Qed.

The chunk that is appropriate to store and reload a value of the given type, without losing information.

Definition chunk_of_type (ty: typ) :=
  match ty with
  | Tint => Mint32
  | Tfloat => Mfloat64
  | Tlong => Mint64
  | Tsingle => Mfloat32
  | Tany32 => Many32
  | Tany64 => Many64
  end.

Lemma chunk_of_Tptr: chunk_of_type Tptr = Mptr.
Proof.
unfold Mptr, Tptr; destruct Archi.ptr64; auto. Qed.

Initialization data for global variables.

Inductive init_data: Type :=
  | Init_int8: int -> init_data
  | Init_int16: int -> init_data
  | Init_int32: int -> init_data
  | Init_int64: int64 -> init_data
  | Init_float32: float32 -> init_data
  | Init_float64: float -> init_data
  | Init_space: Z -> init_data
  | Init_addrof: ident -> ptrofs -> init_data. (* address of symbol + offset *)

Definition init_data_size (i: init_data) : Z :=
  match i with
  | Init_int8 _ => 1
  | Init_int16 _ => 2
  | Init_int32 _ => 4
  | Init_int64 _ => 8
  | Init_float32 _ => 4
  | Init_float64 _ => 8
  | Init_addrof _ _ => if Archi.ptr64 then 8 else 4
  | Init_space n => Z.max n 0
  end.

Fixpoint init_data_list_size (il: list init_data) {struct il} : Z :=
  match il with
  | nil => 0
  | i :: il' => init_data_size i + init_data_list_size il'
  end.

Lemma init_data_size_pos:
  forall i, init_data_size i >= 0.
Proof.
  destruct i; simpl; try xomega. destruct Archi.ptr64; omega.
Qed.

Lemma init_data_list_size_pos:
  forall il, init_data_list_size il >= 0.
Proof.
  induction il; simpl. omega. generalize (init_data_size_pos a); omega.
Qed.

Information attached to global variables.

Record globvar (V: Type) : Type := mkglobvar {
  gvar_info: V; (* language-dependent info, e.g. a type *)
  gvar_init: list init_data; (* initialization data *)
  gvar_readonly: bool; (* read-only variable? (const) *)
  gvar_volatile: bool (* volatile variable? *)
}.

Whole programs consist of: A global definition is either a global function or a global variable. The type of function descriptions and that of additional information for variables vary among the various intermediate languages and are taken as parameters to the program type. The other parts of whole programs are common to all languages.

Inductive globdef (F V: Type) : Type :=
  | Gfun (f: F)
  | Gvar (v: globvar V).

Arguments Gfun [F V].
Arguments Gvar [F V].

Record program (F V: Type) : Type := mkprogram {
  prog_defs: list (ident * globdef F V);
  prog_public: list ident;
  prog_main: ident
}.

Definition prog_defs_names (F V: Type) (p: program F V) : list ident :=
  List.map fst p.(prog_defs).

The "definition map" of a program maps names of globals to their definitions. If several definitions have the same name, the one appearing last in p.(prog_defs) wins.

Definition prog_defmap (F V: Type) (p: program F V) : PTree.t (globdef F V) :=
  PTree_Properties.of_list p.(prog_defs).

Section DEFMAP.

Variables F V: Type.
Variable p: program F V.

Lemma in_prog_defmap:
  forall id g, (prog_defmap p)!id = Some g -> In (id, g) (prog_defs p).
Proof.
  apply PTree_Properties.in_of_list.
Qed.

Lemma prog_defmap_dom:
  forall id, In id (prog_defs_names p) -> exists g, (prog_defmap p)!id = Some g.
Proof.
  apply PTree_Properties.of_list_dom.
Qed.

Lemma prog_defmap_unique:
  forall defs1 id g defs2,
  prog_defs p = defs1 ++ (id, g) :: defs2 ->
  ~In id (map fst defs2) ->
  (prog_defmap p)!id = Some g.
Proof.
  unfold prog_defmap; intros. rewrite H. apply PTree_Properties.of_list_unique; auto.
Qed.

Lemma prog_defmap_norepet:
  forall id g,
  list_norepet (prog_defs_names p) ->
  In (id, g) (prog_defs p) ->
  (prog_defmap p)!id = Some g.
Proof.
  apply PTree_Properties.of_list_norepet.
Qed.

End DEFMAP.

Generic transformations over programs


We now define a general iterator over programs that applies a given code transformation function to all function descriptions and leaves the other parts of the program unchanged.

Section TRANSF_PROGRAM.

Variable A B V: Type.
Variable transf: A -> B.

Definition transform_program_globdef (idg: ident * globdef A V) : ident * globdef B V :=
  match idg with
  | (id, Gfun f) => set_function_ident id (fun _ => (id, Gfun (transf f))) tt
  | (id, Gvar v) => (id, Gvar v)
  end.

Definition transform_program (p: program A V) : program B V :=
  mkprogram
    (List.map transform_program_globdef p.(prog_defs))
    p.(prog_public)
    p.(prog_main).

End TRANSF_PROGRAM.

The following is a more general presentation of transform_program:

Local Open Scope error_monad_scope.

Section TRANSF_PROGRAM_GEN.

Variables A B V W: Type.
Variable transf_fun: ident -> A -> res B.
Variable transf_var: ident -> V -> res W.

Definition transf_globvar (i: ident) (g: globvar V) : res (globvar W) :=
  do info' <- transf_var i g.(gvar_info);
  OK (mkglobvar info' g.(gvar_init) g.(gvar_readonly) g.(gvar_volatile)).

Fixpoint transf_globdefs (l: list (ident * globdef A V)) : res (list (ident * globdef B W)) :=
  match l with
  | nil => OK nil
  | (id, Gfun f) :: l' =>
    set_function_ident id (fun _ =>
    match transf_fun id f with
      | Error msg => Error (MSG "In function " :: CTX id :: MSG ": " :: msg)
      | OK tf =>
        do tl' <- transf_globdefs l'; OK ((id, Gfun tf) :: tl')
    end) tt
  | (id, Gvar v) :: l' =>
    match transf_globvar id v with
      | Error msg => Error (MSG "In variable " :: CTX id :: MSG ": " :: msg)
      | OK tv =>
        do tl' <- transf_globdefs l'; OK ((id, Gvar tv) :: tl')
    end
  end.

Definition transform_partial_program2 (p: program A V) : res (program B W) :=
  do gl' <- transf_globdefs p.(prog_defs);
  OK (mkprogram gl' p.(prog_public) p.(prog_main)).

End TRANSF_PROGRAM_GEN.

The following is a special case of transform_partial_program2, where only function definitions are transformed, but not variable definitions.

Section TRANSF_PARTIAL_PROGRAM.

Variable A B V: Type.
Variable transf_fun: A -> res B.

Definition transform_partial_program (p: program A V) : res (program B V) :=
  transform_partial_program2 (fun i f => transf_fun f) (fun i v => OK v) p.

End TRANSF_PARTIAL_PROGRAM.

Lemma transform_program_partial_program:
  forall (A B V: Type) (transf_fun: A -> B) (p: program A V),
  transform_partial_program (fun f => OK (transf_fun f)) p = OK (transform_program transf_fun p).
Proof.
  intros. unfold transform_partial_program, transform_partial_program2.
  assert (EQ: forall l,
              transf_globdefs (fun i f => OK (transf_fun f)) (fun i (v: V) => OK v) l =
              OK (List.map (transform_program_globdef transf_fun) l)).
  { induction l as [ | [id g] l]; simpl.
  - auto.
  - destruct g; simpl; rewrite IHl; simpl. auto. destruct v; auto.
  }
  rewrite EQ; simpl. auto.
Qed.

External functions


The type signature of an external function.

Definition ef_sig (ef: external_function): signature :=
  match ef with
  | EF_external name sg => sg
  | EF_builtin name sg => sg
  | EF_runtime name sg => sg
  | EF_vload chunk => mksignature (Tptr :: nil) (Some (type_of_chunk chunk)) cc_default
  | EF_vstore chunk => mksignature (Tptr :: type_of_chunk chunk :: nil) None cc_default
  | EF_malloc => mksignature (Tptr :: nil) (Some Tptr) cc_default
  | EF_free => mksignature (Tptr :: nil) None cc_default
  | EF_memcpy sz al => mksignature (Tptr :: Tptr :: nil) None cc_default
  | EF_annot kind text targs => mksignature targs None cc_default
  | EF_annot_val kind text targ => mksignature (targ :: nil) (Some targ) cc_default
  | EF_inline_asm text sg clob => sg
  | EF_debug kind text targs => mksignature targs None cc_default
  end.

Whether an external function should be inlined by the compiler.

Definition ef_inline (ef: external_function) : bool :=
  match ef with
  | EF_external name sg => false
  | EF_builtin name sg => true
  | EF_runtime name sg => false
  | EF_vload chunk => true
  | EF_vstore chunk => true
  | EF_malloc => false
  | EF_free => false
  | EF_memcpy sz al => true
  | EF_annot kind text targs => true
  | EF_annot_val kind Text rg => true
  | EF_inline_asm text sg clob => true
  | EF_debug kind text targs => true
  end.

Whether an external function must reload its arguments.

Definition ef_reloads (ef: external_function) : bool :=
  match ef with
  | EF_annot kind text targs => false
  | EF_debug kind text targs => false
  | _ => true
  end.

Equality between external functions. Used in module Allocation.

Definition external_function_eq: forall (ef1 ef2: external_function), {ef1=ef2} + {ef1<>ef2}.
Proof.
  generalize ident_eq string_dec signature_eq chunk_eq typ_eq list_eq_dec zeq Int.eq_dec; intros.
  decide equality.
Defined.
Global Opaque external_function_eq.

Section TRANSF_FUNDEF.

Variable A B: Type.
Context {size : Size A}.
Variable transf: A -> B.

Definition transf_fundef (fd: fundef A): fundef B :=
  set_function_type fd (fun _ =>
  match fd with
  | Internal f => Internal (transf f)
  | External ef => External ef
  end) tt.

End TRANSF_FUNDEF.

Section TRANSF_PARTIAL_FUNDEF.

Variable A B: Type.
Context {size : Size A}.
Variable transf_partial: A -> res B.

Definition transf_partial_fundef (fd: fundef A): res (fundef B) :=
  set_function_type fd (fun _ =>
  match fd with
  | Internal f => do f' <- transf_partial f; OK (Internal f')
  | External ef => OK (External ef)
  end) tt.

End TRANSF_PARTIAL_FUNDEF.

Register pairs


Set Contextual Implicit.

In some intermediate languages (LTL, Mach), 64-bit integers can be split into two 32-bit halves and held in a pair of registers. Syntactically, this is captured by the type rpair below.

Inductive rpair (A: Type) : Type :=
  | One (r: A)
  | Twolong (rhi rlo: A).

Definition typ_rpair (A: Type) (typ_of: A -> typ) (p: rpair A): typ :=
  match p with
  | One r => typ_of r
  | Twolong rhi rlo => Tlong
  end.

Definition map_rpair (A B: Type) (f: A -> B) (p: rpair A): rpair B :=
  match p with
  | One r => One (f r)
  | Twolong rhi rlo => Twolong (f rhi) (f rlo)
  end.

Definition regs_of_rpair (A: Type) (p: rpair A): list A :=
  match p with
  | One r => r :: nil
  | Twolong rhi rlo => rhi :: rlo :: nil
  end.

Fixpoint regs_of_rpairs (A: Type) (l: list (rpair A)): list A :=
  match l with
  | nil => nil
  | p :: l => regs_of_rpair p ++ regs_of_rpairs l
  end.

Lemma in_regs_of_rpairs:
  forall (A: Type) (x: A) p, In x (regs_of_rpair p) -> forall l, In p l -> In x (regs_of_rpairs l).
Proof.
  induction l; simpl; intros. auto. apply in_app. destruct H0; auto. subst a. auto.
Qed.

Lemma in_regs_of_rpairs_inv:
  forall (A: Type) (x: A) l, In x (regs_of_rpairs l) -> exists p, In p l /\ In x (regs_of_rpair p).
Proof.
  induction l; simpl; intros. contradiction.
  rewrite in_app_iff in H; destruct H.
  exists a; auto.
  apply IHl in H. firstorder auto.
Qed.

Definition forall_rpair (A: Type) (P: A -> Prop) (p: rpair A): Prop :=
  match p with
  | One r => P r
  | Twolong rhi rlo => P rhi /\ P rlo
  end.

Arguments and results to builtin functions


Inductive builtin_arg (A: Type) : Type :=
  | BA (x: A)
  | BA_int (n: int)
  | BA_long (n: int64)
  | BA_float (f: float)
  | BA_single (f: float32)
  | BA_loadstack (chunk: memory_chunk) (ofs: ptrofs)
  | BA_addrstack (ofs: ptrofs)
  | BA_loadglobal (chunk: memory_chunk) (id: ident) (ofs: ptrofs)
  | BA_addrglobal (id: ident) (ofs: ptrofs)
  | BA_splitlong (hi lo: builtin_arg A)
  | BA_addptr (a1 a2: builtin_arg A).

Inductive builtin_res (A: Type) : Type :=
  | BR (x: A)
  | BR_none
  | BR_splitlong (hi lo: builtin_res A).

Fixpoint globals_of_builtin_arg (A: Type) (a: builtin_arg A) : list ident :=
  match a with
  | BA_loadglobal chunk id ofs => id :: nil
  | BA_addrglobal id ofs => id :: nil
  | BA_splitlong hi lo => globals_of_builtin_arg hi ++ globals_of_builtin_arg lo
  | BA_addptr a1 a2 => globals_of_builtin_arg a1 ++ globals_of_builtin_arg a2
  | _ => nil
  end.

Definition globals_of_builtin_args (A: Type) (al: list (builtin_arg A)) : list ident :=
  List.fold_right (fun a l => globals_of_builtin_arg a ++ l) nil al.

Fixpoint params_of_builtin_arg (A: Type) (a: builtin_arg A) : list A :=
  match a with
  | BA x => x :: nil
  | BA_splitlong hi lo => params_of_builtin_arg hi ++ params_of_builtin_arg lo
  | BA_addptr a1 a2 => params_of_builtin_arg a1 ++ params_of_builtin_arg a2
  | _ => nil
  end.

Definition params_of_builtin_args (A: Type) (al: list (builtin_arg A)) : list A :=
  List.fold_right (fun a l => params_of_builtin_arg a ++ l) nil al.

Fixpoint params_of_builtin_res (A: Type) (a: builtin_res A) : list A :=
  match a with
  | BR x => x :: nil
  | BR_none => nil
  | BR_splitlong hi lo => params_of_builtin_res hi ++ params_of_builtin_res lo
  end.

Fixpoint map_builtin_arg (A B: Type) (f: A -> B) (a: builtin_arg A) : builtin_arg B :=
  match a with
  | BA x => BA (f x)
  | BA_int n => BA_int n
  | BA_long n => BA_long n
  | BA_float n => BA_float n
  | BA_single n => BA_single n
  | BA_loadstack chunk ofs => BA_loadstack chunk ofs
  | BA_addrstack ofs => BA_addrstack ofs
  | BA_loadglobal chunk id ofs => BA_loadglobal chunk id ofs
  | BA_addrglobal id ofs => BA_addrglobal id ofs
  | BA_splitlong hi lo =>
      BA_splitlong (map_builtin_arg f hi) (map_builtin_arg f lo)
  | BA_addptr a1 a2 =>
      BA_addptr (map_builtin_arg f a1) (map_builtin_arg f a2)
  end.

Fixpoint map_builtin_res (A B: Type) (f: A -> B) (a: builtin_res A) : builtin_res B :=
  match a with
  | BR x => BR (f x)
  | BR_none => BR_none
  | BR_splitlong hi lo =>
      BR_splitlong (map_builtin_res f hi) (map_builtin_res f lo)
  end.

Which kinds of builtin arguments are supported by which external function.

Inductive builtin_arg_constraint : Type :=
  | OK_default
  | OK_const
  | OK_addrstack
  | OK_addressing
  | OK_all.