The Cminor language after instruction selection.
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Events.
Require Import Values.
Require Import Memory.
Require Import Cminor.
Require Import Op.
Require Import Globalenvs.
Require Import Switch.
Require Import Smallstep.
Abstract syntax
CminorSel programs share the general structure of Cminor programs:
functions, statements and expressions. However, CminorSel uses
machine-dependent operations, addressing modes and conditions,
as defined in module Op and used in lower-level intermediate
languages (RTL and below). Moreover, to express sharing of
sub-computations, a "let" binding is provided (constructions
Elet and Eletvar), using de Bruijn indices to refer to "let"-bound
variables. Finally, a variant condexpr of expr
is used to represent expressions which are evaluated for their
boolean value only and not their exact value.
Inductive expr :
Type :=
|
Evar :
ident ->
expr
|
Eop :
operation ->
exprlist ->
expr
|
Eload :
memory_chunk ->
addressing ->
exprlist ->
expr
|
Econdition :
condexpr ->
expr ->
expr ->
expr
|
Elet :
expr ->
expr ->
expr
|
Eletvar :
nat ->
expr
with condexpr :
Type :=
|
CEtrue:
condexpr
|
CEfalse:
condexpr
|
CEcond:
condition ->
exprlist ->
condexpr
|
CEcondition :
condexpr ->
condexpr ->
condexpr ->
condexpr
with exprlist :
Type :=
|
Enil:
exprlist
|
Econs:
expr ->
exprlist ->
exprlist.
Infix ":::" :=
Econs (
at level 60,
right associativity) :
cminorsel_scope.
Statements are as in Cminor, except that the condition of an
if/then/else conditional is a condexpr, and the Sstore construct
uses a machine-dependent addressing mode.
Inductive stmt :
Type :=
|
Sskip:
stmt
|
Sassign :
ident ->
expr ->
stmt
|
Sstore :
memory_chunk ->
addressing ->
exprlist ->
expr ->
stmt
|
Scall :
option ident ->
signature ->
expr +
ident ->
exprlist ->
stmt
|
Stailcall:
signature ->
expr +
ident ->
exprlist ->
stmt
|
Sbuiltin :
option ident ->
external_function ->
exprlist ->
stmt
|
Sseq:
stmt ->
stmt ->
stmt
|
Sifthenelse:
condexpr ->
stmt ->
stmt ->
stmt
|
Sloop:
stmt ->
stmt
|
Sblock:
stmt ->
stmt
|
Sexit:
nat ->
stmt
|
Sswitch:
expr ->
list (
int *
nat) ->
nat ->
stmt
|
Sreturn:
option expr ->
stmt
|
Slabel:
label ->
stmt ->
stmt
|
Sgoto:
label ->
stmt.
Record function :
Type :=
mkfunction {
fn_sig:
signature;
fn_params:
list ident;
fn_vars:
list ident;
fn_stackspace:
Z;
fn_body:
stmt
}.
Definition fundef :=
AST.fundef function.
Definition program :=
AST.program fundef unit.
Definition funsig (
fd:
fundef) :=
match fd with
|
Internal f =>
fn_sig f
|
External ef =>
ef_sig ef
end.
Operational semantics
Three kinds of evaluation environments are involved:
-
genv: global environments, define symbols and functions;
-
env: local environments, map local variables to values;
-
lenv: let environments, map de Bruijn indices to values.
Definition genv :=
Genv.t fundef unit.
Definition letenv :=
list val.
Continuations
Inductive cont:
Type :=
|
Kstop:
cont (* stop program execution *)
|
Kseq:
stmt ->
cont ->
cont (* execute stmt, then cont *)
|
Kblock:
cont ->
cont (* exit a block, then do cont *)
|
Kcall:
option ident ->
function ->
val ->
env ->
cont ->
cont.
States
Inductive state:
Type :=
|
State:
(* execution within a function *)
forall (
f:
function)
(* currently executing function *)
(
s:
stmt)
(* statement under consideration *)
(
k:
cont)
(* its continuation -- what to do next *)
(
sp:
val)
(* current stack pointer *)
(
e:
env)
(* current local environment *)
(
m:
mem),
(* current memory state *)
state
|
Callstate:
(* invocation of a fundef *)
forall (
f:
fundef)
(* fundef to invoke *)
(
args:
list val)
(* arguments provided by caller *)
(
k:
cont)
(* what to do next *)
(
m:
mem),
(* memory state *)
state
|
Returnstate:
forall (
v:
val)
(* return value *)
(
k:
cont)
(* what to do next *)
(
m:
mem),
(* memory state *)
state.
Section RELSEM.
Variable ge:
genv.
The evaluation predicates have the same general shape as those
of Cminor. Refer to the description of Cminor semantics for
the meaning of the parameters of the predicates.
One additional predicate is introduced:
eval_condexpr ge sp e m le a b, meaning that the conditional
expression a evaluates to the boolean b.
Section EVAL_EXPR.
Variable sp:
val.
Variable e:
env.
Variable m:
mem.
Inductive eval_expr:
letenv ->
expr ->
val ->
Prop :=
|
eval_Evar:
forall le id v,
PTree.get id e =
Some v ->
eval_expr le (
Evar id)
v
|
eval_Eop:
forall le op al vl v,
eval_exprlist le al vl ->
eval_operation ge sp op vl m =
Some v ->
eval_expr le (
Eop op al)
v
|
eval_Eload:
forall le chunk addr al vl vaddr v,
eval_exprlist le al vl ->
eval_addressing ge sp addr vl =
Some vaddr ->
Mem.loadv chunk m vaddr =
Some v ->
eval_expr le (
Eload chunk addr al)
v
|
eval_Econdition:
forall le a b c v1 v2,
eval_condexpr le a v1 ->
eval_expr le (
if v1 then b else c)
v2 ->
eval_expr le (
Econdition a b c)
v2
|
eval_Elet:
forall le a b v1 v2,
eval_expr le a v1 ->
eval_expr (
v1 ::
le)
b v2 ->
eval_expr le (
Elet a b)
v2
|
eval_Eletvar:
forall le n v,
nth_error le n =
Some v ->
eval_expr le (
Eletvar n)
v
with eval_condexpr:
letenv ->
condexpr ->
bool ->
Prop :=
|
eval_CEtrue:
forall le,
eval_condexpr le CEtrue true
|
eval_CEfalse:
forall le,
eval_condexpr le CEfalse false
|
eval_CEcond:
forall le cond al vl b,
eval_exprlist le al vl ->
eval_condition cond vl m =
Some b ->
eval_condexpr le (
CEcond cond al)
b
|
eval_CEcondition:
forall le a b c vb1 vb2,
eval_condexpr le a vb1 ->
eval_condexpr le (
if vb1 then b else c)
vb2 ->
eval_condexpr le (
CEcondition a b c)
vb2
with eval_exprlist:
letenv ->
exprlist ->
list val ->
Prop :=
|
eval_Enil:
forall le,
eval_exprlist le Enil nil
|
eval_Econs:
forall le a1 al v1 vl,
eval_expr le a1 v1 ->
eval_exprlist le al vl ->
eval_exprlist le (
Econs a1 al) (
v1 ::
vl).
Scheme eval_expr_ind3 :=
Minimality for eval_expr Sort Prop
with eval_condexpr_ind3 :=
Minimality for eval_condexpr Sort Prop
with eval_exprlist_ind3 :=
Minimality for eval_exprlist Sort Prop.
Inductive eval_expr_or_symbol:
letenv ->
expr +
ident ->
val ->
Prop :=
|
eval_eos_e:
forall le e v,
eval_expr le e v ->
eval_expr_or_symbol le (
inl _ e)
v
|
eval_eos_s:
forall le id b,
Genv.find_symbol ge id =
Some b ->
eval_expr_or_symbol le (
inr _ id) (
Vptr b Int.zero).
End EVAL_EXPR.
Pop continuation until a call or stop
Fixpoint call_cont (
k:
cont) :
cont :=
match k with
|
Kseq s k =>
call_cont k
|
Kblock k =>
call_cont k
|
_ =>
k
end.
Definition is_call_cont (
k:
cont) :
Prop :=
match k with
|
Kstop =>
True
|
Kcall _ _ _ _ _ =>
True
|
_ =>
False
end.
Find the statement and manufacture the continuation
corresponding to a label
Fixpoint find_label (
lbl:
label) (
s:
stmt) (
k:
cont)
{
struct s}:
option (
stmt *
cont) :=
match s with
|
Sseq s1 s2 =>
match find_label lbl s1 (
Kseq s2 k)
with
|
Some sk =>
Some sk
|
None =>
find_label lbl s2 k
end
|
Sifthenelse a s1 s2 =>
match find_label lbl s1 k with
|
Some sk =>
Some sk
|
None =>
find_label lbl s2 k
end
|
Sloop s1 =>
find_label lbl s1 (
Kseq (
Sloop s1)
k)
|
Sblock s1 =>
find_label lbl s1 (
Kblock k)
|
Slabel lbl'
s' =>
if ident_eq lbl lbl'
then Some(
s',
k)
else find_label lbl s'
k
|
_ =>
None
end.
One step of execution
Inductive step:
state ->
trace ->
state ->
Prop :=
|
step_skip_seq:
forall f s k sp e m,
step (
State f Sskip (
Kseq s k)
sp e m)
E0 (
State f s k sp e m)
|
step_skip_block:
forall f k sp e m,
step (
State f Sskip (
Kblock k)
sp e m)
E0 (
State f Sskip k sp e m)
|
step_skip_call:
forall f k sp e m m',
is_call_cont k ->
Mem.free m sp 0
f.(
fn_stackspace) =
Some m' ->
step (
State f Sskip k (
Vptr sp Int.zero)
e m)
E0 (
Returnstate Vundef k m')
|
step_assign:
forall f id a k sp e m v,
eval_expr sp e m nil a v ->
step (
State f (
Sassign id a)
k sp e m)
E0 (
State f Sskip k sp (
PTree.set id v e)
m)
|
step_store:
forall f chunk addr al b k sp e m vl v vaddr m',
eval_exprlist sp e m nil al vl ->
eval_expr sp e m nil b v ->
eval_addressing ge sp addr vl =
Some vaddr ->
Mem.storev chunk m vaddr v =
Some m' ->
step (
State f (
Sstore chunk addr al b)
k sp e m)
E0 (
State f Sskip k sp e m')
|
step_call:
forall f optid sig a bl k sp e m vf vargs fd,
eval_expr_or_symbol sp e m nil a vf ->
eval_exprlist sp e m nil bl vargs ->
Genv.find_funct ge vf =
Some fd ->
funsig fd =
sig ->
step (
State f (
Scall optid sig a bl)
k sp e m)
E0 (
Callstate fd vargs (
Kcall optid f sp e k)
m)
|
step_tailcall:
forall f sig a bl k sp e m vf vargs fd m',
eval_expr_or_symbol (
Vptr sp Int.zero)
e m nil a vf ->
eval_exprlist (
Vptr sp Int.zero)
e m nil bl vargs ->
Genv.find_funct ge vf =
Some fd ->
funsig fd =
sig ->
Mem.free m sp 0
f.(
fn_stackspace) =
Some m' ->
step (
State f (
Stailcall sig a bl)
k (
Vptr sp Int.zero)
e m)
E0 (
Callstate fd vargs (
call_cont k)
m')
|
step_builtin:
forall f optid ef al k sp e m vl t v m',
eval_exprlist sp e m nil al vl ->
external_call ef ge vl m t v m' ->
step (
State f (
Sbuiltin optid ef al)
k sp e m)
t (
State f Sskip k sp (
set_optvar optid v e)
m')
|
step_seq:
forall f s1 s2 k sp e m,
step (
State f (
Sseq s1 s2)
k sp e m)
E0 (
State f s1 (
Kseq s2 k)
sp e m)
|
step_ifthenelse:
forall f a s1 s2 k sp e m b,
eval_condexpr sp e m nil a b ->
step (
State f (
Sifthenelse a s1 s2)
k sp e m)
E0 (
State f (
if b then s1 else s2)
k sp e m)
|
step_loop:
forall f s k sp e m,
step (
State f (
Sloop s)
k sp e m)
E0 (
State f s (
Kseq (
Sloop s)
k)
sp e m)
|
step_block:
forall f s k sp e m,
step (
State f (
Sblock s)
k sp e m)
E0 (
State f s (
Kblock k)
sp e m)
|
step_exit_seq:
forall f n s k sp e m,
step (
State f (
Sexit n) (
Kseq s k)
sp e m)
E0 (
State f (
Sexit n)
k sp e m)
|
step_exit_block_0:
forall f k sp e m,
step (
State f (
Sexit O) (
Kblock k)
sp e m)
E0 (
State f Sskip k sp e m)
|
step_exit_block_S:
forall f n k sp e m,
step (
State f (
Sexit (
S n)) (
Kblock k)
sp e m)
E0 (
State f (
Sexit n)
k sp e m)
|
step_switch:
forall f a cases default k sp e m n,
eval_expr sp e m nil a (
Vint n) ->
step (
State f (
Sswitch a cases default)
k sp e m)
E0 (
State f (
Sexit (
switch_target n default cases))
k sp e m)
|
step_return_0:
forall f k sp e m m',
Mem.free m sp 0
f.(
fn_stackspace) =
Some m' ->
step (
State f (
Sreturn None)
k (
Vptr sp Int.zero)
e m)
E0 (
Returnstate Vundef (
call_cont k)
m')
|
step_return_1:
forall f a k sp e m v m',
eval_expr (
Vptr sp Int.zero)
e m nil a v ->
Mem.free m sp 0
f.(
fn_stackspace) =
Some m' ->
step (
State f (
Sreturn (
Some a))
k (
Vptr sp Int.zero)
e m)
E0 (
Returnstate v (
call_cont k)
m')
|
step_label:
forall f lbl s k sp e m,
step (
State f (
Slabel lbl s)
k sp e m)
E0 (
State f s k sp e m)
|
step_goto:
forall f lbl k sp e m s'
k',
find_label lbl f.(
fn_body) (
call_cont k) =
Some(
s',
k') ->
step (
State f (
Sgoto lbl)
k sp e m)
E0 (
State f s'
k'
sp e m)
|
step_internal_function:
forall f vargs k m m'
sp e,
Mem.alloc m 0
f.(
fn_stackspace) = (
m',
sp) ->
set_locals f.(
fn_vars) (
set_params vargs f.(
fn_params)) =
e ->
step (
Callstate (
Internal f)
vargs k m)
E0 (
State f f.(
fn_body)
k (
Vptr sp Int.zero)
e m')
|
step_external_function:
forall ef vargs k m t vres m',
external_call ef ge vargs m t vres m' ->
step (
Callstate (
External ef)
vargs k m)
t (
Returnstate vres k m')
|
step_return:
forall v optid f sp e k m,
step (
Returnstate v (
Kcall optid f sp e k)
m)
E0 (
State f Sskip k sp (
set_optvar optid v e)
m).
End RELSEM.
Inductive initial_state (
p:
program):
state ->
Prop :=
|
initial_state_intro:
forall b f m0,
let ge :=
Genv.globalenv p in
Genv.init_mem p =
Some m0 ->
Genv.find_symbol ge p.(
prog_main) =
Some b ->
Genv.find_funct_ptr ge b =
Some f ->
funsig f =
mksignature nil (
Some Tint) ->
initial_state p (
Callstate f nil Kstop m0).
Inductive final_state:
state ->
int ->
Prop :=
|
final_state_intro:
forall r m,
final_state (
Returnstate (
Vint r)
Kstop m)
r.
Definition semantics (
p:
program) :=
Semantics step (
initial_state p)
final_state (
Genv.globalenv p).
Hint Constructors eval_expr eval_condexpr eval_exprlist:
evalexpr.
Lifting of let-bound variables
Instruction selection sometimes generate Elet constructs to
share the evaluation of a subexpression. Owing to the use of de
Bruijn indices for let-bound variables, we need to shift de Bruijn
indices when an expression b is put in a Elet a b context.
Fixpoint lift_expr (
p:
nat) (
a:
expr) {
struct a}:
expr :=
match a with
|
Evar id =>
Evar id
|
Eop op bl =>
Eop op (
lift_exprlist p bl)
|
Eload chunk addr bl =>
Eload chunk addr (
lift_exprlist p bl)
|
Econdition b c d =>
Econdition (
lift_condexpr p b) (
lift_expr p c) (
lift_expr p d)
|
Elet b c =>
Elet (
lift_expr p b) (
lift_expr (
S p)
c)
|
Eletvar n =>
if le_gt_dec p n then Eletvar (
S n)
else Eletvar n
end
with lift_condexpr (
p:
nat) (
a:
condexpr) {
struct a}:
condexpr :=
match a with
|
CEtrue =>
CEtrue
|
CEfalse =>
CEfalse
|
CEcond cond bl =>
CEcond cond (
lift_exprlist p bl)
|
CEcondition b c d =>
CEcondition (
lift_condexpr p b) (
lift_condexpr p c) (
lift_condexpr p d)
end
with lift_exprlist (
p:
nat) (
a:
exprlist) {
struct a}:
exprlist :=
match a with
|
Enil =>
Enil
|
Econs b cl =>
Econs (
lift_expr p b) (
lift_exprlist p cl)
end.
Definition lift (
a:
expr):
expr :=
lift_expr O a.
We now relate the evaluation of a lifted expression with that
of the original expression.
Inductive insert_lenv:
letenv ->
nat ->
val ->
letenv ->
Prop :=
|
insert_lenv_0:
forall le v,
insert_lenv le O v (
v ::
le)
|
insert_lenv_S:
forall le p w le'
v,
insert_lenv le p w le' ->
insert_lenv (
v ::
le) (
S p)
w (
v ::
le').
Lemma insert_lenv_lookup1:
forall le p w le',
insert_lenv le p w le' ->
forall n v,
nth_error le n =
Some v -> (
p >
n)%
nat ->
nth_error le'
n =
Some v.
Proof.
induction 1; intros.
omegaContradiction.
destruct n; simpl; simpl in H0. auto.
apply IHinsert_lenv. auto. omega.
Qed.
Lemma insert_lenv_lookup2:
forall le p w le',
insert_lenv le p w le' ->
forall n v,
nth_error le n =
Some v -> (
p <=
n)%
nat ->
nth_error le' (
S n) =
Some v.
Proof.
induction 1; intros.
simpl. assumption.
simpl. destruct n. omegaContradiction.
apply IHinsert_lenv. exact H0. omega.
Qed.
Lemma eval_lift_expr:
forall ge sp e m w le a v,
eval_expr ge sp e m le a v ->
forall p le',
insert_lenv le p w le' ->
eval_expr ge sp e m le' (
lift_expr p a)
v.
Proof.
Lemma eval_lift:
forall ge sp e m le a v w,
eval_expr ge sp e m le a v ->
eval_expr ge sp e m (
w::
le) (
lift a)
v.
Proof.
Hint Resolve eval_lift:
evalexpr.