Explicabilité des modèles d'apprentissage automatique : De l'adaptabilité des données à la perception de l'utilisateur

Type de soutenance
Thèse
Date de début
Date de fin
Lieu
IRISA Rennes
Salle
Amphi Inria
Orateur
Julien DELAUNAY (LACODAM)
Sujet

Titre : Explicabilité des modèles d'apprentissage automatique : De l'adaptabilité des données à la perception de l'utilisateur

Résumé : Cette thèse se concentre sur la génération d'explications locales pour les modèles de machine learning déjà déployés, en recherchant les conditions optimales pour des explications pertinentes, prenant en compte à la fois les données et les besoins de l'utilisateur. L'objectif principal est de développer des méthodes produisant des explications pour n'importe quel modèle de prédiction, tout en veillant à ce que ces explications demeurent à la fois fidèles au modèle sous-jacent et compréhensibles par les utilisateurs qui les reçoivent.
La thèse est divisée en deux parties. Dans la première, on améliore une méthode d'explication basée sur des règles. On introduit ensuite une approche pour évaluer l'adéquation des explications linéaires pour approximer un modèle à expliquer. Enfin, cette partie présente une expérimentation comparative entre deux familles de méthodes d'explication contrefactuelles, dans le but d'analyser les avantages de l'une par rapport à l'autre. La deuxième partie se concentre sur des expériences utilisateurs évaluant l'impact de trois méthodes d'explication et de deux représentations différentes. Ces expériences mesurent la perception en termes de compréhension et de confiance des utilisateurs en fonction des explications et de leurs représentations. L'ensemble de ces travaux contribue à une meilleure compréhension de la génération d'explications pour les modèles de machine learning, avec des implications potentielles pour l'amélioration de la transparence, de la confiance et de l'utilisabilité des systèmes d'IA déployés.

 

L’accès du public (hors IRISA) à cette soutenance est contraint à une inscription obligatoire avant le 18 décembre auprès de gaelle [*] tworkowskiatinria [*] fr – L’accès ne sera pas autorisé sans inscription préalable. Par ailleurs, les visiteurs ne porteront ni bagage ni sac.

Composition du jury
Andrea PASSERINI, Maître de conférence, Université de Trento, Italie
Marie-Jeanne LESOT, Professeure, Sorbonne Université
Niels VAN BERKEL, Maître de conférence, Université d'Aalborg, Danemark
Katrien VERBERT, Professeure, Université catholique de Leuven, Belgique
Pierre MARQUIS, Professeur, Université d’Artois
Elisa FROMONT, Professeure, Université de Rennes
Christine LARGOUËT, Maîtresse de conférence, Institut Agro
Luis GALARRAGA, Chercheur, Inria