Correctness of the translation from Clight to C#minor.
Require Import Coqlib.
Require Import Errors.
Require Import Maps.
Require Import Integers.
Require Import Floats.
Require Import AST.
Require Import Values.
Require Import Events.
Require Import Memory.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Ctypes.
Require Import Cop.
Require Import Clight.
Require Import Cminor.
Require Import Csharpminor.
Require Import Cshmgen.
Properties of operations over types
Remark transl_params_types:
forall params,
map typ_of_type (
map snd params) =
typlist_of_typelist (
type_of_params params).
Proof.
induction params; simpl. auto. destruct a as [id ty]; simpl. f_equal; auto.
Qed.
Lemma transl_fundef_sig1:
forall ce f tf args res cc,
transl_fundef ce f =
OK tf ->
classify_fun (
type_of_fundef f) =
fun_case_f args res cc ->
funsig tf =
signature_of_type args res cc.
Proof.
Lemma transl_fundef_sig2:
forall ce f tf args res cc,
transl_fundef ce f =
OK tf ->
type_of_fundef f =
Tfunction args res cc ->
funsig tf =
signature_of_type args res cc.
Proof.
Properties of the translation functions
Transformation of expressions and statements.
Lemma transl_expr_lvalue:
forall ge e le m a loc ofs ta,
Clight.eval_lvalue ge e le m a loc ofs ->
transl_expr ge a =
OK ta ->
(
exists tb,
transl_lvalue ge a =
OK tb /\
make_load tb (
typeof a) =
OK ta).
Proof.
intros until ta;
intros EVAL TR.
inv EVAL;
simpl in TR.
var local *)
exists (
Eaddrof id);
auto.
var global *)
exists (
Eaddrof id);
auto.
deref *)
monadInv TR.
exists x;
auto.
field struct *)
monadInv TR.
exists x0;
split;
auto.
simpl;
rewrite EQ;
auto.
field union *)
monadInv TR.
exists x0;
split;
auto.
simpl;
rewrite EQ;
auto.
Qed.
Properties of labeled statements
Lemma transl_lbl_stmt_1:
forall ce tyret nbrk ncnt n sl tsl,
transl_lbl_stmt ce tyret nbrk ncnt sl =
OK tsl ->
transl_lbl_stmt ce tyret nbrk ncnt (
Clight.select_switch n sl) =
OK (
select_switch n tsl).
Proof.
Lemma transl_lbl_stmt_2:
forall ce tyret nbrk ncnt sl tsl,
transl_lbl_stmt ce tyret nbrk ncnt sl =
OK tsl ->
transl_statement ce tyret nbrk ncnt (
seq_of_labeled_statement sl) =
OK (
seq_of_lbl_stmt tsl).
Proof.
induction sl; intros.
monadInv H. auto.
monadInv H. simpl. rewrite EQ; simpl. rewrite (IHsl _ EQ1). simpl. auto.
Qed.
Correctness of Csharpminor construction functions
Section CONSTRUCTORS.
Variable ce:
composite_env.
Variable ge:
genv.
Lemma make_intconst_correct:
forall n e le m,
eval_expr ge e le m (
make_intconst n) (
Vint n).
Proof.
Lemma make_floatconst_correct:
forall n e le m,
eval_expr ge e le m (
make_floatconst n) (
Vfloat n).
Proof.
Lemma make_singleconst_correct:
forall n e le m,
eval_expr ge e le m (
make_singleconst n) (
Vsingle n).
Proof.
Lemma make_longconst_correct:
forall n e le m,
eval_expr ge e le m (
make_longconst n) (
Vlong n).
Proof.
Lemma make_singleoffloat_correct:
forall a n e le m,
eval_expr ge e le m a (
Vfloat n) ->
eval_expr ge e le m (
make_singleoffloat a) (
Vsingle (
Float.to_single n)).
Proof.
intros. econstructor. eauto. auto.
Qed.
Lemma make_floatofsingle_correct:
forall a n e le m,
eval_expr ge e le m a (
Vsingle n) ->
eval_expr ge e le m (
make_floatofsingle a) (
Vfloat (
Float.of_single n)).
Proof.
intros. econstructor. eauto. auto.
Qed.
Lemma make_floatofint_correct:
forall a n sg e le m,
eval_expr ge e le m a (
Vint n) ->
eval_expr ge e le m (
make_floatofint a sg) (
Vfloat(
cast_int_float sg n)).
Proof.
Hint Resolve make_intconst_correct make_floatconst_correct make_longconst_correct
make_singleconst_correct make_singleoffloat_correct make_floatofsingle_correct
make_floatofint_correct:
cshm.
Hint Constructors eval_expr eval_exprlist:
cshm.
Hint Extern 2 (@
eq trace _ _) =>
traceEq:
cshm.
Lemma make_cmp_ne_zero_correct:
forall e le m a n,
eval_expr ge e le m a (
Vint n) ->
eval_expr ge e le m (
make_cmp_ne_zero a) (
Vint (
if Int.eq n Int.zero then Int.zero else Int.one)).
Proof.
Lemma make_cast_int_correct:
forall e le m a n sz si,
eval_expr ge e le m a (
Vint n) ->
eval_expr ge e le m (
make_cast_int a sz si) (
Vint (
cast_int_int sz si n)).
Proof.
Hint Resolve make_cast_int_correct:
cshm.
Lemma make_cast_correct:
forall e le m a b v ty1 ty2 v',
make_cast ty1 ty2 a =
OK b ->
eval_expr ge e le m a v ->
sem_cast v ty1 ty2 =
Some v' ->
eval_expr ge e le m b v'.
Proof.
intros.
unfold make_cast,
sem_cast in *;
destruct (
classify_cast ty1 ty2);
inv H;
destruct v;
inv H1;
eauto with cshm.
single -> int *)
unfold make_singleofint,
cast_int_float.
destruct si1;
eauto with cshm.
float -> int *)
destruct (
cast_float_int si2 f)
as [
i|]
eqn:
E;
inv H2.
apply make_cast_int_correct.
unfold cast_float_int in E.
unfold make_intoffloat.
destruct si2;
econstructor;
eauto;
simpl;
rewrite E;
auto.
single -> int *)
destruct (
cast_single_int si2 f)
as [
i|]
eqn:
E;
inv H2.
apply make_cast_int_correct.
unfold cast_single_int in E.
unfold make_intofsingle.
destruct si2;
econstructor;
eauto with cshm;
simpl;
rewrite E;
auto.
long -> int *)
unfold make_longofint,
cast_int_long.
destruct si1;
eauto with cshm.
long -> float *)
unfold make_floatoflong,
cast_long_float.
destruct si1;
eauto with cshm.
long -> single *)
unfold make_singleoflong,
cast_long_single.
destruct si1;
eauto with cshm.
float -> long *)
destruct (
cast_float_long si2 f)
as [
i|]
eqn:
E;
inv H2.
unfold cast_float_long in E.
unfold make_longoffloat.
destruct si2;
econstructor;
eauto;
simpl;
rewrite E;
auto.
single -> long *)
destruct (
cast_single_long si2 f)
as [
i|]
eqn:
E;
inv H2.
unfold cast_single_long in E.
unfold make_longofsingle.
destruct si2;
econstructor;
eauto with cshm;
simpl;
rewrite E;
auto.
float -> bool *)
econstructor;
eauto with cshm.
simpl.
unfold Val.cmpf,
Val.cmpf_bool.
rewrite Float.cmp_ne_eq.
destruct (
Float.cmp Ceq f Float.zero);
auto.
single -> bool *)
econstructor;
eauto with cshm.
simpl.
unfold Val.cmpfs,
Val.cmpfs_bool.
rewrite Float32.cmp_ne_eq.
destruct (
Float32.cmp Ceq f Float32.zero);
auto.
long -> bool *)
econstructor;
eauto with cshm.
simpl.
unfold Val.cmpl,
Val.cmpl_bool,
Int64.cmp.
destruct (
Int64.eq i Int64.zero);
auto.
int -> bool *)
econstructor;
eauto with cshm.
simpl.
unfold Val.cmpu,
Val.cmpu_bool,
Int.cmpu.
destruct (
Int.eq i Int.zero);
auto.
struct *)
destruct (
ident_eq id1 id2);
inv H2;
auto.
union *)
destruct (
ident_eq id1 id2);
inv H2;
auto.
Qed.
Lemma make_boolean_correct:
forall e le m a v ty b,
eval_expr ge e le m a v ->
bool_val v ty m =
Some b ->
exists vb,
eval_expr ge e le m (
make_boolean a ty)
vb
/\
Val.bool_of_val vb b.
Proof.
Lemma make_neg_correct:
forall a tya c va v e le m,
sem_neg va tya =
Some v ->
make_neg a tya =
OK c ->
eval_expr ge e le m a va ->
eval_expr ge e le m c v.
Proof.
unfold sem_neg,
make_neg;
intros until m;
intros SEM MAKE EV1;
destruct (
classify_neg tya);
inv MAKE;
destruct va;
inv SEM;
eauto with cshm.
Qed.
Lemma make_absfloat_correct:
forall a tya c va v e le m,
sem_absfloat va tya =
Some v ->
make_absfloat a tya =
OK c ->
eval_expr ge e le m a va ->
eval_expr ge e le m c v.
Proof.
unfold sem_absfloat,
make_absfloat;
intros until m;
intros SEM MAKE EV1;
destruct (
classify_neg tya);
inv MAKE;
destruct va;
inv SEM;
eauto with cshm.
unfold make_floatoflong,
cast_long_float.
destruct s.
econstructor.
econstructor;
simpl;
eauto.
simpl;
eauto.
simpl;
eauto.
econstructor.
econstructor;
simpl;
eauto.
simpl;
eauto.
simpl;
eauto.
Qed.
Lemma make_notbool_correct:
forall a tya c va v e le m,
sem_notbool va tya m =
Some v ->
make_notbool a tya =
OK c ->
eval_expr ge e le m a va ->
eval_expr ge e le m c v.
Proof.
Lemma make_notint_correct:
forall a tya c va v e le m,
sem_notint va tya =
Some v ->
make_notint a tya =
OK c ->
eval_expr ge e le m a va ->
eval_expr ge e le m c v.
Proof.
Definition binary_constructor_correct
(
make:
expr ->
type ->
expr ->
type ->
res expr)
(
sem:
val ->
type ->
val ->
type ->
option val):
Prop :=
forall a tya b tyb c va vb v e le m,
sem va tya vb tyb =
Some v ->
make a tya b tyb =
OK c ->
eval_expr ge e le m a va ->
eval_expr ge e le m b vb ->
eval_expr ge e le m c v.
Section MAKE_BIN.
Variable sem_int:
signedness ->
int ->
int ->
option val.
Variable sem_long:
signedness ->
int64 ->
int64 ->
option val.
Variable sem_float:
float ->
float ->
option val.
Variable sem_single:
float32 ->
float32 ->
option val.
Variables iop iopu fop sop lop lopu:
binary_operation.
Hypothesis iop_ok:
forall x y m,
eval_binop iop (
Vint x) (
Vint y)
m =
sem_int Signed x y.
Hypothesis iopu_ok:
forall x y m,
eval_binop iopu (
Vint x) (
Vint y)
m =
sem_int Unsigned x y.
Hypothesis lop_ok:
forall x y m,
eval_binop lop (
Vlong x) (
Vlong y)
m =
sem_long Signed x y.
Hypothesis lopu_ok:
forall x y m,
eval_binop lopu (
Vlong x) (
Vlong y)
m =
sem_long Unsigned x y.
Hypothesis fop_ok:
forall x y m,
eval_binop fop (
Vfloat x) (
Vfloat y)
m =
sem_float x y.
Hypothesis sop_ok:
forall x y m,
eval_binop sop (
Vsingle x) (
Vsingle y)
m =
sem_single x y.
Lemma make_binarith_correct:
binary_constructor_correct
(
make_binarith iop iopu fop sop lop lopu)
(
sem_binarith sem_int sem_long sem_float sem_single).
Proof.
red;
unfold make_binarith,
sem_binarith;
intros until m;
intros SEM MAKE EV1 EV2.
set (
cls :=
classify_binarith tya tyb)
in *.
set (
ty :=
binarith_type cls)
in *.
monadInv MAKE.
destruct (
sem_cast va tya ty)
as [
va'|]
eqn:
Ca;
try discriminate.
destruct (
sem_cast vb tyb ty)
as [
vb'|]
eqn:
Cb;
try discriminate.
exploit make_cast_correct.
eexact EQ.
eauto.
eauto.
intros EV1'.
exploit make_cast_correct.
eexact EQ1.
eauto.
eauto.
intros EV2'.
destruct cls;
inv EQ2;
destruct va';
try discriminate;
destruct vb';
try discriminate.
-
destruct s;
inv H0;
econstructor;
eauto with cshm.
rewrite iop_ok;
auto.
rewrite iopu_ok;
auto.
-
destruct s;
inv H0;
econstructor;
eauto with cshm.
rewrite lop_ok;
auto.
rewrite lopu_ok;
auto.
-
erewrite <-
fop_ok in SEM;
eauto with cshm.
-
erewrite <-
sop_ok in SEM;
eauto with cshm.
Qed.
Lemma make_binarith_int_correct:
binary_constructor_correct
(
make_binarith_int iop iopu lop lopu)
(
sem_binarith sem_int sem_long (
fun x y =>
None) (
fun x y =>
None)).
Proof.
red;
unfold make_binarith_int,
sem_binarith;
intros until m;
intros SEM MAKE EV1 EV2.
set (
cls :=
classify_binarith tya tyb)
in *.
set (
ty :=
binarith_type cls)
in *.
monadInv MAKE.
destruct (
sem_cast va tya ty)
as [
va'|]
eqn:
Ca;
try discriminate.
destruct (
sem_cast vb tyb ty)
as [
vb'|]
eqn:
Cb;
try discriminate.
exploit make_cast_correct.
eexact EQ.
eauto.
eauto.
intros EV1'.
exploit make_cast_correct.
eexact EQ1.
eauto.
eauto.
intros EV2'.
destruct cls;
inv EQ2;
destruct va';
try discriminate;
destruct vb';
try discriminate.
-
destruct s;
inv H0;
econstructor;
eauto with cshm.
rewrite iop_ok;
auto.
rewrite iopu_ok;
auto.
-
destruct s;
inv H0;
econstructor;
eauto with cshm.
rewrite lop_ok;
auto.
rewrite lopu_ok;
auto.
Qed.
End MAKE_BIN.
Hint Extern 2 (@
eq (
option val)
_ _) => (
simpl;
reflexivity) :
cshm.
Lemma make_add_correct:
binary_constructor_correct (
make_add ce) (
sem_add ce).
Proof.
red;
unfold make_add,
sem_add;
intros until m;
intros SEM MAKE EV1 EV2;
destruct (
classify_add tya tyb);
inv MAKE.
-
destruct va;
try discriminate;
destruct vb;
inv SEM;
eauto with cshm.
-
destruct va;
try discriminate;
destruct vb;
inv SEM;
eauto with cshm.
-
destruct va;
try discriminate;
destruct vb;
inv SEM;
eauto with cshm.
-
destruct va;
try discriminate;
destruct vb;
inv SEM;
eauto with cshm.
-
eapply make_binarith_correct;
eauto;
intros;
auto.
Qed.
Lemma make_sub_correct:
binary_constructor_correct (
make_sub ce) (
sem_sub ce).
Proof.
Lemma make_mul_correct:
binary_constructor_correct make_mul sem_mul.
Proof.
Lemma make_div_correct:
binary_constructor_correct make_div sem_div.
Proof.
Lemma make_mod_correct:
binary_constructor_correct make_mod sem_mod.
Proof.
Lemma make_and_correct:
binary_constructor_correct make_and sem_and.
Proof.
Lemma make_or_correct:
binary_constructor_correct make_or sem_or.
Proof.
Lemma make_xor_correct:
binary_constructor_correct make_xor sem_xor.
Proof.
Ltac comput val :=
let x :=
fresh in set val as x in *;
vm_compute in x;
subst x.
Remark small_shift_amount_1:
forall i,
Int64.ltu i Int64.iwordsize =
true ->
Int.ltu (
Int64.loword i)
Int64.iwordsize' =
true
/\
Int64.unsigned i =
Int.unsigned (
Int64.loword i).
Proof.
Remark small_shift_amount_2:
forall i,
Int64.ltu i (
Int64.repr 32) =
true ->
Int.ltu (
Int64.loword i)
Int.iwordsize =
true.
Proof.
Lemma small_shift_amount_3:
forall i,
Int.ltu i Int64.iwordsize' =
true ->
Int64.unsigned (
Int64.repr (
Int.unsigned i)) =
Int.unsigned i.
Proof.
Lemma make_shl_correct:
binary_constructor_correct make_shl sem_shl.
Proof.
Lemma make_shr_correct:
binary_constructor_correct make_shr sem_shr.
Proof.
Lemma make_cmp_correct:
forall cmp a tya b tyb c va vb v e le m,
sem_cmp cmp va tya vb tyb m =
Some v ->
make_cmp cmp a tya b tyb =
OK c ->
eval_expr ge e le m a va ->
eval_expr ge e le m b vb ->
eval_expr ge e le m c v.
Proof.
Lemma transl_unop_correct:
forall op a tya c va v e le m,
transl_unop op a tya =
OK c ->
sem_unary_operation op va tya m =
Some v ->
eval_expr ge e le m a va ->
eval_expr ge e le m c v.
Proof.
Lemma transl_binop_correct:
forall op a tya b tyb c va vb v e le m,
transl_binop ce op a tya b tyb =
OK c ->
sem_binary_operation ce op va tya vb tyb m =
Some v ->
eval_expr ge e le m a va ->
eval_expr ge e le m b vb ->
eval_expr ge e le m c v.
Proof.
Lemma make_load_correct:
forall addr ty code b ofs v e le m,
make_load addr ty =
OK code ->
eval_expr ge e le m addr (
Vptr b ofs) ->
deref_loc ty m b ofs v ->
eval_expr ge e le m code v.
Proof.
unfold make_load;
intros until m;
intros MKLOAD EVEXP DEREF.
inv DEREF.
scalar *)
rewrite H in MKLOAD.
inv MKLOAD.
apply eval_Eload with (
Vptr b ofs);
auto.
by reference *)
rewrite H in MKLOAD.
inv MKLOAD.
auto.
by copy *)
rewrite H in MKLOAD.
inv MKLOAD.
auto.
Qed.
Lemma make_memcpy_correct:
forall ce f dst src ty k e le m b ofs v m',
eval_expr ge e le m dst (
Vptr b ofs) ->
eval_expr ge e le m src v ->
assign_loc ce ty m b ofs v m' ->
access_mode ty =
By_copy ->
step ge (
State f (
make_memcpy ce dst src ty)
k e le m)
E0 (
State f Sskip k e le m').
Proof.
Lemma make_store_correct:
forall addr ty rhs code e le m b ofs v m'
f k,
make_store ce addr ty rhs =
OK code ->
eval_expr ge e le m addr (
Vptr b ofs) ->
eval_expr ge e le m rhs v ->
assign_loc ce ty m b ofs v m' ->
step ge (
State f code k e le m)
E0 (
State f Sskip k e le m').
Proof.
unfold make_store.
intros until k;
intros MKSTORE EV1 EV2 ASSIGN.
inversion ASSIGN;
subst.
nonvolatile scalar *)
rewrite H in MKSTORE;
inv MKSTORE.
econstructor;
eauto.
by copy *)
rewrite H in MKSTORE;
inv MKSTORE.
eapply make_memcpy_correct;
eauto.
Qed.
End CONSTRUCTORS.
Basic preservation invariants
Section CORRECTNESS.
Variable prog:
Clight.program.
Variable tprog:
Csharpminor.program.
Hypothesis TRANSL:
transl_program prog =
OK tprog.
Let ge :=
globalenv prog.
Let tge :=
Genv.globalenv tprog.
Lemma symbols_preserved:
forall s,
Genv.find_symbol tge s =
Genv.find_symbol ge s.
Proof (
Genv.find_symbol_transf_partial2 (
transl_fundef ge)
transl_globvar _ TRANSL).
Lemma public_preserved:
forall s,
Genv.public_symbol tge s =
Genv.public_symbol ge s.
Proof (
Genv.public_symbol_transf_partial2 (
transl_fundef ge)
transl_globvar _ TRANSL).
Lemma functions_translated:
forall v f,
Genv.find_funct ge v =
Some f ->
exists tf,
Genv.find_funct tge v =
Some tf /\
transl_fundef ge f =
OK tf.
Proof (
Genv.find_funct_transf_partial2 (
transl_fundef ge)
transl_globvar _ TRANSL).
Lemma function_ptr_translated:
forall b f,
Genv.find_funct_ptr ge b =
Some f ->
exists tf,
Genv.find_funct_ptr tge b =
Some tf /\
transl_fundef ge f =
OK tf.
Proof (
Genv.find_funct_ptr_transf_partial2 (
transl_fundef ge)
transl_globvar _ TRANSL).
Lemma block_is_volatile_preserved:
forall b,
Genv.block_is_volatile tge b =
Genv.block_is_volatile ge b.
Proof (
Genv.block_is_volatile_transf_partial2 (
transl_fundef ge)
transl_globvar _ TRANSL).
Matching between environments
In this section, we define a matching relation between
a Clight local environment and a Csharpminor local environment.
Record match_env (
e:
Clight.env) (
te:
Csharpminor.env) :
Prop :=
mk_match_env {
me_local:
forall id b ty,
e!
id =
Some (
b,
ty) ->
te!
id =
Some(
b,
sizeof ge ty);
me_local_inv:
forall id b sz,
te!
id =
Some (
b,
sz) ->
exists ty,
e!
id =
Some(
b,
ty)
}.
Lemma match_env_globals:
forall e te id,
match_env e te ->
e!
id =
None ->
te!
id =
None.
Proof.
intros.
destruct (
te!
id)
as [[
b sz] | ]
eqn:?;
auto.
exploit me_local_inv;
eauto.
intros [
ty EQ].
congruence.
Qed.
Lemma match_env_same_blocks:
forall e te,
match_env e te ->
blocks_of_env te =
Clight.blocks_of_env ge e.
Proof.
Lemma match_env_free_blocks:
forall e te m m',
match_env e te ->
Mem.free_list m (
Clight.blocks_of_env ge e) =
Some m' ->
Mem.free_list m (
blocks_of_env te) =
Some m'.
Proof.
Lemma match_env_empty:
match_env Clight.empty_env Csharpminor.empty_env.
Proof.
The following lemmas establish the match_env invariant at
the beginning of a function invocation, after allocation of
local variables and initialization of the parameters.
Lemma match_env_alloc_variables:
forall e1 m1 vars e2 m2,
Clight.alloc_variables ge e1 m1 vars e2 m2 ->
forall te1,
match_env e1 te1 ->
exists te2,
Csharpminor.alloc_variables te1 m1 (
map (
transl_var ge)
vars)
te2 m2
/\
match_env e2 te2.
Proof.
induction 1;
intros;
simpl.
exists te1;
split.
constructor.
auto.
exploit (
IHalloc_variables (
PTree.set id (
b1,
sizeof ge ty)
te1)).
constructor.
me_local *)
intros until ty0.
repeat rewrite PTree.gsspec.
destruct (
peq id0 id);
intros.
congruence.
eapply me_local;
eauto.
me_local_inv *)
intros until sz.
repeat rewrite PTree.gsspec.
destruct (
peq id0 id);
intros.
exists ty;
congruence.
eapply me_local_inv;
eauto.
intros [
te2 [
ALLOC MENV]].
exists te2;
split.
econstructor;
eauto.
auto.
Qed.
Lemma create_undef_temps_match:
forall temps,
create_undef_temps (
map fst temps) =
Clight.create_undef_temps temps.
Proof.
induction temps; simpl. auto.
destruct a as [id ty]. simpl. decEq. auto.
Qed.
Lemma bind_parameter_temps_match:
forall vars vals le1 le2,
Clight.bind_parameter_temps vars vals le1 =
Some le2 ->
bind_parameters (
map fst vars)
vals le1 =
Some le2.
Proof.
induction vars; simpl; intros.
destruct vals; inv H. auto.
destruct a as [id ty]. destruct vals; try discriminate. auto.
Qed.
Proof of semantic preservation
Semantic preservation for expressions
The proof of semantic preservation for the translation of expressions
relies on simulation diagrams of the following form:
e, le, m, a ------------------- te, le, m, ta
| |
| |
| |
v v
e, le, m, v ------------------- te, le, m, v
Left: evaluation of r-value expression
a in Clight.
Right: evaluation of its translation
ta in Csharpminor.
Top (precondition): matching between environments
e,
te,
plus well-typedness of expression
a.
Bottom (postcondition): the result values
v
are identical in both evaluations.
We state these diagrams as the following properties, parameterized
by the Clight evaluation.
Section EXPR.
Variable e:
Clight.env.
Variable le:
temp_env.
Variable m:
mem.
Variable te:
Csharpminor.env.
Hypothesis MENV:
match_env e te.
Lemma transl_expr_lvalue_correct:
(
forall a v,
Clight.eval_expr ge e le m a v ->
forall ta (
TR:
transl_expr ge a =
OK ta) ,
Csharpminor.eval_expr tge te le m ta v)
/\(
forall a b ofs,
Clight.eval_lvalue ge e le m a b ofs ->
forall ta (
TR:
transl_lvalue ge a =
OK ta),
Csharpminor.eval_expr tge te le m ta (
Vptr b ofs)).
Proof.
Lemma transl_expr_correct:
forall a v,
Clight.eval_expr ge e le m a v ->
forall ta,
transl_expr ge a =
OK ta ->
Csharpminor.eval_expr tge te le m ta v.
Proof (
proj1 transl_expr_lvalue_correct).
Lemma transl_lvalue_correct:
forall a b ofs,
Clight.eval_lvalue ge e le m a b ofs ->
forall ta,
transl_lvalue ge a =
OK ta ->
Csharpminor.eval_expr tge te le m ta (
Vptr b ofs).
Proof (
proj2 transl_expr_lvalue_correct).
Lemma transl_arglist_correct:
forall al tyl vl,
Clight.eval_exprlist ge e le m al tyl vl ->
forall tal,
transl_arglist ge al tyl =
OK tal ->
Csharpminor.eval_exprlist tge te le m tal vl.
Proof.
Lemma typlist_of_arglist_eq:
forall al tyl vl,
Clight.eval_exprlist ge e le m al tyl vl ->
typlist_of_arglist al tyl =
typlist_of_typelist tyl.
Proof.
induction 1; simpl.
auto.
f_equal; auto.
Qed.
End EXPR.
Semantic preservation for statements
The simulation diagram for the translation of statements and functions
is a "plus" diagram of the form
I
S1 ------- R1
| |
t | + | t
v v
S2 ------- R2
I I
The invariant
I is the
match_states predicate that we now define.
Inductive match_transl:
stmt ->
cont ->
stmt ->
cont ->
Prop :=
|
match_transl_0:
forall ts tk,
match_transl ts tk ts tk
|
match_transl_1:
forall ts tk,
match_transl (
Sblock ts)
tk ts (
Kblock tk).
Lemma match_transl_step:
forall ts tk ts'
tk'
f te le m,
match_transl (
Sblock ts)
tk ts'
tk' ->
star step tge (
State f ts'
tk'
te le m)
E0 (
State f ts (
Kblock tk)
te le m).
Proof.
Inductive match_cont:
type ->
nat ->
nat ->
Clight.cont ->
Csharpminor.cont ->
Prop :=
|
match_Kstop:
forall tyret nbrk ncnt,
match_cont tyret nbrk ncnt Clight.Kstop Kstop
|
match_Kseq:
forall tyret nbrk ncnt s k ts tk,
transl_statement ge tyret nbrk ncnt s =
OK ts ->
match_cont tyret nbrk ncnt k tk ->
match_cont tyret nbrk ncnt
(
Clight.Kseq s k)
(
Kseq ts tk)
|
match_Kloop1:
forall tyret s1 s2 k ts1 ts2 nbrk ncnt tk,
transl_statement ge tyret 1%
nat 0%
nat s1 =
OK ts1 ->
transl_statement ge tyret 0%
nat (
S ncnt)
s2 =
OK ts2 ->
match_cont tyret nbrk ncnt k tk ->
match_cont tyret 1%
nat 0%
nat
(
Clight.Kloop1 s1 s2 k)
(
Kblock (
Kseq ts2 (
Kseq (
Sloop (
Sseq (
Sblock ts1)
ts2)) (
Kblock tk))))
|
match_Kloop2:
forall tyret s1 s2 k ts1 ts2 nbrk ncnt tk,
transl_statement ge tyret 1%
nat 0%
nat s1 =
OK ts1 ->
transl_statement ge tyret 0%
nat (
S ncnt)
s2 =
OK ts2 ->
match_cont tyret nbrk ncnt k tk ->
match_cont tyret 0%
nat (
S ncnt)
(
Clight.Kloop2 s1 s2 k)
(
Kseq (
Sloop (
Sseq (
Sblock ts1)
ts2)) (
Kblock tk))
|
match_Kswitch:
forall tyret nbrk ncnt k tk,
match_cont tyret nbrk ncnt k tk ->
match_cont tyret 0%
nat (
S ncnt)
(
Clight.Kswitch k)
(
Kblock tk)
|
match_Kcall_some:
forall tyret nbrk ncnt nbrk'
ncnt'
f e k id tf te le tk,
transl_function ge f =
OK tf ->
match_env e te ->
match_cont (
Clight.fn_return f)
nbrk'
ncnt'
k tk ->
match_cont tyret nbrk ncnt
(
Clight.Kcall id f e le k)
(
Kcall id tf te le tk).
Inductive match_states:
Clight.state ->
Csharpminor.state ->
Prop :=
|
match_state:
forall f nbrk ncnt s k e le m tf ts tk te ts'
tk'
(
TRF:
transl_function ge f =
OK tf)
(
TR:
transl_statement ge (
Clight.fn_return f)
nbrk ncnt s =
OK ts)
(
MTR:
match_transl ts tk ts'
tk')
(
MENV:
match_env e te)
(
MK:
match_cont (
Clight.fn_return f)
nbrk ncnt k tk),
match_states (
Clight.State f s k e le m)
(
State tf ts'
tk'
te le m)
|
match_callstate:
forall fd args k m tfd tk targs tres cconv
(
TR:
transl_fundef ge fd =
OK tfd)
(
MK:
match_cont Tvoid 0%
nat 0%
nat k tk)
(
ISCC:
Clight.is_call_cont k)
(
TY:
type_of_fundef fd =
Tfunction targs tres cconv),
match_states (
Clight.Callstate fd args k m)
(
Callstate tfd args tk m)
|
match_returnstate:
forall res k m tk
(
MK:
match_cont Tvoid 0%
nat 0%
nat k tk),
match_states (
Clight.Returnstate res k m)
(
Returnstate res tk m).
Remark match_states_skip:
forall f e le te nbrk ncnt k tf tk m,
transl_function ge f =
OK tf ->
match_env e te ->
match_cont (
Clight.fn_return f)
nbrk ncnt k tk ->
match_states (
Clight.State f Clight.Sskip k e le m) (
State tf Sskip tk te le m).
Proof.
intros. econstructor; eauto. simpl; reflexivity. constructor.
Qed.
Commutation between label resolution and compilation
Section FIND_LABEL.
Variable lbl:
label.
Variable tyret:
type.
Lemma transl_find_label:
forall s nbrk ncnt k ts tk
(
TR:
transl_statement ge tyret nbrk ncnt s =
OK ts)
(
MC:
match_cont tyret nbrk ncnt k tk),
match Clight.find_label lbl s k with
|
None =>
find_label lbl ts tk =
None
|
Some (
s',
k') =>
exists ts',
exists tk',
exists nbrk',
exists ncnt',
find_label lbl ts tk =
Some (
ts',
tk')
/\
transl_statement ge tyret nbrk'
ncnt'
s' =
OK ts'
/\
match_cont tyret nbrk'
ncnt'
k'
tk'
end
with transl_find_label_ls:
forall ls nbrk ncnt k tls tk
(
TR:
transl_lbl_stmt ge tyret nbrk ncnt ls =
OK tls)
(
MC:
match_cont tyret nbrk ncnt k tk),
match Clight.find_label_ls lbl ls k with
|
None =>
find_label_ls lbl tls tk =
None
|
Some (
s',
k') =>
exists ts',
exists tk',
exists nbrk',
exists ncnt',
find_label_ls lbl tls tk =
Some (
ts',
tk')
/\
transl_statement ge tyret nbrk'
ncnt'
s' =
OK ts'
/\
match_cont tyret nbrk'
ncnt'
k'
tk'
end.
Proof.
intro s;
case s;
intros;
try (
monadInv TR);
simpl.
skip *)
auto.
assign *)
unfold make_store,
make_memcpy in EQ3.
destruct (
access_mode (
typeof e));
inv EQ3;
auto.
set *)
auto.
call *)
simpl in TR.
destruct (
classify_fun (
typeof e));
monadInv TR.
auto.
builtin *)
auto.
seq *)
exploit (
transl_find_label s0 nbrk ncnt (
Clight.Kseq s1 k));
eauto.
constructor;
eauto.
destruct (
Clight.find_label lbl s0 (
Clight.Kseq s1 k))
as [[
s'
k'] | ].
intros [
ts' [
tk' [
nbrk' [
ncnt' [
A [
B C]]]]]].
rewrite A.
exists ts';
exists tk';
exists nbrk';
exists ncnt';
auto.
intro.
rewrite H.
eapply transl_find_label;
eauto.
ifthenelse *)
exploit (
transl_find_label s0);
eauto.
destruct (
Clight.find_label lbl s0 k)
as [[
s'
k'] | ].
intros [
ts' [
tk' [
nbrk' [
ncnt' [
A [
B C]]]]]].
rewrite A.
exists ts';
exists tk';
exists nbrk';
exists ncnt';
auto.
intro.
rewrite H.
eapply transl_find_label;
eauto.
loop *)
exploit (
transl_find_label s0 1%
nat 0%
nat (
Kloop1 s0 s1 k));
eauto.
econstructor;
eauto.
destruct (
Clight.find_label lbl s0 (
Kloop1 s0 s1 k))
as [[
s'
k'] | ].
intros [
ts' [
tk' [
nbrk' [
ncnt' [
A [
B C]]]]]].
rewrite A.
exists ts';
exists tk';
exists nbrk';
exists ncnt';
auto.
intro.
rewrite H.
eapply transl_find_label;
eauto.
econstructor;
eauto.
break *)
auto.
continue *)
auto.
return *)
simpl in TR.
destruct o;
monadInv TR.
auto.
auto.
switch *)
assert (
exists b,
ts =
Sblock (
Sswitch b x x0)).
{
destruct (
classify_switch (
typeof e));
inv EQ2;
econstructor;
eauto. }
destruct H as [
b EQ3];
rewrite EQ3;
simpl.
eapply transl_find_label_ls with (
k :=
Clight.Kswitch k);
eauto.
econstructor;
eauto.
label *)
destruct (
ident_eq lbl l).
exists x;
exists tk;
exists nbrk;
exists ncnt;
auto.
eapply transl_find_label;
eauto.
goto *)
auto.
intro ls;
case ls;
intros;
monadInv TR;
simpl.
nil *)
auto.
cons *)
exploit (
transl_find_label s nbrk ncnt (
Clight.Kseq (
seq_of_labeled_statement l)
k));
eauto.
econstructor;
eauto.
apply transl_lbl_stmt_2;
eauto.
destruct (
Clight.find_label lbl s (
Clight.Kseq (
seq_of_labeled_statement l)
k))
as [[
s'
k'] | ].
intros [
ts' [
tk' [
nbrk' [
ncnt' [
A [
B C]]]]]].
rewrite A.
exists ts';
exists tk';
exists nbrk';
exists ncnt';
auto.
intro.
rewrite H.
eapply transl_find_label_ls;
eauto.
Qed.
End FIND_LABEL.
Properties of call continuations
Lemma match_cont_call_cont:
forall tyret'
nbrk'
ncnt'
tyret nbrk ncnt k tk,
match_cont tyret nbrk ncnt k tk ->
match_cont tyret'
nbrk'
ncnt' (
Clight.call_cont k) (
call_cont tk).
Proof.
induction 1; simpl; auto.
constructor.
econstructor; eauto.
Qed.
Lemma match_cont_is_call_cont:
forall tyret nbrk ncnt k tk tyret'
nbrk'
ncnt',
match_cont tyret nbrk ncnt k tk ->
Clight.is_call_cont k ->
match_cont tyret'
nbrk'
ncnt'
k tk /\
is_call_cont tk.
Proof.
intros. inv H; simpl in H0; try contradiction; simpl.
split; auto; constructor.
split; auto; econstructor; eauto.
Qed.
The simulation proof
Lemma transl_step:
forall S1 t S2,
Clight.step2 ge S1 t S2 ->
forall T1,
match_states S1 T1 ->
exists T2,
plus step tge T1 t T2 /\
match_states S2 T2.
Proof.
Lemma transl_initial_states:
forall S,
Clight.initial_state prog S ->
exists R,
initial_state tprog R /\
match_states S R.
Proof.
Lemma transl_final_states:
forall S R r,
match_states S R ->
Clight.final_state S r ->
final_state R r.
Proof.
intros. inv H0. inv H. inv MK. constructor.
Qed.
Theorem transl_program_correct:
forward_simulation (
Clight.semantics2 prog) (
Csharpminor.semantics tprog).
Proof.
End CORRECTNESS.