Module Allocation


Register allocation by external oracle and a posteriori validation.

Require Import FSets.
Require FSetAVLplus.
Require Archi.
Require Import Coqlib.
Require Import Ordered.
Require Import Errors.
Require Import Maps.
Require Import Lattice.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Memdata.
Require Import Op.
Require Import Registers.
Require Import RTL.
Require Import Kildall.
Require Import Locations.
Require Import Conventions.
Require Import RTLtyping.
Require Import LTL.
Require Import Annotations.

The validation algorithm used here is described in "Validating register allocation and spilling", by Silvain Rideau and Xavier Leroy, in Compiler Construction (CC 2010), LNCS 6011, Springer, 2010.

Structural checks


As a first pass, we check the LTL code returned by the external oracle against the original RTL code for structural conformance. Each RTL instruction was transformed into a LTL basic block whose shape must agree with the RTL instruction. For example, if the RTL instruction is Istore(Mint32, addr, args, src, s), the LTL basic block must be of the following shape: The block_shape type below describes all possible cases of structural maching between an RTL instruction and an LTL basic block.

Definition moves := list (loc * loc)%type.

Inductive block_shape: Type :=
  | BSnop (mv: moves) (s: node)
  | BSmove (src: reg) (dst: reg) (mv: moves) (s: node)
  | BSmakelong (src1 src2: reg) (dst: reg) (mv: moves) (s: node)
  | BSlowlong (src: reg) (dst: reg) (mv: moves) (s: node)
  | BShighlong (src: reg) (dst: reg) (mv: moves) (s: node)
  | BSop (op: operation) (args: list reg) (res: reg)
         (mv1: moves) (args': list mreg) (res': mreg)
         (mv2: moves) (s: node)
  | BSopdead (op: operation) (args: list reg) (res: reg)
         (mv: moves) (s: node)
  | BSload (alpha: annotation) (chunk: memory_chunk) (addr: addressing) (args: list reg) (dst: reg)
         (mv1: moves) (args': list mreg) (dst': mreg)
         (mv2: moves) (s: node)
  | BSloaddead (alpha: annotation) (chunk: memory_chunk) (addr: addressing) (args: list reg) (dst: reg)
         (mv: moves) (s: node)
  | BSload2 (alpha1 alpha2: annotation) (addr1 addr2: addressing) (args: list reg) (dst: reg)
         (mv1: moves) (args1': list mreg) (dst1': mreg)
         (mv2: moves) (args2': list mreg) (dst2': mreg)
         (mv3: moves) (s: node)
  | BSload2_1 (alpha: annotation) (addr: addressing) (args: list reg) (dst: reg)
         (mv1: moves) (args': list mreg) (dst': mreg)
         (mv2: moves) (s: node)
  | BSload2_2 (alpha alpha': annotation) (addr addr': addressing) (args: list reg) (dst: reg)
         (mv1: moves) (args': list mreg) (dst': mreg)
         (mv2: moves) (s: node)
  | BSstore (alpha: annotation) (chunk: memory_chunk) (addr: addressing) (args: list reg) (src: reg)
         (mv1: moves) (args': list mreg) (src': mreg)
         (s: node)
  | BSstore2 (alpha1 alpha2: annotation) (addr1 addr2: addressing) (args: list reg) (src: reg)
             (mv1: moves) (args1': list mreg) (src1': mreg)
         (mv2: moves) (args2': list mreg) (src2': mreg)
         (s: node)
  | BScall (sg: signature) (ros: reg + ident) (args: list reg) (res: reg)
         (mv1: moves) (ros': mreg + ident) (mv2: moves) (s: node)
  | BStailcall (sg: signature) (ros: reg + ident) (args: list reg)
         (mv1: moves) (ros': mreg + ident)
  | BSbuiltin (ef: external_function)
         (args: list (builtin_arg reg)) (res: builtin_res reg)
         (mv1: moves) (args': list (builtin_arg loc)) (res': builtin_res mreg)
         (mv2: moves) (s: node)
  | BScond (cond: condition) (args: list reg)
         (mv: moves) (args': list mreg) (s1 s2: node)
  | BSjumptable (arg: reg)
         (mv: moves) (arg': mreg) (tbl: list node)
  | BSreturn (arg: option reg)
         (mv: moves).

Extract the move instructions at the beginning of block b. Return the list of moves and the suffix of b after the moves.

Fixpoint extract_moves (accu: moves) (b: bblock) {struct b} : moves * bblock :=
  match b with
  | Lgetstack sl ofs ty dst :: b' =>
      extract_moves ((S sl ofs ty, R dst) :: accu) b'
  | Lsetstack src sl ofs ty :: b' =>
      extract_moves ((R src, S sl ofs ty) :: accu) b'
  | Lop op args res :: b' =>
      match is_move_operation op args with
      | Some arg => extract_moves ((R arg, R res) :: accu) b'
      | None => (List.rev accu, b)
      end
  | _ =>
      (List.rev accu, b)
  end.

Definition check_succ (s: node) (b: LTL.bblock) : bool :=
  match b with
  | Lbranch s' :: _ => peq s s'
  | _ => false
  end.

Notation "'do' X <- A ; B" := (match A with Some X => B | None => None end)
         (at level 200, X ident, A at level 100, B at level 200)
         : option_monad_scope.

Notation "'assertion' A ; B" := (if A then B else None)
         (at level 200, A at level 100, B at level 200)
         : option_monad_scope.

Local Open Scope option_monad_scope.

Classify operations into moves, 64-bit integer operations, and other arithmetic/logical operations.

Inductive operation_kind: operation -> list reg -> Type :=
  | operation_Omove: forall arg, operation_kind Omove (arg :: nil)
  | operation_Omakelong: forall arg1 arg2, operation_kind Omakelong (arg1 :: arg2 :: nil)
  | operation_Olowlong: forall arg, operation_kind Olowlong (arg :: nil)
  | operation_Ohighlong: forall arg, operation_kind Ohighlong (arg :: nil)
  | operation_other: forall op args, operation_kind op args.

Definition classify_operation (op: operation) (args: list reg) : operation_kind op args :=
  match op, args with
  | Omove, arg::nil => operation_Omove arg
  | Omakelong, arg1::arg2::nil => operation_Omakelong arg1 arg2
  | Olowlong, arg::nil => operation_Olowlong arg
  | Ohighlong, arg::nil => operation_Ohighlong arg
  | op, args => operation_other op args
  end.

Make sure there are no intteger overflow in the annotations.

Definition safe_range_dec: forall x, { fst x < Int.max_unsigned - 4 /\ snd x < Int.max_unsigned - 4 } + { fst x >= Int.max_unsigned - 4 \/ snd x >= Int.max_unsigned - 4 }.
Proof.
  intros. destruct (zlt (fst x) (Int.max_unsigned - 4)).
  - destruct (zlt (snd x) (Int.max_unsigned - 4)).
    + left. auto.
    + right; auto.
  - right; auto.
Defined.

Definition safe_range_dec': forall x, { fst x < Int.max_unsigned - 4 /\ snd x < Int.max_unsigned - 4 } + { ~ (fst x < Int.max_unsigned - 4 /\ snd x < Int.max_unsigned - 4) }.
Proof.
  intros; destruct (safe_range_dec x).
  - left; auto.
  - right. red; intros [A B].
    destruct o; omega.
Qed.

Definition forall_: forall A (P: A -> Prop) (l: list A) (P_dec: forall x, { P x } + { ~ P x }),
    {forall x, In x l -> P x } + { exists x, In x l /\ ~ P x }.
Proof.
  induction l; intros.
  - left. intros; inv H.
  - destruct (P_dec a).
    + destruct (IHl P_dec).
      * left; intros; inv H; auto.
      * right. destruct e as [x [Y Z]].
        exists x; split; auto. eapply in_cons; auto.
    + right. exists a; split; auto. eapply in_eq.
Qed.

Definition unsigned_range_of_ablock (alpha: ablock) :=
  match alpha with
  | ABlocal _ _ (base, bound) | ABglobal _ (base, bound) => (Int.unsigned base, Int.unsigned bound)
  end.
  
Check RTL instruction i against LTL basic block b. On success, return Some with a block_shape describing the correspondence. On error, return None.

Definition pair_instr_block
               (i: RTL.instruction) (b: LTL.bblock) : option block_shape :=
  match i with
  | Inop s =>
      let (mv, b1) := extract_moves nil b in
      assertion (check_succ s b1); Some(BSnop mv s)
  | Iop op args res s =>
      match classify_operation op args with
      | operation_Omove arg =>
          let (mv, b1) := extract_moves nil b in
          assertion (check_succ s b1); Some(BSmove arg res mv s)
      | operation_Omakelong arg1 arg2 =>
          let (mv, b1) := extract_moves nil b in
          assertion (check_succ s b1); Some(BSmakelong arg1 arg2 res mv s)
      | operation_Olowlong arg =>
          let (mv, b1) := extract_moves nil b in
          assertion (check_succ s b1); Some(BSlowlong arg res mv s)
      | operation_Ohighlong arg =>
          let (mv, b1) := extract_moves nil b in
          assertion (check_succ s b1); Some(BShighlong arg res mv s)
      | operation_other _ _ =>
          let (mv1, b1) := extract_moves nil b in
          match b1 with
          | Lop op' args' res' :: b2 =>
              let (mv2, b3) := extract_moves nil b2 in
              assertion (eq_operation op op');
              assertion (check_succ s b3);
              Some(BSop op args res mv1 args' res' mv2 s)
          | _ =>
              assertion (check_succ s b1);
              Some(BSopdead op args res mv1 s)
          end
      end
  | Iload alpha chunk addr args dst s =>
      let (mv1, b1) := extract_moves nil b in
      match b1 with
      | Lload alpha' chunk' addr' args' dst' :: b2 =>
          if chunk_eq chunk Mint64 then
            assertion (chunk_eq chunk' Mint32);
            let (mv2, b3) := extract_moves nil b2 in
            match b3 with
            | Lload alpha'' chunk'' addr'' args'' dst'' :: b4 =>
                let (mv3, b5) := extract_moves nil b4 in
                assertion (chunk_eq chunk'' Mint32);
                assertion (eq_addressing addr addr');
                assertion (option_eq eq_addressing (offset_addressing addr (Int.repr 4)) (Some addr''));
                assertion ((pair_eq_dec ident_eq (list_eq_dec ablock_eq)) alpha alpha');
                assertion ((pair_eq_dec ident_eq (list_eq_dec ablock_eq)) (offset_annotation alpha (Int.repr 4)) alpha'');
                assertion (forall_ _ _ (List.map unsigned_range_of_ablock (snd alpha)) safe_range_dec');
                assertion (check_succ s b5);
                Some(BSload2 alpha alpha'' addr addr'' args dst mv1 args' dst' mv2 args'' dst'' mv3 s)
            | _ =>
                assertion (check_succ s b3);
                if (eq_addressing addr addr') then
                  assertion ((pair_eq_dec ident_eq (list_eq_dec ablock_eq)) alpha alpha');
                  Some(BSload2_1 alpha addr args dst mv1 args' dst' mv2 s)
                else
                 (assertion (option_eq eq_addressing (offset_addressing addr (Int.repr 4)) (Some addr'));
                  assertion ((pair_eq_dec ident_eq (list_eq_dec ablock_eq)) (offset_annotation alpha (Int.repr 4)) alpha');
                  assertion (forall_ _ _ (List.map unsigned_range_of_ablock (snd alpha)) safe_range_dec');
                  Some(BSload2_2 alpha alpha' addr addr' args dst mv1 args' dst' mv2 s))
            end
          else (
            let (mv2, b3) := extract_moves nil b2 in
            assertion (chunk_eq chunk chunk');
            assertion (eq_addressing addr addr');
            assertion ((pair_eq_dec ident_eq (list_eq_dec ablock_eq)) alpha alpha');
            assertion (check_succ s b3);
            Some(BSload alpha chunk addr args dst mv1 args' dst' mv2 s))
      | _ =>
          assertion (check_succ s b1);
          Some(BSloaddead alpha chunk addr args dst mv1 s)
      end
  | Istore alpha chunk addr args src s =>
      let (mv1, b1) := extract_moves nil b in
      match b1 with
      | Lstore alpha' chunk' addr' args' src' :: b2 =>
          if chunk_eq chunk Mint64 then
            let (mv2, b3) := extract_moves nil b2 in
            match b3 with
            | Lstore alpha'' chunk'' addr'' args'' src'' :: b4 =>
                assertion (chunk_eq chunk' Mint32);
                assertion (chunk_eq chunk'' Mint32);
                assertion (eq_addressing addr addr');
                assertion (option_eq eq_addressing (offset_addressing addr (Int.repr 4)) (Some addr''));
                assertion ((pair_eq_dec ident_eq (list_eq_dec ablock_eq)) alpha alpha');
                assertion ((pair_eq_dec ident_eq (list_eq_dec ablock_eq)) (offset_annotation alpha (Int.repr 4)) alpha'');
                assertion (forall_ _ _ (List.map unsigned_range_of_ablock (snd alpha)) safe_range_dec');
                assertion (check_succ s b4);
                Some(BSstore2 alpha alpha'' addr addr'' args src mv1 args' src' mv2 args'' src'' s)
            | _ => None
            end
          else (
            assertion (chunk_eq chunk chunk');
            assertion (eq_addressing addr addr');
            assertion ((pair_eq_dec ident_eq (list_eq_dec ablock_eq)) alpha alpha');
            assertion (check_succ s b2);
            Some(BSstore alpha chunk addr args src mv1 args' src' s))
      | _ => None
      end
  | Icall sg ros args res s =>
      let (mv1, b1) := extract_moves nil b in
      match b1 with
      | Lcall sg' ros' :: b2 =>
          let (mv2, b3) := extract_moves nil b2 in
          assertion (signature_eq sg sg');
          assertion (check_succ s b3);
          Some(BScall sg ros args res mv1 ros' mv2 s)
      | _ => None
      end
  | Itailcall sg ros args =>
      let (mv1, b1) := extract_moves nil b in
      match b1 with
      | Ltailcall sg' ros' :: b2 =>
          assertion (signature_eq sg sg');
          Some(BStailcall sg ros args mv1 ros')
      | _ => None
      end
  | Ibuiltin ef args res s =>
      let (mv1, b1) := extract_moves nil b in
      match b1 with
      | Lbuiltin ef' args' res' :: b2 =>
          let (mv2, b3) := extract_moves nil b2 in
          assertion (external_function_eq ef ef');
          assertion (check_succ s b3);
          Some(BSbuiltin ef args res mv1 args' res' mv2 s)
      | _ => None
      end
  | Icond cond args s1 s2 =>
      let (mv1, b1) := extract_moves nil b in
      match b1 with
      | Lcond cond' args' s1' s2' :: b2 =>
          assertion (eq_condition cond cond');
          assertion (peq s1 s1');
          assertion (peq s2 s2');
          Some(BScond cond args mv1 args' s1 s2)
      | _ => None
      end
  | Ijumptable arg tbl =>
      let (mv1, b1) := extract_moves nil b in
      match b1 with
      | Ljumptable arg' tbl' :: b2 =>
          assertion (list_eq_dec peq tbl tbl');
          Some(BSjumptable arg mv1 arg' tbl)
      | _ => None
      end
  | Ireturn arg =>
      let (mv1, b1) := extract_moves nil b in
      match b1 with
      | Lreturn :: b2 => Some(BSreturn arg mv1)
      | _ => None
      end
  end.

Check all instructions of the RTL function f1 against the corresponding basic blocks of LTL function f2. Return a map from CFG nodes to block_shape info.

Definition pair_codes (f1: RTL.function) (f2: LTL.function) : PTree.t block_shape :=
  PTree.combine
    (fun opti optb => do i <- opti; do b <- optb; pair_instr_block i b)
    (RTL.fn_code f1) (LTL.fn_code f2).

Check the entry point code of the LTL function f2. It must be a sequence of moves that branches to the same node as the entry point of RTL function f1.

Definition pair_entrypoints (f1: RTL.function) (f2: LTL.function) : option moves :=
  do b <- (LTL.fn_code f2)!(LTL.fn_entrypoint f2);
  let (mv, b1) := extract_moves nil b in
  assertion (check_succ (RTL.fn_entrypoint f1) b1);
  Some mv.

Representing sets of equations between RTL registers and LTL locations.


The Rideau-Leroy validation algorithm manipulates sets of equations of the form pseudoreg = location [kind], meaning:

Inductive equation_kind : Type := Full | Low | High.

Record equation := Eq {
  ekind: equation_kind;
  ereg: reg;
  eloc: loc
}.

We use AVL finite sets to represent sets of equations. Therefore, we need total orders over equations and their components.

Module IndexedEqKind <: INDEXED_TYPE.
  Definition t := equation_kind.
  Definition index (x: t) :=
    match x with Full => 1%positive | Low => 2%positive | High => 3%positive end.
  Lemma index_inj: forall x y, index x = index y -> x = y.
Proof.
destruct x; destruct y; simpl; congruence. Qed.
  Definition eq (x y: t) : {x=y} + {x<>y}.
Proof.
decide equality. Defined.
End IndexedEqKind.

Module OrderedEqKind := OrderedIndexed(IndexedEqKind).

This is an order over equations that is lexicographic on ereg, then eloc, then ekind.

Module OrderedEquation <: OrderedType.
  Definition t := equation.
  Definition eq (x y: t) := x = y.
  Definition lt (x y: t) :=
    Plt (ereg x) (ereg y) \/ (ereg x = ereg y /\
    (OrderedLoc.lt (eloc x) (eloc y) \/ (eloc x = eloc y /\
    OrderedEqKind.lt (ekind x) (ekind y)))).
  Lemma eq_refl : forall x : t, eq x x.
  Proof (@refl_equal t).
  Lemma eq_sym : forall x y : t, eq x y -> eq y x.
  Proof (@sym_equal t).
  Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
  Proof (@trans_equal t).
  Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
Proof.
    unfold lt; intros.
    destruct H.
    destruct H0. left; eapply Plt_trans; eauto.
    destruct H0. rewrite <- H0. auto.
    destruct H. rewrite H.
    destruct H0. auto.
    destruct H0. right; split; auto.
    intuition.
    left; eapply OrderedLoc.lt_trans; eauto.
    left; congruence.
    left; congruence.
    right; split. congruence. eapply OrderedEqKind.lt_trans; eauto.
  Qed.
  Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
Proof.
    unfold lt, eq; intros; red; intros. subst y. intuition.
    eelim Plt_strict; eauto.
    eelim OrderedLoc.lt_not_eq; eauto. red; auto.
    eelim OrderedEqKind.lt_not_eq; eauto. red; auto.
  Qed.
  Definition compare : forall x y : t, Compare lt eq x y.
Proof.
    intros.
    destruct (OrderedPositive.compare (ereg x) (ereg y)).
  - apply LT. red; auto.
  - destruct (OrderedLoc.compare (eloc x) (eloc y)).
    + apply LT. red; auto.
    + destruct (OrderedEqKind.compare (ekind x) (ekind y)).
      * apply LT. red; auto.
      * apply EQ. red in e; red in e0; red in e1; red.
        destruct x; destruct y; simpl in *; congruence.
      * apply GT. red; auto.
   + apply GT. red; auto.
  - apply GT. red; auto.
  Defined.
  Definition eq_dec (x y: t) : {x = y} + {x <> y}.
Proof.
    intros. decide equality.
    apply Loc.eq.
    apply peq.
    apply IndexedEqKind.eq.
  Defined.
End OrderedEquation.

This is an alternate order over equations that is lexicgraphic on eloc, then ereg, then ekind.

Module OrderedEquation' <: OrderedType.
  Definition t := equation.
  Definition eq (x y: t) := x = y.
  Definition lt (x y: t) :=
    OrderedLoc.lt (eloc x) (eloc y) \/ (eloc x = eloc y /\
    (Plt (ereg x) (ereg y) \/ (ereg x = ereg y /\
    OrderedEqKind.lt (ekind x) (ekind y)))).
  Lemma eq_refl : forall x : t, eq x x.
  Proof (@refl_equal t).
  Lemma eq_sym : forall x y : t, eq x y -> eq y x.
  Proof (@sym_equal t).
  Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
  Proof (@trans_equal t).
  Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
Proof.
    unfold lt; intros.
    destruct H.
    destruct H0. left; eapply OrderedLoc.lt_trans; eauto.
    destruct H0. rewrite <- H0. auto.
    destruct H. rewrite H.
    destruct H0. auto.
    destruct H0. right; split; auto.
    intuition.
    left; eapply Plt_trans; eauto.
    left; congruence.
    left; congruence.
    right; split. congruence. eapply OrderedEqKind.lt_trans; eauto.
  Qed.
  Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
Proof.
    unfold lt, eq; intros; red; intros. subst y. intuition.
    eelim OrderedLoc.lt_not_eq; eauto. red; auto.
    eelim Plt_strict; eauto.
    eelim OrderedEqKind.lt_not_eq; eauto. red; auto.
  Qed.
  Definition compare : forall x y : t, Compare lt eq x y.
Proof.
    intros.
    destruct (OrderedLoc.compare (eloc x) (eloc y)).
  - apply LT. red; auto.
  - destruct (OrderedPositive.compare (ereg x) (ereg y)).
    + apply LT. red; auto.
    + destruct (OrderedEqKind.compare (ekind x) (ekind y)).
      * apply LT. red; auto.
      * apply EQ. red in e; red in e0; red in e1; red.
        destruct x; destruct y; simpl in *; congruence.
      * apply GT. red; auto.
   + apply GT. red; auto.
  - apply GT. red; auto.
  Defined.
  Definition eq_dec: forall (x y: t), {x = y} + {x <> y} := OrderedEquation.eq_dec.
End OrderedEquation'.

Module EqSet := FSetAVLplus.Make(OrderedEquation).
Module EqSet2 := FSetAVLplus.Make(OrderedEquation').

We use a redundant representation for sets of equations, comprising two AVL finite sets, containing the same elements, but ordered along the two orders defined above. Playing on properties of lexicographic orders, this redundant representation enables us to quickly find all equations involving a given RTL pseudoregister, or all equations involving a given LTL location or overlapping location.

Record eqs := mkeqs {
  eqs1 :> EqSet.t;
  eqs2 : EqSet2.t;
  eqs_same: forall q, EqSet2.In q eqs2 <-> EqSet.In q eqs1
}.

Operations on sets of equations


The empty set of equations.

Program Definition empty_eqs := mkeqs EqSet.empty EqSet2.empty _.
Next Obligation.
  split; intros. eelim EqSet2.empty_1; eauto. eelim EqSet.empty_1; eauto.
Qed.

Adding or removing an equation from a set.

Program Definition add_equation (q: equation) (e: eqs) :=
  mkeqs (EqSet.add q (eqs1 e)) (EqSet2.add q (eqs2 e)) _.
Next Obligation.
  split; intros.
  destruct (OrderedEquation'.eq_dec q q0).
  apply EqSet.add_1; auto.
  apply EqSet.add_2. apply (eqs_same e). apply EqSet2.add_3 with q; auto.
  destruct (OrderedEquation.eq_dec q q0).
  apply EqSet2.add_1; auto.
  apply EqSet2.add_2. apply (eqs_same e). apply EqSet.add_3 with q; auto.
Qed.

Program Definition remove_equation (q: equation) (e: eqs) :=
  mkeqs (EqSet.remove q (eqs1 e)) (EqSet2.remove q (eqs2 e)) _.
Next Obligation.
  split; intros.
  destruct (OrderedEquation'.eq_dec q q0).
  eelim EqSet2.remove_1; eauto.
  apply EqSet.remove_2; auto. apply (eqs_same e). apply EqSet2.remove_3 with q; auto.
  destruct (OrderedEquation.eq_dec q q0).
  eelim EqSet.remove_1; eauto.
  apply EqSet2.remove_2; auto. apply (eqs_same e). apply EqSet.remove_3 with q; auto.
Qed.

reg_unconstrained r e is true if e contains no equations involving the RTL pseudoregister r. In other words, all equations r' = l [kind] in e are such that r' <> r.

Definition select_reg_l (r: reg) (q: equation) := Pos.leb r (ereg q).
Definition select_reg_h (r: reg) (q: equation) := Pos.leb (ereg q) r.

Definition reg_unconstrained (r: reg) (e: eqs) : bool :=
  negb (EqSet.mem_between (select_reg_l r) (select_reg_h r) (eqs1 e)).

loc_unconstrained l e is true if e contains no equations involving the LTL location l or a location that partially overlaps with l. In other words, all equations r = l' [kind] in e are such that Loc.diff l' l.

Definition select_loc_l (l: loc) :=
  let lb := OrderedLoc.diff_low_bound l in
  fun (q: equation) => match OrderedLoc.compare (eloc q) lb with LT _ => false | _ => true end.
Definition select_loc_h (l: loc) :=
  let lh := OrderedLoc.diff_high_bound l in
  fun (q: equation) => match OrderedLoc.compare (eloc q) lh with GT _ => false | _ => true end.

Definition loc_unconstrained (l: loc) (e: eqs) : bool :=
  negb (EqSet2.mem_between (select_loc_l l) (select_loc_h l) (eqs2 e)).

Definition reg_loc_unconstrained (r: reg) (l: loc) (e: eqs) : bool :=
  reg_unconstrained r e && loc_unconstrained l e.

subst_reg r1 r2 e simulates the effect of assigning r2 to r1 on e. All equations of the form r1 = l [kind] are replaced by r2 = l [kind].

Definition subst_reg (r1 r2: reg) (e: eqs) : eqs :=
  EqSet.fold
    (fun q e => add_equation (Eq (ekind q) r2 (eloc q)) (remove_equation q e))
    (EqSet.elements_between (select_reg_l r1) (select_reg_h r1) (eqs1 e))
    e.

subst_reg_kind r1 k1 r2 k2 e simulates the effect of assigning the k2 part of r2 to the k1 part of r1 on e. All equations of the form r1 = l [k1] are replaced by r2 = l [k2].

Definition subst_reg_kind (r1: reg) (k1: equation_kind) (r2: reg) (k2: equation_kind) (e: eqs) : eqs :=
  EqSet.fold
    (fun q e =>
      if IndexedEqKind.eq (ekind q) k1
      then add_equation (Eq k2 r2 (eloc q)) (remove_equation q e)
      else e)
    (EqSet.elements_between (select_reg_l r1) (select_reg_h r1) (eqs1 e))
    e.

subst_loc l1 l2 e simulates the effect of assigning l2 to l1 on e. All equations of the form r = l1 [kind] are replaced by r = l2 [kind]. Return None if e contains an equation of the form r = l with l partially overlapping l1.

Definition subst_loc (l1 l2: loc) (e: eqs) : option eqs :=
  EqSet2.fold
    (fun q opte =>
      match opte with
      | None => None
      | Some e =>
          if Loc.eq l1 (eloc q) then
            Some (add_equation (Eq (ekind q) (ereg q) l2) (remove_equation q e))
          else
            None
      end)
     (EqSet2.elements_between (select_loc_l l1) (select_loc_h l1) (eqs2 e))
     (Some e).

loc_type_compat env l e checks that for all equations r = l in e, the type env r of r is compatible with the type of l.

Definition sel_type (k: equation_kind) (ty: typ) : typ :=
  match k with
  | Full => ty
  | Low | High => Tint
  end.

Definition loc_type_compat (env: regenv) (l: loc) (e: eqs) : bool :=
  EqSet2.for_all_between
    (fun q => subtype (sel_type (ekind q) (env (ereg q))) (Loc.type l))
    (select_loc_l l) (select_loc_h l) (eqs2 e).

add_equations [r1...rN] [m1...mN] e adds to e the N equations ri = R mi [Full]. Return None if the two lists have different lengths.

Fixpoint add_equations (rl: list reg) (ml: list mreg) (e: eqs) : option eqs :=
  match rl, ml with
  | nil, nil => Some e
  | r1 :: rl, m1 :: ml => add_equations rl ml (add_equation (Eq Full r1 (R m1)) e)
  | _, _ => None
  end.

add_equations_args is similar but additionally handles the splitting of pseudoregisters of type Tlong in two locations containing the two 32-bit halves of the 64-bit integer.

Function add_equations_args (rl: list reg) (tyl: list typ) (ll: list loc) (e: eqs) : option eqs :=
  match rl, tyl, ll with
  | nil, nil, nil => Some e
  | r1 :: rl, Tlong :: tyl, l1 :: l2 :: ll =>
      add_equations_args rl tyl ll (add_equation (Eq Low r1 l2) (add_equation (Eq High r1 l1) e))
  | r1 :: rl, (Tint|Tfloat|Tsingle) :: tyl, l1 :: ll =>
      add_equations_args rl tyl ll (add_equation (Eq Full r1 l1) e)
  | _, _, _ => None
  end.

add_equations_res is similar but is specialized to the case where there is only one pseudo-register.

Function add_equations_res (r: reg) (oty: option typ) (ll: list loc) (e: eqs) : option eqs :=
  match oty with
  | Some Tlong =>
      match ll with
      | l1 :: l2 :: nil => Some (add_equation (Eq Low r l2) (add_equation (Eq High r l1) e))
      | _ => None
      end
  | _ =>
      match ll with
      | l1 :: nil => Some (add_equation (Eq Full r l1) e)
      | _ => None
      end
  end.

remove_equations_res is similar to add_equations_res but removes equations instead of adding them.

Function remove_equations_res (r: reg) (oty: option typ) (ll: list loc) (e: eqs) : option eqs :=
  match oty with
  | Some Tlong =>
      match ll with
      | l1 :: l2 :: nil =>
          if Loc.diff_dec l2 l1
          then Some (remove_equation (Eq Low r l2) (remove_equation (Eq High r l1) e))
          else None
      | _ => None
      end
  | _ =>
      match ll with
      | l1 :: nil => Some (remove_equation (Eq Full r l1) e)
      | _ => None
      end
  end.

add_equations_ros adds an equation, if needed, between an optional pseudoregister and an optional machine register. It is used for the function argument of the Icall and Itailcall instructions.

Definition add_equation_ros (ros: reg + ident) (ros': mreg + ident) (e: eqs) : option eqs :=
  match ros, ros' with
  | inl r, inl mr => Some(add_equation (Eq Full r (R mr)) e)
  | inr id, inr id' => assertion (ident_eq id id'); Some e
  | _, _ => None
  end.

add_equations_builtin_arg adds the needed equations for arguments to builtin functions.

Fixpoint add_equations_builtin_arg
     (env: regenv) (arg: builtin_arg reg) (arg': builtin_arg loc) (e: eqs) : option eqs :=
  match arg, arg' with
  | BA r, BA l =>
      Some (add_equation (Eq Full r l) e)
  | BA r, BA_splitlong (BA lhi) (BA llo) =>
      assertion (typ_eq (env r) Tlong);
      Some (add_equation (Eq Low r llo) (add_equation (Eq High r lhi) e))
  | BA_int n, BA_int n' =>
      assertion (Int.eq_dec n n'); Some e
  | BA_long n, BA_long n' =>
      assertion (Int64.eq_dec n n'); Some e
  | BA_float f, BA_float f' =>
      assertion (Float.eq_dec f f'); Some e
  | BA_single f, BA_single f' =>
      assertion (Float32.eq_dec f f'); Some e
  | BA_loadstack chunk ofs, BA_loadstack chunk' ofs' =>
      assertion (chunk_eq chunk chunk');
      assertion (Int.eq_dec ofs ofs');
      Some e
  | BA_addrstack ofs, BA_addrstack ofs' =>
      assertion (Int.eq_dec ofs ofs');
      Some e
  | BA_loadglobal chunk id ofs, BA_loadglobal chunk' id' ofs' =>
      assertion (chunk_eq chunk chunk');
      assertion (ident_eq id id');
      assertion (Int.eq_dec ofs ofs');
      Some e
  | BA_addrglobal id ofs, BA_addrglobal id' ofs' =>
      assertion (ident_eq id id');
      assertion (Int.eq_dec ofs ofs');
      Some e
  | BA_splitlong hi lo, BA_splitlong hi' lo' =>
      do e1 <- add_equations_builtin_arg env hi hi' e;
      add_equations_builtin_arg env lo lo' e1
  | _, _ =>
      None
  end.

Fixpoint add_equations_builtin_args
   (env: regenv) (args: list (builtin_arg reg))
   (args': list (builtin_arg loc)) (e: eqs) : option eqs :=
  match args, args' with
  | nil, nil => Some e
  | a1 :: al, a1' :: al' =>
      do e1 <- add_equations_builtin_arg env a1 a1' e;
      add_equations_builtin_args env al al' e1
  | _, _ => None
  end.

For EF_debug builtins, some arguments can be removed.

Fixpoint add_equations_debug_args
   (env: regenv) (args: list (builtin_arg reg))
   (args': list (builtin_arg loc)) (e: eqs) : option eqs :=
  match args, args' with
  | _, nil => Some e
  | a1 :: al, a1' :: al' =>
      match add_equations_builtin_arg env a1 a1' e with
      | None => add_equations_debug_args env al args' e
      | Some e1 => add_equations_debug_args env al al' e1
      end
  | _, _ => None
  end.

Checking of the result of a builtin

Definition remove_equations_builtin_res
    (env: regenv) (res: builtin_res reg) (res': builtin_res mreg) (e: eqs) : option eqs :=
  match res, res' with
  | BR r, BR r' => Some (remove_equation (Eq Full r (R r')) e)
  | BR r, BR_splitlong (BR rhi) (BR rlo) =>
      assertion (typ_eq (env r) Tlong);
      if mreg_eq rhi rlo then None else
        Some (remove_equation (Eq Low r (R rlo))
                (remove_equation (Eq High r (R rhi)) e))
  | BR_none, BR_none => Some e
  | _, _ => None
  end.

can_undef ml returns true if all machine registers in ml are unconstrained and can harmlessly be undefined.

Fixpoint can_undef (ml: list mreg) (e: eqs) : bool :=
  match ml with
  | nil => true
  | m1 :: ml => loc_unconstrained (R m1) e && can_undef ml e
  end.

Fixpoint can_undef_except (l: loc) (ml: list mreg) (e: eqs) : bool :=
  match ml with
  | nil => true
  | m1 :: ml =>
      (Loc.eq l (R m1) || loc_unconstrained (R m1) e) && can_undef_except l ml e
  end.

no_caller_saves e returns e if all caller-save locations are unconstrained in e. In other words, e contains no equations involving a caller-save register or Outgoing stack slot.

Definition no_caller_saves (e: eqs) : bool :=
  EqSet.for_all
   (fun eq =>
     match eloc eq with
       | R r =>
           zle 0 (index_int_callee_save r) || zle 0 (index_float_callee_save r)
       | S Outgoing _ _ => false
       | S _ _ _ => true
       end)
    e.

compat_left r l e returns true if all equations in e that involve r are of the form r = l [Full].

Definition compat_left (r: reg) (l: loc) (e: eqs) : bool :=
  EqSet.for_all_between
    (fun q =>
        match ekind q with
        | Full => Loc.eq l (eloc q)
        | _ => false
        end)
    (select_reg_l r) (select_reg_h r)
    (eqs1 e).

compat_left2 r l1 l2 e returns true if all equations in e that involve r are of the form r = l1 [High] or r = l2 [Low].

Definition compat_left2 (r: reg) (l1 l2: loc) (e: eqs) : bool :=
  EqSet.for_all_between
    (fun q =>
        match ekind q with
        | High => Loc.eq l1 (eloc q)
        | Low => Loc.eq l2 (eloc q)
        | _ => false
        end)
    (select_reg_l r) (select_reg_h r)
    (eqs1 e).

ros_compatible_tailcall ros returns true if ros is a function name or a caller-save register. This is used to check Itailcall instructions.

Definition ros_compatible_tailcall (ros: mreg + ident) : bool :=
  match ros with
  | inl r => In_dec mreg_eq r destroyed_at_call
  | inr id => true
  end.

The validator


Definition destroyed_by_move (src dst: loc) :=
  match src, dst with
  | S sl ofs ty, _ => destroyed_by_getstack sl
  | _, S sl ofs ty => destroyed_by_setstack ty
  | _, _ => destroyed_by_op Omove
  end.

Definition well_typed_move (env: regenv) (dst: loc) (e: eqs) : bool :=
  match dst with
  | R r => true
  | S sl ofs ty => loc_type_compat env dst e
  end.

Simulate the effect of a sequence of moves mv on a set of equations e. The set e is the equations that must hold after the sequence of moves. Return the set of equations that must hold before the sequence of moves. Return None if the set of equations e cannot hold after the sequence of moves.

Fixpoint track_moves (env: regenv) (mv: moves) (e: eqs) : option eqs :=
  match mv with
  | nil => Some e
  | (src, dst) :: mv =>
      do e1 <- track_moves env mv e;
      assertion (can_undef_except dst (destroyed_by_move src dst)) e1;
      assertion (well_typed_move env dst e1);
      subst_loc dst src e1
  end.

transfer_use_def args res args' res' undefs e returns the set of equations that must hold "before" in order for the equations e to hold "after" the execution of RTL and LTL code of the following form:
                RTL                            LTL
         use pseudoregs args            use machine registers args'
         define pseudoreg res           undefine machine registers undef
                                        define machine register res'
As usual, None is returned if the equations e cannot hold after this execution.

Definition transfer_use_def (args: list reg) (res: reg) (args': list mreg) (res': mreg)
                            (undefs: list mreg) (e: eqs) : option eqs :=
  let e1 := remove_equation (Eq Full res (R res')) e in
  assertion (reg_loc_unconstrained res (R res') e1);
  assertion (can_undef undefs e1);
  add_equations args args' e1.

Definition kind_first_word := if Archi.big_endian then High else Low.
Definition kind_second_word := if Archi.big_endian then Low else High.

The core transfer function. It takes a set e of equations that must hold "after" and a block shape shape representing a matching pair of an RTL instruction and an LTL basic block. It returns the set of equations that must hold "before" these instructions, or None if impossible.

Definition transfer_aux (f: RTL.function) (env: regenv)
                        (shape: block_shape) (e: eqs) : option eqs :=
  match shape with
  | BSnop mv s =>
      track_moves env mv e
  | BSmove src dst mv s =>
      track_moves env mv (subst_reg dst src e)
  | BSmakelong src1 src2 dst mv s =>
      let e1 := subst_reg_kind dst High src1 Full e in
      let e2 := subst_reg_kind dst Low src2 Full e1 in
      assertion (reg_unconstrained dst e2);
      track_moves env mv e2
  | BSlowlong src dst mv s =>
      let e1 := subst_reg_kind dst Full src Low e in
      assertion (reg_unconstrained dst e1);
      track_moves env mv e1
  | BShighlong src dst mv s =>
      let e1 := subst_reg_kind dst Full src High e in
      assertion (reg_unconstrained dst e1);
      track_moves env mv e1
  | BSop op args res mv1 args' res' mv2 s =>
      do e1 <- track_moves env mv2 e;
      do e2 <- transfer_use_def args res args' res' (destroyed_by_op op) e1;
      track_moves env mv1 e2
  | BSopdead op args res mv s =>
      assertion (reg_unconstrained res e);
      track_moves env mv e
  | BSload alpha chunk addr args dst mv1 args' dst' mv2 s =>
      do e1 <- track_moves env mv2 e;
      do e2 <- transfer_use_def args dst args' dst' (destroyed_by_load chunk addr) e1;
      track_moves env mv1 e2
  | BSload2 alpha alpha' addr addr' args dst mv1 args1' dst1' mv2 args2' dst2' mv3 s =>
      do e1 <- track_moves env mv3 e;
      let e2 := remove_equation (Eq kind_second_word dst (R dst2')) e1 in
      assertion (loc_unconstrained (R dst2') e2);
      assertion (can_undef (destroyed_by_load Mint32 addr') e2);
      do e3 <- add_equations args args2' e2;
      do e4 <- track_moves env mv2 e3;
      let e5 := remove_equation (Eq kind_first_word dst (R dst1')) e4 in
      assertion (loc_unconstrained (R dst1') e5);
      assertion (can_undef (destroyed_by_load Mint32 addr) e5);
      assertion (reg_unconstrained dst e5);
      do e6 <- add_equations args args1' e5;
      track_moves env mv1 e6
  | BSload2_1 alpha addr args dst mv1 args' dst' mv2 s =>
      do e1 <- track_moves env mv2 e;
      let e2 := remove_equation (Eq kind_first_word dst (R dst')) e1 in
      assertion (reg_loc_unconstrained dst (R dst') e2);
      assertion (can_undef (destroyed_by_load Mint32 addr) e2);
      do e3 <- add_equations args args' e2;
      track_moves env mv1 e3
  | BSload2_2 alpha alpha' addr addr' args dst mv1 args' dst' mv2 s =>
      do e1 <- track_moves env mv2 e;
      let e2 := remove_equation (Eq kind_second_word dst (R dst')) e1 in
      assertion (reg_loc_unconstrained dst (R dst') e2);
      assertion (can_undef (destroyed_by_load Mint32 addr') e2);
      do e3 <- add_equations args args' e2;
      track_moves env mv1 e3
  | BSloaddead alpha chunk addr args dst mv s =>
      assertion (reg_unconstrained dst e);
      track_moves env mv e
  | BSstore alpha chunk addr args src mv args' src' s =>
      assertion (can_undef (destroyed_by_store chunk addr) e);
      do e1 <- add_equations (src :: args) (src' :: args') e;
      track_moves env mv e1
  | BSstore2 alpha alpha' addr addr' args src mv1 args1' src1' mv2 args2' src2' s =>
      assertion (can_undef (destroyed_by_store Mint32 addr') e);
      do e1 <- add_equations args args2'
                  (add_equation (Eq kind_second_word src (R src2')) e);
      do e2 <- track_moves env mv2 e1;
      assertion (can_undef (destroyed_by_store Mint32 addr) e2);
      do e3 <- add_equations args args1'
                  (add_equation (Eq kind_first_word src (R src1')) e2);
      track_moves env mv1 e3
  | BScall sg ros args res mv1 ros' mv2 s =>
      let args' := loc_arguments sg in
      let res' := map R (loc_result sg) in
      do e1 <- track_moves env mv2 e;
      do e2 <- remove_equations_res res (sig_res sg) res' e1;
      assertion (forallb (fun l => reg_loc_unconstrained res l e2) res');
      assertion (no_caller_saves e2);
      do e3 <- add_equation_ros ros ros' e2;
      do e4 <- add_equations_args args (sig_args sg) args' e3;
      track_moves env mv1 e4
  | BStailcall sg ros args mv1 ros' =>
      let args' := loc_arguments sg in
      assertion (tailcall_is_possible sg);
      assertion (opt_typ_eq sg.(sig_res) f.(RTL.fn_sig).(sig_res));
      assertion (ros_compatible_tailcall ros');
      do e1 <- add_equation_ros ros ros' empty_eqs;
      do e2 <- add_equations_args args (sig_args sg) args' e1;
      track_moves env mv1 e2
  | BSbuiltin ef args res mv1 args' res' mv2 s =>
      do e1 <- track_moves env mv2 e;
      do e2 <- remove_equations_builtin_res env res res' e1;
      assertion (forallb (fun r => reg_unconstrained r e2)
                         (params_of_builtin_res res));
      assertion (forallb (fun mr => loc_unconstrained (R mr) e2)
                         (params_of_builtin_res res'));
      assertion (can_undef (destroyed_by_builtin ef) e2);
      do e3 <-
        match ef with
        | EF_debug _ _ _ => add_equations_debug_args env args args' e2
        | _ => add_equations_builtin_args env args args' e2
        end;
      track_moves env mv1 e3
  | BScond cond args mv args' s1 s2 =>
      assertion (can_undef (destroyed_by_cond cond) e);
      do e1 <- add_equations args args' e;
      track_moves env mv e1
  | BSjumptable arg mv arg' tbl =>
      assertion (can_undef destroyed_by_jumptable e);
      track_moves env mv (add_equation (Eq Full arg (R arg')) e)
  | BSreturn None mv =>
      track_moves env mv empty_eqs
  | BSreturn (Some arg) mv =>
      let arg' := map R (loc_result (RTL.fn_sig f)) in
      do e1 <- add_equations_res arg (sig_res (RTL.fn_sig f)) arg' empty_eqs;
      track_moves env mv e1
  end.

The main transfer function for the dataflow analysis. Like transfer_aux, it infers the equations that must hold "before" as a function of the equations that must hold "after". It also handles error propagation and reporting.

Definition transfer (f: RTL.function) (env: regenv) (shapes: PTree.t block_shape)
                    (pc: node) (after: res eqs) : res eqs :=
  match after with
  | Error _ => after
  | OK e =>
      match shapes!pc with
      | None => Error(MSG "At PC " :: POS pc :: MSG ": unmatched block" :: nil)
      | Some shape =>
          match transfer_aux f env shape e with
          | None => Error(MSG "At PC " :: POS pc :: MSG ": invalid register allocation" :: nil)
          | Some e' => OK e'
          end
      end
  end.

The semilattice for dataflow analysis. Operates on analysis results of type res eqs, that is, either a set of equations or an error message. Errors correspond to Top. Sets of equations are ordered by inclusion.

Module LEq <: SEMILATTICE.

  Definition t := res eqs.

  Definition eq (x y: t) :=
    match x, y with
    | OK a, OK b => EqSet.Equal a b
    | Error _, Error _ => True
    | _, _ => False
    end.

  Lemma eq_refl: forall x, eq x x.
Proof.
    intros; destruct x; simpl; auto. red; tauto.
  Qed.

  Lemma eq_sym: forall x y, eq x y -> eq y x.
Proof.
    unfold eq; intros; destruct x; destruct y; auto.
    red in H; red; intros. rewrite H; tauto.
  Qed.

  Lemma eq_trans: forall x y z, eq x y -> eq y z -> eq x z.
Proof.
    unfold eq; intros. destruct x; destruct y; try contradiction; destruct z; auto.
    red in H; red in H0; red; intros. rewrite H. auto.
  Qed.

  Definition beq (x y: t) :=
    match x, y with
    | OK a, OK b => EqSet.equal a b
    | Error _, Error _ => true
    | _, _ => false
    end.

  Lemma beq_correct: forall x y, beq x y = true -> eq x y.
Proof.
    unfold beq, eq; intros. destruct x; destruct y.
    apply EqSet.equal_2. auto.
    discriminate.
    discriminate.
    auto.
  Qed.

  Definition ge (x y: t) :=
    match x, y with
    | OK a, OK b => EqSet.Subset b a
    | Error _, _ => True
    | _, Error _ => False
    end.

  Lemma ge_refl: forall x y, eq x y -> ge x y.
Proof.
    unfold eq, ge, EqSet.Equal, EqSet.Subset; intros.
    destruct x; destruct y; auto. intros; rewrite H; auto.
  Qed.
  Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
Proof.
    unfold ge, EqSet.Subset; intros.
    destruct x; auto; destruct y; try contradiction.
    destruct z; eauto.
  Qed.

  Definition bot: t := OK empty_eqs.

  Lemma ge_bot: forall x, ge x bot.
Proof.
    unfold ge, bot, EqSet.Subset; simpl; intros.
    destruct x; auto. intros. elim (EqSet.empty_1 H).
  Qed.

  Program Definition lub (x y: t) : t :=
    match x, y return _ with
    | OK a, OK b =>
        OK (mkeqs (EqSet.union (eqs1 a) (eqs1 b))
                  (EqSet2.union (eqs2 a) (eqs2 b)) _)
    | OK _, Error _ => y
    | Error _, _ => x
    end.
Next Obligation.
    split; intros.
    apply EqSet2.union_1 in H. destruct H; rewrite eqs_same in H.
    apply EqSet.union_2; auto. apply EqSet.union_3; auto.
    apply EqSet.union_1 in H. destruct H; rewrite <- eqs_same in H.
    apply EqSet2.union_2; auto. apply EqSet2.union_3; auto.
  Qed.

  Lemma ge_lub_left: forall x y, ge (lub x y) x.
Proof.
    unfold lub, ge, EqSet.Subset; intros.
    destruct x; destruct y; auto.
    intros; apply EqSet.union_2; auto.
  Qed.

  Lemma ge_lub_right: forall x y, ge (lub x y) y.
Proof.
    unfold lub, ge, EqSet.Subset; intros.
    destruct x; destruct y; auto.
    intros; apply EqSet.union_3; auto.
  Qed.

End LEq.

The backward dataflow solver is an instantiation of Kildall's algorithm.

Module DS := Backward_Dataflow_Solver(LEq)(NodeSetBackward).

The control-flow graph that the solver operates on is the CFG of block shapes built by the structural check phase. Here is its notion of successors.

Definition successors_block_shape (bsh: block_shape) : list node :=
  match bsh with
  | BSnop mv s => s :: nil
  | BSmove src dst mv s => s :: nil
  | BSmakelong src1 src2 dst mv s => s :: nil
  | BSlowlong src dst mv s => s :: nil
  | BShighlong src dst mv s => s :: nil
  | BSop op args res mv1 args' res' mv2 s => s :: nil
  | BSopdead op args res mv s => s :: nil
  | BSload alpha chunk addr args dst mv1 args' dst' mv2 s => s :: nil
  | BSload2 alpha alpha' addr addr' args dst mv1 args1' dst1' mv2 args2' dst2' mv3 s => s :: nil
  | BSload2_1 alpha addr args dst mv1 args' dst' mv2 s => s :: nil
  | BSload2_2 alpha alpha' addr addr' args dst mv1 args' dst' mv2 s => s :: nil
  | BSloaddead alpha chunk addr args dst mv s => s :: nil
  | BSstore alpha chunk addr args src mv1 args' src' s => s :: nil
  | BSstore2 alpha alpha' addr addr' args src mv1 args1' src1' mv2 args2' src2' s => s :: nil
  | BScall sg ros args res mv1 ros' mv2 s => s :: nil
  | BStailcall sg ros args mv1 ros' => nil
  | BSbuiltin ef args res mv1 args' res' mv2 s => s :: nil
  | BScond cond args mv args' s1 s2 => s1 :: s2 :: nil
  | BSjumptable arg mv arg' tbl => tbl
  | BSreturn optarg mv => nil
  end.

Definition analyze (f: RTL.function) (env: regenv) (bsh: PTree.t block_shape) :=
  DS.fixpoint_allnodes bsh successors_block_shape (transfer f env bsh).

Validating and translating functions and programs


Checking equations at function entry point. The RTL function receives its arguments in the list rparams of pseudoregisters. The LTL function receives them in the list lparams of locations dictated by the calling conventions, with arguments of type Tlong being split in two 32-bit halves. We check that the equations e that must hold at the beginning of the functions are compatible with these calling conventions, in the sense that all equations involving a pseudoreg r from rparams is of the form r = l [Full] or r = l [Low] or r = l [High], where l is the corresponding element of lparams. Note that e can contain additional equations r' = l [kind] involving pseudoregs r' not in rparams: these equations are automatically satisfied since the initial value of r' is Vundef.

Function compat_entry (rparams: list reg) (tys: list typ) (lparams: list loc) (e: eqs)
                      {struct rparams} : bool :=
  match rparams, tys, lparams with
  | nil, nil, nil => true
  | r1 :: rl, Tlong :: tyl, l1 :: l2 :: ll =>
      compat_left2 r1 l1 l2 e && compat_entry rl tyl ll e
  | r1 :: rl, (Tint|Tfloat|Tsingle) :: tyl, l1 :: ll =>
      compat_left r1 l1 e && compat_entry rl tyl ll e
  | _, _, _ => false
  end.

Checking the satisfiability of equations inferred at function entry point. We also check that the RTL and LTL functions agree in signature and stack size.

Definition check_entrypoints_aux (rtl: RTL.function) (ltl: LTL.function)
                                 (env: regenv) (e1: eqs) : option unit :=
  do mv <- pair_entrypoints rtl ltl;
  do e2 <- track_moves env mv e1;
  assertion (compat_entry (RTL.fn_params rtl)
                          (sig_args (RTL.fn_sig rtl))
                          (loc_parameters (RTL.fn_sig rtl)) e2);
  assertion (can_undef destroyed_at_function_entry e2);
  assertion (zeq (RTL.fn_stacksize rtl) (LTL.fn_stacksize ltl));
  assertion (signature_eq (RTL.fn_sig rtl) (LTL.fn_sig ltl));
  Some tt.

Local Close Scope option_monad_scope.
Local Open Scope error_monad_scope.

Definition check_entrypoints (rtl: RTL.function) (ltl: LTL.function)
                             (env: regenv) (bsh: PTree.t block_shape)
                             (a: PMap.t LEq.t): res unit :=
  do e1 <- transfer rtl env bsh (RTL.fn_entrypoint rtl) a!!(RTL.fn_entrypoint rtl);
  match check_entrypoints_aux rtl ltl env e1 with
  | None => Error (msg "invalid register allocation at entry point")
  | Some _ => OK tt
  end.

Putting it all together, this is the validation function for a source RTL function and an LTL function generated by the external register allocator.

Definition check_function (rtl: RTL.function) (ltl: LTL.function) (env: regenv): res unit :=
  let bsh := pair_codes rtl ltl in
  match analyze rtl env bsh with
  | None => Error (msg "allocation analysis diverges")
  | Some a => check_entrypoints rtl ltl env bsh a
  end.

regalloc is the external register allocator. It is written in OCaml in file backend/Regalloc.ml.

Parameter regalloc: RTL.function -> res LTL.function.

Register allocation followed by validation.

Definition transf_function (f: RTL.function) : res LTL.function :=
  match type_function f with
  | Error m => Error m
  | OK env =>
      match regalloc f with
      | Error m => Error m
      | OK tf => do x <- check_function f tf env; OK tf
      end
  end.

Definition transf_fundef (fd: RTL.fundef) : res LTL.fundef :=
  AST.transf_partial_fundef transf_function fd.

Definition transf_program (p: RTL.program) : res LTL.program :=
  transform_partial_program transf_fundef p.