Require CSE.
Require Extra.
Import Utf8.
Import Coqlib Errors Maps.
Import AST Registers Op.
Import Integers Values Memory.
Import RTL.
Import Extra.
Import ValueDomain ValueAnalysis.
Import Kildall.
Unset Elimination Schemes.
Coercion size_chunk :
memory_chunk >->
Z.
Things modified w.r.t. vanilla CompCert CSE.
Right-hand-sides remember annotations on loads.
filter-after-store uses annotations instead of (could be: in addition to) the value-analysis results
It computes whether two annotations denote sets of memory accesses that may overlap
using the annot-overlap function
kill_loads_after_storebytes becomes kill_all_loads: storebytes (aka memcpy) are not annotated
The transfer function treats memcpy as builtin and vstore
CombineOp has been inlined here (and occurences of Function replaced by Definition).
TODO: do we need the value analysis?
Definition annot :
Type :=
list Annotations.ablock.
Instance eq_ablock :
EqDec Annotations.ablock :=
Annotations.ablock_eq.
Section OVERLAP.
Local Coercion Int.unsigned :
int >->
Z.
Definition range_disjoint (κ:
Z) (
r:
int *
int) (κ':
Z) (
r':
int *
int) :
bool :=
let '(
a,
b) :=
r in let '(
c,
d) :=
r'
in
if b + κ <=?
c then true else d + κ' <=?
a.
Definition range_overlap κ
r κ'
r' :
bool :=
negb (
range_disjoint κ
r κ'
r').
Definition ablock_overlap κ α κ' α' :
bool :=
match α, α'
with
|
Annotations.ABlocal d x r,
Annotations.ABlocal d'
x'
r' =>
if eq_nat_dec d d'
then range_overlap κ
r κ'
r'
else false
|
Annotations.ABglobal x r,
Annotations.ABglobal x'
r' =>
if eq_dec x x'
then range_overlap κ
r κ'
r'
else false
|
Annotations.ABlocal _ _ _,
Annotations.ABglobal _ _
|
Annotations.ABglobal _ _,
Annotations.ABlocal _ _ _ =>
false
end.
Definition annot_overlap κ (α:
annot) κ' (α':
annot) :
bool :=
if α
then true else
if α'
then true else
list_exists (λ α,
list_exists (λ α',
ablock_overlap κ α κ' α'
) α'
) α.
Definition range_denote (κ:
Z) (
r:
int *
int) (
o:
int) :
Prop :=
fst r <=
o ∧
o <
snd r + κ.
Definition range_disjoint_true κ
r κ'
r' :
range_disjoint κ
r κ'
r' =
true →
range_denote κ
r ∩
range_denote κ'
r' ⊆ ∅.
Proof.
Corollary range_overlap_false κ
r κ'
r' :
range_overlap κ
r κ'
r' =
false →
range_denote κ
r ∩
range_denote κ'
r' ⊆ ∅.
Proof.
Definition range_disjoint_is_true κ
r κ'
r'
o o' :
o ∈
range_denote κ
r →
o' ∈
range_denote κ'
r' →
range_denote κ
r ∩
range_denote κ'
r' ⊆ ∅ →
range_disjoint κ
r κ'
r' =
true.
Proof.
Import Globalenvs.
Variable ge :
genv.
Variable stack:
list block.
Hypothesis norepet_stack :
list_norepet stack.
Hypothesis noglobal_alias_stack : ∀
s b,
Genv.find_symbol ge s =
Some b → ¬
In b stack.
Lemma genv_find_symbol_injective s s'
b :
Genv.find_symbol ge s =
Some b →
Genv.find_symbol ge s' =
Some b →
s' =
s.
Proof.
Lemma nth_split {
X} (
m:
list X) (
n:
nat) (
x:
X) :
nth_error m n =
Some x →
∃
pre post,
m =
pre ++
x ::
post ∧
length pre =
n.
Proof.
revert m.
elim n;
clear n.
-
intros [ |
x'
m ]
H.
exact (
None_not_Some H _).
apply some_eq_inv in H.
subst x'.
exists nil,
m.
auto.
-
intros n IH [ |
x'
m ]
H.
exact (
None_not_Some H _).
specialize (
IH _ H).
destruct IH as (
pre &
post & -> & <-).
exists (
x' ::
pre),
post.
auto.
Qed.
Lemma list_cut {
X}
m n m'
n' (
x:
X) :
m ++
x ::
n =
m' ++
x ::
n' →
¬
In x m →
¬
In x m' →
m' =
m.
Proof.
revert m'.
elim m; clear m.
- intros [ | x' m' ].
+ reflexivity.
+ simpl; intros ? _ K; eq_some_inv. subst. elim K. auto.
- intros y m IH.
intros [ | x' m' ].
+ simpl; intros ? K _; eq_some_inv. subst. elim K; auto.
+ simpl. intros ? Hm Hm'. eq_some_inv. subst y. f_equal.
apply IH; auto.
Qed.
Lemma nth_norepet_injective {
X} (
m:
list X) (
n n':
nat) (
x:
X) :
list_norepet m →
nth_error m n =
Some x →
nth_error m n' =
Some x →
n' =
n.
Proof.
assert (∀
p q,
list_norepet (
p ++
x ::
q) → ¬
In x p)
as K.
{
intros p q NR.
apply list_norepet_app in NR.
destruct NR as (
_ &
_ &
NR).
intros IN.
exact (
NR _ _ IN (
or_introl _ eq_refl)
eq_refl). }
intros NR H H'.
apply nth_split in H.
destruct H as (
pre &
post & -> & <-).
apply nth_split in H'.
destruct H'
as (
pre' &
post' & ? & <-).
f_equal.
apply (
list_cut _ _ _ _ _ H).
eauto.
rewrite H in NR.
eauto.
Qed.
Definition block_of_ablock a :
option block :=
match a with
|
Annotations.ABlocal d _ r =>
nth_error stack d
|
Annotations.ABglobal s r =>
Genv.find_symbol ge s
end.
Definition range_of_ablock a :
int *
int :=
match a with
|
Annotations.ABlocal _ _ r
|
Annotations.ABglobal _ r =>
r
end.
Definition ablock_denote κ
a bi :
Prop :=
block_of_ablock a =
Some (
fst bi) ∧
range_denote κ (
range_of_ablock a) (
snd bi).
Lemma ablock_overlap_false κ
a κ'
a' :
ablock_overlap κ
a κ'
a' =
false →
ablock_denote κ
a ∩
ablock_denote κ'
a' ⊆ ∅.
Proof.
Definition annot_denote κ (α:
annot)
bi :
Prop :=
if α
then True else
∃
a,
In a α ∧
ablock_denote κ
a bi.
Lemma annot_overlap_false κ α κ' α' :
annot_overlap κ α κ' α' =
false →
annot_denote κ α ∩
annot_denote κ' α' ⊆ ∅.
Proof.
End OVERLAP.
Domain: see CSEdomain.v
Definition valnum :=
positive.
Inductive rhs :
Type :=
|
Op:
operation ->
list valnum ->
rhs
|
Load `(
memory_chunk) `(
annot) `(
addressing) `(
list valnum).
Record equation :
Type :=
Eq {
v :
valnum ;
strict :
bool ;
r :
rhs }.
Instance eq_rhs :
EqDec rhs.
Proof.
Record numbering :
Type :=
mknumbering {
num_next:
valnum;
(* first unused value number *)
num_eqs:
list equation;
(* valid equations *)
num_reg:
PTree.t valnum;
(* mapping register to valnum *)
num_val:
PMap.t (
list reg)
(* reverse mapping valnum to regs containing it *)
}.
Definition empty_numbering :=
{|
num_next := 1%
positive;
num_eqs :=
nil;
num_reg :=
PTree.empty _;
num_val :=
PMap.init nil |}.
Definition valnums_rhs (
r:
rhs):
list valnum :=
match r with
|
Op _ vl
|
Load _ _ _ vl =>
vl
end.
Definition wf_rhs (
next:
valnum) (
r:
rhs) :
Prop :=
forall v,
In v (
valnums_rhs r) ->
Plt v next.
Definition wf_equation (
next:
valnum) (
e:
equation) :
Prop :=
match e with Eq l str r =>
Plt l next /\
wf_rhs next r end.
Record wf_numbering (
n:
numbering) :
Prop := {
wf_num_eqs:
forall e,
In e n.(
num_eqs) ->
wf_equation n.(
num_next)
e;
wf_num_reg:
forall r v,
PTree.get r n.(
num_reg) =
Some v ->
Plt v n.(
num_next);
wf_num_val:
forall r v,
In r (
PMap.get v n.(
num_val)) ->
PTree.get r n.(
num_reg) =
Some v
}.
Hint Resolve wf_num_eqs wf_num_reg wf_num_val:
cse.
Definition valuation :=
valnum ->
val.
Definition rhs_eval_to (
valu:
valuation) (
ge:
genv) (
sp:
val) (
m:
mem) (
r:
rhs) :
val →
Prop :=
match r with
|
Op op vl => λ
v,
eval_operation ge sp op (
map valu vl)
m =
Some v
|
Load κ α
addr vl =>
λ
v, ∃
a,
eval_addressing ge sp addr (
map valu vl) =
Some a ∧
Mem.loadv κ
m a =
Some v
end.
Definition equation_holds (
valu:
valuation) (
ge:
genv) (
sp:
val) (
m:
mem) (
eqn:
equation) :
Prop :=
match eqn with
|
Eq l true r =>
rhs_eval_to valu ge sp m r (
valu l)
|
Eq l false r =>
∃
v,
rhs_eval_to valu ge sp m r v ∧
Val.lessdef v (
valu l)
end.
Record numbering_holds (
valu:
valuation) (
ge:
genv) (
sp:
val)
(
rs:
regset) (
m:
mem) (
n:
numbering) :
Prop := {
num_holds_wf:
wf_numbering n;
num_holds_eq:
forall eq,
In eq n.(
num_eqs) ->
equation_holds valu ge sp m eq;
num_holds_reg:
forall r v,
n.(
num_reg)!
r =
Some v ->
rs#
r =
valu v
}.
Hint Resolve num_holds_wf num_holds_eq num_holds_reg:
cse.
Lemma empty_numbering_holds:
forall valu ge sp rs m,
numbering_holds valu ge sp rs m empty_numbering.
Proof.
intros;
split;
simpl;
intros.
-
split;
simpl;
intros.
+
contradiction.
+
rewrite PTree.gempty in H;
discriminate.
+
rewrite PMap.gi in H;
contradiction.
-
contradiction.
-
rewrite PTree.gempty in H;
discriminate.
Qed.
Operations on value numberings
Definition valnum_reg (
n:
numbering) (
r:
reg) :
numbering *
valnum :=
match PTree.get r n.(
num_reg)
with
|
Some v => (
n,
v)
|
None =>
let v :=
n.(
num_next)
in
( {|
num_next :=
Psucc v;
num_eqs :=
n.(
num_eqs);
num_reg :=
PTree.set r v n.(
num_reg);
num_val :=
PMap.set v (
r ::
nil)
n.(
num_val) |},
v)
end.
Fixpoint valnum_regs (
n:
numbering) (
rl:
list reg)
{
struct rl} :
numbering *
list valnum :=
match rl with
|
nil =>
(
n,
nil)
|
r1 ::
rs =>
let (
n1,
v1) :=
valnum_reg n r1 in
let (
ns,
vs) :=
valnum_regs n1 rs in
(
ns,
v1 ::
vs)
end.
Fixpoint find_valnum_rhs (
r:
rhs) (
eqs:
list equation)
{
struct eqs} :
option valnum :=
match eqs with
|
nil =>
None
|
Eq v str r' ::
eqs1 =>
if (
if str then eq_rhs r r' :
bool else false)
then Some v else find_valnum_rhs r eqs1
end.
Fixpoint find_valnum_rhs' (
r:
rhs) (
eqs:
list equation)
{
struct eqs} :
option valnum :=
match eqs with
|
nil =>
None
|
Eq v str r' ::
eqs1 =>
if eq_rhs r r'
then Some v else find_valnum_rhs'
r eqs1
end.
Fixpoint find_valnum_num (
v:
valnum) (
eqs:
list equation)
{
struct eqs} :
option rhs :=
match eqs with
|
nil =>
None
|
Eq v'
str r' ::
eqs1 =>
if if str then peq v v' :
bool else false then Some r'
else find_valnum_num v eqs1
end.
Definition reg_valnum (
n:
numbering) (
vn:
valnum) :
option reg :=
match PMap.get vn n.(
num_val)
with
|
nil =>
None
|
r ::
rs =>
Some r
end.
Fixpoint regs_valnums (
n:
numbering) (
vl:
list valnum) :
option (
list reg) :=
match vl with
|
nil =>
Some nil
|
v1 ::
vs =>
match reg_valnum n v1 with
|
Some r1 =>
match regs_valnums n vs with
|
Some rs =>
Some (
r1 ::
rs)
|
_ =>
None
end
|
_ =>
None
end
end.
Definition find_rhs (
n:
numbering) (
rh:
rhs) :
option reg :=
match find_valnum_rhs'
rh n.(
num_eqs)
with
|
None =>
None
|
Some vres =>
reg_valnum n vres
end.
Definition forget_reg (
n:
numbering) (
rd:
reg) :
PMap.t (
list reg) :=
match PTree.get rd n.(
num_reg)
with
|
None =>
n.(
num_val)
|
Some v =>
PMap.set v (
List.remove peq rd (
PMap.get v n.(
num_val)))
n.(
num_val)
end.
Definition update_reg (
n:
numbering) (
rd:
reg) (
vn:
valnum) :
PMap.t (
list reg) :=
let nv :=
forget_reg n rd in PMap.set vn (
rd ::
PMap.get vn nv)
nv.
Definition add_rhs (
n:
numbering) (
rd:
reg) (
rh:
rhs) :
numbering :=
match find_valnum_rhs rh n.(
num_eqs)
with
|
Some vres =>
{|
num_next :=
n.(
num_next);
num_eqs :=
n.(
num_eqs);
num_reg :=
PTree.set rd vres n.(
num_reg);
num_val :=
update_reg n rd vres |}
|
None =>
{|
num_next :=
Psucc n.(
num_next);
num_eqs :=
Eq n.(
num_next)
true rh ::
n.(
num_eqs);
num_reg :=
PTree.set rd n.(
num_next)
n.(
num_reg);
num_val :=
update_reg n rd n.(
num_next) |}
end.
Definition add_op (
n:
numbering) (
rd:
reg) (
op:
operation) (
rs:
list reg) :=
match is_move_operation op rs with
|
Some r =>
let (
n1,
v) :=
valnum_reg n r in
{|
num_next :=
n1.(
num_next);
num_eqs :=
n1.(
num_eqs);
num_reg :=
PTree.set rd v n1.(
num_reg);
num_val :=
update_reg n1 rd v |}
|
None =>
let (
n1,
vs) :=
valnum_regs n rs in
add_rhs n1 rd (
Op op vs)
end.
Definition add_load (
n:
numbering) (
rd:
reg)
(
chunk:
memory_chunk) (α:
annot) (
addr:
addressing)
(
rs:
list reg) :=
let (
n1,
vs) :=
valnum_regs n rs in
add_rhs n1 rd (
Load chunk α
addr vs).
Definition set_unknown (
n:
numbering) (
rd:
reg) :=
{|
num_next :=
n.(
num_next);
num_eqs :=
n.(
num_eqs);
num_reg :=
PTree.remove rd n.(
num_reg);
num_val :=
forget_reg n rd |}.
Definition set_res_unknown (
n:
numbering) (
res:
builtin_res reg) :=
match res with
|
BR r =>
set_unknown n r
|
_ =>
n
end.
Fixpoint kill_eqs (
pred:
rhs ->
bool) (
eqs:
list equation) :
list equation :=
match eqs with
|
nil =>
nil
| (
Eq l strict r)
as eq ::
rem =>
if pred r then kill_eqs pred rem else eq ::
kill_eqs pred rem
end.
Definition kill_equations (
pred:
rhs ->
bool) (
n:
numbering) :
numbering :=
{|
num_next :=
n.(
num_next);
num_eqs :=
kill_eqs pred n.(
num_eqs);
num_reg :=
n.(
num_reg);
num_val :=
n.(
num_val) |}.
Definition filter_loads (
r:
rhs) :
bool :=
match r with
|
Op op _ =>
op_depends_on_memory op
|
Load _ _ _ _ =>
true
end.
Definition kill_all_loads (
n:
numbering) :
numbering :=
kill_equations filter_loads n.
Definition filter_after_store κ α (
r:
rhs) :
bool :=
match r with
|
Op op _ =>
op_depends_on_memory op
|
Load κ' α'
_ _ =>
annot_overlap κ α κ' α'
end.
Definition kill_loads_after_store (
n:
numbering) κ α :
numbering :=
kill_equations (
filter_after_store κ α)
n.
Definition store_normalized_range (
chunk:
memory_chunk) :
aval :=
match chunk with
|
Mint8signed =>
Sgn Ptop 8
|
Mint8unsigned =>
Uns Ptop 8
|
Mint16signed =>
Sgn Ptop 16
|
Mint16unsigned =>
Uns Ptop 16
|
_ =>
Vtop
end.
Definition add_store_result (
app:
VA.t) (
n:
numbering) (
chunk:
memory_chunk) α (
addr:
addressing)
(
rargs:
list reg) (
rsrc:
reg) :=
if vincl (
avalue app rsrc) (
store_normalized_range chunk)
then
let (
n1,
vsrc) :=
valnum_reg n rsrc in
let (
n2,
vargs) :=
valnum_regs n1 rargs in
{|
num_next :=
n2.(
num_next);
num_eqs :=
Eq vsrc false (
Load chunk α
addr vargs) ::
n2.(
num_eqs);
num_reg :=
n2.(
num_reg);
num_val :=
n2.(
num_val) |}
else n.
Take advantage of known equations to select more efficient
forms of operations, addressing modes, and conditions.
Section REDUCE.
Variable A:
Type.
Variable f: (
valnum ->
option rhs) ->
A ->
list valnum ->
option (
A *
list valnum).
Variable n:
numbering.
Fixpoint reduce_rec (
niter:
nat) (
op:
A) (
args:
list valnum) :
option(
A *
list reg) :=
match niter with
|
O =>
None
|
Datatypes.S niter' =>
match f (
fun v =>
find_valnum_num v n.(
num_eqs))
op args with
|
None =>
None
|
Some(
op',
args') =>
match reduce_rec niter'
op'
args'
with
|
None =>
match regs_valnums n args'
with Some rl =>
Some(
op',
rl) |
None =>
None end
|
Some _ as res =>
res
end
end
end.
Definition reduce (
op:
A) (
rl:
list reg) (
vl:
list valnum) :
A *
list reg :=
match reduce_rec 4%
nat op vl with
|
None => (
op,
rl)
|
Some res =>
res
end.
End REDUCE.
The static analysis
We now equip the type numbering with a partial order and a greatest
element. The partial order is based on entailment: n1 is greater
than n2 if n1 is satisfiable whenever n2 is. The greatest element
is, of course, the empty numbering (no equations).
Module Numbering.
Definition t :=
numbering.
Definition ge (
n1 n2:
numbering) :
Prop :=
forall valu ge sp rs m,
numbering_holds valu ge sp rs m n2 ->
numbering_holds valu ge sp rs m n1.
Definition top :=
empty_numbering.
Lemma top_ge:
forall x,
ge top x.
Proof.
Lemma refl_ge:
forall x,
ge x x.
Proof.
intros; red; auto.
Qed.
End Numbering.
We reuse the solver for forward dataflow inequations based on
propagation over extended basic blocks defined in library Kildall.
Module Solver :=
BBlock_solver(
Numbering).
The transfer function for the dataflow analysis returns the numbering
``after'' execution of the instruction at
pc, as a function of the
numbering ``before''. For
Iop and
Iload instructions, we add
equations or reuse existing value numbers as described for
add_op and
add_load. For
Istore instructions, we forget
equations involving memory loads at possibly overlapping locations,
then add an equation for loads from the same location stored to.
For
Icall instructions, we could simply associate a fresh, unconstrained by equations value number
to the result register. However, it is often undesirable to eliminate
common subexpressions across a function call (there is a risk of
increasing too much the register pressure across the call), so we
just forget all equations and start afresh with an empty numbering.
Finally, for instructions that modify neither registers nor
the memory, we keep the numbering unchanged.
For builtin invocations
Ibuiltin, we have three strategies:
-
Forget all equations. This is appropriate for builtins that can be
turned into function calls (EF_external, EF_malloc, EF_free).
-
Forget equations involving loads but keep equations over registers.
This is appropriate for builtins that can modify memory,
e.g. volatile stores, or EF_builtin
-
Keep all equations, taking advantage of the fact that neither memory
nor registers are modified. This is appropriate for annotations
and for volatile loads.
Definition transfer (
f:
function) (
approx:
PMap.t VA.t) (
pc:
node) (
before:
numbering) :=
match f.(
fn_code)!
pc with
|
None =>
before
|
Some i =>
match i with
|
Inop s =>
before
|
Iop op args res s =>
add_op before res op args
|
Iload alpha chunk addr args dst s =>
add_load before dst chunk (
snd alpha)
addr args
|
Istore alpha chunk addr args src s =>
let app :=
approx!!
pc in
let n :=
kill_loads_after_store before chunk (
snd alpha)
in
add_store_result app n chunk (
snd alpha)
addr args src
|
Icall sig ros args res s =>
empty_numbering
|
Itailcall sig ros args =>
empty_numbering
|
Ibuiltin ef args res s =>
match ef with
|
EF_external _ _ |
EF_malloc |
EF_free |
EF_inline_asm _ _ _ =>
empty_numbering
|
EF_memcpy _ _
|
EF_builtin _ _ |
EF_vstore _ =>
set_res_unknown (
kill_all_loads before)
res
|
EF_vload _ |
EF_annot _ _ |
EF_annot_val _ _ |
EF_debug _ _ _ =>
set_res_unknown before res
end
|
Icond cond args ifso ifnot =>
before
|
Ijumptable arg tbl =>
before
|
Ireturn optarg =>
before
end
end.
The static analysis solves the dataflow inequations implied
by the transfer function using the ``extended basic block'' solver,
which produces sub-optimal solutions quickly. The result is
a mapping from program points to numberings.
Definition analyze (
f:
RTL.function) (
approx:
PMap.t VA.t):
option (
PMap.t numbering) :=
Solver.fixpoint (
fn_code f)
successors_instr (
transfer f approx)
f.(
fn_entrypoint).
Code transformation
The code transformation is performed instruction by instruction.
Iload instructions and non-trivial Iop instructions are turned
into move instructions if their result is already available in a
register, as indicated by the numbering inferred at that program point.
Some operations are so cheap to compute that it is generally not
worth reusing their results. These operations are detected by the
function is_trivial_op in module Op.
Section COMBINE.
Variable get:
valnum ->
option rhs.
Definition combine_compimm_ne_0 (
x:
valnum) :
option(
condition *
list valnum) :=
match get x with
|
Some(
Op (
Ocmp c)
ys) =>
Some (
c,
ys)
|
Some(
Op (
Oandimm n)
ys) =>
Some (
Cmasknotzero n,
ys)
|
_ =>
None
end.
Definition combine_compimm_eq_0 (
x:
valnum) :
option(
condition *
list valnum) :=
match get x with
|
Some(
Op (
Ocmp c)
ys) =>
Some (
negate_condition c,
ys)
|
Some(
Op (
Oandimm n)
ys) =>
Some (
Cmaskzero n,
ys)
|
_ =>
None
end.
Definition combine_compimm_eq_1 (
x:
valnum) :
option(
condition *
list valnum) :=
match get x with
|
Some(
Op (
Ocmp c)
ys) =>
Some (
c,
ys)
|
_ =>
None
end.
Definition combine_compimm_ne_1 (
x:
valnum) :
option(
condition *
list valnum) :=
match get x with
|
Some(
Op (
Ocmp c)
ys) =>
Some (
negate_condition c,
ys)
|
_ =>
None
end.
Definition combine_cond (
cond:
condition) (
args:
list valnum) :
option(
condition *
list valnum) :=
match cond,
args with
|
Ccompimm Cne n,
x::
nil =>
if Int.eq_dec n Int.zero then combine_compimm_ne_0 x
else if Int.eq_dec n Int.one then combine_compimm_ne_1 x
else None
|
Ccompimm Ceq n,
x::
nil =>
if Int.eq_dec n Int.zero then combine_compimm_eq_0 x
else if Int.eq_dec n Int.one then combine_compimm_eq_1 x
else None
|
Ccompuimm Cne n,
x::
nil =>
if Int.eq_dec n Int.zero then combine_compimm_ne_0 x
else if Int.eq_dec n Int.one then combine_compimm_ne_1 x
else None
|
Ccompuimm Ceq n,
x::
nil =>
if Int.eq_dec n Int.zero then combine_compimm_eq_0 x
else if Int.eq_dec n Int.one then combine_compimm_eq_1 x
else None
|
_,
_ =>
None
end.
Definition combine_addr (
addr:
addressing) (
args:
list valnum) :
option(
addressing *
list valnum) :=
match addr,
args with
|
Aindexed n,
x::
nil =>
match get x with
|
Some(
Op (
Olea a)
ys) =>
Some(
offset_addressing_total a n,
ys)
|
_ =>
None
end
|
_,
_ =>
None
end.
Definition combine_op (
op:
operation) (
args:
list valnum) :
option(
operation *
list valnum) :=
match op,
args with
|
Olea addr,
_ =>
match combine_addr addr args with
|
Some(
addr',
args') =>
Some(
Olea addr',
args')
|
None =>
None
end
|
Oandimm n,
x ::
nil =>
match get x with
|
Some(
Op (
Oandimm m)
ys) =>
Some(
Oandimm (
Int.and m n),
ys)
|
_ =>
None
end
|
Oorimm n,
x ::
nil =>
match get x with
|
Some(
Op (
Oorimm m)
ys) =>
Some(
Oorimm (
Int.or m n),
ys)
|
_ =>
None
end
|
Oxorimm n,
x ::
nil =>
match get x with
|
Some(
Op (
Oxorimm m)
ys) =>
Some(
Oxorimm (
Int.xor m n),
ys)
|
_ =>
None
end
|
Ocmp cond,
_ =>
match combine_cond cond args with
|
Some(
cond',
args') =>
Some(
Ocmp cond',
args')
|
None =>
None
end
|
_,
_ =>
None
end.
End COMBINE.
Definition transf_instr (
n:
numbering) (
instr:
instruction) :=
match instr with
|
Iop op args res s =>
if is_trivial_op op then instr else
let (
n1,
vl) :=
valnum_regs n args in
match find_rhs n1 (
Op op vl)
with
|
Some r =>
Iop Omove (
r ::
nil)
res s
|
None =>
let (
op',
args') :=
reduce _ combine_op n1 op args vl in
Iop op'
args'
res s
end
|
Iload alpha chunk addr args dst s =>
let (
n1,
vl) :=
valnum_regs n args in
match find_rhs n1 (
Load chunk (
snd alpha)
addr vl)
with
|
Some r =>
Iop Omove (
r ::
nil)
dst s
|
None =>
let (
addr',
args') :=
reduce _ combine_addr n1 addr args vl in
Iload alpha chunk addr'
args'
dst s
end
|
Istore alpha chunk addr args src s =>
let (
n1,
vl) :=
valnum_regs n args in
let (
addr',
args') :=
reduce _ combine_addr n1 addr args vl in
Istore alpha chunk addr'
args'
src s
|
Icond cond args s1 s2 =>
let (
n1,
vl) :=
valnum_regs n args in
let (
cond',
args') :=
reduce _ combine_cond n1 cond args vl in
Icond cond'
args'
s1 s2
|
_ =>
instr
end.
Definition transf_code (
approxs:
PMap.t numbering) (
instrs:
code) :
code :=
PTree.map (
fun pc instr =>
transf_instr approxs!!
pc instr)
instrs.
Definition vanalyze :=
ValueAnalysis.analyze.
Definition transf_function (
rm:
romem) (
f:
function) :
res function :=
let approx :=
vanalyze rm f in
match analyze f approx with
|
None =>
Error (
msg "
CSE failure")
|
Some approxs =>
OK(
mkfunction
f.(
fn_sig)
f.(
fn_params)
f.(
fn_stacksize)
(
transf_code approxs f.(
fn_code))
f.(
fn_entrypoint))
end.
Definition transf_fundef (
rm:
romem) (
name:
ident) (
f:
fundef) :
res fundef :=
AST.transf_partial_fundef (
transf_function rm)
f.
Definition transf_program (
p:
program) :
res program :=
transform_partial_ident_program (
transf_fundef (
romem_for_program p))
p.