Module Lineartyping


Typing rules for Linear.

Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Op.
Require Import Locations.
Require Import LTL.
Require Import Linear.
Require Import Conventions.

The typing rules for Linear are similar to those for LTLin: we check that instructions receive the right number of arguments, and that the types of the argument and result registers agree with what the instruction expects. Moreover, we also enforces some correctness conditions on the offsets of stack slots accessed through Lgetstack and Lsetstack Linear instructions.

Section WT_INSTR.

Variable funct: function.

Definition slot_valid (s: slot) :=
  match s with
  | Local ofs ty => 0 <= ofs
  | Outgoing ofs ty => 0 <= ofs
  | Incoming ofs ty => In (S s) (loc_parameters funct.(fn_sig))
  end.

Definition slot_writable (s: slot) :=
  match s with
  | Local ofs ty => True
  | Outgoing ofs ty => True
  | Incoming ofs ty => False
  end.

Inductive wt_instr : instruction -> Prop :=
  | wt_Lgetstack:
      forall s r,
      slot_type s = mreg_type r ->
      slot_valid s ->
      wt_instr (Lgetstack s r)
  | wt_Lsetstack:
      forall s r,
      slot_type s = mreg_type r ->
      slot_valid s -> slot_writable s ->
      wt_instr (Lsetstack r s)
  | wt_Lopmove:
      forall r1 r,
      mreg_type r1 = mreg_type r ->
      wt_instr (Lop Omove (r1 :: nil) r)
  | wt_Lop:
      forall op args res,
      op <> Omove ->
      (List.map mreg_type args, mreg_type res) = type_of_operation op ->
      wt_instr (Lop op args res)
  | wt_Lload:
      forall chunk addr args dst,
      List.map mreg_type args = type_of_addressing addr ->
      mreg_type dst = type_of_chunk chunk ->
      wt_instr (Lload chunk addr args dst)
  | wt_Lstore:
      forall chunk addr args src,
      List.map mreg_type args = type_of_addressing addr ->
      mreg_type src = type_of_chunk chunk ->
      wt_instr (Lstore chunk addr args src)
  | wt_Lcall:
      forall sig ros,
      match ros with inl r => mreg_type r = Tint | _ => True end ->
      wt_instr (Lcall sig ros)
  | wt_Ltailcall:
      forall sig ros,
      tailcall_possible sig ->
      match ros with inl r => r = IT1 | _ => True end ->
      wt_instr (Ltailcall sig ros)
  | wt_Lbuiltin:
      forall ef args res,
      List.map mreg_type args = (ef_sig ef).(sig_args) ->
      mreg_type res = proj_sig_res (ef_sig ef) ->
      arity_ok (ef_sig ef).(sig_args) = true ->
      wt_instr (Lbuiltin ef args res)
  | wt_Lannot:
      forall ef args,
      List.map Loc.type args = (ef_sig ef).(sig_args) ->
      ef_reloads ef = false ->
      locs_acceptable args ->
      wt_instr (Lannot ef args)
  | wt_Llabel:
      forall lbl,
      wt_instr (Llabel lbl)
  | wt_Lgoto:
      forall lbl,
      wt_instr (Lgoto lbl)
  | wt_Lcond:
      forall cond args lbl,
      List.map mreg_type args = type_of_condition cond ->
      wt_instr (Lcond cond args lbl)
  | wt_Ljumptable:
      forall arg tbl,
      mreg_type arg = Tint ->
      list_length_z tbl * 4 <= Int.max_unsigned ->
      wt_instr (Ljumptable arg tbl)
  | wt_Lreturn:
      wt_instr (Lreturn).

End WT_INSTR.

Definition wt_code (f: function) (c: code) : Prop :=
  forall instr, In instr c -> wt_instr f instr.

Definition wt_function (f: function) : Prop :=
  wt_code f f.(fn_code).

Inductive wt_fundef: fundef -> Prop :=
  | wt_fundef_external: forall ef,
      wt_fundef (External ef)
  | wt_function_internal: forall f,
      wt_function f ->
      wt_fundef (Internal f).

Definition wt_program (p: program) : Prop :=
  forall i f, In (i, f) (prog_funct p) -> wt_fundef f.

Typing the run-time state. These definitions are used in Stackingproof.

Require Import Values.

Definition wt_locset (ls: locset) : Prop :=
  forall l, Val.has_type (ls l) (Loc.type l).

Lemma wt_setloc:
  forall ls l v,
  Val.has_type v (Loc.type l) -> wt_locset ls -> wt_locset (Locmap.set l v ls).
Proof.
  intros; red; intros.
  unfold Locmap.set.
  destruct (Loc.eq l l0). congruence.
  destruct (Loc.overlap l l0). red. auto.
  auto.
Qed.

Lemma wt_undef_locs:
  forall locs ls, wt_locset ls -> wt_locset (Locmap.undef locs ls).
Proof.
  induction locs; simpl; intros. auto. apply IHlocs. apply wt_setloc; auto. red; auto.
Qed.

Lemma wt_undef_temps:
  forall ls, wt_locset ls -> wt_locset (undef_temps ls).
Proof.
  intros; unfold undef_temps. apply wt_undef_locs; auto.
Qed.

Lemma wt_undef_op:
  forall op ls, wt_locset ls -> wt_locset (undef_op op ls).
Proof.
  intros. generalize (wt_undef_temps ls H); intro.
  unfold undef_op; destruct op; auto; apply wt_undef_locs; auto.
Qed.

Lemma wt_undef_getstack:
  forall s ls, wt_locset ls -> wt_locset (undef_getstack s ls).
Proof.
  intros. unfold undef_getstack. destruct s; auto. apply wt_setloc; auto. red; auto.
Qed.

Lemma wt_undef_setstack:
  forall ls, wt_locset ls -> wt_locset (undef_setstack ls).
Proof.
  intros. unfold undef_setstack. apply wt_undef_locs; auto.
Qed.

Lemma wt_call_regs:
  forall ls, wt_locset ls -> wt_locset (call_regs ls).
Proof.
  intros; red; intros. unfold call_regs. destruct l. auto.
  destruct (in_dec Loc.eq (R m) temporaries). red; auto. auto.
  destruct s. red; auto.
  change (Loc.type (S (Incoming z t))) with (Loc.type (S (Outgoing z t))). auto.
  red; auto.
Qed.

Lemma wt_return_regs:
  forall caller callee,
  wt_locset caller -> wt_locset callee -> wt_locset (return_regs caller callee).
Proof.
  intros; red; intros.
  unfold return_regs. destruct l; auto.
  destruct (in_dec Loc.eq (R m) temporaries); auto.
  destruct (in_dec Loc.eq (R m) destroyed_at_call); auto.
Qed.

Lemma wt_init:
  wt_locset (Locmap.init Vundef).
Proof.
  red; intros. unfold Locmap.init. red; auto.
Qed.