Require Import Coqlib.
Require Import Zwf.
Require Import Maps.
Require Import Compopts.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Globalenvs.
Require Import Events.
Require Import Lattice.
Require Import Kildall.
Require Import Registers.
Require Import RTL.
Inductive block_class :
Type :=
|
BCinvalid
|
BCglob (
id:
ident)
|
BCstack
|
BCother.
Definition block_class_eq:
forall (
x y:
block_class), {
x=
y} + {
x<>
y}.
Proof.
decide equality.
apply peq. Defined.
Record block_classification :
Type :=
BC {
bc_img :>
block ->
block_class;
bc_stack:
forall b1 b2,
bc_img b1 =
BCstack ->
bc_img b2 =
BCstack ->
b1 =
b2;
bc_glob:
forall b1 b2 id,
bc_img b1 =
BCglob id ->
bc_img b2 =
BCglob id ->
b1 =
b2
}.
Definition bc_below (
bc:
block_classification) (
bound:
block) :
Prop :=
forall b,
bc b <>
BCinvalid ->
Plt b bound.
Lemma bc_below_invalid:
forall b bc bound, ~
Plt b bound ->
bc_below bc bound ->
bc b =
BCinvalid.
Proof.
Hint Extern 2 (
_ =
_) =>
congruence :
va.
Hint Extern 2 (
_ <>
_) =>
congruence :
va.
Hint Extern 2 (
_ <
_) =>
xomega :
va.
Hint Extern 2 (
_ <=
_) =>
xomega :
va.
Hint Extern 2 (
_ >
_) =>
xomega :
va.
Hint Extern 2 (
_ >=
_) =>
xomega :
va.
Section MATCH.
Variable bc:
block_classification.
Abstracting the result of conditions (type option bool)
Inductive abool :=
|
Bnone (* always None (undefined) *)
|
Just (
b:
bool)
(* always Some b (defined and known to be b) *)
|
Maybe (
b:
bool)
(* either None or Some b (known to be b if defined) *)
|
Btop.
(* unknown, all results are possible *)
Inductive cmatch:
option bool ->
abool ->
Prop :=
|
cmatch_none:
cmatch None Bnone
|
cmatch_just:
forall b,
cmatch (
Some b) (
Just b)
|
cmatch_maybe_none:
forall b,
cmatch None (
Maybe b)
|
cmatch_maybe_some:
forall b,
cmatch (
Some b) (
Maybe b)
|
cmatch_top:
forall ob,
cmatch ob Btop.
Hint Constructors cmatch :
va.
Definition club (
x y:
abool) :
abool :=
match x,
y with
|
Bnone,
Bnone =>
Bnone
|
Bnone, (
Just b |
Maybe b) =>
Maybe b
| (
Just b |
Maybe b),
Bnone =>
Maybe b
|
Just b1,
Just b2 =>
if eqb b1 b2 then x else Btop
|
Maybe b1,
Maybe b2 =>
if eqb b1 b2 then x else Btop
|
Maybe b1,
Just b2 =>
if eqb b1 b2 then x else Btop
|
Just b1,
Maybe b2 =>
if eqb b1 b2 then y else Btop
|
_,
_ =>
Btop
end.
Lemma cmatch_lub_l:
forall ob x y,
cmatch ob x ->
cmatch ob (
club x y).
Proof.
intros.
unfold club;
inv H;
destruct y;
try constructor;
destruct (
eqb b b0)
eqn:
EQ;
try constructor.
replace b0 with b by (
apply eqb_prop;
auto).
constructor.
Qed.
Lemma cmatch_lub_r:
forall ob x y,
cmatch ob y ->
cmatch ob (
club x y).
Proof.
intros.
unfold club;
inv H;
destruct x;
try constructor;
destruct (
eqb b0 b)
eqn:
EQ;
try constructor.
replace b with b0 by (
apply eqb_prop;
auto).
constructor.
replace b with b0 by (
apply eqb_prop;
auto).
constructor.
replace b with b0 by (
apply eqb_prop;
auto).
constructor.
Qed.
Definition cnot (
x:
abool) :
abool :=
match x with
|
Just b =>
Just (
negb b)
|
Maybe b =>
Maybe (
negb b)
|
_ =>
x
end.
Lemma cnot_sound:
forall ob x,
cmatch ob x ->
cmatch (
option_map negb ob) (
cnot x).
Proof.
destruct 1; constructor.
Qed.
Abstracting pointers
Inductive aptr :
Type :=
|
Pbot (* bottom (empty set of pointers) *)
|
Gl (
id:
ident) (
ofs:
int)
(* pointer into the block for global variable id at offset ofs *)
|
Glo (
id:
ident)
(* pointer anywhere into the block for global id *)
|
Glob (* pointer into any global variable *)
|
Stk (
ofs:
int)
(* pointer into the current stack frame at offset ofs *)
|
Stack (* pointer anywhere into the current stack frame *)
|
Nonstack (* pointer anywhere but into the current stack frame *)
|
Ptop.
(* any valid pointer *)
Definition eq_aptr:
forall (
p1 p2:
aptr), {
p1=
p2} + {
p1<>
p2}.
Proof.
Inductive pmatch (
b:
block) (
ofs:
int):
aptr ->
Prop :=
|
pmatch_gl:
forall id,
bc b =
BCglob id ->
pmatch b ofs (
Gl id ofs)
|
pmatch_glo:
forall id,
bc b =
BCglob id ->
pmatch b ofs (
Glo id)
|
pmatch_glob:
forall id,
bc b =
BCglob id ->
pmatch b ofs Glob
|
pmatch_stk:
bc b =
BCstack ->
pmatch b ofs (
Stk ofs)
|
pmatch_stack:
bc b =
BCstack ->
pmatch b ofs Stack
|
pmatch_nonstack:
bc b <>
BCstack ->
bc b <>
BCinvalid ->
pmatch b ofs Nonstack
|
pmatch_top:
bc b <>
BCinvalid ->
pmatch b ofs Ptop.
Hint Constructors pmatch:
va.
Inductive pge:
aptr ->
aptr ->
Prop :=
|
pge_top:
forall p,
pge Ptop p
|
pge_bot:
forall p,
pge p Pbot
|
pge_refl:
forall p,
pge p p
|
pge_glo_gl:
forall id ofs,
pge (
Glo id) (
Gl id ofs)
|
pge_glob_gl:
forall id ofs,
pge Glob (
Gl id ofs)
|
pge_glob_glo:
forall id,
pge Glob (
Glo id)
|
pge_ns_gl:
forall id ofs,
pge Nonstack (
Gl id ofs)
|
pge_ns_glo:
forall id,
pge Nonstack (
Glo id)
|
pge_ns_glob:
pge Nonstack Glob
|
pge_stack_stk:
forall ofs,
pge Stack (
Stk ofs).
Hint Constructors pge:
va.
Lemma pge_trans:
forall p q,
pge p q ->
forall r,
pge q r ->
pge p r.
Proof.
induction 1; intros r PM; inv PM; auto with va.
Qed.
Lemma pmatch_ge:
forall b ofs p q,
pge p q ->
pmatch b ofs q ->
pmatch b ofs p.
Proof.
induction 1; intros PM; inv PM; eauto with va.
Qed.
Lemma pmatch_top':
forall b ofs p,
pmatch b ofs p ->
pmatch b ofs Ptop.
Proof.
intros.
apply pmatch_ge with p;
auto with va.
Qed.
Definition plub (
p q:
aptr) :
aptr :=
match p,
q with
|
Pbot,
_ =>
q
|
_,
Pbot =>
p
|
Gl id1 ofs1,
Gl id2 ofs2 =>
if ident_eq id1 id2 then if Int.eq_dec ofs1 ofs2 then p else Glo id1 else Glob
|
Gl id1 ofs1,
Glo id2 =>
if ident_eq id1 id2 then q else Glob
|
Glo id1,
Gl id2 ofs2 =>
if ident_eq id1 id2 then p else Glob
|
Glo id1,
Glo id2 =>
if ident_eq id1 id2 then p else Glob
| (
Gl _ _ |
Glo _ |
Glob),
Glob =>
Glob
|
Glob, (
Gl _ _ |
Glo _) =>
Glob
| (
Gl _ _ |
Glo _ |
Glob |
Nonstack),
Nonstack =>
Nonstack
|
Nonstack, (
Gl _ _ |
Glo _ |
Glob) =>
Nonstack
|
Stk ofs1,
Stk ofs2 =>
if Int.eq_dec ofs1 ofs2 then p else Stack
| (
Stk _ |
Stack),
Stack =>
Stack
|
Stack,
Stk _ =>
Stack
|
_,
_ =>
Ptop
end.
Lemma plub_comm:
forall p q,
plub p q =
plub q p.
Proof.
Lemma pge_lub_l:
forall p q,
pge (
plub p q)
p.
Proof.
unfold plub;
destruct p,
q;
auto with va.
-
destruct (
ident_eq id id0).
destruct (
Int.eq_dec ofs ofs0);
subst;
constructor.
constructor.
-
destruct (
ident_eq id id0);
subst;
constructor.
-
destruct (
ident_eq id id0);
subst;
constructor.
-
destruct (
ident_eq id id0);
subst;
constructor.
-
destruct (
Int.eq_dec ofs ofs0);
subst;
constructor.
Qed.
Lemma pge_lub_r:
forall p q,
pge (
plub p q)
q.
Proof.
Lemma pmatch_lub_l:
forall b ofs p q,
pmatch b ofs p ->
pmatch b ofs (
plub p q).
Proof.
Lemma pmatch_lub_r:
forall b ofs p q,
pmatch b ofs q ->
pmatch b ofs (
plub p q).
Proof.
Lemma plub_least:
forall r p q,
pge r p ->
pge r q ->
pge r (
plub p q).
Proof.
intros.
inv H;
inv H0;
simpl;
try constructor.
-
destruct p;
constructor.
-
unfold plub;
destruct q;
repeat rewrite dec_eq_true;
constructor.
-
rewrite dec_eq_true;
constructor.
-
rewrite dec_eq_true;
constructor.
-
rewrite dec_eq_true.
destruct (
Int.eq_dec ofs ofs0);
constructor.
-
destruct (
ident_eq id id0).
destruct (
Int.eq_dec ofs ofs0);
constructor.
constructor.
-
destruct (
ident_eq id id0);
constructor.
-
destruct (
ident_eq id id0);
constructor.
-
destruct (
ident_eq id id0);
constructor.
-
destruct (
ident_eq id id0).
destruct (
Int.eq_dec ofs ofs0);
constructor.
constructor.
-
destruct (
ident_eq id id0);
constructor.
-
destruct (
ident_eq id id0);
constructor.
-
destruct (
ident_eq id id0);
constructor.
-
destruct (
Int.eq_dec ofs ofs0);
constructor.
Qed.
Definition pincl (
p q:
aptr) :
bool :=
match p,
q with
|
Pbot,
_ =>
true
|
Gl id1 ofs1,
Gl id2 ofs2 =>
peq id1 id2 &&
Int.eq_dec ofs1 ofs2
|
Gl id1 ofs1,
Glo id2 =>
peq id1 id2
|
Glo id1,
Glo id2 =>
peq id1 id2
| (
Gl _ _ |
Glo _ |
Glob),
Glob =>
true
| (
Gl _ _ |
Glo _ |
Glob |
Nonstack),
Nonstack =>
true
|
Stk ofs1,
Stk ofs2 =>
Int.eq_dec ofs1 ofs2
|
Stk ofs1,
Stack =>
true
|
Stack,
Stack =>
true
|
_,
Ptop =>
true
|
_,
_ =>
false
end.
Lemma pincl_ge:
forall p q,
pincl p q =
true ->
pge q p.
Proof.
unfold pincl;
destruct p,
q;
intros;
try discriminate;
auto with va;
InvBooleans;
subst;
auto with va.
Qed.
Lemma pincl_ge_2:
forall p q,
pge p q ->
pincl q p =
true.
Proof.
Lemma pincl_sound:
forall b ofs p q,
pincl p q =
true ->
pmatch b ofs p ->
pmatch b ofs q.
Proof.
Definition padd (
p:
aptr) (
n:
int) :
aptr :=
match p with
|
Gl id ofs =>
Gl id (
Int.add ofs n)
|
Stk ofs =>
Stk (
Int.add ofs n)
|
_ =>
p
end.
Lemma padd_sound:
forall b ofs p delta,
pmatch b ofs p ->
pmatch b (
Int.add ofs delta) (
padd p delta).
Proof.
intros.
inv H;
simpl padd;
eauto with va.
Qed.
Definition psub (
p:
aptr) (
n:
int) :
aptr :=
match p with
|
Gl id ofs =>
Gl id (
Int.sub ofs n)
|
Stk ofs =>
Stk (
Int.sub ofs n)
|
_ =>
p
end.
Lemma psub_sound:
forall b ofs p delta,
pmatch b ofs p ->
pmatch b (
Int.sub ofs delta) (
psub p delta).
Proof.
intros.
inv H;
simpl psub;
eauto with va.
Qed.
Definition poffset (
p:
aptr) :
aptr :=
match p with
|
Gl id ofs =>
Glo id
|
Stk ofs =>
Stack
|
_ =>
p
end.
Lemma poffset_sound:
forall b ofs1 ofs2 p,
pmatch b ofs1 p ->
pmatch b ofs2 (
poffset p).
Proof.
intros.
inv H;
simpl poffset;
eauto with va.
Qed.
Definition psub2 (
p q:
aptr) :
option int :=
match p,
q with
|
Gl id1 ofs1,
Gl id2 ofs2 =>
if peq id1 id2 then Some (
Int.sub ofs1 ofs2)
else None
|
Stk ofs1,
Stk ofs2 =>
Some (
Int.sub ofs1 ofs2)
|
_,
_ =>
None
end.
Lemma psub2_sound:
forall b1 ofs1 p1 b2 ofs2 p2 delta,
psub2 p1 p2 =
Some delta ->
pmatch b1 ofs1 p1 ->
pmatch b2 ofs2 p2 ->
b1 =
b2 /\
delta =
Int.sub ofs1 ofs2.
Proof.
intros.
destruct p1;
try discriminate;
destruct p2;
try discriminate;
simpl in H.
-
destruct (
peq id id0);
inv H.
inv H0;
inv H1.
split.
eapply bc_glob;
eauto.
reflexivity.
-
inv H;
inv H0;
inv H1.
split.
eapply bc_stack;
eauto.
reflexivity.
Qed.
Definition cmp_different_blocks (
c:
comparison) :
abool :=
match c with
|
Ceq =>
Maybe false
|
Cne =>
Maybe true
|
_ =>
Bnone
end.
Lemma cmp_different_blocks_none:
forall c,
cmatch None (
cmp_different_blocks c).
Proof.
intros; destruct c; constructor.
Qed.
Lemma cmp_different_blocks_sound:
forall c,
cmatch (
Val.cmp_different_blocks c) (
cmp_different_blocks c).
Proof.
intros; destruct c; constructor.
Qed.
Definition pcmp (
c:
comparison) (
p1 p2:
aptr) :
abool :=
match p1,
p2 with
|
Pbot,
_ |
_,
Pbot =>
Bnone
|
Gl id1 ofs1,
Gl id2 ofs2 =>
if peq id1 id2 then Maybe (
Int.cmpu c ofs1 ofs2)
else cmp_different_blocks c
|
Gl id1 ofs1,
Glo id2 =>
if peq id1 id2 then Btop else cmp_different_blocks c
|
Glo id1,
Gl id2 ofs2 =>
if peq id1 id2 then Btop else cmp_different_blocks c
|
Glo id1,
Glo id2 =>
if peq id1 id2 then Btop else cmp_different_blocks c
|
Stk ofs1,
Stk ofs2 =>
Maybe (
Int.cmpu c ofs1 ofs2)
| (
Gl _ _ |
Glo _ |
Glob |
Nonstack), (
Stk _ |
Stack) =>
cmp_different_blocks c
| (
Stk _ |
Stack), (
Gl _ _ |
Glo _ |
Glob |
Nonstack) =>
cmp_different_blocks c
|
_,
_ =>
Btop
end.
Lemma pcmp_sound:
forall valid c b1 ofs1 p1 b2 ofs2 p2,
pmatch b1 ofs1 p1 ->
pmatch b2 ofs2 p2 ->
cmatch (
Val.cmpu_bool valid c (
Vptr b1 ofs1) (
Vptr b2 ofs2)) (
pcmp c p1 p2).
Proof.
Lemma pcmp_none:
forall c p1 p2,
cmatch None (
pcmp c p1 p2).
Proof.
Definition pdisjoint (
p1:
aptr) (
sz1:
Z) (
p2:
aptr) (
sz2:
Z) :
bool :=
match p1,
p2 with
|
Pbot,
_ =>
true
|
_,
Pbot =>
true
|
Gl id1 ofs1,
Gl id2 ofs2 =>
if peq id1 id2
then zle (
Int.unsigned ofs1 +
sz1) (
Int.unsigned ofs2)
||
zle (
Int.unsigned ofs2 +
sz2) (
Int.unsigned ofs1)
else true
|
Gl id1 ofs1,
Glo id2 =>
negb(
peq id1 id2)
|
Glo id1,
Gl id2 ofs2 =>
negb(
peq id1 id2)
|
Glo id1,
Glo id2 =>
negb(
peq id1 id2)
|
Stk ofs1,
Stk ofs2 =>
zle (
Int.unsigned ofs1 +
sz1) (
Int.unsigned ofs2)
||
zle (
Int.unsigned ofs2 +
sz2) (
Int.unsigned ofs1)
| (
Gl _ _ |
Glo _ |
Glob |
Nonstack), (
Stk _ |
Stack) =>
true
| (
Stk _ |
Stack), (
Gl _ _ |
Glo _ |
Glob |
Nonstack) =>
true
|
_,
_ =>
false
end.
Lemma pdisjoint_sound:
forall sz1 b1 ofs1 p1 sz2 b2 ofs2 p2,
pdisjoint p1 sz1 p2 sz2 =
true ->
pmatch b1 ofs1 p1 ->
pmatch b2 ofs2 p2 ->
b1 <>
b2 \/
Int.unsigned ofs1 +
sz1 <=
Int.unsigned ofs2 \/
Int.unsigned ofs2 +
sz2 <=
Int.unsigned ofs1.
Proof.
intros.
inv H0;
inv H1;
simpl in H;
try discriminate;
try (
left;
congruence).
-
destruct (
peq id id0).
subst id0.
destruct (
orb_true_elim _ _ H);
InvBooleans;
auto.
left;
congruence.
-
destruct (
peq id id0);
try discriminate.
left;
congruence.
-
destruct (
peq id id0);
try discriminate.
left;
congruence.
-
destruct (
peq id id0);
try discriminate.
left;
congruence.
-
destruct (
orb_true_elim _ _ H);
InvBooleans;
auto.
Qed.
Abstracting values
Inductive aval :
Type :=
|
Vbot (* bottom (empty set of values) *)
|
I (
n:
int)
(* exactly Vint n *)
|
Uns (
p:
aptr) (
n:
Z)
(* a n-bit unsigned integer, or Vundef *)
|
Sgn (
p:
aptr) (
n:
Z)
(* a n-bit signed integer, or Vundef *)
|
L (
n:
int64)
(* exactly Vlong n *)
|
F (
f:
float)
(* exactly Vfloat f *)
|
FS (
f:
float32)
(* exactly Vsingle f *)
|
Ptr (
p:
aptr)
(* a pointer from the set p, or Vundef *)
|
Ifptr (
p:
aptr).
(* a pointer from the set p, or a number, or Vundef *)
The "top" of the value domain is defined as any pointer, or any
number, or Vundef.
Definition Vtop :=
Ifptr Ptop.
The p parameter (an abstract pointer) to Uns and Sgn helps keeping
track of pointers that leak through arithmetic operations such as shifts.
See the section "Tracking leakage of pointers" below.
In strict analysis mode, p is always Pbot.
Definition eq_aval:
forall (
v1 v2:
aval), {
v1=
v2} + {
v1<>
v2}.
Proof.
Definition is_uns (
n:
Z) (
i:
int) :
Prop :=
forall m, 0 <=
m <
Int.zwordsize ->
m >=
n ->
Int.testbit i m =
false.
Definition is_sgn (
n:
Z) (
i:
int) :
Prop :=
forall m, 0 <=
m <
Int.zwordsize ->
m >=
n - 1 ->
Int.testbit i m =
Int.testbit i (
Int.zwordsize - 1).
Inductive vmatch :
val ->
aval ->
Prop :=
|
vmatch_i:
forall i,
vmatch (
Vint i) (
I i)
|
vmatch_Uns:
forall p i n, 0 <=
n ->
is_uns n i ->
vmatch (
Vint i) (
Uns p n)
|
vmatch_Uns_undef:
forall p n,
vmatch Vundef (
Uns p n)
|
vmatch_Sgn:
forall p i n, 0 <
n ->
is_sgn n i ->
vmatch (
Vint i) (
Sgn p n)
|
vmatch_Sgn_undef:
forall p n,
vmatch Vundef (
Sgn p n)
|
vmatch_l:
forall i,
vmatch (
Vlong i) (
L i)
|
vmatch_f:
forall f,
vmatch (
Vfloat f) (
F f)
|
vmatch_s:
forall f,
vmatch (
Vsingle f) (
FS f)
|
vmatch_ptr:
forall b ofs p,
pmatch b ofs p ->
vmatch (
Vptr b ofs) (
Ptr p)
|
vmatch_ptr_undef:
forall p,
vmatch Vundef (
Ptr p)
|
vmatch_ifptr_undef:
forall p,
vmatch Vundef (
Ifptr p)
|
vmatch_ifptr_i:
forall i p,
vmatch (
Vint i) (
Ifptr p)
|
vmatch_ifptr_l:
forall i p,
vmatch (
Vlong i) (
Ifptr p)
|
vmatch_ifptr_f:
forall f p,
vmatch (
Vfloat f) (
Ifptr p)
|
vmatch_ifptr_s:
forall f p,
vmatch (
Vsingle f) (
Ifptr p)
|
vmatch_ifptr_p:
forall b ofs p,
pmatch b ofs p ->
vmatch (
Vptr b ofs) (
Ifptr p).
Lemma vmatch_ifptr:
forall v p,
(
forall b ofs,
v =
Vptr b ofs ->
pmatch b ofs p) ->
vmatch v (
Ifptr p).
Proof.
intros. destruct v; constructor; auto.
Qed.
Lemma vmatch_top:
forall v x,
vmatch v x ->
vmatch v Vtop.
Proof.
intros.
apply vmatch_ifptr.
intros.
subst v.
inv H;
eapply pmatch_top';
eauto.
Qed.
Hint Extern 1 (
vmatch _ _) =>
constructor :
va.
Lemma is_uns_mon:
forall n1 n2 i,
is_uns n1 i ->
n1 <=
n2 ->
is_uns n2 i.
Proof.
intros; red; intros. apply H; omega.
Qed.
Lemma is_sgn_mon:
forall n1 n2 i,
is_sgn n1 i ->
n1 <=
n2 ->
is_sgn n2 i.
Proof.
intros; red; intros. apply H; omega.
Qed.
Lemma is_uns_sgn:
forall n1 n2 i,
is_uns n1 i ->
n1 <
n2 ->
is_sgn n2 i.
Proof.
intros; red; intros. rewrite ! H by omega. auto.
Qed.
Definition usize :=
Int.size.
Definition ssize (
i:
int) :=
Int.size (
if Int.lt i Int.zero then Int.not i else i) + 1.
Lemma is_uns_usize:
forall i,
is_uns (
usize i)
i.
Proof.
Lemma is_sgn_ssize:
forall i,
is_sgn (
ssize i)
i.
Proof.
Lemma is_uns_zero_ext:
forall n i,
is_uns n i <->
Int.zero_ext n i =
i.
Proof.
intros;
split;
intros.
Int.bit_solve.
destruct (
zlt i0 n);
auto.
symmetry;
apply H;
auto.
omega.
rewrite <-
H.
red;
intros.
rewrite Int.bits_zero_ext by omega.
rewrite zlt_false by omega.
auto.
Qed.
Lemma is_sgn_sign_ext:
forall n i, 0 <
n -> (
is_sgn n i <->
Int.sign_ext n i =
i).
Proof.
intros;
split;
intros.
Int.bit_solve.
destruct (
zlt i0 n);
auto.
transitivity (
Int.testbit i (
Int.zwordsize - 1)).
apply H0;
omega.
symmetry;
apply H0;
omega.
rewrite <-
H0.
red;
intros.
rewrite !
Int.bits_sign_ext by omega.
f_equal.
transitivity (
n-1).
destruct (
zlt m n);
omega.
destruct (
zlt (
Int.zwordsize - 1)
n);
omega.
Qed.
Lemma is_zero_ext_uns:
forall i n m,
is_uns m i \/
n <=
m ->
is_uns m (
Int.zero_ext n i).
Proof.
intros.
red;
intros.
rewrite Int.bits_zero_ext by omega.
destruct (
zlt m0 n);
auto.
destruct H.
apply H;
omega.
omegaContradiction.
Qed.
Lemma is_zero_ext_sgn:
forall i n m,
n <
m ->
is_sgn m (
Int.zero_ext n i).
Proof.
Lemma is_sign_ext_uns:
forall i n m,
0 <=
m <
n ->
is_uns m i ->
is_uns m (
Int.sign_ext n i).
Proof.
intros;
red;
intros.
rewrite Int.bits_sign_ext by omega.
apply H0.
destruct (
zlt m0 n);
omega.
destruct (
zlt m0 n);
omega.
Qed.
Lemma is_sign_ext_sgn:
forall i n m,
0 <
n -> 0 <
m ->
is_sgn m i \/
n <=
m ->
is_sgn m (
Int.sign_ext n i).
Proof.
Hint Resolve is_uns_mon is_sgn_mon is_uns_sgn is_uns_usize is_sgn_ssize :
va.
Lemma is_uns_1:
forall n,
is_uns 1
n ->
n =
Int.zero \/
n =
Int.one.
Proof.
Tracking leakage of pointers through arithmetic operations.
In the CompCert semantics, arithmetic operations (e.g. "xor") applied
to pointer values are undefined or produce the Vundef result.
So, in strict mode, we can abstract the result values of such operations
as Ifptr Pbot, namely: Vundef, or any number, but not a pointer.
In real code, such arithmetic over pointers occurs, so we need to be
more prudent. The policy we take, inspired by that of GCC, is that
"undefined" arithmetic operations involving pointer arguments can
produce a pointer, but not any pointer: rather, a pointer to the same
block, but possibly with a different offset. Hence, if the operation
has a pointer to abstract region p as argument, the result value
can be a pointer to abstract region poffset p. In other words,
the result value is abstracted as Ifptr (poffset p).
We encapsulate this reasoning in the following ntop1 and ntop2 functions
("numerical top").
Definition provenance (
x:
aval) :
aptr :=
if va_strict tt then Pbot else
match x with
|
Ptr p |
Ifptr p |
Uns p _ |
Sgn p _ =>
poffset p
|
_ =>
Pbot
end.
Definition ntop :
aval :=
Ifptr Pbot.
Definition ntop1 (
x:
aval) :
aval :=
Ifptr (
provenance x).
Definition ntop2 (
x y:
aval) :
aval :=
Ifptr (
plub (
provenance x) (
provenance y)).
Smart constructors for Uns and Sgn.
Definition uns (
p:
aptr) (
n:
Z) :
aval :=
if zle n 1
then Uns p 1
else if zle n 7
then Uns p 7
else if zle n 8
then Uns p 8
else if zle n 15
then Uns p 15
else if zle n 16
then Uns p 16
else Ifptr p.
Definition sgn (
p:
aptr) (
n:
Z) :
aval :=
if zle n 8
then Sgn p 8
else if zle n 16
then Sgn p 16
else Ifptr p.
Lemma vmatch_uns':
forall p i n,
is_uns (
Zmax 0
n)
i ->
vmatch (
Vint i) (
uns p n).
Proof.
intros.
assert (
A:
forall n',
n' >= 0 ->
n' >=
n ->
is_uns n'
i)
by (
eauto with va).
unfold uns.
destruct (
zle n 1).
auto with va.
destruct (
zle n 7).
auto with va.
destruct (
zle n 8).
auto with va.
destruct (
zle n 15).
auto with va.
destruct (
zle n 16).
auto with va.
auto with va.
Qed.
Lemma vmatch_uns:
forall p i n,
is_uns n i ->
vmatch (
Vint i) (
uns p n).
Proof.
intros. apply vmatch_uns'. eauto with va.
Qed.
Lemma vmatch_uns_undef:
forall p n,
vmatch Vundef (
uns p n).
Proof.
intros.
unfold uns.
destruct (
zle n 1).
auto with va.
destruct (
zle n 7).
auto with va.
destruct (
zle n 8).
auto with va.
destruct (
zle n 15).
auto with va.
destruct (
zle n 16);
auto with va.
Qed.
Lemma vmatch_sgn':
forall p i n,
is_sgn (
Zmax 1
n)
i ->
vmatch (
Vint i) (
sgn p n).
Proof.
intros.
assert (
A:
forall n',
n' >= 1 ->
n' >=
n ->
is_sgn n'
i)
by (
eauto with va).
unfold sgn.
destruct (
zle n 8).
auto with va.
destruct (
zle n 16);
auto with va.
Qed.
Lemma vmatch_sgn:
forall p i n,
is_sgn n i ->
vmatch (
Vint i) (
sgn p n).
Proof.
intros. apply vmatch_sgn'. eauto with va.
Qed.
Lemma vmatch_sgn_undef:
forall p n,
vmatch Vundef (
sgn p n).
Proof.
intros.
unfold sgn.
destruct (
zle n 8).
auto with va.
destruct (
zle n 16);
auto with va.
Qed.
Hint Resolve vmatch_uns vmatch_uns_undef vmatch_sgn vmatch_sgn_undef :
va.
Lemma vmatch_Uns_1:
forall p v,
vmatch v (
Uns p 1) ->
v =
Vundef \/
v =
Vint Int.zero \/
v =
Vint Int.one.
Proof.
intros.
inv H;
auto.
right.
exploit is_uns_1;
eauto.
intuition congruence.
Qed.
Ordering
Inductive vge:
aval ->
aval ->
Prop :=
|
vge_bot:
forall v,
vge v Vbot
|
vge_i:
forall i,
vge (
I i) (
I i)
|
vge_l:
forall i,
vge (
L i) (
L i)
|
vge_f:
forall f,
vge (
F f) (
F f)
|
vge_s:
forall f,
vge (
FS f) (
FS f)
|
vge_uns_i:
forall p n i, 0 <=
n ->
is_uns n i ->
vge (
Uns p n) (
I i)
|
vge_uns_uns:
forall p1 n1 p2 n2,
n1 >=
n2 ->
pge p1 p2 ->
vge (
Uns p1 n1) (
Uns p2 n2)
|
vge_sgn_i:
forall p n i, 0 <
n ->
is_sgn n i ->
vge (
Sgn p n) (
I i)
|
vge_sgn_sgn:
forall p1 n1 p2 n2,
n1 >=
n2 ->
pge p1 p2 ->
vge (
Sgn p1 n1) (
Sgn p2 n2)
|
vge_sgn_uns:
forall p1 n1 p2 n2,
n1 >
n2 ->
pge p1 p2 ->
vge (
Sgn p1 n1) (
Uns p2 n2)
|
vge_p_p:
forall p q,
pge p q ->
vge (
Ptr p) (
Ptr q)
|
vge_ip_p:
forall p q,
pge p q ->
vge (
Ifptr p) (
Ptr q)
|
vge_ip_ip:
forall p q,
pge p q ->
vge (
Ifptr p) (
Ifptr q)
|
vge_ip_i:
forall p i,
vge (
Ifptr p) (
I i)
|
vge_ip_l:
forall p i,
vge (
Ifptr p) (
L i)
|
vge_ip_f:
forall p f,
vge (
Ifptr p) (
F f)
|
vge_ip_s:
forall p f,
vge (
Ifptr p) (
FS f)
|
vge_ip_uns:
forall p q n,
pge p q ->
vge (
Ifptr p) (
Uns q n)
|
vge_ip_sgn:
forall p q n,
pge p q ->
vge (
Ifptr p) (
Sgn q n).
Hint Constructors vge :
va.
Lemma vge_top:
forall v,
vge Vtop v.
Proof.
destruct v; constructor; constructor.
Qed.
Hint Resolve vge_top :
va.
Lemma vge_refl:
forall v,
vge v v.
Proof.
destruct v; auto with va.
Qed.
Lemma vge_trans:
forall u v,
vge u v ->
forall w,
vge v w ->
vge u w.
Proof.
induction 1;
intros w V;
inv V;
eauto using pge_trans with va.
Qed.
Lemma vmatch_ge:
forall v x y,
vge x y ->
vmatch v y ->
vmatch v x.
Proof.
induction 1;
intros V;
inv V;
eauto using pmatch_ge with va.
Qed.
Least upper bound
Definition vlub (
v w:
aval) :
aval :=
match v,
w with
|
Vbot,
_ =>
w
|
_,
Vbot =>
v
|
I i1,
I i2 =>
if Int.eq i1 i2 then v else
if Int.lt i1 Int.zero ||
Int.lt i2 Int.zero
then sgn Pbot (
Z.max (
ssize i1) (
ssize i2))
else uns Pbot (
Z.max (
usize i1) (
usize i2))
|
I i,
Uns p n |
Uns p n,
I i =>
if Int.lt i Int.zero
then sgn p (
Z.max (
ssize i) (
n + 1))
else uns p (
Z.max (
usize i)
n)
|
I i,
Sgn p n |
Sgn p n,
I i =>
sgn p (
Z.max (
ssize i)
n)
|
I i, (
Ptr p |
Ifptr p) | (
Ptr p |
Ifptr p),
I i =>
if va_strict tt ||
Int.eq i Int.zero then Ifptr p else Vtop
|
Uns p1 n1,
Uns p2 n2 =>
Uns (
plub p1 p2) (
Z.max n1 n2)
|
Uns p1 n1,
Sgn p2 n2 =>
sgn (
plub p1 p2) (
Z.max (
n1 + 1)
n2)
|
Sgn p1 n1,
Uns p2 n2 =>
sgn (
plub p1 p2) (
Z.max n1 (
n2 + 1))
|
Sgn p1 n1,
Sgn p2 n2 =>
sgn (
plub p1 p2) (
Z.max n1 n2)
|
F f1,
F f2 =>
if Float.eq_dec f1 f2 then v else ntop
|
FS f1,
FS f2 =>
if Float32.eq_dec f1 f2 then v else ntop
|
L i1,
L i2 =>
if Int64.eq i1 i2 then v else ntop
|
Ptr p1,
Ptr p2 =>
Ptr(
plub p1 p2)
|
Ptr p1,
Ifptr p2 =>
Ifptr(
plub p1 p2)
|
Ifptr p1,
Ptr p2 =>
Ifptr(
plub p1 p2)
|
Ifptr p1,
Ifptr p2 =>
Ifptr(
plub p1 p2)
| (
Ptr p1 |
Ifptr p1), (
Uns p2 _ |
Sgn p2 _) =>
Ifptr(
plub p1 p2)
| (
Uns p1 _ |
Sgn p1 _), (
Ptr p2 |
Ifptr p2) =>
Ifptr(
plub p1 p2)
|
_, (
Ptr p |
Ifptr p) | (
Ptr p |
Ifptr p),
_ =>
if va_strict tt then Ifptr p else Vtop
|
_,
_ =>
Vtop
end.
Lemma vlub_comm:
forall v w,
vlub v w =
vlub w v.
Proof.
Lemma vge_uns_uns':
forall p n,
vge (
uns p n) (
Uns p n).
Proof.
unfold uns;
intros.
destruct (
zle n 1).
auto with va.
destruct (
zle n 7).
auto with va.
destruct (
zle n 8).
auto with va.
destruct (
zle n 15).
auto with va.
destruct (
zle n 16);
auto with va.
Qed.
Lemma vge_uns_i':
forall p n i, 0 <=
n ->
is_uns n i ->
vge (
uns p n) (
I i).
Proof.
intros.
apply vge_trans with (
Uns p n).
apply vge_uns_uns'.
auto with va.
Qed.
Lemma vge_sgn_sgn':
forall p n,
vge (
sgn p n) (
Sgn p n).
Proof.
unfold sgn;
intros.
destruct (
zle n 8).
auto with va.
destruct (
zle n 16);
auto with va.
Qed.
Lemma vge_sgn_i':
forall p n i, 0 <
n ->
is_sgn n i ->
vge (
sgn p n) (
I i).
Proof.
intros.
apply vge_trans with (
Sgn p n).
apply vge_sgn_sgn'.
auto with va.
Qed.
Hint Resolve vge_uns_uns'
vge_uns_i'
vge_sgn_sgn'
vge_sgn_i' :
va.
Lemma usize_pos:
forall n, 0 <=
usize n.
Proof.
Lemma ssize_pos:
forall n, 0 <
ssize n.
Proof.
Lemma vge_lub_l:
forall x y,
vge (
vlub x y)
x.
Proof.
Lemma vge_lub_r:
forall x y,
vge (
vlub x y)
y.
Proof.
Lemma vmatch_lub_l:
forall v x y,
vmatch v x ->
vmatch v (
vlub x y).
Proof.
Lemma vmatch_lub_r:
forall v x y,
vmatch v y ->
vmatch v (
vlub x y).
Proof.
In the CompCert semantics, a memory load or store succeeds only
if the address is a pointer value. Hence, in strict mode,
aptr_of_aval x returns Pbot (no pointer value) if x
denotes a number or Vundef. However, in real code, memory
addresses are sometimes synthesized from integers, e.g. an absolute
address for a hardware device. It is a reasonable assumption
that these absolute addresses do not point within the stack block,
however. Therefore, in relaxed mode, aptr_of_aval x returns
Nonstack (any pointer outside the stack) when x denotes a number.
Definition aptr_of_aval (
v:
aval) :
aptr :=
match v with
|
Ptr p =>
p
|
Ifptr p =>
p
|
_ =>
if va_strict tt then Pbot else Nonstack
end.
Lemma match_aptr_of_aval:
forall b ofs av,
vmatch (
Vptr b ofs)
av ->
pmatch b ofs (
aptr_of_aval av).
Proof.
Definition vplub (
v:
aval) (
p:
aptr) :
aptr :=
match v with
|
Ptr q =>
plub q p
|
Ifptr q =>
plub q p
|
_ =>
p
end.
Lemma vmatch_vplub_l:
forall v x p,
vmatch v x ->
vmatch v (
Ifptr (
vplub x p)).
Proof.
intros.
unfold vplub;
inv H;
auto with va;
constructor;
eapply pmatch_lub_l;
eauto.
Qed.
Lemma pmatch_vplub:
forall b ofs x p,
pmatch b ofs p ->
pmatch b ofs (
vplub x p).
Proof.
Lemma vmatch_vplub_r:
forall v x p,
vmatch v (
Ifptr p) ->
vmatch v (
Ifptr (
vplub x p)).
Proof.
Inclusion
Definition vpincl (
v:
aval) (
p:
aptr) :
bool :=
match v with
|
Ptr q |
Ifptr q |
Uns q _ |
Sgn q _ =>
pincl q p
|
_ =>
true
end.
Lemma vpincl_ge:
forall x p,
vpincl x p =
true ->
vge (
Ifptr p)
x.
Proof.
unfold vpincl;
intros.
destruct x;
constructor;
apply pincl_ge;
auto.
Qed.
Lemma vpincl_sound:
forall v x p,
vpincl x p =
true ->
vmatch v x ->
vmatch v (
Ifptr p).
Proof.
Definition vincl (
v w:
aval) :
bool :=
match v,
w with
|
Vbot,
_ =>
true
|
I i,
I j =>
Int.eq_dec i j
|
I i,
Uns p n =>
Int.eq_dec (
Int.zero_ext n i)
i &&
zle 0
n
|
I i,
Sgn p n =>
Int.eq_dec (
Int.sign_ext n i)
i &&
zlt 0
n
|
Uns p n,
Uns q m =>
zle n m &&
pincl p q
|
Uns p n,
Sgn q m =>
zlt n m &&
pincl p q
|
Sgn p n,
Sgn q m =>
zle n m &&
pincl p q
|
L i,
L j =>
Int64.eq_dec i j
|
F i,
F j =>
Float.eq_dec i j
|
FS i,
FS j =>
Float32.eq_dec i j
|
Ptr p,
Ptr q =>
pincl p q
| (
Ptr p |
Ifptr p |
Uns p _ |
Sgn p _),
Ifptr q =>
pincl p q
|
_,
Ifptr _ =>
true
|
_,
_ =>
false
end.
Lemma vincl_ge:
forall v w,
vincl v w =
true ->
vge w v.
Proof.
unfold vincl;
destruct v;
destruct w;
intros;
try discriminate;
try InvBooleans;
try subst;
auto using pincl_ge with va.
-
constructor;
auto.
rewrite is_uns_zero_ext;
auto.
-
constructor;
auto.
rewrite is_sgn_sign_ext;
auto.
Qed.
Loading constants
Definition genv_match (
ge:
genv) :
Prop :=
(
forall id b,
Genv.find_symbol ge id =
Some b <->
bc b =
BCglob id)
/\(
forall b,
Plt b (
Genv.genv_next ge) ->
bc b <>
BCinvalid /\
bc b <>
BCstack).
Lemma symbol_address_sound:
forall ge id ofs,
genv_match ge ->
vmatch (
Genv.symbol_address ge id ofs) (
Ptr (
Gl id ofs)).
Proof.
Lemma vmatch_ptr_gl:
forall ge v id ofs,
genv_match ge ->
vmatch v (
Ptr (
Gl id ofs)) ->
Val.lessdef v (
Genv.symbol_address ge id ofs).
Proof.
Lemma vmatch_ptr_stk:
forall v ofs sp,
vmatch v (
Ptr(
Stk ofs)) ->
bc sp =
BCstack ->
Val.lessdef v (
Vptr sp ofs).
Proof.
intros.
inv H.
-
inv H3.
replace b with sp by (
eapply bc_stack;
eauto).
constructor.
-
constructor.
Qed.
Generic operations that just do constant propagation.
Definition unop_int (
sem:
int ->
int) (
x:
aval) :=
match x with I n =>
I (
sem n) |
_ =>
ntop1 x end.
Lemma unop_int_sound:
forall sem v x,
vmatch v x ->
vmatch (
match v with Vint i =>
Vint(
sem i) |
_ =>
Vundef end) (
unop_int sem x).
Proof.
intros.
unfold unop_int;
inv H;
auto with va.
Qed.
Definition binop_int (
sem:
int ->
int ->
int) (
x y:
aval) :=
match x,
y with I n,
I m =>
I (
sem n m) |
_,
_ =>
ntop2 x y end.
Lemma binop_int_sound:
forall sem v x w y,
vmatch v x ->
vmatch w y ->
vmatch (
match v,
w with Vint i,
Vint j =>
Vint(
sem i j) |
_,
_ =>
Vundef end) (
binop_int sem x y).
Proof.
intros.
unfold binop_int;
inv H;
auto with va;
inv H0;
auto with va.
Qed.
Definition unop_float (
sem:
float ->
float) (
x:
aval) :=
match x with F n =>
F (
sem n) |
_ =>
ntop1 x end.
Lemma unop_float_sound:
forall sem v x,
vmatch v x ->
vmatch (
match v with Vfloat i =>
Vfloat(
sem i) |
_ =>
Vundef end) (
unop_float sem x).
Proof.
intros.
unfold unop_float;
inv H;
auto with va.
Qed.
Definition binop_float (
sem:
float ->
float ->
float) (
x y:
aval) :=
match x,
y with F n,
F m =>
F (
sem n m) |
_,
_ =>
ntop2 x y end.
Lemma binop_float_sound:
forall sem v x w y,
vmatch v x ->
vmatch w y ->
vmatch (
match v,
w with Vfloat i,
Vfloat j =>
Vfloat(
sem i j) |
_,
_ =>
Vundef end) (
binop_float sem x y).
Proof.
intros.
unfold binop_float;
inv H;
auto with va;
inv H0;
auto with va.
Qed.
Definition unop_single (
sem:
float32 ->
float32) (
x:
aval) :=
match x with FS n =>
FS (
sem n) |
_ =>
ntop1 x end.
Lemma unop_single_sound:
forall sem v x,
vmatch v x ->
vmatch (
match v with Vsingle i =>
Vsingle(
sem i) |
_ =>
Vundef end) (
unop_single sem x).
Proof.
Definition binop_single (
sem:
float32 ->
float32 ->
float32) (
x y:
aval) :=
match x,
y with FS n,
FS m =>
FS (
sem n m) |
_,
_ =>
ntop2 x y end.
Lemma binop_single_sound:
forall sem v x w y,
vmatch v x ->
vmatch w y ->
vmatch (
match v,
w with Vsingle i,
Vsingle j =>
Vsingle(
sem i j) |
_,
_ =>
Vundef end) (
binop_single sem x y).
Proof.
intros.
unfold binop_single;
inv H;
auto with va;
inv H0;
auto with va.
Qed.
Logical operations
Definition shl (
v w:
aval) :=
match w with
|
I amount =>
if Int.ltu amount Int.iwordsize then
match v with
|
I i =>
I (
Int.shl i amount)
|
Uns p n =>
uns p (
n +
Int.unsigned amount)
|
Sgn p n =>
sgn p (
n +
Int.unsigned amount)
|
_ =>
ntop1 v
end
else ntop1 v
|
_ =>
ntop1 v
end.
Lemma shl_sound:
forall v w x y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.shl v w) (
shl x y).
Proof.
intros.
assert (
DEFAULT:
vmatch (
Val.shl v w) (
ntop1 x)).
{
destruct v;
destruct w;
simpl;
try constructor.
destruct (
Int.ltu i0 Int.iwordsize);
constructor.
}
destruct y;
auto.
simpl.
inv H0.
unfold Val.shl.
destruct (
Int.ltu n Int.iwordsize)
eqn:
LTU;
auto.
exploit Int.ltu_inv;
eauto.
intros RANGE.
inv H;
auto with va.
-
apply vmatch_uns'.
red;
intros.
rewrite Int.bits_shl by omega.
destruct (
zlt m (
Int.unsigned n)).
auto.
apply H1;
xomega.
-
apply vmatch_sgn'.
red;
intros.
zify.
rewrite !
Int.bits_shl by omega.
rewrite !
zlt_false by omega.
rewrite H1 by omega.
symmetry.
rewrite H1 by omega.
auto.
-
destruct v;
constructor.
Qed.
Definition shru (
v w:
aval) :=
match w with
|
I amount =>
if Int.ltu amount Int.iwordsize then
match v with
|
I i =>
I (
Int.shru i amount)
|
Uns p n =>
uns p (
n -
Int.unsigned amount)
|
_ =>
uns (
provenance v) (
Int.zwordsize -
Int.unsigned amount)
end
else ntop1 v
|
_ =>
ntop1 v
end.
Lemma shru_sound:
forall v w x y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.shru v w) (
shru x y).
Proof.
Definition shr (
v w:
aval) :=
match w with
|
I amount =>
if Int.ltu amount Int.iwordsize then
match v with
|
I i =>
I (
Int.shr i amount)
|
Uns p n =>
sgn p (
n + 1 -
Int.unsigned amount)
|
Sgn p n =>
sgn p (
n -
Int.unsigned amount)
|
_ =>
sgn (
provenance v) (
Int.zwordsize -
Int.unsigned amount)
end
else ntop1 v
|
_ =>
ntop1 v
end.
Lemma shr_sound:
forall v w x y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.shr v w) (
shr x y).
Proof.
Definition and (
v w:
aval) :=
match v,
w with
|
I i1,
I i2 =>
I (
Int.and i1 i2)
|
I i,
Uns p n |
Uns p n,
I i =>
uns p (
Z.min n (
usize i))
|
I i,
x |
x,
I i =>
uns (
provenance x) (
usize i)
|
Uns p1 n1,
Uns p2 n2 =>
uns (
plub p1 p2) (
Z.min n1 n2)
|
Uns p n,
_ =>
uns (
plub p (
provenance w))
n
|
_,
Uns p n =>
uns (
plub (
provenance v)
p)
n
|
Sgn p1 n1,
Sgn p2 n2 =>
sgn (
plub p1 p2) (
Z.max n1 n2)
|
_,
_ =>
ntop2 v w
end.
Lemma and_sound:
forall v w x y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.and v w) (
and x y).
Proof.
Definition or (
v w:
aval) :=
match v,
w with
|
I i1,
I i2 =>
I (
Int.or i1 i2)
|
I i,
Uns p n |
Uns p n,
I i =>
uns p (
Z.max n (
usize i))
|
Uns p1 n1,
Uns p2 n2 =>
uns (
plub p1 p2) (
Z.max n1 n2)
|
Sgn p1 n1,
Sgn p2 n2 =>
sgn (
plub p1 p2) (
Z.max n1 n2)
|
_,
_ =>
ntop2 v w
end.
Lemma or_sound:
forall v w x y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.or v w) (
or x y).
Proof.
Definition xor (
v w:
aval) :=
match v,
w with
|
I i1,
I i2 =>
I (
Int.xor i1 i2)
|
I i,
Uns p n |
Uns p n,
I i =>
uns p (
Z.max n (
usize i))
|
Uns p1 n1,
Uns p2 n2 =>
uns (
plub p1 p2) (
Z.max n1 n2)
|
Sgn p1 n1,
Sgn p2 n2 =>
sgn (
plub p1 p2) (
Z.max n1 n2)
|
_,
_ =>
ntop2 v w
end.
Lemma xor_sound:
forall v w x y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.xor v w) (
xor x y).
Proof.
Definition notint (
v:
aval) :=
match v with
|
I i =>
I (
Int.not i)
|
Uns p n =>
sgn p (
n + 1)
|
Sgn p n =>
Sgn p n
|
_ =>
ntop1 v
end.
Lemma notint_sound:
forall v x,
vmatch v x ->
vmatch (
Val.notint v) (
notint x).
Proof.
Definition ror (
x y:
aval) :=
match y,
x with
|
I j,
I i =>
if Int.ltu j Int.iwordsize then I(
Int.ror i j)
else ntop
|
_,
_ =>
ntop1 x
end.
Lemma ror_sound:
forall v w x y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.ror v w) (
ror x y).
Proof.
Definition rolm (
x:
aval) (
amount mask:
int) :=
match x with
|
I i =>
I (
Int.rolm i amount mask)
|
_ =>
uns (
provenance x) (
usize mask)
end.
Lemma rolm_sound:
forall v x amount mask,
vmatch v x ->
vmatch (
Val.rolm v amount mask) (
rolm x amount mask).
Proof.
Integer arithmetic operations
Definition neg :=
unop_int Int.neg.
Lemma neg_sound:
forall v x,
vmatch v x ->
vmatch (
Val.neg v) (
neg x).
Proof (
unop_int_sound Int.neg).
Definition add (
x y:
aval) :=
match x,
y with
|
I i,
I j =>
I (
Int.add i j)
|
Ptr p,
I i |
I i,
Ptr p =>
Ptr (
padd p i)
|
Ptr p,
_ |
_,
Ptr p =>
Ptr (
poffset p)
|
Ifptr p,
I i |
I i,
Ifptr p =>
Ifptr (
padd p i)
|
Ifptr p,
Ifptr q =>
Ifptr (
plub (
poffset p) (
poffset q))
|
Ifptr p,
_ |
_,
Ifptr p =>
Ifptr (
poffset p)
|
_,
_ =>
ntop2 x y
end.
Lemma add_sound:
forall v w x y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.add v w) (
add x y).
Proof.
Definition sub (
v w:
aval) :=
match v,
w with
|
I i1,
I i2 =>
I (
Int.sub i1 i2)
|
Ptr p,
I i =>
Ptr (
psub p i)
|
Ptr p,
_ =>
Ifptr (
poffset p)
|
Ifptr p,
I i =>
Ifptr (
psub p i)
|
Ifptr p,
_ =>
Ifptr (
plub (
poffset p) (
provenance w))
|
_,
_ =>
ntop2 v w
end.
Lemma sub_sound:
forall v w x y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.sub v w) (
sub x y).
Proof.
Definition mul :=
binop_int Int.mul.
Lemma mul_sound:
forall v x w y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.mul v w) (
mul x y).
Proof (
binop_int_sound Int.mul).
Definition mulhs :=
binop_int Int.mulhs.
Lemma mulhs_sound:
forall v x w y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.mulhs v w) (
mulhs x y).
Proof (
binop_int_sound Int.mulhs).
Definition mulhu :=
binop_int Int.mulhu.
Lemma mulhu_sound:
forall v x w y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.mulhu v w) (
mulhu x y).
Proof (
binop_int_sound Int.mulhu).
Definition divs (
v w:
aval) :=
match w,
v with
|
I i2,
I i1 =>
if Int.eq i2 Int.zero
||
Int.eq i1 (
Int.repr Int.min_signed) &&
Int.eq i2 Int.mone
then if va_strict tt then Vbot else ntop
else I (
Int.divs i1 i2)
|
_,
_ =>
ntop2 v w
end.
Lemma divs_sound:
forall v w u x y,
vmatch v x ->
vmatch w y ->
Val.divs v w =
Some u ->
vmatch u (
divs x y).
Proof.
Definition divu (
v w:
aval) :=
match w,
v with
|
I i2,
I i1 =>
if Int.eq i2 Int.zero
then if va_strict tt then Vbot else ntop
else I (
Int.divu i1 i2)
|
_,
_ =>
ntop2 v w
end.
Lemma divu_sound:
forall v w u x y,
vmatch v x ->
vmatch w y ->
Val.divu v w =
Some u ->
vmatch u (
divu x y).
Proof.
intros.
destruct v;
destruct w;
try discriminate;
simpl in H1.
destruct (
Int.eq i0 Int.zero)
eqn:
E;
inv H1.
inv H;
inv H0;
auto with va.
simpl.
rewrite E.
constructor.
Qed.
Definition mods (
v w:
aval) :=
match w,
v with
|
I i2,
I i1 =>
if Int.eq i2 Int.zero
||
Int.eq i1 (
Int.repr Int.min_signed) &&
Int.eq i2 Int.mone
then if va_strict tt then Vbot else ntop
else I (
Int.mods i1 i2)
|
_,
_ =>
ntop2 v w
end.
Lemma mods_sound:
forall v w u x y,
vmatch v x ->
vmatch w y ->
Val.mods v w =
Some u ->
vmatch u (
mods x y).
Proof.
Definition modu (
v w:
aval) :=
match w,
v with
|
I i2,
I i1 =>
if Int.eq i2 Int.zero
then if va_strict tt then Vbot else ntop
else I (
Int.modu i1 i2)
|
I i2,
_ =>
uns (
provenance v) (
usize i2)
|
_,
_ =>
ntop2 v w
end.
Lemma modu_sound:
forall v w u x y,
vmatch v x ->
vmatch w y ->
Val.modu v w =
Some u ->
vmatch u (
modu x y).
Proof.
Definition shrx (
v w:
aval) :=
match v,
w with
|
I i,
I j =>
if Int.ltu j (
Int.repr 31)
then I(
Int.shrx i j)
else ntop
|
_,
_ =>
ntop1 v
end.
Lemma shrx_sound:
forall v w u x y,
vmatch v x ->
vmatch w y ->
Val.shrx v w =
Some u ->
vmatch u (
shrx x y).
Proof.
intros.
destruct v;
destruct w;
try discriminate;
simpl in H1.
destruct (
Int.ltu i0 (
Int.repr 31))
eqn:
LTU;
inv H1.
unfold shrx;
inv H;
auto with va;
inv H0;
auto with va.
rewrite LTU;
auto with va.
Qed.
Floating-point arithmetic operations
Definition negf :=
unop_float Float.neg.
Lemma negf_sound:
forall v x,
vmatch v x ->
vmatch (
Val.negf v) (
negf x).
Proof (
unop_float_sound Float.neg).
Definition absf :=
unop_float Float.abs.
Lemma absf_sound:
forall v x,
vmatch v x ->
vmatch (
Val.absf v) (
absf x).
Proof (
unop_float_sound Float.abs).
Definition addf :=
binop_float Float.add.
Lemma addf_sound:
forall v x w y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.addf v w) (
addf x y).
Proof (
binop_float_sound Float.add).
Definition subf :=
binop_float Float.sub.
Lemma subf_sound:
forall v x w y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.subf v w) (
subf x y).
Proof (
binop_float_sound Float.sub).
Definition mulf :=
binop_float Float.mul.
Lemma mulf_sound:
forall v x w y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.mulf v w) (
mulf x y).
Proof (
binop_float_sound Float.mul).
Definition divf :=
binop_float Float.div.
Lemma divf_sound:
forall v x w y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.divf v w) (
divf x y).
Proof (
binop_float_sound Float.div).
Definition negfs :=
unop_single Float32.neg.
Lemma negfs_sound:
forall v x,
vmatch v x ->
vmatch (
Val.negfs v) (
negfs x).
Proof (
unop_single_sound Float32.neg).
Definition absfs :=
unop_single Float32.abs.
Lemma absfs_sound:
forall v x,
vmatch v x ->
vmatch (
Val.absfs v) (
absfs x).
Proof (
unop_single_sound Float32.abs).
Definition addfs :=
binop_single Float32.add.
Lemma addfs_sound:
forall v x w y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.addfs v w) (
addfs x y).
Proof (
binop_single_sound Float32.add).
Definition subfs :=
binop_single Float32.sub.
Lemma subfs_sound:
forall v x w y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.subfs v w) (
subfs x y).
Proof (
binop_single_sound Float32.sub).
Definition mulfs :=
binop_single Float32.mul.
Lemma mulfs_sound:
forall v x w y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.mulfs v w) (
mulfs x y).
Proof (
binop_single_sound Float32.mul).
Definition divfs :=
binop_single Float32.div.
Lemma divfs_sound:
forall v x w y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.divfs v w) (
divfs x y).
Proof (
binop_single_sound Float32.div).
Conversions
Definition zero_ext (
nbits:
Z) (
v:
aval) :=
match v with
|
I i =>
I (
Int.zero_ext nbits i)
|
Uns p n =>
uns p (
Z.min n nbits)
|
_ =>
uns (
provenance v)
nbits
end.
Lemma zero_ext_sound:
forall nbits v x,
vmatch v x ->
vmatch (
Val.zero_ext nbits v) (
zero_ext nbits x).
Proof.
Definition sign_ext (
nbits:
Z) (
v:
aval) :=
match v with
|
I i =>
I (
Int.sign_ext nbits i)
|
Uns p n =>
if zlt n nbits then Uns p n else sgn p nbits
|
Sgn p n =>
sgn p (
Z.min n nbits)
|
_ =>
sgn (
provenance v)
nbits
end.
Lemma sign_ext_sound:
forall nbits v x, 0 <
nbits ->
vmatch v x ->
vmatch (
Val.sign_ext nbits v) (
sign_ext nbits x).
Proof.
Definition singleoffloat (
v:
aval) :=
match v with
|
F f =>
FS (
Float.to_single f)
|
_ =>
ntop1 v
end.
Lemma singleoffloat_sound:
forall v x,
vmatch v x ->
vmatch (
Val.singleoffloat v) (
singleoffloat x).
Proof.
Definition floatofsingle (
v:
aval) :=
match v with
|
FS f =>
F (
Float.of_single f)
|
_ =>
ntop1 v
end.
Lemma floatofsingle_sound:
forall v x,
vmatch v x ->
vmatch (
Val.floatofsingle v) (
floatofsingle x).
Proof.
Definition intoffloat (
x:
aval) :=
match x with
|
F f =>
match Float.to_int f with
|
Some i =>
I i
|
None =>
if va_strict tt then Vbot else ntop
end
|
_ =>
ntop1 x
end.
Lemma intoffloat_sound:
forall v x w,
vmatch v x ->
Val.intoffloat v =
Some w ->
vmatch w (
intoffloat x).
Proof.
unfold Val.intoffloat;
intros.
destruct v;
try discriminate.
destruct (
Float.to_int f)
as [
i|]
eqn:
E;
simpl in H0;
inv H0.
inv H;
simpl;
auto with va.
rewrite E;
constructor.
Qed.
Definition intuoffloat (
x:
aval) :=
match x with
|
F f =>
match Float.to_intu f with
|
Some i =>
I i
|
None =>
if va_strict tt then Vbot else ntop
end
|
_ =>
ntop1 x
end.
Lemma intuoffloat_sound:
forall v x w,
vmatch v x ->
Val.intuoffloat v =
Some w ->
vmatch w (
intuoffloat x).
Proof.
unfold Val.intuoffloat;
intros.
destruct v;
try discriminate.
destruct (
Float.to_intu f)
as [
i|]
eqn:
E;
simpl in H0;
inv H0.
inv H;
simpl;
auto with va.
rewrite E;
constructor.
Qed.
Definition floatofint (
x:
aval) :=
match x with
|
I i =>
F(
Float.of_int i)
|
_ =>
ntop1 x
end.
Lemma floatofint_sound:
forall v x w,
vmatch v x ->
Val.floatofint v =
Some w ->
vmatch w (
floatofint x).
Proof.
unfold Val.floatofint;
intros.
destruct v;
inv H0.
inv H;
simpl;
auto with va.
Qed.
Definition floatofintu (
x:
aval) :=
match x with
|
I i =>
F(
Float.of_intu i)
|
_ =>
ntop1 x
end.
Lemma floatofintu_sound:
forall v x w,
vmatch v x ->
Val.floatofintu v =
Some w ->
vmatch w (
floatofintu x).
Proof.
unfold Val.floatofintu;
intros.
destruct v;
inv H0.
inv H;
simpl;
auto with va.
Qed.
Definition intofsingle (
x:
aval) :=
match x with
|
FS f =>
match Float32.to_int f with
|
Some i =>
I i
|
None =>
if va_strict tt then Vbot else ntop
end
|
_ =>
ntop1 x
end.
Lemma intofsingle_sound:
forall v x w,
vmatch v x ->
Val.intofsingle v =
Some w ->
vmatch w (
intofsingle x).
Proof.
unfold Val.intofsingle;
intros.
destruct v;
try discriminate.
destruct (
Float32.to_int f)
as [
i|]
eqn:
E;
simpl in H0;
inv H0.
inv H;
simpl;
auto with va.
rewrite E;
constructor.
Qed.
Definition intuofsingle (
x:
aval) :=
match x with
|
FS f =>
match Float32.to_intu f with
|
Some i =>
I i
|
None =>
if va_strict tt then Vbot else ntop
end
|
_ =>
ntop1 x
end.
Lemma intuofsingle_sound:
forall v x w,
vmatch v x ->
Val.intuofsingle v =
Some w ->
vmatch w (
intuofsingle x).
Proof.
unfold Val.intuofsingle;
intros.
destruct v;
try discriminate.
destruct (
Float32.to_intu f)
as [
i|]
eqn:
E;
simpl in H0;
inv H0.
inv H;
simpl;
auto with va.
rewrite E;
constructor.
Qed.
Definition singleofint (
x:
aval) :=
match x with
|
I i =>
FS(
Float32.of_int i)
|
_ =>
ntop1 x
end.
Lemma singleofint_sound:
forall v x w,
vmatch v x ->
Val.singleofint v =
Some w ->
vmatch w (
singleofint x).
Proof.
unfold Val.singleofint;
intros.
destruct v;
inv H0.
inv H;
simpl;
auto with va.
Qed.
Definition singleofintu (
x:
aval) :=
match x with
|
I i =>
FS(
Float32.of_intu i)
|
_ =>
ntop1 x
end.
Lemma singleofintu_sound:
forall v x w,
vmatch v x ->
Val.singleofintu v =
Some w ->
vmatch w (
singleofintu x).
Proof.
unfold Val.singleofintu;
intros.
destruct v;
inv H0.
inv H;
simpl;
auto with va.
Qed.
Definition floatofwords (
x y:
aval) :=
match x,
y with
|
I i,
I j =>
F(
Float.from_words i j)
|
_,
_ =>
ntop2 x y
end.
Lemma floatofwords_sound:
forall v w x y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.floatofwords v w) (
floatofwords x y).
Proof.
intros.
unfold floatofwords;
inv H;
simpl;
auto with va;
inv H0;
auto with va.
Qed.
Definition longofwords (
x y:
aval) :=
match y,
x with
|
I j,
I i =>
L(
Int64.ofwords i j)
|
_,
_ =>
ntop2 x y
end.
Lemma longofwords_sound:
forall v w x y,
vmatch v x ->
vmatch w y ->
vmatch (
Val.longofwords v w) (
longofwords x y).
Proof.
intros.
unfold longofwords;
inv H0;
inv H;
simpl;
auto with va.
Qed.
Definition loword (
x:
aval) :=
match x with
|
L i =>
I(
Int64.loword i)
|
_ =>
ntop1 x
end.
Lemma loword_sound:
forall v x,
vmatch v x ->
vmatch (
Val.loword v) (
loword x).
Proof.
destruct 1; simpl; auto with va.
Qed.
Definition hiword (
x:
aval) :=
match x with
|
L i =>
I(
Int64.hiword i)
|
_ =>
ntop1 x
end.
Lemma hiword_sound:
forall v x,
vmatch v x ->
vmatch (
Val.hiword v) (
hiword x).
Proof.
destruct 1; simpl; auto with va.
Qed.
Comparisons and variation intervals
Definition cmp_intv (
c:
comparison) (
i:
Z *
Z) (
n:
Z) :
abool :=
let (
lo,
hi) :=
i in
match c with
|
Ceq =>
if zlt n lo ||
zlt hi n then Maybe false else Btop
|
Cne =>
Btop
|
Clt =>
if zlt hi n then Maybe true else if zle n lo then Maybe false else Btop
|
Cle =>
if zle hi n then Maybe true else if zlt n lo then Maybe false else Btop
|
Cgt =>
if zlt n lo then Maybe true else if zle hi n then Maybe false else Btop
|
Cge =>
if zle n lo then Maybe true else if zlt hi n then Maybe false else Btop
end.
Definition zcmp (
c:
comparison) (
n1 n2:
Z) :
bool :=
match c with
|
Ceq =>
zeq n1 n2
|
Cne =>
negb (
zeq n1 n2)
|
Clt =>
zlt n1 n2
|
Cle =>
zle n1 n2
|
Cgt =>
zlt n2 n1
|
Cge =>
zle n2 n1
end.
Lemma zcmp_intv_sound:
forall c i x n,
fst i <=
x <=
snd i ->
cmatch (
Some (
zcmp c x n)) (
cmp_intv c i n).
Proof.
intros c [
lo hi]
x n;
simpl;
intros R.
destruct c;
unfold zcmp,
proj_sumbool.
-
destruct (
zlt n lo).
rewrite zeq_false by omega.
constructor.
destruct (
zlt hi n).
rewrite zeq_false by omega.
constructor.
constructor.
-
constructor.
-
destruct (
zlt hi n).
rewrite zlt_true by omega.
constructor.
destruct (
zle n lo).
rewrite zlt_false by omega.
constructor.
constructor.
-
destruct (
zle hi n).
rewrite zle_true by omega.
constructor.
destruct (
zlt n lo).
rewrite zle_false by omega.
constructor.
constructor.
-
destruct (
zlt n lo).
rewrite zlt_true by omega.
constructor.
destruct (
zle hi n).
rewrite zlt_false by omega.
constructor.
constructor.
-
destruct (
zle n lo).
rewrite zle_true by omega.
constructor.
destruct (
zlt hi n).
rewrite zle_false by omega.
constructor.
constructor.
Qed.
Lemma cmp_intv_None:
forall c i n,
cmatch None (
cmp_intv c i n).
Proof.
unfold cmp_intv;
intros.
destruct i as [
lo hi].
destruct c.
-
destruct (
zlt n lo).
constructor.
destruct (
zlt hi n);
constructor.
-
constructor.
-
destruct (
zlt hi n).
constructor.
destruct (
zle n lo);
constructor.
-
destruct (
zle hi n).
constructor.
destruct (
zlt n lo);
constructor.
-
destruct (
zlt n lo).
constructor.
destruct (
zle hi n);
constructor.
-
destruct (
zle n lo).
constructor.
destruct (
zlt hi n);
constructor.
Qed.
Definition uintv (
v:
aval) :
Z *
Z :=
match v with
|
I n => (
Int.unsigned n,
Int.unsigned n)
|
Uns _ n =>
if zlt n Int.zwordsize then (0,
two_p n - 1)
else (0,
Int.max_unsigned)
|
_ => (0,
Int.max_unsigned)
end.
Lemma uintv_sound:
forall n v,
vmatch (
Vint n)
v ->
fst (
uintv v) <=
Int.unsigned n <=
snd (
uintv v).
Proof.
Lemma cmpu_intv_sound:
forall valid c n1 v1 n2,
vmatch (
Vint n1)
v1 ->
cmatch (
Val.cmpu_bool valid c (
Vint n1) (
Vint n2)) (
cmp_intv c (
uintv v1) (
Int.unsigned n2)).
Proof.
Lemma cmpu_intv_sound_2:
forall valid c n1 v1 n2,
vmatch (
Vint n1)
v1 ->
cmatch (
Val.cmpu_bool valid c (
Vint n2) (
Vint n1)) (
cmp_intv (
swap_comparison c) (
uintv v1) (
Int.unsigned n2)).
Proof.
Definition sintv (
v:
aval) :
Z *
Z :=
match v with
|
I n => (
Int.signed n,
Int.signed n)
|
Uns _ n =>
if zlt n Int.zwordsize then (0,
two_p n - 1)
else (
Int.min_signed,
Int.max_signed)
|
Sgn _ n =>
if zlt n Int.zwordsize
then (
let x :=
two_p (
n-1)
in (-
x,
x-1))
else (
Int.min_signed,
Int.max_signed)
|
_ => (
Int.min_signed,
Int.max_signed)
end.
Lemma sintv_sound:
forall n v,
vmatch (
Vint n)
v ->
fst (
sintv v) <=
Int.signed n <=
snd (
sintv v).
Proof.
Lemma cmp_intv_sound:
forall c n1 v1 n2,
vmatch (
Vint n1)
v1 ->
cmatch (
Val.cmp_bool c (
Vint n1) (
Vint n2)) (
cmp_intv c (
sintv v1) (
Int.signed n2)).
Proof.
Lemma cmp_intv_sound_2:
forall c n1 v1 n2,
vmatch (
Vint n1)
v1 ->
cmatch (
Val.cmp_bool c (
Vint n2) (
Vint n1)) (
cmp_intv (
swap_comparison c) (
sintv v1) (
Int.signed n2)).
Proof.
Comparisons
Definition cmpu_bool (
c:
comparison) (
v w:
aval) :
abool :=
match v,
w with
|
I i1,
I i2 =>
Just (
Int.cmpu c i1 i2)
|
Ptr _,
I _ =>
cmp_different_blocks c
|
I _,
Ptr _ =>
cmp_different_blocks c
|
Ptr p1,
Ptr p2 =>
pcmp c p1 p2
|
Ptr p1, (
Ifptr p2 |
Uns p2 _ |
Sgn p2 _) =>
club (
pcmp c p1 p2) (
cmp_different_blocks c)
| (
Ifptr p1 |
Uns p1 _ |
Sgn p1 _),
Ptr p2 =>
club (
pcmp c p1 p2) (
cmp_different_blocks c)
|
_,
I i =>
club (
cmp_intv c (
uintv v) (
Int.unsigned i)) (
cmp_different_blocks c)
|
I i,
_ =>
club (
cmp_intv (
swap_comparison c) (
uintv w) (
Int.unsigned i)) (
cmp_different_blocks c)
|
_,
_ =>
Btop
end.
Lemma cmpu_bool_sound:
forall valid c v w x y,
vmatch v x ->
vmatch w y ->
cmatch (
Val.cmpu_bool valid c v w) (
cmpu_bool c x y).
Proof.
intros.
assert (
IP:
forall i b ofs,
cmatch (
Val.cmpu_bool valid c (
Vint i) (
Vptr b ofs)) (
cmp_different_blocks c)).
{
intros.
simpl.
destruct (
Int.eq i Int.zero && (
valid b (
Int.unsigned ofs) ||
valid b (
Int.unsigned ofs - 1))).
apply cmp_different_blocks_sound.
apply cmp_different_blocks_none.
}
assert (
PI:
forall i b ofs,
cmatch (
Val.cmpu_bool valid c (
Vptr b ofs) (
Vint i)) (
cmp_different_blocks c)).
{
intros.
simpl.
destruct (
Int.eq i Int.zero && (
valid b (
Int.unsigned ofs) ||
valid b (
Int.unsigned ofs - 1))).
apply cmp_different_blocks_sound.
apply cmp_different_blocks_none.
}
unfold cmpu_bool;
inversion H;
subst;
inversion H0;
subst;
auto using cmatch_top,
cmp_different_blocks_none,
pcmp_none,
cmatch_lub_l,
cmatch_lub_r,
pcmp_sound,
cmpu_intv_sound,
cmpu_intv_sound_2,
cmp_intv_None.
-
constructor.
Qed.
Definition cmp_bool (
c:
comparison) (
v w:
aval) :
abool :=
match v,
w with
|
I i1,
I i2 =>
Just (
Int.cmp c i1 i2)
|
_,
I i =>
cmp_intv c (
sintv v) (
Int.signed i)
|
I i,
_ =>
cmp_intv (
swap_comparison c) (
sintv w) (
Int.signed i)
|
_,
_ =>
Btop
end.
Lemma cmp_bool_sound:
forall c v w x y,
vmatch v x ->
vmatch w y ->
cmatch (
Val.cmp_bool c v w) (
cmp_bool c x y).
Proof.
Definition cmpf_bool (
c:
comparison) (
v w:
aval) :
abool :=
match v,
w with
|
F f1,
F f2 =>
Just (
Float.cmp c f1 f2)
|
_,
_ =>
Btop
end.
Lemma cmpf_bool_sound:
forall c v w x y,
vmatch v x ->
vmatch w y ->
cmatch (
Val.cmpf_bool c v w) (
cmpf_bool c x y).
Proof.
intros. inv H; try constructor; inv H0; constructor.
Qed.
Definition cmpfs_bool (
c:
comparison) (
v w:
aval) :
abool :=
match v,
w with
|
FS f1,
FS f2 =>
Just (
Float32.cmp c f1 f2)
|
_,
_ =>
Btop
end.
Lemma cmpfs_bool_sound:
forall c v w x y,
vmatch v x ->
vmatch w y ->
cmatch (
Val.cmpfs_bool c v w) (
cmpfs_bool c x y).
Proof.
intros. inv H; try constructor; inv H0; constructor.
Qed.
Definition maskzero (
x:
aval) (
mask:
int) :
abool :=
match x with
|
I i =>
Just (
Int.eq (
Int.and i mask)
Int.zero)
|
Uns p n =>
if Int.eq (
Int.zero_ext n mask)
Int.zero then Maybe true else Btop
|
_ =>
Btop
end.
Lemma maskzero_sound:
forall mask v x,
vmatch v x ->
cmatch (
Val.maskzero_bool v mask) (
maskzero x mask).
Proof.
Definition of_optbool (
ab:
abool) :
aval :=
match ab with
|
Just b =>
I (
if b then Int.one else Int.zero)
|
_ =>
Uns Pbot 1
end.
Lemma of_optbool_sound:
forall ob ab,
cmatch ob ab ->
vmatch (
Val.of_optbool ob) (
of_optbool ab).
Proof.
Definition resolve_branch (
ab:
abool) :
option bool :=
match ab with
|
Just b =>
Some b
|
Maybe b =>
Some b
|
_ =>
None
end.
Lemma resolve_branch_sound:
forall b ab b',
cmatch (
Some b)
ab ->
resolve_branch ab =
Some b' ->
b' =
b.
Proof.
intros. inv H; simpl in H0; congruence.
Qed.
Normalization at load time
Definition vnormalize (
chunk:
memory_chunk) (
v:
aval) :=
match chunk,
v with
|
_,
Vbot =>
Vbot
|
Mint8signed,
I i =>
I (
Int.sign_ext 8
i)
|
Mint8signed,
Uns p n =>
if zlt n 8
then Uns (
provenance v)
n else Sgn (
provenance v) 8
|
Mint8signed,
Sgn p n =>
Sgn (
provenance v) (
Z.min n 8)
|
Mint8signed,
_ =>
Sgn (
provenance v) 8
|
Mint8unsigned,
I i =>
I (
Int.zero_ext 8
i)
|
Mint8unsigned,
Uns p n =>
Uns (
provenance v) (
Z.min n 8)
|
Mint8unsigned,
_ =>
Uns (
provenance v) 8
|
Mint16signed,
I i =>
I (
Int.sign_ext 16
i)
|
Mint16signed,
Uns p n =>
if zlt n 16
then Uns (
provenance v)
n else Sgn (
provenance v) 16
|
Mint16signed,
Sgn p n =>
Sgn (
provenance v) (
Z.min n 16)
|
Mint16signed,
_ =>
Sgn (
provenance v) 16
|
Mint16unsigned,
I i =>
I (
Int.zero_ext 16
i)
|
Mint16unsigned,
Uns p n =>
Uns (
provenance v) (
Z.min n 16)
|
Mint16unsigned,
_ =>
Uns (
provenance v) 16
|
Mint32, (
I _ |
Uns _ _ |
Sgn _ _ |
Ptr _ |
Ifptr _) =>
v
|
Mint64,
L _ =>
v
|
Mint64, (
Ptr p |
Ifptr p |
Uns p _ |
Sgn p _) =>
Ifptr (
if va_strict tt then Pbot else p)
|
Mfloat32,
FS f =>
v
|
Mfloat64,
F f =>
v
|
Many32, (
I _ |
Uns _ _ |
Sgn _ _ |
Ptr _ |
Ifptr _ |
FS _) =>
v
|
Many64,
_ =>
v
|
_,
_ =>
Ifptr (
provenance v)
end.
Lemma vnormalize_sound:
forall chunk v x,
vmatch v x ->
vmatch (
Val.load_result chunk v) (
vnormalize chunk x).
Proof.
Lemma vnormalize_cast:
forall chunk m b ofs v p,
Mem.load chunk m b ofs =
Some v ->
vmatch v (
Ifptr p) ->
vmatch v (
vnormalize chunk (
Ifptr p)).
Proof.
intros.
exploit Mem.load_cast;
eauto.
exploit Mem.load_type;
eauto.
destruct chunk;
simpl;
intros.
-
rewrite H2.
destruct v;
simpl;
constructor.
omega.
apply is_sign_ext_sgn;
auto with va.
-
rewrite H2.
destruct v;
simpl;
constructor.
omega.
apply is_zero_ext_uns;
auto with va.
-
rewrite H2.
destruct v;
simpl;
constructor.
omega.
apply is_sign_ext_sgn;
auto with va.
-
rewrite H2.
destruct v;
simpl;
constructor.
omega.
apply is_zero_ext_uns;
auto with va.
-
auto.
-
destruct v;
try contradiction;
constructor.
-
destruct v;
try contradiction;
constructor.
-
destruct v;
try contradiction;
constructor.
-
auto.
-
auto.
Qed.
Remark poffset_monotone:
forall p q,
pge p q ->
pge (
poffset p) (
poffset q).
Proof.
destruct 1; simpl; auto with va.
Qed.
Remark provenance_monotone:
forall x y,
vge x y ->
pge (
provenance x) (
provenance y).
Proof.
Lemma vnormalize_monotone:
forall chunk x y,
vge x y ->
vge (
vnormalize chunk x) (
vnormalize chunk y).
Proof with
Abstracting memory blocks
Inductive acontent :
Type :=
|
ACany
|
ACval (
chunk:
memory_chunk) (
av:
aval).
Definition eq_acontent :
forall (
c1 c2:
acontent), {
c1=
c2} + {
c1<>
c2}.
Proof.
Record ablock :
Type :=
ABlock {
ab_contents:
ZMap.t acontent;
ab_summary:
aptr;
ab_default:
fst ab_contents =
ACany
}.
Local Notation "
a ##
b" := (
ZMap.get b a) (
at level 1).
Definition ablock_init (
p:
aptr) :
ablock :=
{|
ab_contents :=
ZMap.init ACany;
ab_summary :=
p;
ab_default :=
refl_equal _ |}.
Definition chunk_compat (
chunk chunk':
memory_chunk) :
bool :=
match chunk,
chunk'
with
| (
Mint8signed |
Mint8unsigned), (
Mint8signed |
Mint8unsigned) =>
true
| (
Mint16signed |
Mint16unsigned), (
Mint16signed |
Mint16unsigned) =>
true
|
Mint32,
Mint32 =>
true
|
Mfloat32,
Mfloat32 =>
true
|
Mint64,
Mint64 =>
true
|
Mfloat64,
Mfloat64 =>
true
|
Many32,
Many32 =>
true
|
Many64,
Many64 =>
true
|
_,
_ =>
false
end.
Definition ablock_load (
chunk:
memory_chunk) (
ab:
ablock) (
i:
Z) :
aval :=
match ab.(
ab_contents)##
i with
|
ACany =>
vnormalize chunk (
Ifptr ab.(
ab_summary))
|
ACval chunk'
av =>
if chunk_compat chunk chunk'
then vnormalize chunk av
else vnormalize chunk (
Ifptr ab.(
ab_summary))
end.
Definition ablock_load_anywhere (
chunk:
memory_chunk) (
ab:
ablock) :
aval :=
vnormalize chunk (
Ifptr ab.(
ab_summary)).
Function inval_after (
lo:
Z) (
hi:
Z) (
c:
ZMap.t acontent) {
wf (
Zwf lo)
hi } :
ZMap.t acontent :=
if zle lo hi
then inval_after lo (
hi - 1) (
ZMap.set hi ACany c)
else c.
Proof.
Definition inval_if (
hi:
Z) (
lo:
Z) (
c:
ZMap.t acontent) :=
match c##
lo with
|
ACany =>
c
|
ACval chunk av =>
if zle (
lo +
size_chunk chunk)
hi then c else ZMap.set lo ACany c
end.
Function inval_before (
hi:
Z) (
lo:
Z) (
c:
ZMap.t acontent) {
wf (
Zwf_up hi)
lo } :
ZMap.t acontent :=
if zlt lo hi
then inval_before hi (
lo + 1) (
inval_if hi lo c)
else c.
Proof.
Remark fst_inval_after:
forall lo hi c,
fst (
inval_after lo hi c) =
fst c.
Proof.
intros.
functional induction (
inval_after lo hi c);
auto.
Qed.
Remark fst_inval_before:
forall hi lo c,
fst (
inval_before hi lo c) =
fst c.
Proof.
Program Definition ablock_store (
chunk:
memory_chunk) (
ab:
ablock) (
i:
Z) (
av:
aval) :
ablock :=
{|
ab_contents :=
ZMap.set i (
ACval chunk av)
(
inval_before i (
i - 7)
(
inval_after (
i + 1) (
i +
size_chunk chunk - 1)
ab.(
ab_contents)));
ab_summary :=
vplub av ab.(
ab_summary);
ab_default :=
_ |}.
Next Obligation.
Definition ablock_store_anywhere (
chunk:
memory_chunk) (
ab:
ablock) (
av:
aval) :
ablock :=
ablock_init (
vplub av ab.(
ab_summary)).
Definition ablock_loadbytes (
ab:
ablock) :
aptr :=
ab.(
ab_summary).
Program Definition ablock_storebytes (
ab:
ablock) (
p:
aptr) (
ofs:
Z) (
sz:
Z) :=
{|
ab_contents :=
inval_before ofs (
ofs - 7)
(
inval_after ofs (
ofs +
sz - 1)
ab.(
ab_contents));
ab_summary :=
plub p ab.(
ab_summary);
ab_default :=
_ |}.
Next Obligation.
Definition ablock_storebytes_anywhere (
ab:
ablock) (
p:
aptr) :=
ablock_init (
plub p ab.(
ab_summary)).
Definition smatch (
m:
mem) (
b:
block) (
p:
aptr) :
Prop :=
(
forall chunk ofs v,
Mem.load chunk m b ofs =
Some v ->
vmatch v (
Ifptr p))
/\(
forall ofs b'
ofs'
q i,
Mem.loadbytes m b ofs 1 =
Some (
Fragment (
Vptr b'
ofs')
q i ::
nil) ->
pmatch b'
ofs'
p).
Remark loadbytes_load_ext:
forall b m m',
(
forall ofs n bytes,
Mem.loadbytes m'
b ofs n =
Some bytes ->
n >= 0 ->
Mem.loadbytes m b ofs n =
Some bytes) ->
forall chunk ofs v,
Mem.load chunk m'
b ofs =
Some v ->
Mem.load chunk m b ofs =
Some v.
Proof.
Lemma smatch_ext:
forall m b p m',
smatch m b p ->
(
forall ofs n bytes,
Mem.loadbytes m'
b ofs n =
Some bytes ->
n >= 0 ->
Mem.loadbytes m b ofs n =
Some bytes) ->
smatch m'
b p.
Proof.
intros.
destruct H.
split;
intros.
eapply H;
eauto.
eapply loadbytes_load_ext;
eauto.
eapply H1;
eauto.
apply H0;
eauto.
omega.
Qed.
Lemma smatch_inv:
forall m b p m',
smatch m b p ->
(
forall ofs n,
n >= 0 ->
Mem.loadbytes m'
b ofs n =
Mem.loadbytes m b ofs n) ->
smatch m'
b p.
Proof.
intros.
eapply smatch_ext;
eauto.
intros.
rewrite <-
H0;
eauto.
Qed.
Lemma smatch_ge:
forall m b p q,
smatch m b p ->
pge q p ->
smatch m b q.
Proof.
intros.
destruct H as [
A B].
split;
intros.
apply vmatch_ge with (
Ifptr p);
eauto with va.
apply pmatch_ge with p;
eauto with va.
Qed.
Lemma In_loadbytes:
forall m b byte n ofs bytes,
Mem.loadbytes m b ofs n =
Some bytes ->
In byte bytes ->
exists ofs',
ofs <=
ofs' <
ofs +
n /\
Mem.loadbytes m b ofs' 1 =
Some(
byte ::
nil).
Proof.
intros until n.
pattern n.
apply well_founded_ind with (
R :=
Zwf 0).
-
apply Zwf_well_founded.
-
intros sz REC ofs bytes LOAD IN.
destruct (
zle sz 0).
+
rewrite (
Mem.loadbytes_empty m b ofs sz)
in LOAD by auto.
inv LOAD.
contradiction.
+
exploit (
Mem.loadbytes_split m b ofs 1 (
sz - 1)
bytes).
replace (1 + (
sz - 1))
with sz by omega.
auto.
omega.
omega.
intros (
bytes1 &
bytes2 &
LOAD1 &
LOAD2 &
CONCAT).
subst bytes.
exploit Mem.loadbytes_length.
eexact LOAD1.
change (
nat_of_Z 1)
with 1%
nat.
intros LENGTH1.
rewrite in_app_iff in IN.
destruct IN.
*
destruct bytes1;
try discriminate.
destruct bytes1;
try discriminate.
simpl in H.
destruct H;
try contradiction.
subst m0.
exists ofs;
split.
omega.
auto.
*
exploit (
REC (
sz - 1)).
red;
omega.
eexact LOAD2.
auto.
intros (
ofs' &
A &
B).
exists ofs';
split.
omega.
auto.
Qed.
Lemma smatch_loadbytes:
forall m b p b'
ofs'
q i n ofs bytes,
Mem.loadbytes m b ofs n =
Some bytes ->
smatch m b p ->
In (
Fragment (
Vptr b'
ofs')
q i)
bytes ->
pmatch b'
ofs'
p.
Proof.
intros.
exploit In_loadbytes;
eauto.
intros (
ofs1 &
A &
B).
eapply H0;
eauto.
Qed.
Lemma loadbytes_provenance:
forall m b ofs'
byte n ofs bytes,
Mem.loadbytes m b ofs n =
Some bytes ->
Mem.loadbytes m b ofs' 1 =
Some (
byte ::
nil) ->
ofs <=
ofs' <
ofs +
n ->
In byte bytes.
Proof.
intros until n.
pattern n.
apply well_founded_ind with (
R :=
Zwf 0).
-
apply Zwf_well_founded.
-
intros sz REC ofs bytes LOAD LOAD1 IN.
exploit (
Mem.loadbytes_split m b ofs 1 (
sz - 1)
bytes).
replace (1 + (
sz - 1))
with sz by omega.
auto.
omega.
omega.
intros (
bytes1 &
bytes2 &
LOAD3 &
LOAD4 &
CONCAT).
subst bytes.
rewrite in_app_iff.
destruct (
zeq ofs ofs').
+
subst ofs'.
rewrite LOAD1 in LOAD3;
inv LOAD3.
left;
simpl;
auto.
+
right.
eapply (
REC (
sz - 1)).
red;
omega.
eexact LOAD4.
auto.
omega.
Qed.
Lemma storebytes_provenance:
forall m b ofs bytes m'
b'
ofs'
b''
ofs''
q i,
Mem.storebytes m b ofs bytes =
Some m' ->
Mem.loadbytes m'
b'
ofs' 1 =
Some (
Fragment (
Vptr b''
ofs'')
q i ::
nil) ->
In (
Fragment (
Vptr b''
ofs'')
q i)
bytes
\/
Mem.loadbytes m b'
ofs' 1 =
Some (
Fragment (
Vptr b''
ofs'')
q i ::
nil).
Proof.
Lemma store_provenance:
forall chunk m b ofs v m'
b'
ofs'
b''
ofs''
q i,
Mem.store chunk m b ofs v =
Some m' ->
Mem.loadbytes m'
b'
ofs' 1 =
Some (
Fragment (
Vptr b''
ofs'')
q i ::
nil) ->
v =
Vptr b''
ofs'' /\ (
chunk =
Mint32 \/
chunk =
Many32 \/
chunk =
Many64)
\/
Mem.loadbytes m b'
ofs' 1 =
Some (
Fragment (
Vptr b''
ofs'')
q i ::
nil).
Proof.
intros.
exploit storebytes_provenance;
eauto.
eapply Mem.store_storebytes;
eauto.
intros [
A|
A];
auto.
left.
generalize (
encode_val_shape chunk v).
intros ENC;
inv ENC.
-
split;
auto.
rewrite <-
H1 in A;
destruct A.
+
congruence.
+
exploit H5;
eauto.
intros (
j &
P &
Q);
congruence.
-
rewrite <-
H1 in A;
destruct A.
+
congruence.
+
exploit H3;
eauto.
intros [
byte P];
congruence.
-
rewrite <-
H1 in A;
destruct A.
+
congruence.
+
exploit H2;
eauto.
congruence.
Qed.
Lemma smatch_store:
forall chunk m b ofs v m'
b'
p av,
Mem.store chunk m b ofs v =
Some m' ->
smatch m b'
p ->
vmatch v av ->
smatch m'
b' (
vplub av p).
Proof.
Lemma smatch_storebytes:
forall m b ofs bytes m'
b'
p p',
Mem.storebytes m b ofs bytes =
Some m' ->
smatch m b'
p ->
(
forall b'
ofs'
q i,
In (
Fragment (
Vptr b'
ofs')
q i)
bytes ->
pmatch b'
ofs'
p') ->
smatch m'
b' (
plub p'
p).
Proof.
Definition bmatch (
m:
mem) (
b:
block) (
ab:
ablock) :
Prop :=
smatch m b ab.(
ab_summary) /\
forall chunk ofs v,
Mem.load chunk m b ofs =
Some v ->
vmatch v (
ablock_load chunk ab ofs).
Lemma bmatch_ext:
forall m b ab m',
bmatch m b ab ->
(
forall ofs n bytes,
Mem.loadbytes m'
b ofs n =
Some bytes ->
n >= 0 ->
Mem.loadbytes m b ofs n =
Some bytes) ->
bmatch m'
b ab.
Proof.
Lemma bmatch_inv:
forall m b ab m',
bmatch m b ab ->
(
forall ofs n,
n >= 0 ->
Mem.loadbytes m'
b ofs n =
Mem.loadbytes m b ofs n) ->
bmatch m'
b ab.
Proof.
intros.
eapply bmatch_ext;
eauto.
intros.
rewrite <-
H0;
eauto.
Qed.
Lemma ablock_load_sound:
forall chunk m b ofs v ab,
Mem.load chunk m b ofs =
Some v ->
bmatch m b ab ->
vmatch v (
ablock_load chunk ab ofs).
Proof.
intros. destruct H0. eauto.
Qed.
Lemma ablock_load_anywhere_sound:
forall chunk m b ofs v ab,
Mem.load chunk m b ofs =
Some v ->
bmatch m b ab ->
vmatch v (
ablock_load_anywhere chunk ab).
Proof.
Lemma ablock_init_sound:
forall m b p,
smatch m b p ->
bmatch m b (
ablock_init p).
Proof.
Lemma ablock_store_anywhere_sound:
forall chunk m b ofs v m'
b'
ab av,
Mem.store chunk m b ofs v =
Some m' ->
bmatch m b'
ab ->
vmatch v av ->
bmatch m'
b' (
ablock_store_anywhere chunk ab av).
Proof.
Remark inval_after_outside:
forall i lo hi c,
i <
lo \/
i >
hi -> (
inval_after lo hi c)##
i =
c##
i.
Proof.
Remark inval_after_contents:
forall chunk av i lo hi c,
(
inval_after lo hi c)##
i =
ACval chunk av ->
c##
i =
ACval chunk av /\ (
i <
lo \/
i >
hi).
Proof.
intros until c.
functional induction (
inval_after lo hi c);
intros.
destruct (
zeq i hi).
subst i.
rewrite inval_after_outside in H by omega.
rewrite ZMap.gss in H.
discriminate.
exploit IHt;
eauto.
intros [
A B].
rewrite ZMap.gso in A by auto.
split.
auto.
omega.
split.
auto.
omega.
Qed.
Remark inval_before_outside:
forall i hi lo c,
i <
lo \/
i >=
hi -> (
inval_before hi lo c)##
i =
c##
i.
Proof.
Remark inval_before_contents_1:
forall i chunk av lo hi c,
lo <=
i <
hi -> (
inval_before hi lo c)##
i =
ACval chunk av ->
c##
i =
ACval chunk av /\
i +
size_chunk chunk <=
hi.
Proof.
intros until c.
functional induction (
inval_before hi lo c);
intros.
-
destruct (
zeq lo i).
+
subst i.
rewrite inval_before_outside in H0 by omega.
unfold inval_if in H0.
destruct (
c##
lo)
eqn:
C.
congruence.
destruct (
zle (
lo +
size_chunk chunk0)
hi).
rewrite C in H0;
inv H0.
auto.
rewrite ZMap.gss in H0.
congruence.
+
exploit IHt.
omega.
auto.
intros [
A B];
split;
auto.
unfold inval_if in A.
destruct (
c##
lo)
eqn:
C.
auto.
destruct (
zle (
lo +
size_chunk chunk0)
hi);
auto.
rewrite ZMap.gso in A;
auto.
-
omegaContradiction.
Qed.
Lemma max_size_chunk:
forall chunk,
size_chunk chunk <= 8.
Proof.
destruct chunk; simpl; omega.
Qed.
Remark inval_before_contents:
forall i c chunk'
av'
j,
(
inval_before i (
i - 7)
c)##
j =
ACval chunk'
av' ->
c##
j =
ACval chunk'
av' /\ (
j +
size_chunk chunk' <=
i \/
i <=
j).
Proof.
Lemma ablock_store_contents:
forall chunk ab i av j chunk'
av',
(
ablock_store chunk ab i av).(
ab_contents)##
j =
ACval chunk'
av' ->
(
i =
j /\
chunk' =
chunk /\
av' =
av)
\/ (
ab.(
ab_contents)##
j =
ACval chunk'
av'
/\ (
j +
size_chunk chunk' <=
i \/
i +
size_chunk chunk <=
j)).
Proof.
Lemma chunk_compat_true:
forall c c',
chunk_compat c c' =
true ->
size_chunk c =
size_chunk c' /\
align_chunk c <=
align_chunk c' /\
type_of_chunk c =
type_of_chunk c'.
Proof.
destruct c, c'; intros; try discriminate; simpl; auto with va.
Qed.
Lemma ablock_store_sound:
forall chunk m b ofs v m'
ab av,
Mem.store chunk m b ofs v =
Some m' ->
bmatch m b ab ->
vmatch v av ->
bmatch m'
b (
ablock_store chunk ab ofs av).
Proof.
Lemma ablock_loadbytes_sound:
forall m b ab b'
ofs'
q i n ofs bytes,
Mem.loadbytes m b ofs n =
Some bytes ->
bmatch m b ab ->
In (
Fragment (
Vptr b'
ofs')
q i)
bytes ->
pmatch b'
ofs' (
ablock_loadbytes ab).
Proof.
Lemma ablock_storebytes_anywhere_sound:
forall m b ofs bytes p m'
b'
ab,
Mem.storebytes m b ofs bytes =
Some m' ->
(
forall b'
ofs'
q i,
In (
Fragment (
Vptr b'
ofs')
q i)
bytes ->
pmatch b'
ofs'
p) ->
bmatch m b'
ab ->
bmatch m'
b' (
ablock_storebytes_anywhere ab p).
Proof.
Lemma ablock_storebytes_contents:
forall ab p i sz j chunk'
av',
(
ablock_storebytes ab p i sz).(
ab_contents)##
j =
ACval chunk'
av' ->
ab.(
ab_contents)##
j =
ACval chunk'
av'
/\ (
j +
size_chunk chunk' <=
i \/
i +
Zmax sz 0 <=
j).
Proof.
Lemma ablock_storebytes_sound:
forall m b ofs bytes m'
p ab sz,
Mem.storebytes m b ofs bytes =
Some m' ->
length bytes =
nat_of_Z sz ->
(
forall b'
ofs'
q i,
In (
Fragment (
Vptr b'
ofs')
q i)
bytes ->
pmatch b'
ofs'
p) ->
bmatch m b ab ->
bmatch m'
b (
ablock_storebytes ab p ofs sz).
Proof.
Boolean equality
Definition bbeq (
ab1 ab2:
ablock) :
bool :=
eq_aptr ab1.(
ab_summary)
ab2.(
ab_summary) &&
PTree.beq (
fun c1 c2 =>
proj_sumbool (
eq_acontent c1 c2))
(
snd ab1.(
ab_contents)) (
snd ab2.(
ab_contents)).
Lemma bbeq_load:
forall ab1 ab2,
bbeq ab1 ab2 =
true ->
ab1.(
ab_summary) =
ab2.(
ab_summary)
/\ (
forall chunk i,
ablock_load chunk ab1 i =
ablock_load chunk ab2 i).
Proof.
Lemma bbeq_sound:
forall ab1 ab2,
bbeq ab1 ab2 =
true ->
forall m b,
bmatch m b ab1 <->
bmatch m b ab2.
Proof.
intros.
exploit bbeq_load;
eauto.
intros [
A B].
unfold bmatch.
rewrite A.
intuition.
rewrite <-
B;
eauto.
rewrite B;
eauto.
Qed.
Least upper bound
Definition combine_acontents_opt (
c1 c2:
option acontent) :
option acontent :=
match c1,
c2 with
|
Some (
ACval chunk1 v1),
Some (
ACval chunk2 v2) =>
if chunk_eq chunk1 chunk2 then Some(
ACval chunk1 (
vlub v1 v2))
else None
|
_,
_ =>
None
end.
Definition combine_contentmaps (
m1 m2:
ZMap.t acontent) :
ZMap.t acontent :=
(
ACany,
PTree.combine combine_acontents_opt (
snd m1) (
snd m2)).
Definition blub (
ab1 ab2:
ablock) :
ablock :=
{|
ab_contents :=
combine_contentmaps ab1.(
ab_contents)
ab2.(
ab_contents);
ab_summary :=
plub ab1.(
ab_summary)
ab2.(
ab_summary);
ab_default :=
refl_equal _ |}.
Definition combine_acontents (
c1 c2:
acontent) :
acontent :=
match c1,
c2 with
|
ACval chunk1 v1,
ACval chunk2 v2 =>
if chunk_eq chunk1 chunk2 then ACval chunk1 (
vlub v1 v2)
else ACany
|
_,
_ =>
ACany
end.
Lemma get_combine_contentmaps:
forall m1 m2 i,
fst m1 =
ACany ->
fst m2 =
ACany ->
ZMap.get i (
combine_contentmaps m1 m2) =
combine_acontents (
ZMap.get i m1) (
ZMap.get i m2).
Proof.
Lemma smatch_lub_l:
forall m b p q,
smatch m b p ->
smatch m b (
plub p q).
Proof.
Lemma smatch_lub_r:
forall m b p q,
smatch m b q ->
smatch m b (
plub p q).
Proof.
Lemma bmatch_lub_l:
forall m b x y,
bmatch m b x ->
bmatch m b (
blub x y).
Proof.
Lemma bmatch_lub_r:
forall m b x y,
bmatch m b y ->
bmatch m b (
blub x y).
Proof.
Abstracting read-only global variables
Definition romem :=
PTree.t ablock.
Definition romatch (
m:
mem) (
rm:
romem) :
Prop :=
forall b id ab,
bc b =
BCglob id ->
rm!
id =
Some ab ->
pge Glob ab.(
ab_summary)
/\
bmatch m b ab
/\
forall ofs, ~
Mem.perm m b ofs Max Writable.
Lemma romatch_store:
forall chunk m b ofs v m'
rm,
Mem.store chunk m b ofs v =
Some m' ->
romatch m rm ->
romatch m'
rm.
Proof.
Lemma romatch_storebytes:
forall m b ofs bytes m'
rm,
Mem.storebytes m b ofs bytes =
Some m' ->
romatch m rm ->
romatch m'
rm.
Proof.
Lemma romatch_ext:
forall m rm m',
romatch m rm ->
(
forall b id ofs n bytes,
bc b =
BCglob id ->
Mem.loadbytes m'
b ofs n =
Some bytes ->
Mem.loadbytes m b ofs n =
Some bytes) ->
(
forall b id ofs p,
bc b =
BCglob id ->
Mem.perm m'
b ofs Max p ->
Mem.perm m b ofs Max p) ->
romatch m'
rm.
Proof.
intros;
red;
intros.
exploit H;
eauto.
intros (
A &
B &
C).
split.
auto.
split.
apply bmatch_ext with m;
auto.
intros.
eapply H0;
eauto.
intros;
red;
intros.
elim (
C ofs).
eapply H1;
eauto.
Qed.
Lemma romatch_free:
forall m b lo hi m'
rm,
Mem.free m b lo hi =
Some m' ->
romatch m rm ->
romatch m'
rm.
Proof.
Lemma romatch_alloc:
forall m b lo hi m'
rm,
Mem.alloc m lo hi = (
m',
b) ->
bc_below bc (
Mem.nextblock m) ->
romatch m rm ->
romatch m'
rm.
Proof.
Abstracting memory states
Record amem :
Type :=
AMem {
am_stack:
ablock;
am_glob:
PTree.t ablock;
am_nonstack:
aptr;
am_top:
aptr
}.
Record mmatch (
m:
mem) (
am:
amem) :
Prop :=
mk_mem_match {
mmatch_stack:
forall b,
bc b =
BCstack ->
bmatch m b am.(
am_stack);
mmatch_glob:
forall id ab b,
bc b =
BCglob id ->
am.(
am_glob)!
id =
Some ab ->
bmatch m b ab;
mmatch_nonstack:
forall b,
bc b <>
BCstack ->
bc b <>
BCinvalid ->
smatch m b am.(
am_nonstack);
mmatch_top:
forall b,
bc b <>
BCinvalid ->
smatch m b am.(
am_top);
mmatch_below:
bc_below bc (
Mem.nextblock m)
}.
Definition minit (
p:
aptr) :=
{|
am_stack :=
ablock_init p;
am_glob :=
PTree.empty _;
am_nonstack :=
p;
am_top :=
p |}.
Definition mbot :=
minit Pbot.
Definition mtop :=
minit Ptop.
Definition load (
chunk:
memory_chunk) (
rm:
romem) (
m:
amem) (
p:
aptr) :
aval :=
match p with
|
Pbot =>
if va_strict tt then Vbot else Vtop
|
Gl id ofs =>
match rm!
id with
|
Some ab =>
ablock_load chunk ab (
Int.unsigned ofs)
|
None =>
match m.(
am_glob)!
id with
|
Some ab =>
ablock_load chunk ab (
Int.unsigned ofs)
|
None =>
vnormalize chunk (
Ifptr m.(
am_nonstack))
end
end
|
Glo id =>
match rm!
id with
|
Some ab =>
ablock_load_anywhere chunk ab
|
None =>
match m.(
am_glob)!
id with
|
Some ab =>
ablock_load_anywhere chunk ab
|
None =>
vnormalize chunk (
Ifptr m.(
am_nonstack))
end
end
|
Stk ofs =>
ablock_load chunk m.(
am_stack) (
Int.unsigned ofs)
|
Stack =>
ablock_load_anywhere chunk m.(
am_stack)
|
Glob |
Nonstack =>
vnormalize chunk (
Ifptr m.(
am_nonstack))
|
Ptop =>
vnormalize chunk (
Ifptr m.(
am_top))
end.
Definition loadv (
chunk:
memory_chunk) (
rm:
romem) (
m:
amem) (
addr:
aval) :
aval :=
load chunk rm m (
aptr_of_aval addr).
Definition store (
chunk:
memory_chunk) (
m:
amem) (
p:
aptr) (
av:
aval) :
amem :=
{|
am_stack :=
match p with
|
Stk ofs =>
ablock_store chunk m.(
am_stack) (
Int.unsigned ofs)
av
|
Stack |
Ptop =>
ablock_store_anywhere chunk m.(
am_stack)
av
|
_ =>
m.(
am_stack)
end;
am_glob :=
match p with
|
Gl id ofs =>
let ab :=
match m.(
am_glob)!
id with Some ab =>
ab |
None =>
ablock_init m.(
am_nonstack)
end in
PTree.set id (
ablock_store chunk ab (
Int.unsigned ofs)
av)
m.(
am_glob)
|
Glo id =>
let ab :=
match m.(
am_glob)!
id with Some ab =>
ab |
None =>
ablock_init m.(
am_nonstack)
end in
PTree.set id (
ablock_store_anywhere chunk ab av)
m.(
am_glob)
|
Glob |
Nonstack |
Ptop =>
PTree.empty _
|
_ =>
m.(
am_glob)
end;
am_nonstack :=
match p with
|
Gl _ _ |
Glo _ |
Glob |
Nonstack |
Ptop =>
vplub av m.(
am_nonstack)
|
_ =>
m.(
am_nonstack)
end;
am_top :=
vplub av m.(
am_top)
|}.
Definition storev (
chunk:
memory_chunk) (
m:
amem) (
addr:
aval) (
v:
aval):
amem :=
store chunk m (
aptr_of_aval addr)
v.
Definition loadbytes (
m:
amem) (
rm:
romem) (
p:
aptr) :
aptr :=
match p with
|
Pbot =>
if va_strict tt then Pbot else Ptop
|
Gl id _ |
Glo id =>
match rm!
id with
|
Some ab =>
ablock_loadbytes ab
|
None =>
match m.(
am_glob)!
id with
|
Some ab =>
ablock_loadbytes ab
|
None =>
m.(
am_nonstack)
end
end
|
Stk _ |
Stack =>
ablock_loadbytes m.(
am_stack)
|
Glob |
Nonstack =>
m.(
am_nonstack)
|
Ptop =>
m.(
am_top)
end.
Definition storebytes (
m:
amem) (
dst:
aptr) (
sz:
Z) (
p:
aptr) :
amem :=
{|
am_stack :=
match dst with
|
Stk ofs =>
ablock_storebytes m.(
am_stack)
p (
Int.unsigned ofs)
sz
|
Stack |
Ptop =>
ablock_storebytes_anywhere m.(
am_stack)
p
|
_ =>
m.(
am_stack)
end;
am_glob :=
match dst with
|
Gl id ofs =>
let ab :=
match m.(
am_glob)!
id with Some ab =>
ab |
None =>
ablock_init m.(
am_nonstack)
end in
PTree.set id (
ablock_storebytes ab p (
Int.unsigned ofs)
sz)
m.(
am_glob)
|
Glo id =>
let ab :=
match m.(
am_glob)!
id with Some ab =>
ab |
None =>
ablock_init m.(
am_nonstack)
end in
PTree.set id (
ablock_storebytes_anywhere ab p)
m.(
am_glob)
|
Glob |
Nonstack |
Ptop =>
PTree.empty _
|
_ =>
m.(
am_glob)
end;
am_nonstack :=
match dst with
|
Gl _ _ |
Glo _ |
Glob |
Nonstack |
Ptop =>
plub p m.(
am_nonstack)
|
_ =>
m.(
am_nonstack)
end;
am_top :=
plub p m.(
am_top)
|}.
Theorem load_sound:
forall chunk m b ofs v rm am p,
Mem.load chunk m b (
Int.unsigned ofs) =
Some v ->
romatch m rm ->
mmatch m am ->
pmatch b ofs p ->
vmatch v (
load chunk rm am p).
Proof.
Theorem loadv_sound:
forall chunk m addr v rm am aaddr,
Mem.loadv chunk m addr =
Some v ->
romatch m rm ->
mmatch m am ->
vmatch addr aaddr ->
vmatch v (
loadv chunk rm am aaddr).
Proof.
Theorem store_sound:
forall chunk m b ofs v m'
am p av,
Mem.store chunk m b (
Int.unsigned ofs)
v =
Some m' ->
mmatch m am ->
pmatch b ofs p ->
vmatch v av ->
mmatch m' (
store chunk am p av).
Proof.
Theorem storev_sound:
forall chunk m addr v m'
am aaddr av,
Mem.storev chunk m addr v =
Some m' ->
mmatch m am ->
vmatch addr aaddr ->
vmatch v av ->
mmatch m' (
storev chunk am aaddr av).
Proof.
Theorem loadbytes_sound:
forall m b ofs sz bytes am rm p,
Mem.loadbytes m b (
Int.unsigned ofs)
sz =
Some bytes ->
romatch m rm ->
mmatch m am ->
pmatch b ofs p ->
forall b'
ofs'
q i,
In (
Fragment (
Vptr b'
ofs')
q i)
bytes ->
pmatch b'
ofs' (
loadbytes am rm p).
Proof.
Theorem storebytes_sound:
forall m b ofs bytes m'
am p sz q,
Mem.storebytes m b (
Int.unsigned ofs)
bytes =
Some m' ->
mmatch m am ->
pmatch b ofs p ->
length bytes =
nat_of_Z sz ->
(
forall b'
ofs'
qt i,
In (
Fragment (
Vptr b'
ofs')
qt i)
bytes ->
pmatch b'
ofs'
q) ->
mmatch m' (
storebytes am p sz q).
Proof.
Lemma mmatch_ext:
forall m am m',
mmatch m am ->
(
forall b ofs n bytes,
bc b <>
BCinvalid ->
n >= 0 ->
Mem.loadbytes m'
b ofs n =
Some bytes ->
Mem.loadbytes m b ofs n =
Some bytes) ->
Ple (
Mem.nextblock m) (
Mem.nextblock m') ->
mmatch m'
am.
Proof.
intros.
inv H.
constructor;
intros.
-
apply bmatch_ext with m;
auto with va.
-
apply bmatch_ext with m;
eauto with va.
-
apply smatch_ext with m;
auto with va.
-
apply smatch_ext with m;
auto with va.
-
red;
intros.
exploit mmatch_below0;
eauto.
xomega.
Qed.
Lemma mmatch_free:
forall m b lo hi m'
am,
Mem.free m b lo hi =
Some m' ->
mmatch m am ->
mmatch m'
am.
Proof.
Lemma mmatch_top':
forall m am,
mmatch m am ->
mmatch m mtop.
Proof.
Boolean equality
Definition mbeq (
m1 m2:
amem) :
bool :=
eq_aptr m1.(
am_top)
m2.(
am_top)
&&
eq_aptr m1.(
am_nonstack)
m2.(
am_nonstack)
&&
bbeq m1.(
am_stack)
m2.(
am_stack)
&&
PTree.beq bbeq m1.(
am_glob)
m2.(
am_glob).
Lemma mbeq_sound:
forall m1 m2,
mbeq m1 m2 =
true ->
forall m,
mmatch m m1 <->
mmatch m m2.
Proof.
unfold mbeq;
intros.
InvBooleans.
rewrite PTree.beq_correct in H1.
split;
intros M;
inv M;
constructor;
intros.
-
erewrite <-
bbeq_sound;
eauto.
-
specialize (
H1 id).
rewrite H4 in H1.
destruct (
am_glob m1)!
id eqn:
G;
try contradiction.
erewrite <-
bbeq_sound;
eauto.
-
rewrite <-
H;
eauto.
-
rewrite <-
H0;
eauto.
-
auto.
-
erewrite bbeq_sound;
eauto.
-
specialize (
H1 id).
rewrite H4 in H1.
destruct (
am_glob m2)!
id eqn:
G;
try contradiction.
erewrite bbeq_sound;
eauto.
-
rewrite H;
eauto.
-
rewrite H0;
eauto.
-
auto.
Qed.
Least upper bound
Definition combine_ablock (
ob1 ob2:
option ablock) :
option ablock :=
match ob1,
ob2 with
|
Some b1,
Some b2 =>
Some (
blub b1 b2)
|
_,
_ =>
None
end.
Definition mlub (
m1 m2:
amem) :
amem :=
{|
am_stack :=
blub m1.(
am_stack)
m2.(
am_stack);
am_glob :=
PTree.combine combine_ablock m1.(
am_glob)
m2.(
am_glob);
am_nonstack :=
plub m1.(
am_nonstack)
m2.(
am_nonstack);
am_top :=
plub m1.(
am_top)
m2.(
am_top) |}.
Lemma mmatch_lub_l:
forall m x y,
mmatch m x ->
mmatch m (
mlub x y).
Proof.
Lemma mmatch_lub_r:
forall m x y,
mmatch m y ->
mmatch m (
mlub x y).
Proof.
End MATCH.
Monotonicity properties when the block classification changes.
Lemma genv_match_exten:
forall ge (
bc1 bc2:
block_classification),
genv_match bc1 ge ->
(
forall b id,
bc1 b =
BCglob id <->
bc2 b =
BCglob id) ->
(
forall b,
bc1 b =
BCother ->
bc2 b =
BCother) ->
genv_match bc2 ge.
Proof.
intros. destruct H as [A B]. split; intros.
- rewrite <- H0. eauto.
- exploit B; eauto. destruct (bc1 b) eqn:BC1.
+ intuition congruence.
+ rewrite H0 in BC1. intuition congruence.
+ intuition congruence.
+ erewrite H1 by eauto. intuition congruence.
Qed.
Lemma romatch_exten:
forall (
bc1 bc2:
block_classification)
m rm,
romatch bc1 m rm ->
(
forall b id,
bc2 b =
BCglob id <->
bc1 b =
BCglob id) ->
romatch bc2 m rm.
Proof.
intros;
red;
intros.
rewrite H0 in H1.
exploit H;
eauto.
intros (
A &
B &
C).
split;
auto.
split;
auto.
assert (
PM:
forall b ofs p,
pmatch bc1 b ofs p ->
pmatch bc1 b ofs (
ab_summary ab) ->
pmatch bc2 b ofs p).
{
intros.
assert (
pmatch bc1 b0 ofs Glob)
by (
eapply pmatch_ge;
eauto).
inv H5.
assert (
bc2 b0 =
BCglob id0)
by (
rewrite H0;
auto).
inv H3;
econstructor;
eauto with va.
}
assert (
VM:
forall v x,
vmatch bc1 v x ->
vmatch bc1 v (
Ifptr (
ab_summary ab)) ->
vmatch bc2 v x).
{
intros.
inv H3;
constructor;
auto;
inv H4;
eapply PM;
eauto.
}
destruct B as [[
B1 B2]
B3].
split.
split.
-
intros.
apply VM;
eauto.
-
intros.
apply PM;
eauto.
-
intros.
apply VM;
eauto.
Qed.
Definition bc_incr (
bc1 bc2:
block_classification) :
Prop :=
forall b,
bc1 b <>
BCinvalid ->
bc2 b =
bc1 b.
Section MATCH_INCR.
Variables bc1 bc2:
block_classification.
Hypothesis INCR:
bc_incr bc1 bc2.
Lemma pmatch_incr:
forall b ofs p,
pmatch bc1 b ofs p ->
pmatch bc2 b ofs p.
Proof.
induction 1;
assert (
bc2 b =
bc1 b)
by (
apply INCR;
congruence);
econstructor;
eauto with va.
rewrite H0;
eauto.
Qed.
Lemma vmatch_incr:
forall v x,
vmatch bc1 v x ->
vmatch bc2 v x.
Proof.
induction 1;
constructor;
auto;
apply pmatch_incr;
auto.
Qed.
Lemma smatch_incr:
forall m b p,
smatch bc1 m b p ->
smatch bc2 m b p.
Proof.
Lemma bmatch_incr:
forall m b ab,
bmatch bc1 m b ab ->
bmatch bc2 m b ab.
Proof.
End MATCH_INCR.
Matching and memory injections.
Definition inj_of_bc (
bc:
block_classification) :
meminj :=
fun b =>
match bc b with BCinvalid =>
None |
_ =>
Some(
b, 0)
end.
Lemma inj_of_bc_valid:
forall (
bc:
block_classification)
b,
bc b <>
BCinvalid ->
inj_of_bc bc b =
Some(
b, 0).
Proof.
intros.
unfold inj_of_bc.
destruct (
bc b);
congruence.
Qed.
Lemma inj_of_bc_inv:
forall (
bc:
block_classification)
b b'
delta,
inj_of_bc bc b =
Some(
b',
delta) ->
bc b <>
BCinvalid /\
b' =
b /\
delta = 0.
Proof.
unfold inj_of_bc;
intros.
destruct (
bc b);
intuition congruence.
Qed.
Lemma pmatch_inj:
forall bc b ofs p,
pmatch bc b ofs p ->
inj_of_bc bc b =
Some(
b, 0).
Proof.
Lemma vmatch_inj:
forall bc v x,
vmatch bc v x ->
Val.inject (
inj_of_bc bc)
v v.
Proof.
Lemma vmatch_list_inj:
forall bc vl xl,
list_forall2 (
vmatch bc)
vl xl ->
Val.inject_list (
inj_of_bc bc)
vl vl.
Proof.
induction 1;
constructor.
eapply vmatch_inj;
eauto.
auto.
Qed.
Lemma mmatch_inj:
forall bc m am,
mmatch bc m am ->
bc_below bc (
Mem.nextblock m) ->
Mem.inject (
inj_of_bc bc)
m m.
Proof.
Lemma inj_of_bc_preserves_globals:
forall bc ge,
genv_match bc ge ->
meminj_preserves_globals ge (
inj_of_bc bc).
Proof.
Lemma pmatch_inj_top:
forall bc b b'
delta ofs,
inj_of_bc bc b =
Some(
b',
delta) ->
pmatch bc b ofs Ptop.
Proof.
intros.
exploit inj_of_bc_inv;
eauto.
intros (
A &
B &
C).
constructor;
auto.
Qed.
Lemma vmatch_inj_top:
forall bc v v',
Val.inject (
inj_of_bc bc)
v v' ->
vmatch bc v Vtop.
Proof.
Lemma mmatch_inj_top:
forall bc m m',
Mem.inject (
inj_of_bc bc)
m m' ->
mmatch bc m mtop.
Proof.
Abstracting RTL register environments
Module AVal <:
SEMILATTICE_WITH_TOP.
Definition t :=
aval.
Definition eq (
x y:
t) := (
x =
y).
Definition eq_refl:
forall x,
eq x x := (@
refl_equal t).
Definition eq_sym:
forall x y,
eq x y ->
eq y x := (@
sym_equal t).
Definition eq_trans:
forall x y z,
eq x y ->
eq y z ->
eq x z := (@
trans_equal t).
Definition beq (
x y:
t) :
bool :=
proj_sumbool (
eq_aval x y).
Lemma beq_correct:
forall x y,
beq x y =
true ->
eq x y.
Proof.
unfold beq;
intros.
InvBooleans.
auto. Qed.
Definition ge :=
vge.
Lemma ge_refl:
forall x y,
eq x y ->
ge x y.
Proof.
Lemma ge_trans:
forall x y z,
ge x y ->
ge y z ->
ge x z.
Proof.
Definition bot :
t :=
Vbot.
Lemma ge_bot:
forall x,
ge x bot.
Proof.
intros. constructor. Qed.
Definition top :
t :=
Vtop.
Lemma ge_top:
forall x,
ge top x.
Proof.
Definition lub :=
vlub.
Lemma ge_lub_left:
forall x y,
ge (
lub x y)
x.
Proof vge_lub_l.
Lemma ge_lub_right:
forall x y,
ge (
lub x y)
y.
Proof vge_lub_r.
End AVal.
Module AE :=
LPMap(
AVal).
Definition aenv :=
AE.t.
Section MATCHENV.
Variable bc:
block_classification.
Definition ematch (
e:
regset) (
ae:
aenv) :
Prop :=
forall r,
vmatch bc e#
r (
AE.get r ae).
Lemma ematch_ge:
forall e ae1 ae2,
ematch e ae1 ->
AE.ge ae2 ae1 ->
ematch e ae2.
Proof.
intros;
red;
intros.
apply vmatch_ge with (
AE.get r ae1);
auto.
apply H0.
Qed.
Lemma ematch_update:
forall e ae v av r,
ematch e ae ->
vmatch bc v av ->
ematch (
e#
r <-
v) (
AE.set r av ae).
Proof.
intros;
red;
intros.
rewrite AE.gsspec.
rewrite PMap.gsspec.
destruct (
peq r0 r);
auto.
red;
intros.
specialize (
H xH).
subst ae.
simpl in H.
inv H.
unfold AVal.eq;
red;
intros.
subst av.
inv H0.
Qed.
Fixpoint einit_regs (
rl:
list reg) :
aenv :=
match rl with
|
r1 ::
rs =>
AE.set r1 (
Ifptr Nonstack) (
einit_regs rs)
|
nil =>
AE.top
end.
Lemma ematch_init:
forall rl vl,
(
forall v,
In v vl ->
vmatch bc v (
Ifptr Nonstack)) ->
ematch (
init_regs vl rl) (
einit_regs rl).
Proof.
Fixpoint eforget (
rl:
list reg) (
ae:
aenv) {
struct rl} :
aenv :=
match rl with
|
nil =>
ae
|
r1 ::
rs =>
eforget rs (
AE.set r1 Vtop ae)
end.
Lemma eforget_ge:
forall rl ae,
AE.ge (
eforget rl ae)
ae.
Proof.
Lemma ematch_forget:
forall e rl ae,
ematch e ae ->
ematch e (
eforget rl ae).
Proof.
End MATCHENV.
Lemma ematch_incr:
forall bc bc'
e ae,
ematch bc e ae ->
bc_incr bc bc' ->
ematch bc'
e ae.
Proof.
intros;
red;
intros.
apply vmatch_incr with bc;
auto.
Qed.
Lattice for dataflow analysis
Module VA <:
SEMILATTICE.
Inductive t' :=
Bot |
State (
ae:
aenv) (
am:
amem).
Definition t :=
t'.
Definition eq (
x y:
t) :=
match x,
y with
|
Bot,
Bot =>
True
|
State ae1 am1,
State ae2 am2 =>
AE.eq ae1 ae2 /\
forall bc m,
mmatch bc m am1 <->
mmatch bc m am2
|
_,
_ =>
False
end.
Lemma eq_refl:
forall x,
eq x x.
Proof.
destruct x;
simpl.
auto.
split.
apply AE.eq_refl.
tauto.
Qed.
Lemma eq_sym:
forall x y,
eq x y ->
eq y x.
Proof.
destruct x,
y;
simpl;
auto.
intros [
A B].
split.
apply AE.eq_sym;
auto.
intros.
rewrite B.
tauto.
Qed.
Lemma eq_trans:
forall x y z,
eq x y ->
eq y z ->
eq x z.
Proof.
destruct x,
y,
z;
simpl;
try tauto.
intros [
A B] [
C D];
split.
eapply AE.eq_trans;
eauto.
intros.
rewrite B;
auto.
Qed.
Definition beq (
x y:
t) :
bool :=
match x,
y with
|
Bot,
Bot =>
true
|
State ae1 am1,
State ae2 am2 =>
AE.beq ae1 ae2 &&
mbeq am1 am2
|
_,
_ =>
false
end.
Lemma beq_correct:
forall x y,
beq x y =
true ->
eq x y.
Proof.
destruct x,
y;
simpl;
intros.
auto.
congruence.
congruence.
InvBooleans;
split.
apply AE.beq_correct;
auto.
intros.
apply mbeq_sound;
auto.
Qed.
Definition ge (
x y:
t) :
Prop :=
match x,
y with
|
_,
Bot =>
True
|
Bot,
_ =>
False
|
State ae1 am1,
State ae2 am2 =>
AE.ge ae1 ae2 /\
forall bc m,
mmatch bc m am2 ->
mmatch bc m am1
end.
Lemma ge_refl:
forall x y,
eq x y ->
ge x y.
Proof.
destruct x,
y;
simpl;
try tauto.
intros [
A B];
split.
apply AE.ge_refl;
auto.
intros.
rewrite B;
auto.
Qed.
Lemma ge_trans:
forall x y z,
ge x y ->
ge y z ->
ge x z.
Proof.
destruct x,
y,
z;
simpl;
try tauto.
intros [
A B] [
C D];
split.
eapply AE.ge_trans;
eauto.
eauto.
Qed.
Definition bot :
t :=
Bot.
Lemma ge_bot:
forall x,
ge x bot.
Proof.
destruct x; simpl; auto.
Qed.
Definition lub (
x y:
t) :
t :=
match x,
y with
|
Bot,
_ =>
y
|
_,
Bot =>
x
|
State ae1 am1,
State ae2 am2 =>
State (
AE.lub ae1 ae2) (
mlub am1 am2)
end.
Lemma ge_lub_left:
forall x y,
ge (
lub x y)
x.
Proof.
Lemma ge_lub_right:
forall x y,
ge (
lub x y)
y.
Proof.
End VA.
Hint Constructors cmatch :
va.
Hint Constructors pmatch:
va.
Hint Constructors vmatch:
va.
Hint Resolve cnot_sound symbol_address_sound
shl_sound shru_sound shr_sound
and_sound or_sound xor_sound notint_sound
ror_sound rolm_sound
neg_sound add_sound sub_sound
mul_sound mulhs_sound mulhu_sound
divs_sound divu_sound mods_sound modu_sound shrx_sound
negf_sound absf_sound
addf_sound subf_sound mulf_sound divf_sound
negfs_sound absfs_sound
addfs_sound subfs_sound mulfs_sound divfs_sound
zero_ext_sound sign_ext_sound singleoffloat_sound floatofsingle_sound
intoffloat_sound intuoffloat_sound floatofint_sound floatofintu_sound
intofsingle_sound intuofsingle_sound singleofint_sound singleofintu_sound
longofwords_sound loword_sound hiword_sound
cmpu_bool_sound cmp_bool_sound cmpf_bool_sound cmpfs_bool_sound
maskzero_sound :
va.