Contact : Eric Marchand, François Chaumette, Andrew Comport Creation Date : December 2003 |
This demo addresses the problem of real-time model-based tracking of 3D
objects in monocular image sequences. This fundamental vision problem has
applications in many domains ranging from Augmented Reality to Visual Servoing
and even Medical Imaging or Industrial applications.
A markerless model-based algorithm is used for the tracking of 3D
objects in monocular image sequences. The main advantage of a model based
method is that the knowledge about the scene (the implicit 3D information)
allows improvement of robustness and performance by being able to predict
hidden movement of the object and acts to reduce the effects of outlier data
introduced in the tracking process.
In this paper, pose computation is formulated in terms of a full scale
non-linear optimization: Virtual Visual Servoing (VVS) [Marchand02c]. In
this way the pose computation problem is considered as similar to 2D visual
servoing. 2D visual servoing or image-based camera control allows control of a
eye-in-hand camera wrt. its environment. More precisely it consists in
specifying a task (mainly positioning or target tracking tasks) as the
regulation in the image of a set of visual features. A set of constraints are
defined in the image space. A closed-loop control law that minimizes the error
between the current and desired position of these visual features can then be
built which determines automatically the motion the camera has to realize.
This paper takes this framework and builds an image feature based system which
is capable of treating complex scenes in real-time without the need for
markers.
Any visual servoing control law can be used using the output of our tracker
(image-based, position-based or hybrid scheme). In the presented experiments
we have considered a now well known approach, already described
in [Malis99a]. It consists in combining visual features
obtained directly from the image, and features expressed in the Euclidean
space. 2D 1/2 visual servoing consists in combining image features and 3D
data. The 3D information can be retrieved either by a pose estimation
algorithm, either by a projective reconstruction, obtained from the current and
desired images. In our context since the pose is
an output of our tracker we will consider the former solution.
The complete implementation of the robust visual servoing task, including
tracking and control, was carried out on an experimental test-bed involving a
CCD camera mounted on the end effector of a six d.o.f robot. Images were
acquired and processed at video rate (50Hz).
In such experiments, the image processing is potentially very complex. Indeed
extracting and tracking reliable points in real environment is a non trivial
issue. The use of more complex features such as the distance to the projection
of 3D circles, lines, and cylinders has been demonstrated in [Comport03c]
in an augmented reality context. In all experiments, the distances are computed
using the Moving Edges algorithm previously described. Tracking is always
performed at below frame rate (usually in less than 10ms).
a b c d
Figure 1: Tracking in complex environment within a classical visual servoing experiments: Images are acquired and processed at video rate (25Hz). Blue: desired position defined by the user. Green: position measured after pose calculation. (a) first image initialized by hand, (b) partial occlusion with hand, (c) lighting variation, (d) final image with various occlusions
In all the figures depicted,
current position of the tracked object appears in green while its desired
position appears in blue.
Three objects where considered: a micro-controller (Figure 1),
an industrial emergency switch (Figure 2) and a video
multiplexer (Figure 3).
To validate the robustness of the algorithm, the objects were placed in a
highly textured environment as shown in Fig. 1, 2
and 3. Tracking and positioning tasks were correctly achieved.
Multiple temporary and partial occlusions by an hand and various work-tools as well
as modification of the lighting conditions were imposed during the realization
of the positioning task. On the third experiments (Figure 3) after
a complex positioning task (note that some object faces appeared while other
disappeared) the object is handled by hand and moved around. Since the visual
servoing task has not been stopped, robot is still moving in order to maintain
the rigid link between the camera and the object.
For the second experiment, plots are also shown which help to analyse the
pose parameters, the camera velocity and the error vector. In
the second experiment the robot velocity is reached 23 cm/s in translation and
85 deg/s in rotation. In other words, less than 35 frames were acquired during
the entire positioning task up until convergence (see Figure 2e).
Therefore the task was accomplished in less than 1 second ! In all these
experiments, neither a Kalman
filter (or other prediction process) nor the camera displacement were used to
help the tracking.
a b c d d
Figure 2: 2D 1/2 visual servoing experiments: on these five snapshots the tracked object appears in green and its desired position in the image in blue. Plots correspond to (a) Pose (translation) (b) Pose (rotation) (c-d) camera velocity in rotation and translation (e) error vector s-s*
Figure 3: 2D 1/2 visual servoing experiments: on these snapshots the tracked object appears in green and its desired position in the image in blue. The six first images have been acquired in initial visual servoing step. In the reminder images object is moving along with the robot.
A. Comport, E. Marchand, F. Chaumette. A real-time tracker for markerless augmented reality. In ACM/IEEE Int. Symp. on Mixed and Augmented Reality, ISMAR'03, Pages 36-45, Tokyo, Japon, Octobre 2003.
E. Marchand, F. Chaumette.
Virtual Visual
Servoing: a framework for real-time augmented reality. in EUROGRAPHICS
2002 Conference Proceeding, G. Drettakis, H.-P. Seidel (eds.), Computer
Graphics Forum, Volume 21(3), Saarebrücken, Germany, September 2002.
V. Sundareswaran, R. Behringer. Visual
servoing-based augmented reality. In IEEE Int. Workshop on Augmented
Reality, San Francisco, November 1998.
B. Espiau, F. Chaumette, P. Rives. A new approach to
visual servoing in robotics. IEEE Trans. on Robotics and Automation,
8(3):313-326, June 1992.
S. Hutchinson, G. Hager, P. Corke. A tutorial on
visual servo control. IEEE Trans. on Robotics and Automation,
12(5):651-670, October 1996.
| Lagadic
| Map
| Team
| Publications
| Demonstrations
|
Irisa - Inria - Copyright 2009 © Lagadic Project |