This file defines a number of data types and operations used in
the abstract syntax trees of many of the intermediate languages.
Require Import Coqlib.
Require String.
Require Import Errors.
Require Import Integers.
Require Import Floats.
Set Implicit Arguments.
Syntactic elements
Identifiers (names of local variables, of global symbols and functions,
etc) are represented by the type positive of positive integers.
Definition ident :=
positive.
Definition ident_eq :=
peq.
Parameter ident_of_string :
String.string ->
ident.
The intermediate languages are weakly typed, using the following types:
Inductive typ :
Type :=
|
Tint (* 32-bit integers or pointers *)
|
Tfloat (* 64-bit double-precision floats *)
|
Tlong (* 64-bit integers *)
|
Tsingle (* 32-bit single-precision floats *)
|
Tany32 (* any 32-bit value *)
|
Tany64.
(* any 64-bit value, i.e. any value *)
Lemma typ_eq:
forall (
t1 t2:
typ), {
t1=
t2} + {
t1<>
t2}.
Proof.
decide equality. Defined.
Global Opaque typ_eq.
Definition opt_typ_eq:
forall (
t1 t2:
option typ), {
t1=
t2} + {
t1<>
t2}
:=
option_eq typ_eq.
Definition list_typ_eq:
forall (
l1 l2:
list typ), {
l1=
l2} + {
l1<>
l2}
:=
list_eq_dec typ_eq.
Definition typesize (
ty:
typ) :
Z :=
match ty with
|
Tint => 4
|
Tfloat => 8
|
Tlong => 8
|
Tsingle => 4
|
Tany32 => 4
|
Tany64 => 8
end.
Lemma typesize_pos:
forall ty,
typesize ty > 0.
Proof.
destruct ty; simpl; omega. Qed.
All values of size 32 bits are also of type Tany32. All values
are of type Tany64. This corresponds to the following subtyping
relation over types.
Definition subtype (
ty1 ty2:
typ) :
bool :=
match ty1,
ty2 with
|
Tint,
Tint =>
true
|
Tlong,
Tlong =>
true
|
Tfloat,
Tfloat =>
true
|
Tsingle,
Tsingle =>
true
| (
Tint |
Tsingle |
Tany32),
Tany32 =>
true
|
_,
Tany64 =>
true
|
_,
_ =>
false
end.
Fixpoint subtype_list (
tyl1 tyl2:
list typ) :
bool :=
match tyl1,
tyl2 with
|
nil,
nil =>
true
|
ty1::
tys1,
ty2::
tys2 =>
subtype ty1 ty2 &&
subtype_list tys1 tys2
|
_,
_ =>
false
end.
Additionally, function definitions and function calls are annotated
by function signatures indicating:
-
the number and types of arguments;
-
the type of the returned value, if any;
-
additional information on which calling convention to use.
These signatures are used in particular to determine appropriate
calling conventions for the function.
Record calling_convention :
Type :=
mkcallconv {
cc_vararg:
bool;
(* variable-arity function *)
cc_unproto:
bool;
(* old-style unprototyped function *)
cc_structret:
bool (* function returning a struct *)
}.
Definition cc_default :=
{|
cc_vararg :=
false;
cc_unproto :=
false;
cc_structret :=
false |}.
Record signature :
Type :=
mksignature {
sig_args:
list typ;
sig_res:
option typ;
sig_cc:
calling_convention
}.
Definition proj_sig_res (
s:
signature) :
typ :=
match s.(
sig_res)
with
|
None =>
Tint
|
Some t =>
t
end.
Definition signature_eq:
forall (
s1 s2:
signature), {
s1=
s2} + {
s1<>
s2}.
Proof.
Global Opaque signature_eq.
Definition signature_main :=
{|
sig_args :=
nil;
sig_res :=
Some Tint;
sig_cc :=
cc_default |}.
Memory accesses (load and store instructions) are annotated by
a ``memory chunk'' indicating the type, size and signedness of the
chunk of memory being accessed.
Inductive memory_chunk :
Type :=
|
Mint8signed (* 8-bit signed integer *)
|
Mint8unsigned (* 8-bit unsigned integer *)
|
Mint16signed (* 16-bit signed integer *)
|
Mint16unsigned (* 16-bit unsigned integer *)
|
Mint32 (* 32-bit integer, or pointer *)
|
Mint64 (* 64-bit integer *)
|
Mfloat32 (* 32-bit single-precision float *)
|
Mfloat64 (* 64-bit double-precision float *)
|
Many32 (* any value that fits in 32 bits *)
|
Many64.
(* any value *)
Definition chunk_eq:
forall (
c1 c2:
memory_chunk), {
c1=
c2} + {
c1<>
c2}.
Proof.
decide equality. Defined.
Global Opaque chunk_eq.
The type (integer/pointer or float) of a chunk.
Definition type_of_chunk (
c:
memory_chunk) :
typ :=
match c with
|
Mint8signed =>
Tint
|
Mint8unsigned =>
Tint
|
Mint16signed =>
Tint
|
Mint16unsigned =>
Tint
|
Mint32 =>
Tint
|
Mint64 =>
Tlong
|
Mfloat32 =>
Tsingle
|
Mfloat64 =>
Tfloat
|
Many32 =>
Tany32
|
Many64 =>
Tany64
end.
The chunk that is appropriate to store and reload a value of
the given type, without losing information.
Definition chunk_of_type (
ty:
typ) :=
match ty with
|
Tint =>
Mint32
|
Tfloat =>
Mfloat64
|
Tlong =>
Mint64
|
Tsingle =>
Mfloat32
|
Tany32 =>
Many32
|
Tany64 =>
Many64
end.
Initialization data for global variables.
Inductive init_data:
Type :=
|
Init_int8:
int ->
init_data
|
Init_int16:
int ->
init_data
|
Init_int32:
int ->
init_data
|
Init_int64:
int64 ->
init_data
|
Init_float32:
float32 ->
init_data
|
Init_float64:
float ->
init_data
|
Init_space:
Z ->
init_data
|
Init_addrof:
ident ->
int ->
init_data.
(* address of symbol + offset *)
Information attached to global variables.
Record globvar (
V:
Type) :
Type :=
mkglobvar {
gvar_info:
V;
(* language-dependent info, e.g. a type *)
gvar_init:
list init_data;
(* initialization data *)
gvar_readonly:
bool;
(* read-only variable? (const) *)
gvar_volatile:
bool (* volatile variable? *)
}.
Whole programs consist of:
-
a collection of global definitions (name and description);
-
a set of public names (the names that are visible outside
this compilation unit);
-
the name of the ``main'' function that serves as entry point in the program.
A global definition is either a global function or a global variable.
The type of function descriptions and that of additional information
for variables vary among the various intermediate languages and are
taken as parameters to the
program type. The other parts of whole
programs are common to all languages.
Inductive globdef (
F V:
Type) :
Type :=
|
Gfun (
f:
F)
|
Gvar (
v:
globvar V).
Implicit Arguments Gfun [
F V].
Implicit Arguments Gvar [
F V].
Record program (
F V:
Type) :
Type :=
mkprogram {
prog_defs:
list (
ident *
globdef F V);
prog_public:
list ident;
prog_main:
ident
}.
Definition prog_defs_names (
F V:
Type) (
p:
program F V) :
list ident :=
List.map fst p.(
prog_defs).
Generic transformations over programs
We now define a general iterator over programs that applies a given
code transformation function to all function descriptions and leaves
the other parts of the program unchanged.
Section TRANSF_PROGRAM.
Variable A B V:
Type.
Variable transf:
A ->
B.
Definition transform_program_globdef (
idg:
ident *
globdef A V) :
ident *
globdef B V :=
match idg with
| (
id,
Gfun f) => (
id,
Gfun (
transf f))
| (
id,
Gvar v) => (
id,
Gvar v)
end.
Definition transform_program (
p:
program A V) :
program B V :=
mkprogram
(
List.map transform_program_globdef p.(
prog_defs))
p.(
prog_public)
p.(
prog_main).
Lemma transform_program_function:
forall p i tf,
In (
i,
Gfun tf) (
transform_program p).(
prog_defs) ->
exists f,
In (
i,
Gfun f)
p.(
prog_defs) /\
transf f =
tf.
Proof.
End TRANSF_PROGRAM.
The following is a more general presentation of transform_program where
global variable information can be transformed, in addition to function
definitions. Moreover, the transformation functions can fail and
return an error message.
Open Local Scope error_monad_scope.
Open Local Scope string_scope.
Section TRANSF_PROGRAM_GEN.
Variables A B V W:
Type.
Variable transf_fun:
A ->
res B.
Variable transf_var:
V ->
res W.
Definition transf_globvar (
g:
globvar V) :
res (
globvar W) :=
do info' <-
transf_var g.(
gvar_info);
OK (
mkglobvar info'
g.(
gvar_init)
g.(
gvar_readonly)
g.(
gvar_volatile)).
Fixpoint transf_globdefs (
l:
list (
ident *
globdef A V)) :
res (
list (
ident *
globdef B W)) :=
match l with
|
nil =>
OK nil
| (
id,
Gfun f) ::
l' =>
match transf_fun f with
|
Error msg =>
Error (
MSG "
In function " ::
CTX id ::
MSG ": " ::
msg)
|
OK tf =>
do tl' <-
transf_globdefs l';
OK ((
id,
Gfun tf) ::
tl')
end
| (
id,
Gvar v) ::
l' =>
match transf_globvar v with
|
Error msg =>
Error (
MSG "
In variable " ::
CTX id ::
MSG ": " ::
msg)
|
OK tv =>
do tl' <-
transf_globdefs l';
OK ((
id,
Gvar tv) ::
tl')
end
end.
Definition transform_partial_program2 (
p:
program A V) :
res (
program B W) :=
do gl' <-
transf_globdefs p.(
prog_defs);
OK (
mkprogram gl'
p.(
prog_public)
p.(
prog_main)).
Lemma transform_partial_program2_function:
forall p tp i tf,
transform_partial_program2 p =
OK tp ->
In (
i,
Gfun tf)
tp.(
prog_defs) ->
exists f,
In (
i,
Gfun f)
p.(
prog_defs) /\
transf_fun f =
OK tf.
Proof.
intros.
monadInv H.
simpl in H0.
revert x EQ H0.
induction (
prog_defs p);
simpl;
intros.
inv EQ.
contradiction.
destruct a as [
id [
f|
v]].
destruct (
transf_fun f)
as [
tf1|
msg]
eqn:?;
monadInv EQ.
simpl in H0;
destruct H0.
inv H.
exists f;
auto.
exploit IHl;
eauto.
intros [
f' [
P Q]];
exists f';
auto.
destruct (
transf_globvar v)
as [
tv1|
msg]
eqn:?;
monadInv EQ.
simpl in H0;
destruct H0.
inv H.
exploit IHl;
eauto.
intros [
f' [
P Q]];
exists f';
auto.
Qed.
Lemma transform_partial_program2_variable:
forall p tp i tv,
transform_partial_program2 p =
OK tp ->
In (
i,
Gvar tv)
tp.(
prog_defs) ->
exists v,
In (
i,
Gvar(
mkglobvar v tv.(
gvar_init)
tv.(
gvar_readonly)
tv.(
gvar_volatile)))
p.(
prog_defs)
/\
transf_var v =
OK tv.(
gvar_info).
Proof.
intros.
monadInv H.
simpl in H0.
revert x EQ H0.
induction (
prog_defs p);
simpl;
intros.
inv EQ.
contradiction.
destruct a as [
id [
f|
v]].
destruct (
transf_fun f)
as [
tf1|
msg]
eqn:?;
monadInv EQ.
simpl in H0;
destruct H0.
inv H.
exploit IHl;
eauto.
intros [
v' [
P Q]];
exists v';
auto.
destruct (
transf_globvar v)
as [
tv1|
msg]
eqn:?;
monadInv EQ.
simpl in H0;
destruct H0.
inv H.
monadInv Heqr.
simpl.
exists (
gvar_info v).
split.
left.
destruct v;
auto.
auto.
exploit IHl;
eauto.
intros [
v' [
P Q]];
exists v';
auto.
Qed.
Lemma transform_partial_program2_succeeds:
forall p tp i g,
transform_partial_program2 p =
OK tp ->
In (
i,
g)
p.(
prog_defs) ->
match g with
|
Gfun fd =>
exists tfd,
transf_fun fd =
OK tfd
|
Gvar gv =>
exists tv,
transf_var gv.(
gvar_info) =
OK tv
end.
Proof.
intros.
monadInv H.
revert x EQ H0.
induction (
prog_defs p);
simpl;
intros.
contradiction.
destruct a as [
id1 g1].
destruct g1.
destruct (
transf_fun f)
eqn:
TF;
try discriminate.
monadInv EQ.
destruct H0.
inv H.
econstructor;
eauto.
eapply IHl;
eauto.
destruct (
transf_globvar v)
eqn:
TV;
try discriminate.
monadInv EQ.
destruct H0.
inv H.
monadInv TV.
econstructor;
eauto.
eapply IHl;
eauto.
Qed.
Lemma transform_partial_program2_main:
forall p tp,
transform_partial_program2 p =
OK tp ->
tp.(
prog_main) =
p.(
prog_main).
Proof.
intros. monadInv H. reflexivity.
Qed.
Lemma transform_partial_program2_public:
forall p tp,
transform_partial_program2 p =
OK tp ->
tp.(
prog_public) =
p.(
prog_public).
Proof.
intros. monadInv H. reflexivity.
Qed.
Additionally, we can also "augment" the program with new global definitions
and a different "main" function.
Section AUGMENT.
Variable new_globs:
list(
ident *
globdef B W).
Variable new_main:
ident.
Definition transform_partial_augment_program (
p:
program A V) :
res (
program B W) :=
do gl' <-
transf_globdefs p.(
prog_defs);
OK(
mkprogram (
gl' ++
new_globs)
p.(
prog_public)
new_main).
Lemma transform_partial_augment_program_main:
forall p tp,
transform_partial_augment_program p =
OK tp ->
tp.(
prog_main) =
new_main.
Proof.
intros. monadInv H. reflexivity.
Qed.
End AUGMENT.
Remark transform_partial_program2_augment:
forall p,
transform_partial_program2 p =
transform_partial_augment_program nil p.(
prog_main)
p.
Proof.
End TRANSF_PROGRAM_GEN.
The following is a special case of transform_partial_program2,
where only function definitions are transformed, but not variable definitions.
Section TRANSF_PARTIAL_PROGRAM.
Variable A B V:
Type.
Variable transf_partial:
A ->
res B.
Definition transform_partial_program (
p:
program A V) :
res (
program B V) :=
transform_partial_program2 transf_partial (
fun v =>
OK v)
p.
Lemma transform_partial_program_main:
forall p tp,
transform_partial_program p =
OK tp ->
tp.(
prog_main) =
p.(
prog_main).
Proof.
Lemma transform_partial_program_public:
forall p tp,
transform_partial_program p =
OK tp ->
tp.(
prog_public) =
p.(
prog_public).
Proof.
Lemma transform_partial_program_function:
forall p tp i tf,
transform_partial_program p =
OK tp ->
In (
i,
Gfun tf)
tp.(
prog_defs) ->
exists f,
In (
i,
Gfun f)
p.(
prog_defs) /\
transf_partial f =
OK tf.
Proof.
Lemma transform_partial_program_succeeds:
forall p tp i fd,
transform_partial_program p =
OK tp ->
In (
i,
Gfun fd)
p.(
prog_defs) ->
exists tfd,
transf_partial fd =
OK tfd.
Proof.
End TRANSF_PARTIAL_PROGRAM.
Lemma transform_program_partial_program:
forall (
A B V:
Type) (
transf:
A ->
B) (
p:
program A V),
transform_partial_program (
fun f =>
OK(
transf f))
p =
OK(
transform_program transf p).
Proof.
The following is a relational presentation of
transform_partial_augment_preogram. Given relations between function
definitions and between variable information, it defines a relation
between programs stating that the two programs have appropriately related
shapes (global names are preserved and possibly augmented, etc)
and that identically-named function definitions
and variable information are related.
Section MATCH_PROGRAM.
Variable A B V W:
Type.
Variable match_fundef:
A ->
B ->
Prop.
Variable match_varinfo:
V ->
W ->
Prop.
Inductive match_globdef:
ident *
globdef A V ->
ident *
globdef B W ->
Prop :=
|
match_glob_fun:
forall id f1 f2,
match_fundef f1 f2 ->
match_globdef (
id,
Gfun f1) (
id,
Gfun f2)
|
match_glob_var:
forall id init ro vo info1 info2,
match_varinfo info1 info2 ->
match_globdef (
id,
Gvar (
mkglobvar info1 init ro vo)) (
id,
Gvar (
mkglobvar info2 init ro vo)).
Definition match_program (
new_globs :
list (
ident *
globdef B W))
(
new_main :
ident)
(
p1:
program A V) (
p2:
program B W) :
Prop :=
(
exists tglob,
list_forall2 match_globdef p1.(
prog_defs)
tglob /\
p2.(
prog_defs) =
tglob ++
new_globs) /\
p2.(
prog_main) =
new_main /\
p2.(
prog_public) =
p1.(
prog_public).
End MATCH_PROGRAM.
Lemma transform_partial_augment_program_match:
forall (
A B V W:
Type)
(
transf_fun:
A ->
res B)
(
transf_var:
V ->
res W)
(
p:
program A V)
(
new_globs :
list (
ident *
globdef B W))
(
new_main :
ident)
(
tp:
program B W),
transform_partial_augment_program transf_fun transf_var new_globs new_main p =
OK tp ->
match_program
(
fun fd tfd =>
transf_fun fd =
OK tfd)
(
fun info tinfo =>
transf_var info =
OK tinfo)
new_globs new_main
p tp.
Proof.
unfold transform_partial_augment_program;
intros.
monadInv H.
red;
simpl.
split;
auto.
exists x;
split;
auto.
revert x EQ.
generalize (
prog_defs p).
induction l;
simpl;
intros.
monadInv EQ.
constructor.
destruct a as [
id [
f|
v]].
function *)
destruct (
transf_fun f)
as [
tf|?]
eqn:?;
monadInv EQ.
constructor;
auto.
constructor;
auto.
variable *)
unfold transf_globvar in EQ.
destruct (
transf_var (
gvar_info v))
as [
tinfo|?]
eqn:?;
simpl in EQ;
monadInv EQ.
constructor;
auto.
destruct v;
simpl in *.
constructor;
auto.
Qed.
External functions
For most languages, the functions composing the program are either
internal functions, defined within the language, or external functions,
defined outside. External functions include system calls but also
compiler built-in functions. We define a type for external functions
and associated operations.
Inductive external_function :
Type :=
|
EF_external (
name:
ident) (
sg:
signature)
A system call or library function. Produces an event
in the trace.
|
EF_builtin (
name:
ident) (
sg:
signature)
A compiler built-in function. Behaves like an external, but
can be inlined by the compiler.
|
EF_vload (
chunk:
memory_chunk)
A volatile read operation. If the adress given as first argument
points within a volatile global variable, generate an
event and return the value found in this event. Otherwise,
produce no event and behave like a regular memory load.
|
EF_vstore (
chunk:
memory_chunk)
A volatile store operation. If the adress given as first argument
points within a volatile global variable, generate an event.
Otherwise, produce no event and behave like a regular memory store.
|
EF_vload_global (
chunk:
memory_chunk) (
id:
ident) (
ofs:
int)
A volatile load operation from a global variable.
Specialized version of EF_vload.
|
EF_vstore_global (
chunk:
memory_chunk) (
id:
ident) (
ofs:
int)
A volatile store operation in a global variable.
Specialized version of EF_vstore.
|
EF_malloc
Dynamic memory allocation. Takes the requested size in bytes
as argument; returns a pointer to a fresh block of the given size.
Produces no observable event.
|
EF_free
Dynamic memory deallocation. Takes a pointer to a block
allocated by an EF_malloc external call and frees the
corresponding block.
Produces no observable event.
|
EF_memcpy (
sz:
Z) (
al:
Z)
Block copy, of sz bytes, between addresses that are al-aligned.
|
EF_annot (
text:
ident) (
targs:
list typ)
A programmer-supplied annotation. Takes zero, one or several arguments,
produces an event carrying the text and the values of these arguments,
and returns no value.
|
EF_annot_val (
text:
ident) (
targ:
typ)
Another form of annotation that takes one argument, produces
an event carrying the text and the value of this argument,
and returns the value of the argument.
|
EF_inline_asm (
text:
ident) (
sg:
signature) (
clobbers:
list String.string).
Inline asm statements. Semantically, treated like an
annotation with no parameters (EF_annot text nil). To be
used with caution, as it can invalidate the semantic
preservation theorem. Generated only if -finline-asm is
given.
The type signature of an external function.
Definition ef_sig (
ef:
external_function):
signature :=
match ef with
|
EF_external name sg =>
sg
|
EF_builtin name sg =>
sg
|
EF_vload chunk =>
mksignature (
Tint ::
nil) (
Some (
type_of_chunk chunk))
cc_default
|
EF_vstore chunk =>
mksignature (
Tint ::
type_of_chunk chunk ::
nil)
None cc_default
|
EF_vload_global chunk _ _ =>
mksignature nil (
Some (
type_of_chunk chunk))
cc_default
|
EF_vstore_global chunk _ _ =>
mksignature (
type_of_chunk chunk ::
nil)
None cc_default
|
EF_malloc =>
mksignature (
Tint ::
nil) (
Some Tint)
cc_default
|
EF_free =>
mksignature (
Tint ::
nil)
None cc_default
|
EF_memcpy sz al =>
mksignature (
Tint ::
Tint ::
nil)
None cc_default
|
EF_annot text targs =>
mksignature targs None cc_default
|
EF_annot_val text targ =>
mksignature (
targ ::
nil) (
Some targ)
cc_default
|
EF_inline_asm text sg clob =>
sg
end.
Whether an external function should be inlined by the compiler.
Definition ef_inline (
ef:
external_function) :
bool :=
match ef with
|
EF_external name sg =>
false
|
EF_builtin name sg =>
true
|
EF_vload chunk =>
true
|
EF_vstore chunk =>
true
|
EF_vload_global chunk id ofs =>
true
|
EF_vstore_global chunk id ofs =>
true
|
EF_malloc =>
false
|
EF_free =>
false
|
EF_memcpy sz al =>
true
|
EF_annot text targs =>
true
|
EF_annot_val text targ =>
true
|
EF_inline_asm text sg clob =>
true
end.
Whether an external function must reload its arguments.
Definition ef_reloads (
ef:
external_function) :
bool :=
match ef with
|
EF_annot text targs =>
false
|
_ =>
true
end.
Equality between external functions. Used in module Allocation.
Definition external_function_eq:
forall (
ef1 ef2:
external_function), {
ef1=
ef2} + {
ef1<>
ef2}.
Proof.
Global Opaque external_function_eq.
Global variables referenced by an external function
Definition globals_external (
ef:
external_function) :
list ident :=
match ef with
|
EF_vload_global _ id _ =>
id ::
nil
|
EF_vstore_global _ id _ =>
id ::
nil
|
_ =>
nil
end.
Function definitions are the union of internal and external functions.
Inductive fundef (
F:
Type):
Type :=
|
Internal:
F ->
fundef F
|
External:
external_function ->
fundef F.
Implicit Arguments External [
F].
Section TRANSF_FUNDEF.
Variable A B:
Type.
Variable transf:
A ->
B.
Definition transf_fundef (
fd:
fundef A):
fundef B :=
match fd with
|
Internal f =>
Internal (
transf f)
|
External ef =>
External ef
end.
End TRANSF_FUNDEF.
Section TRANSF_PARTIAL_FUNDEF.
Variable A B:
Type.
Variable transf_partial:
A ->
res B.
Definition transf_partial_fundef (
fd:
fundef A):
res (
fundef B) :=
match fd with
|
Internal f =>
do f' <-
transf_partial f;
OK (
Internal f')
|
External ef =>
OK (
External ef)
end.
End TRANSF_PARTIAL_FUNDEF.
Arguments to annotations
Set Contextual Implicit.
Inductive annot_arg (
A:
Type) :
Type :=
|
AA_base (
x:
A)
|
AA_int (
n:
int)
|
AA_long (
n:
int64)
|
AA_float (
f:
float)
|
AA_single (
f:
float32)
|
AA_loadstack (
chunk:
memory_chunk) (
ofs:
int)
|
AA_addrstack (
ofs:
int)
|
AA_loadglobal (
chunk:
memory_chunk) (
id:
ident) (
ofs:
int)
|
AA_addrglobal (
id:
ident) (
ofs:
int)
|
AA_longofwords (
hi lo:
annot_arg A).
Fixpoint globals_of_annot_arg (
A:
Type) (
a:
annot_arg A) :
list ident :=
match a with
|
AA_loadglobal chunk id ofs =>
id ::
nil
|
AA_addrglobal id ofs =>
id ::
nil
|
AA_longofwords hi lo =>
globals_of_annot_arg hi ++
globals_of_annot_arg lo
|
_ =>
nil
end.
Definition globals_of_annot_args (
A:
Type) (
al:
list (
annot_arg A)) :
list ident :=
List.fold_right (
fun a l =>
globals_of_annot_arg a ++
l)
nil al.
Fixpoint params_of_annot_arg (
A:
Type) (
a:
annot_arg A) :
list A :=
match a with
|
AA_base x =>
x ::
nil
|
AA_longofwords hi lo =>
params_of_annot_arg hi ++
params_of_annot_arg lo
|
_ =>
nil
end.
Definition params_of_annot_args (
A:
Type) (
al:
list (
annot_arg A)) :
list A :=
List.fold_right (
fun a l =>
params_of_annot_arg a ++
l)
nil al.
Fixpoint map_annot_arg (
A B:
Type) (
f:
A ->
B) (
a:
annot_arg A) :
annot_arg B :=
match a with
|
AA_base x =>
AA_base (
f x)
|
AA_int n =>
AA_int n
|
AA_long n =>
AA_long n
|
AA_float n =>
AA_float n
|
AA_single n =>
AA_single n
|
AA_loadstack chunk ofs =>
AA_loadstack chunk ofs
|
AA_addrstack ofs =>
AA_addrstack ofs
|
AA_loadglobal chunk id ofs =>
AA_loadglobal chunk id ofs
|
AA_addrglobal id ofs =>
AA_addrglobal id ofs
|
AA_longofwords hi lo =>
AA_longofwords (
map_annot_arg f hi) (
map_annot_arg f lo)
end.