A posteriori validation of SSA transformation.
Require Recdef.
Require Import FSets.
Require Import Coqlib.
Require Import Ordered.
Require Import Errors.
Require Import Maps.
Require Import Lattice.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Globalenvs.
Require Import Op.
Require Import Registers.
Require Import RTLt.
Require Import RTLtyping.
Require Import Kildall.
Require Import Machregs.
Require Import Locations.
Require Import Conventions.
Require Import SSA.
Require Import SSAutils.
Require Import Integers.
Require Import Floats.
Require Import Utils.
Require Import TrMaps2.
Require Import NArith.
Require Import LightLive.
Require Import RTLdfs.
Require Import Time.
Local Open Scope string_scope.
Type and value definitions
Definition index :=
positive.
Definition tgamma :=
node ->
Registers.reg ->
index.
Definition ttgamma :=
PTree.t (
PTree.t index).
Definition tdelta :=
node ->
Registers.reg -> (
list index).
Definition dft_pos :=
xH.
Auxiliary checkers for some of the structural invariants of code
Checker for the uniqueness of definitions
Definition record_assigned_reg (
t: (
P2Tree.t (
list positive))) (
pc:
node) (
i:
instruction) : (
P2Tree.t (
list positive)):=
match i with
| (
Iop _ _ r _ )
| (
Iload _ _ _ r _ )
| (
Icall _ _ _ r _ )
| (
Ibuiltin _ _ (
BR r)
_ ) =>
match t !2
r with
|
Some l => (
P2Tree.set r (
pc::
l)
t)
|
None => (
P2Tree.set r (
pc::
nil)
t)
end
|
_ =>
t
end.
Definition add_phi_assigned_reg (
pc:
node) (
t : (
P2Tree.t (
list positive))) (
phi:
phiinstruction) : (
P2Tree.t (
list positive)) :=
match phi with
|
Iphi args dst =>
match t !2
dst with
|
Some l => (
P2Tree.set dst (
pc::
l)
t)
|
None => (
P2Tree.set dst (
pc::
nil)
t)
end
end.
Definition record_assigned_reg_phi (
t: (
P2Tree.t (
list positive))) (
pc:
node) (
phib:
phiblock) : (
P2Tree.t (
list positive)):=
List.fold_left (
add_phi_assigned_reg pc)
phib t.
Definition check_unique_def (
tf:
SSA.function) :
bool :=
let def_code :=
PTree.fold record_assigned_reg (
fn_code tf) (
P2Tree.empty (
list positive))
in let def_code_phicode :=
PTree.fold record_assigned_reg_phi (
fn_phicode tf)
def_code
in P2Tree.fold (
fun res r _ =>
res &&
match def_code_phicode !2
r with
|
Some (
x::
y::
m) =>
false
|
_ =>
true
end)
def_code_phicode
true.
Checker for normalization of code and successor-closed code
Definition succ_is_some_instr (
code:
RTLt.code) :=
(
fun res i =>
res &&
match code !
i with
|
Some _ =>
true
|
_ =>
false
end).
Definition instr_is_nop (
code :
RTLt.code) (
pc:
node) :=
(
match code !
pc with
|
Some (
RTL.Inop _) =>
true
|
_ =>
false
end).
Definition check_instr_inv (
code:
RTLt.code) (
entry:
node) (
preds:
PTree.t (
list positive)) (
i:
node) :
bool :=
match code !
i with
|
Some instr =>
fold_left (
succ_is_some_instr code) (
RTLt.successors_instr instr)
true
|
None =>
false
end &&
if peq entry i then
instr_is_nop code i &&
match preds!
i with
|
None =>
true
|
Some nil =>
true
|
Some (
x::
nil) =>
true
|
Some (
x::
y::
m) =>
false
end
else
match preds!
i with
|
None =>
true
|
Some nil =>
false
|
Some (
x::
nil) =>
true
|
Some (
x::
y::
m) => (
List.fold_left (
fun res pc =>
res && (
instr_is_nop code pc)) (
x::
y::
m)
true)
end.
Definition no_pred (
preds:
PTree.t (
list positive)) (
i:
node) :
bool :=
match preds!!!
i with
|
nil =>
true
|
_ =>
false
end.
Definition check_function_inv (
f:
RTLt.function) (
preds:
PTree.t (
list positive)) :
bool :=
match (
RTLt.fn_code f) ! (
RTLt.fn_entrypoint f)
with
|
Some (
RTL.Inop s) =>
no_pred preds (
RTLt.fn_entrypoint f) &&
PTree.fold
(
fun (
res :
bool) (
i :
node)
_ =>
res &&
check_instr_inv (
RTLt.fn_code f) (
RTLt.fn_entrypoint f)
preds i)
(
RTLt.fn_code f)
true
|
_ =>
false
end.
Checker for the constraint: there is an instruction at every point in the code of tf where a phi-block stands
Definition check_code_at_phipoints (
tf:
SSA.function) :
bool :=
forall_ptree (
fun pc _ =>
match (
fn_code tf)!
pc with None =>
false |
_ =>
true end)
(
fn_phicode tf).
More auxiliary definitions
Local Open Scope error_monad_scope.
Definition get_option {
A:
Type} (
a:
option A) (
m:
String.string):
res A :=
match a with
|
None =>
Error (
msg m)
|
Some a =>
OK a
end.
Definition map_os (
f:
positive->
reg) (
fn:
positive +
ident) :
reg +
ident :=
match fn with
|
inl r =>
inl _ (
f r)
|
inr s =>
inr _ s
end.
Definition check_os (
f:
reg->
bool) (
fn:
reg +
ident) :
bool :=
match fn with
|
inl r =>
f r
|
inr s =>
true
end.
Definition upd_list {
A:
Type} (
l:
list positive) (
g:
A) (
m:
PTree.t A) :
PTree.t A :=
List.fold_left (
fun m p =>
PTree.set p g m)
l m.
Definition read_gamma (
g:
PTree.t index) (
x:
Registers.reg) :
index :=
match g!
x with
|
None =>
dft_pos
|
Some i =>
i
end.
Definition is_joinpoint (
preds:
PTree.t (
list positive)) (
pc:
node) :
bool :=
match preds !
pc with
|
Some (
x::
y::
m) =>
true
|
_ =>
false
end.
SSA Validator
The validator performs the generation of a SSA function, provided
an external, untrusted SSA generator, namely extern_gen_ssa, that
computes all the required informations. extern_gen_ssa f live
computes (i) the maximal positive index that is required to index
registers of the function RTLt code, (ii) a map that gives, for every
program point, the index that should be used to index the register
defined at that point (if any) and (iii) a similar map for phi-blocks.
This certificate will be then transmitted to the generating
validator.
Parameter extern_gen_ssa :
RTLt.function -> (
node ->
Regset.t) -> (
nat * (
PTree.t index) * (
PTree.t (
PTree.t index))).
The validator is then run on the RTLt function, and uses the result
of extern_gen_ssa to build on the fly the SSA form of the function.
To do so, it will rely on a global typing information of type
ttgamma, that it will update along the traversal of the RTLt code.
Definition for the initial global typing context
Definition entry_Gamma (
tf :
RTLt.function) :
ttgamma :=
PTree.set (
RTLt.fn_entrypoint tf) (
PTree.empty _) (
PTree.empty (
PTree.t index)).
update_ctx updates the global typing information according to
encountered definitions. It also update the registers used in the
code. Finally, it keeps up-to-date the list of the junctions points
that have been visited so far.
Definition update_ctx (
preds:
PTree.t (
list positive))
(
def:
PTree.t index)
(
def_phi:
PTree.t (
PTree.t index))
(
code:
PTree.t RTL.instruction)
(
live:
node ->
Regset.t)
(
acc:
res (
ttgamma * (
PTree.t instruction) *
list node)) (
pc:
node) :
res (
ttgamma * (
PTree.t instruction) *
list node) :=
match acc with
|
Error msg =>
Error msg
|
OK (
G,
new_code,
juncpoints) =>
do instr <-
get_option (
code !
pc) "" ;
do g <-
get_option (
G !
pc) "" ;
let use :=
fun (
x:
Registers.reg) => (
x,
read_gamma g x)
in
match instr with
|
RTL.Inop l =>
if is_joinpoint preds l then
do def_phi <-
get_option (
def_phi !
l) "";
let live :=
live l in
match G !
l with
|
None =>
let g' :=
PTree.fold
(
fun G x i =>
if Regset.mem x live then PTree.set x i G else G)
def_phi g in
OK (
PTree.set l g'
G,
PTree.set pc (
Inop l)
new_code,
l::
juncpoints)
|
Some g_jun =>
if forall3_ptree
(
fun x i i'
o =>
let i :=
match i with None =>
dft_pos |
Some i =>
i end in
let i' :=
match i'
with None =>
dft_pos |
Some i =>
i end in
match o with
|
None =>
peq i i' ||
negb (
Regset.mem x live)
|
Some _ =>
true
end)
g g_jun def_phi then
OK (
G,
PTree.set pc (
Inop l)
new_code,
juncpoints)
else Error (
msg "
SSAvalid 1")
end
else
OK (
PTree.set l g G,
PTree.set pc (
Inop l)
new_code,
juncpoints)
|
RTL.Ireturn None =>
OK (
G,
PTree.set pc (
Ireturn None)
new_code,
juncpoints)
|
RTL.Ijumptable arg tbl =>
OK (
upd_list tbl g G,
PTree.set pc (
Ijumptable (
use arg)
tbl)
new_code,
juncpoints)
|
RTL.Ireturn (
Some arg) =>
OK (
G,
PTree.set pc (
Ireturn (
Some (
use arg)))
new_code,
juncpoints)
|
RTL.Icond cond args ifso ifno =>
OK (
upd_list (
ifso::
ifno::
nil)
g G,
PTree.set pc (
Icond cond (
List.map use args)
ifso ifno)
new_code,
juncpoints)
|
RTL.Iop op args dest succ =>
do i <-
get_option (
def !
pc) "" ;
let dest' := (
dest,
i)
in
if negb (
Peqb xH i)
then
OK (
PTree.set succ (
PTree.set dest i g)
G,
PTree.set pc (
Iop op (
List.map use args)
dest'
succ)
new_code,
juncpoints)
else Error (
msg "
SSAvalid 2")
|
RTL.Iload chunk addr args dest succ =>
do i <-
get_option (
def !
pc) "" ;
let dest' := (
dest,
i)
in
if negb (
Peqb xH i)
then
OK (
PTree.set succ (
PTree.set dest i g)
G,
PTree.set pc (
Iload chunk addr (
List.map use args)
dest'
succ)
new_code,
juncpoints)
else Error (
msg "
SSAvalid 3")
|
RTL.Icall sig fn args dest succ =>
do i <-
get_option (
def !
pc) "" ;
let dest' := (
dest,
i)
in
if negb (
Peqb xH i)
then
OK (
PTree.set succ (
PTree.set dest i g)
G,
PTree.set pc (
Icall sig (
map_os use fn) (
List.map use args)
dest'
succ)
new_code,
juncpoints)
else Error (
msg "
SSAvalid 4")
|
RTL.Itailcall sig fn args =>
OK (
G,
PTree.set pc (
Itailcall sig (
map_os use fn) (
List.map use args))
new_code,
juncpoints)
|
RTL.Ibuiltin ef args (
BR dest)
succ =>
do i <-
get_option (
def !
pc) "" ;
let dest' := (
dest,
i)
in
if negb (
Peqb xH i)
then
OK (
PTree.set succ (
PTree.set dest i g)
G,
PTree.set pc (
Ibuiltin ef
(
List.map (
map_builtin_arg use)
args)
(
BR dest')
succ)
new_code,
juncpoints)
else Error (
msg "
SSAvalid 5")
|
RTL.Ibuiltin ef args dest succ =>
OK (
PTree.set succ g G,
PTree.set pc (
Ibuiltin ef
(
List.map (
map_builtin_arg use)
args)
(
map_builtin_res (
fun r => (
r,
xH))
dest)
succ)
new_code,
juncpoints)
|
RTL.Istore chunk addr args src succ =>
OK (
PTree.set succ g G,
PTree.set pc (
Istore chunk addr (
List.map use args) (
use src)
succ)
new_code,
juncpoints)
end
end.
builds_phi_block builds phi-blocks according to def_phi,
assuming that all predecessors of pc have been visited. It will
get the gammas, and build from them the arguments of phi-functions.
At this stage, we know that if a variable is not assigned in
phi-block, then all preceeding gammas agree on the index.
Definition xbuild_phi_block (
preds:
list positive)
(
livepc:
Regset.t)
(
def_phi: (
PTree.t index))
predspc :=
PTree.fold
(
fun phis x xdef =>
if Regset.mem x livepc then
let phi_args :=
List.map (
fun pc => (
x,
read_gamma (
predspc pc)
x))
preds in
let phi_def := (
x,
xdef)
in
(
Iphi phi_args phi_def)::
phis
else phis
)
def_phi nil.
Definition build_phi_block (
preds:
PTree.t (
list positive))
(
live:
node ->
Regset.t)
(
def_phi:
PTree.t (
PTree.t index))
(
G:
ttgamma)
(
acc:
res (
PTree.t phiblock)) (
pc:
node) :
res (
PTree.t phiblock) :=
do preds <-
get_option (
preds !
pc) "" ;
do def_phi <-
get_option (
def_phi !
pc) "" ;
let live :=
live pc in
let get_Gpreds :
index -> (
PTree.t index) :=
(
fun pc_pred =>
match G !
pc_pred with
|
None =>
PTree.empty _
|
Some m =>
m
end)
in
let new_phi_block :=
xbuild_phi_block preds live def_phi get_Gpreds in
if forall_ptree (
fun x xdef =>
negb (
Peqb xH xdef))
def_phi then
match acc with
|
Error msg =>
Error msg
|
OK acc =>
OK (
PTree.set pc new_phi_block acc)
end
else Error (
msg "
SSAvalid 7").
Computing dominator-test and so-called external parameters of an SSA function.
Require Import DomTest.
Module SSADomTest :=
Make PositiveNodeTree Z.
Import SSADomTest.
Axiom extern_d :
node ->
code ->
list (
node *
node).
Definition check_D_eq (
entry:
node) (
code:
code)
(
D:
node ->
node) (
test_dom:
node ->
node ->
bool) :
bool :=
(
peq (
D entry)
entry)
&&
forall_ptree (
fun pc spc =>
forallb (
test_dom pc)
spc) (
PTree.map1 successors_instr code).
Definition ignore_2 {
A B} (
x:
A) (
y :
B) :=
x.
Definition compute_dom (
entry:
node) (
code:
code):
option (
PTree.t SSA.itv) :=
let l :=
time (
Some "
Typecheck ") "
Domination tree " (
fun _ =>
extern_d entry code)
tt in
let D :=
make_D_fun l in
match build_succs entry l with
|
Some sn =>
match build_itv_map entry sn with
|
Some itvm =>
let td := (
fun i j =>
is_ancestor itvm (
D j)
i)
in
if (
check_D_eq entry code D td)
then
Some (
PTree.map1 (
fun n => {|
SSA.pre :=
n.(
pre);
SSA.post :=
n.(
post) |})
itvm)
else None
|
None =>
None
end
|
None =>
None
end.
Typechecking algorithm, that uses the information given by
extern_gen_ssa. The first phase updates the global typing
information and rename definitions and uses, using update_ctx.
The second phase handle phi-blocks, by synthesising them using the
global typing information computed at the last stage. Finally, it
indices the function parameters. check_function_inv,
check_unique_def and check_code_at_phipoints are used to check
additional structural constraints on the code of either f or the
resulting SSA function.
Once the function code is type-checked, a dominator-test and
external parameters for the function
Definition typecheck_function
(
f:
RTLt.function) (
max_indice:
nat)
(
def:
PTree.t index) (
def_phi:
PTree.t (
PTree.t index))
(
live:
node ->
Regset.t) :
res SSA.function :=
let G :=
entry_Gamma f in
let preds := (
make_predecessors (
RTLt.fn_code f)
RTLt.successors_instr)
in
if check_function_inv f preds then
(
match fold_left (
update_ctx preds def def_phi (
RTLt.fn_code f)
live)
(
fn_dfs f) (
OK (
G,
PTree.empty _,
nil))
with
|
Error msg =>
Error msg
|
OK (
G,
new_code,
juncpoints) =>
do phi_code <-
fold_left (
build_phi_block preds live def_phi G)
juncpoints (
OK (
PTree.empty _));
match compute_dom (
RTLt.fn_entrypoint f)
new_code with
|
Some dom_tree =>
let params:= (
List.map (
fun r => (
r,
dft_pos)) (
RTLt.fn_params f))
in
let fwo := (
mkfunction
(
RTLt.fn_sig f)
params
(
RTLt.fn_stacksize f)
new_code
phi_code
max_indice
(
RTLt.fn_entrypoint f)
(
ext_params_list new_code phi_code params)
dom_tree
)
in
if check_unique_def fwo &&
check_code_at_phipoints fwo
then OK fwo
else Errors.Error (
msg "
SSAvalid 8")
|
None =>
Error (
msg "
Could not compute dominators")
end
end)
else Error (
msg "
SSAvalid 9")
.
Actual code of the generating validator.
The transformation uses a liveness analysis over the RTL code (see separate file).
Definition transf_function (
f:
RTLt.function) :
res SSA.function :=
time (
Some "
SSA generation") "
SSA generation " (
fun _ =>
do live <-
time (
Some "
SSA generation ") "
Liveness " (
fun _ =>
get_option (
analyze f) "
Bad live analysis")
tt ;
let '(
size,
def,
def_phi) :=
time (
Some "
SSA generation ") "
Generation " (
fun _ =>
extern_gen_ssa f (
fun pc => (
Lin f pc (
Lout live))))
tt in
time (
Some "
SSA generation ") "
Typecheck " (
fun _ =>
typecheck_function f size def def_phi (
fun pc => (
Lin f pc (
Lout live))))
tt)
tt.
Definition transf_fundef (
fd:
RTLt.fundef) :
res fundef :=
AST.transf_partial_fundef transf_function fd.
Definition transf_program (
p:
RTLt.program) :
res program :=
transform_partial_program transf_fundef p.