Function calling conventions and other conventions regarding the use of
machine registers and stack slots.
Require Import Coqlib.
Require Import AST.
Require Import Events.
Require Import Locations.
Classification of machine registers
Machine registers (type
mreg in module
Locations) are divided in
the following groups:
-
Callee-save registers, whose value is preserved across a function call.
-
Caller-save registers that can be modified during a function call.
We follow the x86-32 application binary interface (ABI) in our choice
of callee- and caller-save registers.
Definition int_caller_save_regs :=
AX ::
CX ::
DX ::
nil.
Definition float_caller_save_regs :=
X0 ::
X1 ::
X2 ::
X3 ::
X4 ::
X5 ::
X6 ::
X7 ::
nil.
Definition int_callee_save_regs :=
BX ::
SI ::
DI ::
BP ::
nil.
Definition float_callee_save_regs :
list mreg :=
nil.
Definition destroyed_at_call :=
FP0 ::
int_caller_save_regs ++
float_caller_save_regs.
Definition dummy_int_reg :=
AX.
(* Used in Regalloc. *)
Definition dummy_float_reg :=
X0.
(* Used in Regalloc. *)
The index_int_callee_save and index_float_callee_save associate
a unique positive integer to callee-save registers. This integer is
used in Stacking to determine where to save these registers in
the activation record if they are used by the current function.
Definition index_int_callee_save (
r:
mreg) :=
match r with
|
BX => 0 |
SI => 1 |
DI => 2 |
BP => 3 |
_ => -1
end.
Definition index_float_callee_save (
r:
mreg) := -1.
Ltac ElimOrEq :=
match goal with
| |- (?
x = ?
y) \/
_ ->
_ =>
let H :=
fresh in
(
intro H;
elim H;
clear H;
[
intro H;
rewrite <-
H;
clear H |
ElimOrEq])
| |-
False ->
_ =>
let H :=
fresh in (
intro H;
contradiction)
end.
Ltac OrEq :=
match goal with
| |- (?
x = ?
x) \/
_ =>
left;
reflexivity
| |- (?
x = ?
y) \/
_ =>
right;
OrEq
| |-
False =>
fail
end.
Ltac NotOrEq :=
match goal with
| |- (?
x = ?
y) \/
_ ->
False =>
let H :=
fresh in (
intro H;
elim H;
clear H; [
intro;
discriminate |
NotOrEq])
| |-
False ->
False =>
contradiction
end.
Lemma index_int_callee_save_pos:
forall r,
In r int_callee_save_regs ->
index_int_callee_save r >= 0.
Proof.
Lemma index_float_callee_save_pos:
forall r,
In r float_callee_save_regs ->
index_float_callee_save r >= 0.
Proof.
Lemma index_int_callee_save_pos2:
forall r,
index_int_callee_save r >= 0 ->
In r int_callee_save_regs.
Proof.
destruct r; simpl; intro; omegaContradiction || OrEq.
Qed.
Lemma index_float_callee_save_pos2:
forall r,
index_float_callee_save r >= 0 ->
In r float_callee_save_regs.
Proof.
Lemma index_int_callee_save_inj:
forall r1 r2,
In r1 int_callee_save_regs ->
In r2 int_callee_save_regs ->
r1 <>
r2 ->
index_int_callee_save r1 <>
index_int_callee_save r2.
Proof.
Lemma index_float_callee_save_inj:
forall r1 r2,
In r1 float_callee_save_regs ->
In r2 float_callee_save_regs ->
r1 <>
r2 ->
index_float_callee_save r1 <>
index_float_callee_save r2.
Proof.
simpl; intros. contradiction.
Qed.
The following lemmas show that
(destroyed at call, integer callee-save, float callee-save)
is a partition of the set of machine registers.
Lemma int_float_callee_save_disjoint:
list_disjoint int_callee_save_regs float_callee_save_regs.
Proof.
red; intros r1 r2. simpl; ElimOrEq; ElimOrEq; discriminate.
Qed.
Lemma register_classification:
forall r,
In r destroyed_at_call \/
In r int_callee_save_regs \/
In r float_callee_save_regs.
Proof.
destruct r;
try (left; simpl; OrEq);
try (right; left; simpl; OrEq);
try (right; right; simpl; OrEq).
Qed.
Lemma int_callee_save_not_destroyed:
forall r,
In r destroyed_at_call ->
In r int_callee_save_regs ->
False.
Proof.
intros. revert H0 H. simpl. ElimOrEq; NotOrEq.
Qed.
Lemma float_callee_save_not_destroyed:
forall r,
In r destroyed_at_call ->
In r float_callee_save_regs ->
False.
Proof.
intros. revert H0 H. simpl. ElimOrEq; NotOrEq.
Qed.
Lemma int_callee_save_type:
forall r,
In r int_callee_save_regs ->
mreg_type r =
Tany32.
Proof.
intro. simpl; ElimOrEq; reflexivity.
Qed.
Lemma float_callee_save_type:
forall r,
In r float_callee_save_regs ->
mreg_type r =
Tany64.
Proof.
intro. simpl; ElimOrEq; reflexivity.
Qed.
Ltac NoRepet :=
match goal with
| |-
list_norepet nil =>
apply list_norepet_nil
| |-
list_norepet (?
a :: ?
b) =>
apply list_norepet_cons; [
simpl;
intuition discriminate |
NoRepet]
end.
Lemma int_callee_save_norepet:
list_norepet int_callee_save_regs.
Proof.
Lemma float_callee_save_norepet:
list_norepet float_callee_save_regs.
Proof.
Function calling conventions
The functions in this section determine the locations (machine registers
and stack slots) used to communicate arguments and results between the
caller and the callee during function calls. These locations are functions
of the signature of the function and of the call instruction.
Agreement between the caller and the callee on the locations to use
is guaranteed by our dynamic semantics for Cminor and RTL, which demand
that the signature of the call instruction is identical to that of the
called function.
Calling conventions are largely arbitrary: they must respect the properties
proved in this section (such as no overlapping between the locations
of function arguments), but this leaves much liberty in choosing actual
locations. To ensure binary interoperability of code generated by our
compiler with libraries compiled by another compiler, we
implement the standard x86 conventions.
Location of function result
The result value of a function is passed back to the caller in
registers AX or FP0, depending on the type of the returned value.
We treat a function without result as a function with one integer result.
Definition loc_result (
s:
signature) :
list mreg :=
match s.(
sig_res)
with
|
None =>
AX ::
nil
|
Some (
Tint |
Tany32) =>
AX ::
nil
|
Some (
Tfloat |
Tsingle) =>
FP0 ::
nil
|
Some Tany64 =>
X0 ::
nil
|
Some Tlong =>
DX ::
AX ::
nil
end.
The result registers have types compatible with that given in the signature.
Lemma loc_result_type:
forall sig,
subtype_list (
proj_sig_res'
sig) (
map mreg_type (
loc_result sig)) =
true.
Proof.
intros.
unfold proj_sig_res',
loc_result.
destruct (
sig_res sig)
as [[]|];
auto.
Qed.
The result locations are caller-save registers
Lemma loc_result_caller_save:
forall (
s:
signature) (
r:
mreg),
In r (
loc_result s) ->
In r destroyed_at_call.
Proof.
intros.
assert (
r =
AX \/
r =
DX \/
r =
FP0 \/
r =
X0).
unfold loc_result in H.
destruct (
sig_res s)
as [[]|];
simpl in H;
intuition.
destruct H0 as [
A | [
A | [
A |
A]]];
subst r;
simpl;
OrEq.
Qed.
Location of function arguments
All arguments are passed on stack. (Snif.)
Fixpoint loc_arguments_rec
(
tyl:
list typ) (
ofs:
Z) {
struct tyl} :
list loc :=
match tyl with
|
nil =>
nil
|
Tint ::
tys =>
S Outgoing ofs Tint ::
loc_arguments_rec tys (
ofs + 1)
|
Tfloat ::
tys =>
S Outgoing ofs Tfloat ::
loc_arguments_rec tys (
ofs + 2)
|
Tsingle ::
tys =>
S Outgoing ofs Tsingle ::
loc_arguments_rec tys (
ofs + 1)
|
Tlong ::
tys =>
S Outgoing (
ofs + 1)
Tint ::
S Outgoing ofs Tint ::
loc_arguments_rec tys (
ofs + 2)
|
Tany32 ::
tys =>
S Outgoing ofs Tany32 ::
loc_arguments_rec tys (
ofs + 1)
|
Tany64 ::
tys =>
S Outgoing ofs Tany64 ::
loc_arguments_rec tys (
ofs + 2)
end.
loc_arguments s returns the list of locations where to store arguments
when calling a function with signature s.
Definition loc_arguments (
s:
signature) :
list loc :=
loc_arguments_rec s.(
sig_args) 0.
size_arguments s returns the number of Outgoing slots used
to call a function with signature s.
Fixpoint size_arguments_rec
(
tyl:
list typ) (
ofs:
Z) {
struct tyl} :
Z :=
match tyl with
|
nil =>
ofs
|
ty ::
tys =>
size_arguments_rec tys (
ofs +
typesize ty)
end.
Definition size_arguments (
s:
signature) :
Z :=
size_arguments_rec s.(
sig_args) 0.
Argument locations are either caller-save registers or Outgoing
stack slots at nonnegative offsets.
Definition loc_argument_acceptable (
l:
loc) :
Prop :=
match l with
|
R r =>
In r destroyed_at_call
|
S Outgoing ofs ty =>
ofs >= 0 /\
ty <>
Tlong
|
_ =>
False
end.
Remark loc_arguments_rec_charact:
forall tyl ofs l,
In l (
loc_arguments_rec tyl ofs) ->
match l with
|
S Outgoing ofs'
ty =>
ofs' >=
ofs /\
ty <>
Tlong
|
_ =>
False
end.
Proof.
induction tyl;
simpl loc_arguments_rec;
intros.
-
destruct H.
-
assert (
REC:
forall ofs1,
In l (
loc_arguments_rec tyl ofs1) ->
ofs1 >
ofs ->
match l with
|
R _ =>
False
|
S Local _ _ =>
False
|
S Incoming _ _ =>
False
|
S Outgoing ofs'
ty =>
ofs' >=
ofs /\
ty <>
Tlong
end).
{
intros.
exploit IHtyl;
eauto.
destruct l;
auto.
destruct sl;
intuition omega
. }
destruct a;
simpl in H;
repeat (
destruct H);
((
eapply REC;
eauto;
omega) || (
split; [
omega|
congruence])).
Qed.
Lemma loc_arguments_acceptable:
forall (
s:
signature) (
l:
loc),
In l (
loc_arguments s) ->
loc_argument_acceptable l.
Proof.
Hint Resolve loc_arguments_acceptable:
locs.
The offsets of Outgoing arguments are below size_arguments s.
Remark size_arguments_rec_above:
forall tyl ofs0,
ofs0 <=
size_arguments_rec tyl ofs0.
Proof.
Lemma size_arguments_above:
forall s,
size_arguments s >= 0.
Proof.
Lemma loc_arguments_bounded:
forall (
s:
signature) (
ofs:
Z) (
ty:
typ),
In (
S Outgoing ofs ty) (
loc_arguments s) ->
ofs +
typesize ty <=
size_arguments s.
Proof.
Lemma loc_arguments_main:
loc_arguments signature_main =
nil.
Proof.
reflexivity.
Qed.