Module Memdata


In-memory representation of values.

Require Import Coqlib.
Require Archi.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.

Properties of memory chunks


Memory reads and writes are performed by quantities called memory chunks, encoding the type, size and signedness of the chunk being addressed. The following functions extract the size information from a chunk.

Definition size_chunk (chunk: memory_chunk) : Z :=
  match chunk with
  | Mint8signed => 1
  | Mint8unsigned => 1
  | Mint16signed => 2
  | Mint16unsigned => 2
  | Mint32 => 4
  | Mint64 => 8
  | Mfloat32 => 4
  | Mfloat64 => 8
  | Many32 => 4
  | Many64 => 8
  end.

Lemma size_chunk_pos:
  forall chunk, size_chunk chunk > 0.
Proof.
  intros. destruct chunk; simpl; omega.
Qed.

Definition size_chunk_nat (chunk: memory_chunk) : nat :=
  nat_of_Z(size_chunk chunk).

Lemma size_chunk_conv:
  forall chunk, size_chunk chunk = Z_of_nat (size_chunk_nat chunk).
Proof.
  intros. destruct chunk; reflexivity.
Qed.

Lemma size_chunk_nat_pos:
  forall chunk, exists n, size_chunk_nat chunk = S n.
Proof.
  intros.
  generalize (size_chunk_pos chunk). rewrite size_chunk_conv.
  destruct (size_chunk_nat chunk).
  simpl; intros; omegaContradiction.
  intros; exists n; auto.
Qed.

Memory reads and writes must respect alignment constraints: the byte offset of the location being addressed should be an exact multiple of the natural alignment for the chunk being addressed. This natural alignment is defined by the following align_chunk function. Some target architectures (e.g. PowerPC and x86) have no alignment constraints, which we could reflect by taking align_chunk chunk = 1. However, other architectures have stronger alignment requirements. The following definition is appropriate for PowerPC, ARM and x86.

Definition align_chunk (chunk: memory_chunk) : Z :=
  match chunk with
  | Mint8signed => 1
  | Mint8unsigned => 1
  | Mint16signed => 2
  | Mint16unsigned => 2
  | Mint32 => 4
  | Mint64 => 8
  | Mfloat32 => 4
  | Mfloat64 => 4
  | Many32 => 4
  | Many64 => 4
  end.

Lemma align_chunk_pos:
  forall chunk, align_chunk chunk > 0.
Proof.
  intro. destruct chunk; simpl; omega.
Qed.

Lemma align_size_chunk_divides:
  forall chunk, (align_chunk chunk | size_chunk chunk).
Proof.
  intros. destruct chunk; simpl; try apply Zdivide_refl; exists 2; auto.
Qed.

Lemma align_le_divides:
  forall chunk1 chunk2,
  align_chunk chunk1 <= align_chunk chunk2 -> (align_chunk chunk1 | align_chunk chunk2).
Proof.
  intros. destruct chunk1; destruct chunk2; simpl in *;
  solve [ omegaContradiction
        | apply Zdivide_refl
        | exists 2; reflexivity
        | exists 4; reflexivity
        | exists 8; reflexivity ].
Qed.

Inductive quantity : Type := Q32 | Q64.

Definition quantity_eq (q1 q2: quantity) : {q1 = q2} + {q1 <> q2}.
Proof.
decide equality. Defined.
Global Opaque quantity_eq.

Definition size_quantity_nat (q: quantity) :=
  match q with Q32 => 4%nat | Q64 => 8%nat end.

Lemma size_quantity_nat_pos:
  forall q, exists n, size_quantity_nat q = S n.
Proof.
  intros. destruct q; [exists 3%nat | exists 7%nat]; auto.
Qed.

Memory values


A ``memory value'' is a byte-sized quantity that describes the current content of a memory cell. It can be either:

Values stored in memory cells.

Inductive memval: Type :=
  | Undef: memval
  | Byte: byte -> memval
  | Fragment: val -> quantity -> nat -> memval.

Encoding and decoding integers


We define functions to convert between integers and lists of bytes of a given length

Fixpoint bytes_of_int (n: nat) (x: Z) {struct n}: list byte :=
  match n with
  | O => nil
  | S m => Byte.repr x :: bytes_of_int m (x / 256)
  end.

Fixpoint int_of_bytes (l: list byte): Z :=
  match l with
  | nil => 0
  | b :: l' => Byte.unsigned b + int_of_bytes l' * 256
  end.

Definition rev_if_be (l: list byte) : list byte :=
  if Archi.big_endian then List.rev l else l.

Definition encode_int (sz: nat) (x: Z) : list byte :=
  rev_if_be (bytes_of_int sz x).

Definition decode_int (b: list byte) : Z :=
  int_of_bytes (rev_if_be b).

Length properties

Lemma length_bytes_of_int:
  forall n x, length (bytes_of_int n x) = n.
Proof.
  induction n; simpl; intros. auto. decEq. auto.
Qed.

Lemma rev_if_be_length:
  forall l, length (rev_if_be l) = length l.
Proof.
  intros; unfold rev_if_be; destruct Archi.big_endian.
  apply List.rev_length.
  auto.
Qed.

Lemma encode_int_length:
  forall sz x, length(encode_int sz x) = sz.
Proof.
  intros. unfold encode_int. rewrite rev_if_be_length. apply length_bytes_of_int.
Qed.

Decoding after encoding

Lemma int_of_bytes_of_int:
  forall n x,
  int_of_bytes (bytes_of_int n x) = x mod (two_p (Z_of_nat n * 8)).
Proof.
  induction n; intros.
  simpl. rewrite Zmod_1_r. auto.
Opaque Byte.wordsize.
  rewrite inj_S. simpl.
  replace (Zsucc (Z_of_nat n) * 8) with (Z_of_nat n * 8 + 8) by omega.
  rewrite two_p_is_exp; try omega.
  rewrite Zmod_recombine. rewrite IHn. rewrite Zplus_comm.
  change (Byte.unsigned (Byte.repr x)) with (Byte.Z_mod_modulus x).
  rewrite Byte.Z_mod_modulus_eq. reflexivity.
  apply two_p_gt_ZERO. omega. apply two_p_gt_ZERO. omega.
Qed.

Lemma rev_if_be_involutive:
  forall l, rev_if_be (rev_if_be l) = l.
Proof.
  intros; unfold rev_if_be; destruct Archi.big_endian.
  apply List.rev_involutive.
  auto.
Qed.

Lemma decode_encode_int:
  forall n x, decode_int (encode_int n x) = x mod (two_p (Z_of_nat n * 8)).
Proof.
  unfold decode_int, encode_int; intros. rewrite rev_if_be_involutive.
  apply int_of_bytes_of_int.
Qed.

Lemma decode_encode_int_1:
  forall x, Int.repr (decode_int (encode_int 1 (Int.unsigned x))) = Int.zero_ext 8 x.
Proof.
  intros. rewrite decode_encode_int.
  rewrite <- (Int.repr_unsigned (Int.zero_ext 8 x)).
  decEq. symmetry. apply Int.zero_ext_mod. compute. intuition congruence.
Qed.

Lemma decode_encode_int_2:
  forall x, Int.repr (decode_int (encode_int 2 (Int.unsigned x))) = Int.zero_ext 16 x.
Proof.
  intros. rewrite decode_encode_int.
  rewrite <- (Int.repr_unsigned (Int.zero_ext 16 x)).
  decEq. symmetry. apply Int.zero_ext_mod. compute; intuition congruence.
Qed.

Lemma decode_encode_int_4:
  forall x, Int.repr (decode_int (encode_int 4 (Int.unsigned x))) = x.
Proof.
  intros. rewrite decode_encode_int. transitivity (Int.repr (Int.unsigned x)).
  decEq. apply Zmod_small. apply Int.unsigned_range. apply Int.repr_unsigned.
Qed.

Lemma decode_encode_int_8:
  forall x, Int64.repr (decode_int (encode_int 8 (Int64.unsigned x))) = x.
Proof.
  intros. rewrite decode_encode_int. transitivity (Int64.repr (Int64.unsigned x)).
  decEq. apply Zmod_small. apply Int64.unsigned_range. apply Int64.repr_unsigned.
Qed.

A length-n encoding depends only on the low 8*n bits of the integer.

Lemma bytes_of_int_mod:
  forall n x y,
  Int.eqmod (two_p (Z_of_nat n * 8)) x y ->
  bytes_of_int n x = bytes_of_int n y.
Proof.
  induction n.
  intros; simpl; auto.
  intros until y.
  rewrite inj_S.
  replace (Zsucc (Z_of_nat n) * 8) with (Z_of_nat n * 8 + 8) by omega.
  rewrite two_p_is_exp; try omega.
  intro EQM.
  simpl; decEq.
  apply Byte.eqm_samerepr. red.
  eapply Int.eqmod_divides; eauto. apply Zdivide_factor_l.
  apply IHn.
  destruct EQM as [k EQ]. exists k. rewrite EQ.
  rewrite <- Z_div_plus_full_l. decEq. change (two_p 8) with 256. ring. omega.
Qed.

Lemma encode_int_8_mod:
  forall x y,
  Int.eqmod (two_p 8) x y ->
  encode_int 1%nat x = encode_int 1%nat y.
Proof.
  intros. unfold encode_int. decEq. apply bytes_of_int_mod. auto.
Qed.

Lemma encode_int_16_mod:
  forall x y,
  Int.eqmod (two_p 16) x y ->
  encode_int 2%nat x = encode_int 2%nat y.
Proof.
  intros. unfold encode_int. decEq. apply bytes_of_int_mod. auto.
Qed.

Encoding and decoding values


Definition inj_bytes (bl: list byte) : list memval :=
  List.map Byte bl.

Fixpoint proj_bytes (vl: list memval) : option (list byte) :=
  match vl with
  | nil => Some nil
  | Byte b :: vl' =>
      match proj_bytes vl' with None => None | Some bl => Some(b :: bl) end
  | _ => None
  end.

Remark length_inj_bytes:
  forall bl, length (inj_bytes bl) = length bl.
Proof.
  intros. apply List.map_length.
Qed.

Remark proj_inj_bytes:
  forall bl, proj_bytes (inj_bytes bl) = Some bl.
Proof.
  induction bl; simpl. auto. rewrite IHbl. auto.
Qed.

Lemma inj_proj_bytes:
  forall cl bl, proj_bytes cl = Some bl -> cl = inj_bytes bl.
Proof.
  induction cl; simpl; intros.
  inv H; auto.
  destruct a; try congruence. destruct (proj_bytes cl); inv H.
  simpl. decEq. auto.
Qed.

Fixpoint inj_value_rec (n: nat) (v: val) (q: quantity) {struct n}: list memval :=
  match n with
  | O => nil
  | S m => Fragment v q m :: inj_value_rec m v q
  end.

Definition inj_value (q: quantity) (v: val): list memval :=
  inj_value_rec (size_quantity_nat q) v q.

Fixpoint check_value (n: nat) (v: val) (q: quantity) (vl: list memval)
                       {struct n} : bool :=
  match n, vl with
  | O, nil => true
  | S m, Fragment v' q' m' :: vl' =>
      Val.eq v v' && quantity_eq q q' && beq_nat m m' && check_value m v q vl'
  | _, _ => false
  end.

Definition proj_value (q: quantity) (vl: list memval) : val :=
  match vl with
  | Fragment v q' n :: vl' =>
      if check_value (size_quantity_nat q) v q vl then v else Vundef
  | _ => Vundef
  end.

Definition encode_val (chunk: memory_chunk) (v: val) : list memval :=
  match v, chunk with
  | Vint n, (Mint8signed | Mint8unsigned) => inj_bytes (encode_int 1%nat (Int.unsigned n))
  | Vint n, (Mint16signed | Mint16unsigned) => inj_bytes (encode_int 2%nat (Int.unsigned n))
  | Vint n, Mint32 => inj_bytes (encode_int 4%nat (Int.unsigned n))
  | Vptr b ofs, Mint32 => inj_value Q32 v
  | Vlong n, Mint64 => inj_bytes (encode_int 8%nat (Int64.unsigned n))
  | Vsingle n, Mfloat32 => inj_bytes (encode_int 4%nat (Int.unsigned (Float32.to_bits n)))
  | Vfloat n, Mfloat64 => inj_bytes (encode_int 8%nat (Int64.unsigned (Float.to_bits n)))
  | _, Many32 => inj_value Q32 v
  | _, Many64 => inj_value Q64 v
  | _, _ => list_repeat (size_chunk_nat chunk) Undef
  end.

Definition decode_val (chunk: memory_chunk) (vl: list memval) : val :=
  match proj_bytes vl with
  | Some bl =>
      match chunk with
      | Mint8signed => Vint(Int.sign_ext 8 (Int.repr (decode_int bl)))
      | Mint8unsigned => Vint(Int.zero_ext 8 (Int.repr (decode_int bl)))
      | Mint16signed => Vint(Int.sign_ext 16 (Int.repr (decode_int bl)))
      | Mint16unsigned => Vint(Int.zero_ext 16 (Int.repr (decode_int bl)))
      | Mint32 => Vint(Int.repr(decode_int bl))
      | Mint64 => Vlong(Int64.repr(decode_int bl))
      | Mfloat32 => Vsingle(Float32.of_bits (Int.repr (decode_int bl)))
      | Mfloat64 => Vfloat(Float.of_bits (Int64.repr (decode_int bl)))
      | Many32 => Vundef
      | Many64 => Vundef
      end
  | None =>
      match chunk with
      | Mint32 | Many32 => Val.load_result chunk (proj_value Q32 vl)
      | Many64 => Val.load_result chunk (proj_value Q64 vl)
      | _ => Vundef
      end
  end.

Lemma encode_val_length:
  forall chunk v, length(encode_val chunk v) = size_chunk_nat chunk.
Proof.
  intros. destruct v; simpl; destruct chunk;
  solve [ reflexivity
        | apply length_list_repeat
        | rewrite length_inj_bytes; apply encode_int_length ].
Qed.

Lemma check_inj_value:
  forall v q n, check_value n v q (inj_value_rec n v q) = true.
Proof.
  induction n; simpl. auto.
  unfold proj_sumbool. rewrite dec_eq_true. rewrite dec_eq_true.
  rewrite <- beq_nat_refl. simpl; auto.
Qed.

Lemma proj_inj_value:
  forall q v, proj_value q (inj_value q v) = v.
Proof.
  intros. unfold proj_value, inj_value. destruct (size_quantity_nat_pos q) as [n EQ].
  rewrite EQ at 1. simpl. rewrite check_inj_value. auto.
Qed.

Remark in_inj_value:
  forall mv v q, In mv (inj_value q v) -> exists n, mv = Fragment v q n.
Proof.
Local Transparent inj_value.
  unfold inj_value; intros until q. generalize (size_quantity_nat q). induction n; simpl; intros.
  contradiction.
  destruct H. exists n; auto. eauto.
Qed.

Lemma proj_inj_value_mismatch:
  forall q1 q2 v, q1 <> q2 -> proj_value q1 (inj_value q2 v) = Vundef.
Proof.
  intros. unfold proj_value. destruct (inj_value q2 v) eqn:V. auto. destruct m; auto.
  destruct (in_inj_value (Fragment v0 q n) v q2) as [n' EQ].
  rewrite V; auto with coqlib. inv EQ.
  destruct (size_quantity_nat_pos q1) as [p EQ1]; rewrite EQ1; simpl.
  unfold proj_sumbool. rewrite dec_eq_true. rewrite dec_eq_false by congruence. auto.
Qed.

Definition decode_encode_val (v1: val) (chunk1 chunk2: memory_chunk) (v2: val) : Prop :=
  match v1, chunk1, chunk2 with
  | Vundef, _, _ => v2 = Vundef
  | Vint n, Mint8signed, Mint8signed => v2 = Vint(Int.sign_ext 8 n)
  | Vint n, Mint8unsigned, Mint8signed => v2 = Vint(Int.sign_ext 8 n)
  | Vint n, Mint8signed, Mint8unsigned => v2 = Vint(Int.zero_ext 8 n)
  | Vint n, Mint8unsigned, Mint8unsigned => v2 = Vint(Int.zero_ext 8 n)
  | Vint n, Mint16signed, Mint16signed => v2 = Vint(Int.sign_ext 16 n)
  | Vint n, Mint16unsigned, Mint16signed => v2 = Vint(Int.sign_ext 16 n)
  | Vint n, Mint16signed, Mint16unsigned => v2 = Vint(Int.zero_ext 16 n)
  | Vint n, Mint16unsigned, Mint16unsigned => v2 = Vint(Int.zero_ext 16 n)
  | Vint n, Mint32, Mint32 => v2 = Vint n
  | Vint n, Many32, (Mint32 | Many32) => v2 = Vint n
  | Vint n, Mint32, Mfloat32 => v2 = Vsingle(Float32.of_bits n)
  | Vint n, Many64, Many64 => v2 = Vint n
  | Vint n, (Mint64 | Mfloat32 | Mfloat64 | Many64), _ => v2 = Vundef
  | Vint n, _, _ => True (* nothing meaningful to say about v2 *)
  | Vptr b ofs, (Mint32 | Many32), (Mint32 | Many32) => v2 = Vptr b ofs
  | Vptr b ofs, Many64, Many64 => v2 = Vptr b ofs
  | Vptr b ofs, _, _ => v2 = Vundef
  | Vlong n, Mint64, Mint64 => v2 = Vlong n
  | Vlong n, Mint64, Mfloat64 => v2 = Vfloat(Float.of_bits n)
  | Vlong n, Many64, Many64 => v2 = Vlong n
  | Vlong n, (Mint8signed|Mint8unsigned|Mint16signed|Mint16unsigned|Mint32|Mfloat32|Mfloat64|Many32), _ => v2 = Vundef
  | Vlong n, _, _ => True (* nothing meaningful to say about v2 *)
  | Vfloat f, Mfloat64, Mfloat64 => v2 = Vfloat f
  | Vfloat f, Mfloat64, Mint64 => v2 = Vlong(Float.to_bits f)
  | Vfloat f, Many64, Many64 => v2 = Vfloat f
  | Vfloat f, (Mint8signed|Mint8unsigned|Mint16signed|Mint16unsigned|Mint32|Mfloat32|Mint64|Many32), _ => v2 = Vundef
  | Vfloat f, _, _ => True
  | Vsingle f, Mfloat32, Mfloat32 => v2 = Vsingle f
  | Vsingle f, Mfloat32, Mint32 => v2 = Vint(Float32.to_bits f)
  | Vsingle f, Many32, Many32 => v2 = Vsingle f
  | Vsingle f, Many64, Many64 => v2 = Vsingle f
  | Vsingle f, (Mint8signed|Mint8unsigned|Mint16signed|Mint16unsigned|Mint32|Mint64|Mfloat64|Many64), _ => v2 = Vundef
  | Vsingle f, _, _ => True
  end.

Remark decode_val_undef:
  forall bl chunk, decode_val chunk (Undef :: bl) = Vundef.
Proof.
  intros. unfold decode_val. simpl. destruct chunk; auto.
Qed.

Remark proj_bytes_inj_value:
  forall q v, proj_bytes (inj_value q v) = None.
Proof.
  intros. destruct q; reflexivity.
Qed.

Lemma decode_encode_val_general:
  forall v chunk1 chunk2,
  decode_encode_val v chunk1 chunk2 (decode_val chunk2 (encode_val chunk1 v)).
Proof.
Opaque inj_value.
  intros.
  destruct v; destruct chunk1 eqn:C1; simpl; try (apply decode_val_undef);
  destruct chunk2 eqn:C2; unfold decode_val; auto;
  try (rewrite proj_inj_bytes); try (rewrite proj_bytes_inj_value);
  try (rewrite proj_inj_value); try (rewrite proj_inj_value_mismatch by congruence);
  auto.
  rewrite decode_encode_int_1. decEq. apply Int.sign_ext_zero_ext. omega.
  rewrite decode_encode_int_1. decEq. apply Int.zero_ext_idem. omega.
  rewrite decode_encode_int_1. decEq. apply Int.sign_ext_zero_ext. omega.
  rewrite decode_encode_int_1. decEq. apply Int.zero_ext_idem. omega.
  rewrite decode_encode_int_2. decEq. apply Int.sign_ext_zero_ext. omega.
  rewrite decode_encode_int_2. decEq. apply Int.zero_ext_idem. omega.
  rewrite decode_encode_int_2. decEq. apply Int.sign_ext_zero_ext. omega.
  rewrite decode_encode_int_2. decEq. apply Int.zero_ext_idem. omega.
  rewrite decode_encode_int_4. auto.
  rewrite decode_encode_int_4. auto.
  rewrite decode_encode_int_8. auto.
  rewrite decode_encode_int_8. auto.
  rewrite decode_encode_int_8. auto.
  rewrite decode_encode_int_8. decEq. apply Float.of_to_bits.
  rewrite decode_encode_int_4. auto.
  rewrite decode_encode_int_4. decEq. apply Float32.of_to_bits.
Qed.

Lemma decode_encode_val_similar:
  forall v1 chunk1 chunk2 v2,
  type_of_chunk chunk1 = type_of_chunk chunk2 ->
  size_chunk chunk1 = size_chunk chunk2 ->
  decode_encode_val v1 chunk1 chunk2 v2 ->
  v2 = Val.load_result chunk2 v1.
Proof.
  intros until v2; intros TY SZ DE.
  destruct chunk1; destruct chunk2; simpl in TY; try discriminate; simpl in SZ; try omegaContradiction;
  destruct v1; auto.
Qed.

Lemma decode_val_type:
  forall chunk cl,
  Val.has_type (decode_val chunk cl) (type_of_chunk chunk).
Proof.
  intros. unfold decode_val.
  destruct (proj_bytes cl).
  destruct chunk; simpl; auto.
  destruct chunk; exact I || apply Val.load_result_type.
Qed.

Lemma encode_val_int8_signed_unsigned:
  forall v, encode_val Mint8signed v = encode_val Mint8unsigned v.
Proof.
  intros. destruct v; simpl; auto.
Qed.

Lemma encode_val_int16_signed_unsigned:
  forall v, encode_val Mint16signed v = encode_val Mint16unsigned v.
Proof.
  intros. destruct v; simpl; auto.
Qed.

Lemma encode_val_int8_zero_ext:
  forall n, encode_val Mint8unsigned (Vint (Int.zero_ext 8 n)) = encode_val Mint8unsigned (Vint n).
Proof.
  intros; unfold encode_val. decEq. apply encode_int_8_mod. apply Int.eqmod_zero_ext.
  compute; intuition congruence.
Qed.

Lemma encode_val_int8_sign_ext:
  forall n, encode_val Mint8signed (Vint (Int.sign_ext 8 n)) = encode_val Mint8signed (Vint n).
Proof.
  intros; unfold encode_val. decEq. apply encode_int_8_mod. apply Int.eqmod_sign_ext'. compute; auto.
Qed.

Lemma encode_val_int16_zero_ext:
  forall n, encode_val Mint16unsigned (Vint (Int.zero_ext 16 n)) = encode_val Mint16unsigned (Vint n).
Proof.
  intros; unfold encode_val. decEq. apply encode_int_16_mod. apply Int.eqmod_zero_ext. compute; intuition congruence.
Qed.

Lemma encode_val_int16_sign_ext:
  forall n, encode_val Mint16signed (Vint (Int.sign_ext 16 n)) = encode_val Mint16signed (Vint n).
Proof.
  intros; unfold encode_val. decEq. apply encode_int_16_mod. apply Int.eqmod_sign_ext'. compute; auto.
Qed.

Lemma decode_val_cast:
  forall chunk l,
  let v := decode_val chunk l in
  match chunk with
  | Mint8signed => v = Val.sign_ext 8 v
  | Mint8unsigned => v = Val.zero_ext 8 v
  | Mint16signed => v = Val.sign_ext 16 v
  | Mint16unsigned => v = Val.zero_ext 16 v
  | _ => True
  end.
Proof.
  unfold decode_val; intros; destruct chunk; auto; destruct (proj_bytes l); auto.
  unfold Val.sign_ext. rewrite Int.sign_ext_idem; auto. omega.
  unfold Val.zero_ext. rewrite Int.zero_ext_idem; auto. omega.
  unfold Val.sign_ext. rewrite Int.sign_ext_idem; auto. omega.
  unfold Val.zero_ext. rewrite Int.zero_ext_idem; auto. omega.
Qed.

Pointers cannot be forged.

Definition quantity_chunk (chunk: memory_chunk) :=
  match chunk with
  | Mint64 | Mfloat64 | Many64 => Q64
  | _ => Q32
  end.

Inductive shape_encoding (chunk: memory_chunk) (v: val): list memval -> Prop :=
  | shape_encoding_f: forall q i mvl,
      (chunk = Mint32 \/ chunk = Many32 \/ chunk = Many64) ->
      q = quantity_chunk chunk ->
      S i = size_quantity_nat q ->
      (forall mv, In mv mvl -> exists j, mv = Fragment v q j /\ S j <> size_quantity_nat q) ->
      shape_encoding chunk v (Fragment v q i :: mvl)
  | shape_encoding_b: forall b mvl,
      match v with Vint _ => True | Vlong _ => True | Vfloat _ => True | Vsingle _ => True | _ => False end ->
      (forall mv, In mv mvl -> exists b', mv = Byte b') ->
      shape_encoding chunk v (Byte b :: mvl)
  | shape_encoding_u: forall mvl,
      (forall mv, In mv mvl -> mv = Undef) ->
      shape_encoding chunk v (Undef :: mvl).

Lemma encode_val_shape: forall chunk v, shape_encoding chunk v (encode_val chunk v).
Proof.
  intros.
  destruct (size_chunk_nat_pos chunk) as [sz EQ].
  assert (A: forall mv q n,
             (n < size_quantity_nat q)%nat ->
             In mv (inj_value_rec n v q) ->
             exists j, mv = Fragment v q j /\ S j <> size_quantity_nat q).
  {
    induction n; simpl; intros. contradiction. destruct H0.
    exists n; split; auto. omega. apply IHn; auto. omega.
  }
  assert (B: forall q,
             q = quantity_chunk chunk ->
             (chunk = Mint32 \/ chunk = Many32 \/ chunk = Many64) ->
             shape_encoding chunk v (inj_value q v)).
  {
Local Transparent inj_value.
    intros. unfold inj_value. destruct (size_quantity_nat_pos q) as [sz' EQ'].
    rewrite EQ'. simpl. constructor; auto.
    intros; eapply A; eauto. omega.
  }
  assert (C: forall bl,
             match v with Vint _ => True | Vlong _ => True | Vfloat _ => True | Vsingle _ => True | _ => False end ->
             length (inj_bytes bl) = size_chunk_nat chunk ->
             shape_encoding chunk v (inj_bytes bl)).
  {
    intros. destruct bl as [|b1 bl]. simpl in H0; congruence. simpl.
    constructor; auto. unfold inj_bytes; intros. exploit list_in_map_inv; eauto.
    intros (b & P & Q); exists b; auto.
  }
  assert (D: shape_encoding chunk v (list_repeat (size_chunk_nat chunk) Undef)).
  {
    intros. rewrite EQ; simpl; constructor; auto.
    intros. eapply in_list_repeat; eauto.
  }
  generalize (encode_val_length chunk v). intros LEN.
  unfold encode_val; unfold encode_val in LEN; destruct v; destruct chunk; (apply B || apply C || apply D); auto; red; auto.
Qed.

Inductive shape_decoding (chunk: memory_chunk): list memval -> val -> Prop :=
  | shape_decoding_f: forall v q i mvl,
      (chunk = Mint32 \/ chunk = Many32 \/ chunk = Many64) ->
      q = quantity_chunk chunk ->
      S i = size_quantity_nat q ->
      (forall mv, In mv mvl -> exists j, mv = Fragment v q j /\ S j <> size_quantity_nat q) ->
      shape_decoding chunk (Fragment v q i :: mvl) (Val.load_result chunk v)
  | shape_decoding_b: forall b mvl v,
      match v with Vint _ => True | Vlong _ => True | Vfloat _ => True | Vsingle _ => True | _ => False end ->
      (forall mv, In mv mvl -> exists b', mv = Byte b') ->
      shape_decoding chunk (Byte b :: mvl) v
  | shape_decoding_u: forall mvl,
      shape_decoding chunk mvl Vundef.

Lemma decode_val_shape: forall chunk mv1 mvl,
  shape_decoding chunk (mv1 :: mvl) (decode_val chunk (mv1 :: mvl)).
Proof.
  intros.
  assert (A: forall mv mvs bs, proj_bytes mvs = Some bs -> In mv mvs ->
                               exists b, mv = Byte b).
  {
    induction mvs; simpl; intros.
    contradiction.
    destruct a; try discriminate. destruct H0. exists i; auto.
    destruct (proj_bytes mvs); try discriminate. eauto.
  }
  assert (B: forall v q mv n mvs,
             check_value n v q mvs = true -> In mv mvs -> (n < size_quantity_nat q)%nat ->
             exists j, mv = Fragment v q j /\ S j <> size_quantity_nat q).
  {
    induction n; destruct mvs; simpl; intros; try discriminate.
    contradiction.
    destruct m; try discriminate. InvBooleans. apply beq_nat_true in H4. subst.
    destruct H0. subst mv. exists n0; split; auto. omega.
    eapply IHn; eauto. omega.
  }
  assert (U: forall mvs, shape_decoding chunk mvs (Val.load_result chunk Vundef)).
  {
    intros. replace (Val.load_result chunk Vundef) with Vundef. constructor.
    destruct chunk; auto.
  }
  assert (C: forall q, size_quantity_nat q = size_chunk_nat chunk ->
             (chunk = Mint32 \/ chunk = Many32 \/ chunk = Many64) ->
             shape_decoding chunk (mv1 :: mvl) (Val.load_result chunk (proj_value q (mv1 :: mvl)))).
  {
    intros. unfold proj_value. destruct mv1; auto.
    destruct (size_quantity_nat_pos q) as [sz EQ]. rewrite EQ.
    simpl. unfold proj_sumbool. rewrite dec_eq_true.
    destruct (quantity_eq q q0); auto.
    destruct (beq_nat sz n) eqn:EQN; auto.
    destruct (check_value sz v q mvl) eqn:CHECK; auto.
    simpl. apply beq_nat_true in EQN. subst n q0. constructor. auto.
    destruct H0 as [E|[E|E]]; subst chunk; destruct q; auto || discriminate.
    congruence.
    intros. eapply B; eauto. omega.
  }
  unfold decode_val.
  destruct (proj_bytes (mv1 :: mvl)) as [bl|] eqn:PB.
  exploit (A mv1); eauto with coqlib. intros [b1 EQ1]; subst mv1.
  destruct chunk; (apply shape_decoding_u || apply shape_decoding_b); eauto with coqlib.
  destruct chunk; (apply shape_decoding_u || apply C); auto.
Qed.

Compatibility with memory injections


Relating two memory values according to a memory injection.

Inductive memval_inject (f: meminj): memval -> memval -> Prop :=
  | memval_inject_byte:
      forall n, memval_inject f (Byte n) (Byte n)
  | memval_inject_frag:
      forall v1 v2 q n,
      Val.inject f v1 v2 ->
      memval_inject f (Fragment v1 q n) (Fragment v2 q n)
  | memval_inject_undef:
      forall mv, memval_inject f Undef mv.

Lemma memval_inject_incr:
  forall f f' v1 v2, memval_inject f v1 v2 -> inject_incr f f' -> memval_inject f' v1 v2.
Proof.
  intros. inv H; econstructor. eapply val_inject_incr; eauto.
Qed.

decode_val, applied to lists of memory values that are pairwise related by memval_inject, returns values that are related by Val.inject.

Lemma proj_bytes_inject:
  forall f vl vl',
  list_forall2 (memval_inject f) vl vl' ->
  forall bl,
  proj_bytes vl = Some bl ->
  proj_bytes vl' = Some bl.
Proof.
  induction 1; simpl. congruence.
  inv H; try congruence.
  destruct (proj_bytes al); intros.
  inv H. rewrite (IHlist_forall2 l); auto.
  congruence.
Qed.

Lemma check_value_inject:
  forall f vl vl',
  list_forall2 (memval_inject f) vl vl' ->
  forall v v' q n,
  check_value n v q vl = true ->
  Val.inject f v v' -> v <> Vundef ->
  check_value n v' q vl' = true.
Proof.
  induction 1; intros; destruct n; simpl in *; auto.
  inv H; auto.
  InvBooleans. assert (n = n0) by (apply beq_nat_true; auto). subst v1 q0 n0.
  replace v2 with v'.
  unfold proj_sumbool; rewrite ! dec_eq_true. rewrite <- beq_nat_refl. simpl; eauto.
  inv H2; try discriminate; inv H4; congruence.
  discriminate.
Qed.

Lemma proj_value_inject:
  forall f q vl1 vl2,
  list_forall2 (memval_inject f) vl1 vl2 ->
  Val.inject f (proj_value q vl1) (proj_value q vl2).
Proof.
  intros. unfold proj_value.
  inversion H; subst. auto. inversion H0; subst; auto.
  destruct (check_value (size_quantity_nat q) v1 q (Fragment v1 q0 n :: al)) eqn:B; auto.
  destruct (Val.eq v1 Vundef). subst; auto.
  erewrite check_value_inject by eauto. auto.
Qed.

Lemma proj_bytes_not_inject:
  forall f vl vl',
  list_forall2 (memval_inject f) vl vl' ->
  proj_bytes vl = None -> proj_bytes vl' <> None -> In Undef vl.
Proof.
  induction 1; simpl; intros.
  congruence.
  inv H; try congruence.
  right. apply IHlist_forall2.
  destruct (proj_bytes al); congruence.
  destruct (proj_bytes bl); congruence.
  auto.
Qed.

Lemma check_value_undef:
  forall n q v vl,
  In Undef vl -> check_value n v q vl = false.
Proof.
  induction n; intros; simpl.
  destruct vl. elim H. auto.
  destruct vl. auto.
  destruct m; auto. simpl in H; destruct H. congruence.
  rewrite IHn; auto. apply andb_false_r.
Qed.

Lemma proj_value_undef:
  forall q vl, In Undef vl -> proj_value q vl = Vundef.
Proof.
  intros; unfold proj_value.
  destruct vl; auto. destruct m; auto.
  rewrite check_value_undef. auto. auto.
Qed.

Theorem decode_val_inject:
  forall f vl1 vl2 chunk,
  list_forall2 (memval_inject f) vl1 vl2 ->
  Val.inject f (decode_val chunk vl1) (decode_val chunk vl2).
Proof.
  intros. unfold decode_val.
  destruct (proj_bytes vl1) as [bl1|] eqn:PB1.
  exploit proj_bytes_inject; eauto. intros PB2. rewrite PB2.
  destruct chunk; constructor.
  assert (A: forall q fn,
     Val.inject f (Val.load_result chunk (proj_value q vl1))
                  (match proj_bytes vl2 with
                   | Some bl => fn bl
                   | None => Val.load_result chunk (proj_value q vl2)
                   end)).
  { intros. destruct (proj_bytes vl2) as [bl2|] eqn:PB2.
    rewrite proj_value_undef. destruct chunk; auto. eapply proj_bytes_not_inject; eauto. congruence.
    apply Val.load_result_inject. apply proj_value_inject; auto.
  }
  destruct chunk; auto.
Qed.

Symmetrically, encode_val, applied to values related by Val.inject, returns lists of memory values that are pairwise related by memval_inject.

Lemma inj_bytes_inject:
  forall f bl, list_forall2 (memval_inject f) (inj_bytes bl) (inj_bytes bl).
Proof.
  induction bl; constructor; auto. constructor.
Qed.

Lemma repeat_Undef_inject_any:
  forall f vl,
  list_forall2 (memval_inject f) (list_repeat (length vl) Undef) vl.
Proof.
  induction vl; simpl; constructor; auto. constructor.
Qed.

Lemma repeat_Undef_inject_encode_val:
  forall f chunk v,
  list_forall2 (memval_inject f) (list_repeat (size_chunk_nat chunk) Undef) (encode_val chunk v).
Proof.
  intros. rewrite <- (encode_val_length chunk v). apply repeat_Undef_inject_any.
Qed.

Lemma repeat_Undef_inject_self:
  forall f n,
  list_forall2 (memval_inject f) (list_repeat n Undef) (list_repeat n Undef).
Proof.
  induction n; simpl; constructor; auto. constructor.
Qed.

Lemma inj_value_inject:
  forall f v1 v2 q, Val.inject f v1 v2 -> list_forall2 (memval_inject f) (inj_value q v1) (inj_value q v2).
Proof.
  intros.
Local Transparent inj_value.
  unfold inj_value. generalize (size_quantity_nat q). induction n; simpl; constructor; auto.
  constructor; auto.
Qed.

Theorem encode_val_inject:
  forall f v1 v2 chunk,
  Val.inject f v1 v2 ->
  list_forall2 (memval_inject f) (encode_val chunk v1) (encode_val chunk v2).
Proof.
  intros. inversion H; subst; simpl; destruct chunk;
  auto using inj_bytes_inject, inj_value_inject, repeat_Undef_inject_self, repeat_Undef_inject_encode_val.
  unfold encode_val. destruct v2; apply inj_value_inject; auto.
  unfold encode_val. destruct v2; apply inj_value_inject; auto.
Qed.

Definition memval_lessdef: memval -> memval -> Prop := memval_inject inject_id.

Lemma memval_lessdef_refl:
  forall mv, memval_lessdef mv mv.
Proof.
  red. destruct mv; econstructor. apply val_inject_id. auto.
Qed.

memval_inject and compositions

Lemma memval_inject_compose:
  forall f f' v1 v2 v3,
  memval_inject f v1 v2 -> memval_inject f' v2 v3 ->
  memval_inject (compose_meminj f f') v1 v3.
Proof.
  intros. inv H.
  inv H0. constructor.
  inv H0. econstructor.
  eapply val_inject_compose; eauto.
  constructor.
Qed.

Breaking 64-bit memory accesses into two 32-bit accesses


Lemma int_of_bytes_append:
  forall l2 l1,
  int_of_bytes (l1 ++ l2) = int_of_bytes l1 + int_of_bytes l2 * two_p (Z_of_nat (length l1) * 8).
Proof.
  induction l1; simpl int_of_bytes; intros.
  simpl. ring.
  simpl length. rewrite inj_S.
  replace (Z.succ (Z.of_nat (length l1)) * 8) with (Z_of_nat (length l1) * 8 + 8) by omega.
  rewrite two_p_is_exp. change (two_p 8) with 256. rewrite IHl1. ring.
  omega. omega.
Qed.

Lemma int_of_bytes_range:
  forall l, 0 <= int_of_bytes l < two_p (Z_of_nat (length l) * 8).
Proof.
  induction l; intros.
  simpl. omega.
  simpl length. rewrite inj_S.
  replace (Z.succ (Z.of_nat (length l)) * 8) with (Z.of_nat (length l) * 8 + 8) by omega.
  rewrite two_p_is_exp. change (two_p 8) with 256.
  simpl int_of_bytes. generalize (Byte.unsigned_range a).
  change Byte.modulus with 256. omega.
  omega. omega.
Qed.

Lemma length_proj_bytes:
  forall l b, proj_bytes l = Some b -> length b = length l.
Proof.
  induction l; simpl; intros.
  inv H; auto.
  destruct a; try discriminate.
  destruct (proj_bytes l) eqn:E; inv H.
  simpl. f_equal. auto.
Qed.

Lemma proj_bytes_append:
  forall l2 l1,
  proj_bytes (l1 ++ l2) =
  match proj_bytes l1, proj_bytes l2 with
  | Some b1, Some b2 => Some (b1 ++ b2)
  | _, _ => None
  end.
Proof.
  induction l1; simpl.
  destruct (proj_bytes l2); auto.
  destruct a; auto. rewrite IHl1.
  destruct (proj_bytes l1); auto. destruct (proj_bytes l2); auto.
Qed.

Lemma decode_val_int64:
  forall l1 l2,
  length l1 = 4%nat -> length l2 = 4%nat ->
  Val.lessdef
    (decode_val Mint64 (l1 ++ l2))
    (Val.longofwords (decode_val Mint32 (if Archi.big_endian then l1 else l2))
                     (decode_val Mint32 (if Archi.big_endian then l2 else l1))).
Proof.
  intros. unfold decode_val.
  rewrite proj_bytes_append.
  destruct (proj_bytes l1) as [b1|] eqn:B1; destruct (proj_bytes l2) as [b2|] eqn:B2; auto.
  exploit length_proj_bytes. eexact B1. rewrite H; intro L1.
  exploit length_proj_bytes. eexact B2. rewrite H0; intro L2.
  assert (UR: forall l, length l = 4%nat -> Int.unsigned (Int.repr (int_of_bytes l)) = int_of_bytes l).
    intros. apply Int.unsigned_repr.
    generalize (int_of_bytes_range l). rewrite H1.
    change (two_p (Z.of_nat 4 * 8)) with (Int.max_unsigned + 1).
    omega.
  apply Val.lessdef_same.
  unfold decode_int, rev_if_be. destruct Archi.big_endian; rewrite B1; rewrite B2.
  + rewrite <- (rev_length b1) in L1.
    rewrite <- (rev_length b2) in L2.
    rewrite rev_app_distr.
    set (b1' := rev b1) in *; set (b2' := rev b2) in *.
    unfold Val.longofwords. f_equal. rewrite Int64.ofwords_add. f_equal.
    rewrite !UR by auto. rewrite int_of_bytes_append.
    rewrite L2. change (Z.of_nat 4 * 8) with 32. ring.
  + unfold Val.longofwords. f_equal. rewrite Int64.ofwords_add. f_equal.
    rewrite !UR by auto. rewrite int_of_bytes_append.
    rewrite L1. change (Z.of_nat 4 * 8) with 32. ring.
Qed.

Lemma bytes_of_int_append:
  forall n2 x2 n1 x1,
  0 <= x1 < two_p (Z_of_nat n1 * 8) ->
  bytes_of_int (n1 + n2) (x1 + x2 * two_p (Z_of_nat n1 * 8)) =
  bytes_of_int n1 x1 ++ bytes_of_int n2 x2.
Proof.
  induction n1; intros.
- simpl in *. f_equal. omega.
- assert (E: two_p (Z.of_nat (S n1) * 8) = two_p (Z.of_nat n1 * 8) * 256).
  {
    rewrite inj_S. change 256 with (two_p 8). rewrite <- two_p_is_exp.
    f_equal. omega. omega. omega.
  }
  rewrite E in *. simpl. f_equal.
  apply Byte.eqm_samerepr. exists (x2 * two_p (Z.of_nat n1 * 8)).
  change Byte.modulus with 256. ring.
  rewrite Zmult_assoc. rewrite Z_div_plus. apply IHn1.
  apply Zdiv_interval_1. omega. apply two_p_gt_ZERO; omega. omega.
  assumption. omega.
Qed.

Lemma bytes_of_int64:
  forall i,
  bytes_of_int 8 (Int64.unsigned i) =
  bytes_of_int 4 (Int.unsigned (Int64.loword i)) ++ bytes_of_int 4 (Int.unsigned (Int64.hiword i)).
Proof.
  intros. transitivity (bytes_of_int (4 + 4) (Int64.unsigned (Int64.ofwords (Int64.hiword i) (Int64.loword i)))).
  f_equal. f_equal. rewrite Int64.ofwords_recompose. auto.
  rewrite Int64.ofwords_add'.
  change 32 with (Z_of_nat 4 * 8).
  rewrite Zplus_comm. apply bytes_of_int_append. apply Int.unsigned_range.
Qed.

Lemma encode_val_int64:
  forall v,
  encode_val Mint64 v =
     encode_val Mint32 (if Archi.big_endian then Val.hiword v else Val.loword v)
  ++ encode_val Mint32 (if Archi.big_endian then Val.loword v else Val.hiword v).
Proof.
  intros. destruct v; destruct Archi.big_endian eqn:BI; try reflexivity;
  unfold Val.loword, Val.hiword, encode_val.
  unfold inj_bytes. rewrite <- map_app. f_equal.
  unfold encode_int, rev_if_be. rewrite BI. rewrite <- rev_app_distr. f_equal.
  apply bytes_of_int64.
  unfold inj_bytes. rewrite <- map_app. f_equal.
  unfold encode_int, rev_if_be. rewrite BI.
  apply bytes_of_int64.
Qed.