In-memory representation of values.
Require Import Coqlib.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Properties of memory chunks
Memory reads and writes are performed by quantities called memory chunks,
encoding the type, size and signedness of the chunk being addressed.
The following functions extract the size information from a chunk.
Definition size_chunk (
chunk:
memory_chunk) :
Z :=
match chunk with
|
Mint8signed => 1
|
Mint8unsigned => 1
|
Mint16signed => 2
|
Mint16unsigned => 2
|
Mint32 => 4
|
Mfloat32 => 4
|
Mfloat64 => 8
end.
Lemma size_chunk_pos:
forall chunk,
size_chunk chunk > 0.
Proof.
intros. destruct chunk; simpl; omega.
Qed.
Definition size_chunk_nat (
chunk:
memory_chunk) :
nat :=
nat_of_Z(
size_chunk chunk).
Lemma size_chunk_conv:
forall chunk,
size_chunk chunk =
Z_of_nat (
size_chunk_nat chunk).
Proof.
intros. destruct chunk; reflexivity.
Qed.
Lemma size_chunk_nat_pos:
forall chunk,
exists n,
size_chunk_nat chunk =
S n.
Proof.
Memory reads and writes must respect alignment constraints:
the byte offset of the location being addressed should be an exact
multiple of the natural alignment for the chunk being addressed.
This natural alignment is defined by the following
align_chunk function. Some target architectures
(e.g. PowerPC and x86) have no alignment constraints, which we could
reflect by taking align_chunk chunk = 1. However, other architectures
have stronger alignment requirements. The following definition is
appropriate for PowerPC, ARM and x86.
Definition align_chunk (
chunk:
memory_chunk) :
Z :=
match chunk with
|
Mint8signed => 1
|
Mint8unsigned => 1
|
Mint16signed => 2
|
Mint16unsigned => 2
|
_ => 4
end.
Lemma align_chunk_pos:
forall chunk,
align_chunk chunk > 0.
Proof.
intro. destruct chunk; simpl; omega.
Qed.
Lemma align_size_chunk_divides:
forall chunk, (
align_chunk chunk |
size_chunk chunk).
Proof.
intros.
destruct chunk;
simpl;
try apply Zdivide_refl.
exists 2;
auto.
Qed.
Lemma align_chunk_compat:
forall chunk1 chunk2,
size_chunk chunk1 =
size_chunk chunk2 ->
align_chunk chunk1 =
align_chunk chunk2.
Proof.
intros chunk1 chunk2.
destruct chunk1; destruct chunk2; simpl; congruence.
Qed.
Memory values
A ``memory value'' is a byte-sized quantity that describes the current
content of a memory cell. It can be either:
-
a concrete 8-bit integer;
-
a byte-sized fragment of an opaque pointer;
-
the special constant Undef that represents uninitialized memory.
Values stored in memory cells.
Inductive memval:
Type :=
|
Undef:
memval
|
Byte:
byte ->
memval
|
Pointer:
block ->
int ->
nat ->
memval.
Encoding and decoding integers
We define functions to convert between integers and lists of bytes
of a given length
Fixpoint bytes_of_int (
n:
nat) (
x:
Z) {
struct n}:
list byte :=
match n with
|
O =>
nil
|
S m =>
Byte.repr x ::
bytes_of_int m (
x / 256)
end.
Fixpoint int_of_bytes (
l:
list byte):
Z :=
match l with
|
nil => 0
|
b ::
l' =>
Byte.unsigned b +
int_of_bytes l' * 256
end.
Parameter big_endian:
bool.
Definition rev_if_be (
l:
list byte) :
list byte :=
if big_endian then List.rev l else l.
Definition encode_int (
sz:
nat) (
x:
Z) :
list byte :=
rev_if_be (
bytes_of_int sz x).
Definition decode_int (
b:
list byte) :
Z :=
int_of_bytes (
rev_if_be b).
Length properties
Lemma length_bytes_of_int:
forall n x,
length (
bytes_of_int n x) =
n.
Proof.
induction n; simpl; intros. auto. decEq. auto.
Qed.
Lemma rev_if_be_length:
forall l,
length (
rev_if_be l) =
length l.
Proof.
Lemma encode_int_length:
forall sz x,
length(
encode_int sz x) =
sz.
Proof.
Decoding after encoding
Lemma int_of_bytes_of_int:
forall n x,
int_of_bytes (
bytes_of_int n x) =
x mod (
two_p (
Z_of_nat n * 8)).
Proof.
Lemma rev_if_be_involutive:
forall l,
rev_if_be (
rev_if_be l) =
l.
Proof.
Lemma decode_encode_int:
forall n x,
decode_int (
encode_int n x) =
x mod (
two_p (
Z_of_nat n * 8)).
Proof.
Lemma decode_encode_int_1:
forall x,
Int.repr (
decode_int (
encode_int 1 (
Int.unsigned x))) =
Int.zero_ext 8
x.
Proof.
Lemma decode_encode_int_2:
forall x,
Int.repr (
decode_int (
encode_int 2 (
Int.unsigned x))) =
Int.zero_ext 16
x.
Proof.
Lemma decode_encode_int_4:
forall x,
Int.repr (
decode_int (
encode_int 4 (
Int.unsigned x))) =
x.
Proof.
Lemma decode_encode_int_8:
forall x,
Int64.repr (
decode_int (
encode_int 8 (
Int64.unsigned x))) =
x.
Proof.
A length-n encoding depends only on the low 8*n bits of the integer.
Lemma bytes_of_int_mod:
forall n x y,
Int.eqmod (
two_p (
Z_of_nat n * 8))
x y ->
bytes_of_int n x =
bytes_of_int n y.
Proof.
Lemma encode_int_8_mod:
forall x y,
Int.eqmod (
two_p 8)
x y ->
encode_int 1%
nat x =
encode_int 1%
nat y.
Proof.
Lemma encode_int_16_mod:
forall x y,
Int.eqmod (
two_p 16)
x y ->
encode_int 2%
nat x =
encode_int 2%
nat y.
Proof.
Encoding and decoding values
Definition inj_bytes (
bl:
list byte) :
list memval :=
List.map Byte bl.
Fixpoint proj_bytes (
vl:
list memval) :
option (
list byte) :=
match vl with
|
nil =>
Some nil
|
Byte b ::
vl' =>
match proj_bytes vl'
with None =>
None |
Some bl =>
Some(
b ::
bl)
end
|
_ =>
None
end.
Remark length_inj_bytes:
forall bl,
length (
inj_bytes bl) =
length bl.
Proof.
Remark proj_inj_bytes:
forall bl,
proj_bytes (
inj_bytes bl) =
Some bl.
Proof.
induction bl; simpl. auto. rewrite IHbl. auto.
Qed.
Lemma inj_proj_bytes:
forall cl bl,
proj_bytes cl =
Some bl ->
cl =
inj_bytes bl.
Proof.
induction cl;
simpl;
intros.
inv H;
auto.
destruct a;
try congruence.
destruct (
proj_bytes cl);
inv H.
simpl.
decEq.
auto.
Qed.
Fixpoint inj_pointer (
n:
nat) (
b:
block) (
ofs:
int) {
struct n}:
list memval :=
match n with
|
O =>
nil
|
S m =>
Pointer b ofs m ::
inj_pointer m b ofs
end.
Fixpoint check_pointer (
n:
nat) (
b:
block) (
ofs:
int) (
vl:
list memval)
{
struct n} :
bool :=
match n,
vl with
|
O,
nil =>
true
|
S m,
Pointer b'
ofs'
m' ::
vl' =>
eq_block b b' &&
Int.eq_dec ofs ofs' &&
beq_nat m m' &&
check_pointer m b ofs vl'
|
_,
_ =>
false
end.
Definition proj_pointer (
vl:
list memval) :
val :=
match vl with
|
Pointer b ofs n ::
vl' =>
if check_pointer 4%
nat b ofs vl then Vptr b ofs else Vundef
|
_ =>
Vundef
end.
Definition encode_val (
chunk:
memory_chunk) (
v:
val) :
list memval :=
match v,
chunk with
|
Vint n, (
Mint8signed |
Mint8unsigned) =>
inj_bytes (
encode_int 1%
nat (
Int.unsigned n))
|
Vint n, (
Mint16signed |
Mint16unsigned) =>
inj_bytes (
encode_int 2%
nat (
Int.unsigned n))
|
Vint n,
Mint32 =>
inj_bytes (
encode_int 4%
nat (
Int.unsigned n))
|
Vptr b ofs,
Mint32 =>
inj_pointer 4%
nat b ofs
|
Vfloat n,
Mfloat32 =>
inj_bytes (
encode_int 4%
nat (
Int.unsigned (
Float.bits_of_single n)))
|
Vfloat n,
Mfloat64 =>
inj_bytes (
encode_int 8%
nat (
Int64.unsigned (
Float.bits_of_double n)))
|
_,
_ =>
list_repeat (
size_chunk_nat chunk)
Undef
end.
Definition decode_val (
chunk:
memory_chunk) (
vl:
list memval) :
val :=
match proj_bytes vl with
|
Some bl =>
match chunk with
|
Mint8signed =>
Vint(
Int.sign_ext 8 (
Int.repr (
decode_int bl)))
|
Mint8unsigned =>
Vint(
Int.zero_ext 8 (
Int.repr (
decode_int bl)))
|
Mint16signed =>
Vint(
Int.sign_ext 16 (
Int.repr (
decode_int bl)))
|
Mint16unsigned =>
Vint(
Int.zero_ext 16 (
Int.repr (
decode_int bl)))
|
Mint32 =>
Vint(
Int.repr(
decode_int bl))
|
Mfloat32 =>
Vfloat(
Float.single_of_bits (
Int.repr (
decode_int bl)))
|
Mfloat64 =>
Vfloat(
Float.double_of_bits (
Int64.repr (
decode_int bl)))
end
|
None =>
match chunk with
|
Mint32 =>
proj_pointer vl
|
_ =>
Vundef
end
end.
Lemma encode_val_length:
forall chunk v,
length(
encode_val chunk v) =
size_chunk_nat chunk.
Proof.
Lemma check_inj_pointer:
forall b ofs n,
check_pointer n b ofs (
inj_pointer n b ofs) =
true.
Proof.
Definition decode_encode_val (
v1:
val) (
chunk1 chunk2:
memory_chunk) (
v2:
val) :
Prop :=
match v1,
chunk1,
chunk2 with
|
Vundef,
_,
_ =>
v2 =
Vundef
|
Vint n,
Mint8signed,
Mint8signed =>
v2 =
Vint(
Int.sign_ext 8
n)
|
Vint n,
Mint8unsigned,
Mint8signed =>
v2 =
Vint(
Int.sign_ext 8
n)
|
Vint n,
Mint8signed,
Mint8unsigned =>
v2 =
Vint(
Int.zero_ext 8
n)
|
Vint n,
Mint8unsigned,
Mint8unsigned =>
v2 =
Vint(
Int.zero_ext 8
n)
|
Vint n,
Mint16signed,
Mint16signed =>
v2 =
Vint(
Int.sign_ext 16
n)
|
Vint n,
Mint16unsigned,
Mint16signed =>
v2 =
Vint(
Int.sign_ext 16
n)
|
Vint n,
Mint16signed,
Mint16unsigned =>
v2 =
Vint(
Int.zero_ext 16
n)
|
Vint n,
Mint16unsigned,
Mint16unsigned =>
v2 =
Vint(
Int.zero_ext 16
n)
|
Vint n,
Mint32,
Mint32 =>
v2 =
Vint n
|
Vint n,
Mint32,
Mfloat32 =>
v2 =
Vfloat(
Float.single_of_bits n)
|
Vint n, (
Mfloat32 |
Mfloat64),
_ =>
v2 =
Vundef
|
Vint n,
_,
_ =>
True (* nothing meaningful to say about v2 *)
|
Vptr b ofs,
Mint32,
Mint32 =>
v2 =
Vptr b ofs
|
Vptr b ofs,
_,
_ =>
v2 =
Vundef
|
Vfloat f,
Mfloat32,
Mfloat32 =>
v2 =
Vfloat(
Float.singleoffloat f)
|
Vfloat f,
Mfloat32,
Mint32 =>
v2 =
Vint(
Float.bits_of_single f)
|
Vfloat f,
Mfloat64,
Mfloat64 =>
v2 =
Vfloat f
|
Vfloat f, (
Mint8signed|
Mint8unsigned|
Mint16signed|
Mint16unsigned|
Mint32),
_ =>
v2 =
Vundef
|
Vfloat f,
_,
_ =>
True
end.
Remark decode_val_undef:
forall bl chunk,
decode_val chunk (
Undef ::
bl) =
Vundef.
Proof.
intros. unfold decode_val. simpl. destruct chunk; auto.
Qed.
Lemma decode_encode_val_general:
forall v chunk1 chunk2,
decode_encode_val v chunk1 chunk2 (
decode_val chunk2 (
encode_val chunk1 v)).
Proof.
Lemma decode_encode_val_similar:
forall v1 chunk1 chunk2 v2,
type_of_chunk chunk1 =
type_of_chunk chunk2 ->
size_chunk chunk1 =
size_chunk chunk2 ->
decode_encode_val v1 chunk1 chunk2 v2 ->
v2 =
Val.load_result chunk2 v1.
Proof.
intros until v2; intros TY SZ DE.
destruct chunk1; destruct chunk2; simpl in TY; try discriminate; simpl in SZ; try omegaContradiction;
destruct v1; auto.
Qed.
Lemma decode_val_type:
forall chunk cl,
Val.has_type (
decode_val chunk cl) (
type_of_chunk chunk).
Proof.
intros.
unfold decode_val.
destruct (
proj_bytes cl).
destruct chunk;
simpl;
auto.
destruct chunk;
simpl;
auto.
unfold proj_pointer.
destruct cl;
try (
exact I).
destruct m;
try (
exact I).
destruct (
check_pointer 4%
nat b i (
Pointer b i n ::
cl));
exact I.
Qed.
Lemma encode_val_int8_signed_unsigned:
forall v,
encode_val Mint8signed v =
encode_val Mint8unsigned v.
Proof.
intros. destruct v; simpl; auto.
Qed.
Lemma encode_val_int16_signed_unsigned:
forall v,
encode_val Mint16signed v =
encode_val Mint16unsigned v.
Proof.
intros. destruct v; simpl; auto.
Qed.
Lemma encode_val_int8_zero_ext:
forall n,
encode_val Mint8unsigned (
Vint (
Int.zero_ext 8
n)) =
encode_val Mint8unsigned (
Vint n).
Proof.
Lemma encode_val_int8_sign_ext:
forall n,
encode_val Mint8signed (
Vint (
Int.sign_ext 8
n)) =
encode_val Mint8signed (
Vint n).
Proof.
intros;
unfold encode_val.
decEq.
apply encode_int_8_mod.
apply Int.eqmod_sign_ext'.
compute;
auto.
Qed.
Lemma encode_val_int16_zero_ext:
forall n,
encode_val Mint16unsigned (
Vint (
Int.zero_ext 16
n)) =
encode_val Mint16unsigned (
Vint n).
Proof.
Lemma encode_val_int16_sign_ext:
forall n,
encode_val Mint16signed (
Vint (
Int.sign_ext 16
n)) =
encode_val Mint16signed (
Vint n).
Proof.
intros;
unfold encode_val.
decEq.
apply encode_int_16_mod.
apply Int.eqmod_sign_ext'.
compute;
auto.
Qed.
Lemma decode_val_cast:
forall chunk l,
let v :=
decode_val chunk l in
match chunk with
|
Mint8signed =>
v =
Val.sign_ext 8
v
|
Mint8unsigned =>
v =
Val.zero_ext 8
v
|
Mint16signed =>
v =
Val.sign_ext 16
v
|
Mint16unsigned =>
v =
Val.zero_ext 16
v
|
Mfloat32 =>
v =
Val.singleoffloat v
|
_ =>
True
end.
Proof.
Pointers cannot be forged.
Definition memval_valid_first (
mv:
memval) :
Prop :=
match mv with
|
Pointer b ofs n =>
n = 3%
nat
|
_ =>
True
end.
Definition memval_valid_cont (
mv:
memval) :
Prop :=
match mv with
|
Pointer b ofs n =>
n <> 3%
nat
|
_ =>
True
end.
Inductive encoding_shape:
list memval ->
Prop :=
|
encoding_shape_intro:
forall mv1 mvl,
memval_valid_first mv1 ->
(
forall mv,
In mv mvl ->
memval_valid_cont mv) ->
encoding_shape (
mv1 ::
mvl).
Lemma encode_val_shape:
forall chunk v,
encoding_shape (
encode_val chunk v).
Proof.
Lemma check_pointer_inv:
forall b ofs n mv,
check_pointer n b ofs mv =
true ->
mv =
inj_pointer n b ofs.
Proof.
Inductive decoding_shape:
list memval ->
Prop :=
|
decoding_shape_intro:
forall mv1 mvl,
memval_valid_first mv1 ->
mv1 <>
Undef ->
(
forall mv,
In mv mvl ->
memval_valid_cont mv /\
mv <>
Undef) ->
decoding_shape (
mv1 ::
mvl).
Lemma decode_val_shape:
forall chunk mvl,
List.length mvl =
size_chunk_nat chunk ->
decode_val chunk mvl =
Vundef \/
decoding_shape mvl.
Proof.
intros.
destruct (
size_chunk_nat_pos chunk)
as [
sz EQ].
unfold decode_val.
caseEq (
proj_bytes mvl).
intros bl PROJ.
right.
exploit inj_proj_bytes;
eauto.
intros.
subst mvl.
destruct bl;
simpl in H.
congruence.
simpl.
constructor.
red;
auto.
congruence.
unfold inj_bytes;
intros.
exploit list_in_map_inv;
eauto.
intros [
b [
A B]].
subst mv.
split.
red;
auto.
congruence.
intros.
destruct chunk;
auto.
unfold proj_pointer.
destruct mvl;
auto.
destruct m;
auto.
caseEq (
check_pointer 4%
nat b i (
Pointer b i n ::
mvl));
auto.
intros.
right.
exploit check_pointer_inv;
eauto.
simpl;
intros;
inv H2.
constructor.
red.
auto.
congruence.
simpl;
intros.
intuition;
subst mv;
simpl;
congruence.
Qed.
Lemma encode_val_pointer_inv:
forall chunk v b ofs n mvl,
encode_val chunk v =
Pointer b ofs n ::
mvl ->
chunk =
Mint32 /\
v =
Vptr b ofs /\
mvl =
inj_pointer 3%
nat b ofs.
Proof.
Lemma decode_val_pointer_inv:
forall chunk mvl b ofs,
decode_val chunk mvl =
Vptr b ofs ->
chunk =
Mint32 /\
mvl =
inj_pointer 4%
nat b ofs.
Proof.
intros until ofs;
unfold decode_val.
destruct (
proj_bytes mvl).
destruct chunk;
congruence.
destruct chunk;
try congruence.
unfold proj_pointer.
destruct mvl.
congruence.
destruct m;
try congruence.
case_eq (
check_pointer 4%
nat b0 i (
Pointer b0 i n ::
mvl));
intros.
inv H0.
split;
auto.
apply check_pointer_inv;
auto.
congruence.
Qed.
Inductive pointer_encoding_shape:
list memval ->
Prop :=
|
pointer_encoding_shape_intro:
forall mv1 mvl,
~
memval_valid_cont mv1 ->
(
forall mv,
In mv mvl -> ~
memval_valid_first mv) ->
pointer_encoding_shape (
mv1 ::
mvl).
Lemma encode_pointer_shape:
forall b ofs,
pointer_encoding_shape (
encode_val Mint32 (
Vptr b ofs)).
Proof.
intros. simpl. constructor.
unfold memval_valid_cont. red; intro. elim H. auto.
unfold memval_valid_first. simpl; intros; intuition; subst mv; congruence.
Qed.
Lemma decode_pointer_shape:
forall chunk mvl b ofs,
decode_val chunk mvl =
Vptr b ofs ->
chunk =
Mint32 /\
pointer_encoding_shape mvl.
Proof.
Compatibility with memory injections
Relating two memory values according to a memory injection.
Inductive memval_inject (
f:
meminj):
memval ->
memval ->
Prop :=
|
memval_inject_byte:
forall n,
memval_inject f (
Byte n) (
Byte n)
|
memval_inject_ptr:
forall b1 ofs1 b2 ofs2 delta n,
f b1 =
Some (
b2,
delta) ->
ofs2 =
Int.add ofs1 (
Int.repr delta) ->
memval_inject f (
Pointer b1 ofs1 n) (
Pointer b2 ofs2 n)
|
memval_inject_undef:
forall mv,
memval_inject f Undef mv.
Lemma memval_inject_incr:
forall f f'
v1 v2,
memval_inject f v1 v2 ->
inject_incr f f' ->
memval_inject f'
v1 v2.
Proof.
intros. inv H; econstructor. rewrite (H0 _ _ _ H1). reflexivity. auto.
Qed.
decode_val, applied to lists of memory values that are pairwise
related by memval_inject, returns values that are related by val_inject.
Lemma proj_bytes_inject:
forall f vl vl',
list_forall2 (
memval_inject f)
vl vl' ->
forall bl,
proj_bytes vl =
Some bl ->
proj_bytes vl' =
Some bl.
Proof.
induction 1;
simpl.
congruence.
inv H;
try congruence.
destruct (
proj_bytes al);
intros.
inv H.
rewrite (
IHlist_forall2 l);
auto.
congruence.
Qed.
Lemma check_pointer_inject:
forall f vl vl',
list_forall2 (
memval_inject f)
vl vl' ->
forall n b ofs b'
delta,
check_pointer n b ofs vl =
true ->
f b =
Some(
b',
delta) ->
check_pointer n b' (
Int.add ofs (
Int.repr delta))
vl' =
true.
Proof.
Lemma proj_pointer_inject:
forall f vl1 vl2,
list_forall2 (
memval_inject f)
vl1 vl2 ->
val_inject f (
proj_pointer vl1) (
proj_pointer vl2).
Proof.
intros.
unfold proj_pointer.
inversion H;
subst.
auto.
inversion H0;
subst;
auto.
case_eq (
check_pointer 4%
nat b0 ofs1 (
Pointer b0 ofs1 n ::
al));
intros.
exploit check_pointer_inject.
eexact H.
eauto.
eauto.
intro.
rewrite H4.
econstructor;
eauto.
constructor.
Qed.
Lemma proj_bytes_not_inject:
forall f vl vl',
list_forall2 (
memval_inject f)
vl vl' ->
proj_bytes vl =
None ->
proj_bytes vl' <>
None ->
In Undef vl.
Proof.
induction 1;
simpl;
intros.
congruence.
inv H;
try congruence.
right.
apply IHlist_forall2.
destruct (
proj_bytes al);
congruence.
destruct (
proj_bytes bl);
congruence.
auto.
Qed.
Lemma check_pointer_undef:
forall n b ofs vl,
In Undef vl ->
check_pointer n b ofs vl =
false.
Proof.
induction n;
intros;
simpl.
destruct vl.
elim H.
auto.
destruct vl.
auto.
destruct m;
auto.
simpl in H;
destruct H.
congruence.
rewrite IHn;
auto.
apply andb_false_r.
Qed.
Lemma proj_pointer_undef:
forall vl,
In Undef vl ->
proj_pointer vl =
Vundef.
Proof.
intros;
unfold proj_pointer.
destruct vl;
auto.
destruct m;
auto.
rewrite check_pointer_undef.
auto.
auto.
Qed.
Theorem decode_val_inject:
forall f vl1 vl2 chunk,
list_forall2 (
memval_inject f)
vl1 vl2 ->
val_inject f (
decode_val chunk vl1) (
decode_val chunk vl2).
Proof.
Symmetrically, encode_val, applied to values related by val_inject,
returns lists of memory values that are pairwise
related by memval_inject.
Lemma inj_bytes_inject:
forall f bl,
list_forall2 (
memval_inject f) (
inj_bytes bl) (
inj_bytes bl).
Proof.
induction bl; constructor; auto. constructor.
Qed.
Lemma repeat_Undef_inject_any:
forall f vl,
list_forall2 (
memval_inject f) (
list_repeat (
length vl)
Undef)
vl.
Proof.
induction vl; simpl; constructor; auto. constructor.
Qed.
Lemma repeat_Undef_inject_self:
forall f n,
list_forall2 (
memval_inject f) (
list_repeat n Undef) (
list_repeat n Undef).
Proof.
induction n; simpl; constructor; auto. constructor.
Qed.
Theorem encode_val_inject:
forall f v1 v2 chunk,
val_inject f v1 v2 ->
list_forall2 (
memval_inject f) (
encode_val chunk v1) (
encode_val chunk v2).
Proof.
Definition memval_lessdef:
memval ->
memval ->
Prop :=
memval_inject inject_id.
Lemma memval_lessdef_refl:
forall mv,
memval_lessdef mv mv.
Proof.
red.
destruct mv;
econstructor.
unfold inject_id;
reflexivity.
rewrite Int.add_zero;
auto.
Qed.