Applicative finite maps are the main data structure used in this
project. A finite map associates data to keys. The two main operations
are
set k d m, which returns a map identical to
m except that
d
is associated to
k, and
get k m which returns the data associated
to key
k in map
m. In this library, we distinguish two kinds of maps:
-
Trees: the get operation returns an option type, either None
if no data is associated to the key, or Some d otherwise.
-
Maps: the get operation always returns a data. If no data was explicitly
associated with the key, a default data provided at map initialization time
is returned.
In this library, we provide efficient implementations of trees and
maps whose keys range over the type
positive of binary positive
integers or any type that can be injected into
positive. The
implementation is based on radix-2 search trees (uncompressed
Patricia trees) and guarantees logarithmic-time operations. An
inefficient implementation of maps as functions is also provided.
Require Import Coqlib.
Set Implicit Arguments.
The abstract signatures of trees
Module Type TREE.
Variable elt:
Type.
Variable elt_eq:
forall (
a b:
elt), {
a =
b} + {
a <>
b}.
Variable t:
Type ->
Type.
Variable eq:
forall (
A:
Type), (
forall (
x y:
A), {
x=
y} + {
x<>
y}) ->
forall (
a b:
t A), {
a =
b} + {
a <>
b}.
Variable empty:
forall (
A:
Type),
t A.
Variable get:
forall (
A:
Type),
elt ->
t A ->
option A.
Variable set:
forall (
A:
Type),
elt ->
A ->
t A ->
t A.
Variable remove:
forall (
A:
Type),
elt ->
t A ->
t A.
The ``good variables'' properties for trees, expressing
commutations between get, set and remove.
Hypothesis gempty:
forall (
A:
Type) (
i:
elt),
get i (
empty A) =
None.
Hypothesis gss:
forall (
A:
Type) (
i:
elt) (
x:
A) (
m:
t A),
get i (
set i x m) =
Some x.
Hypothesis gso:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
i <>
j ->
get i (
set j x m) =
get i m.
Hypothesis gsspec:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
get i (
set j x m) =
if elt_eq i j then Some x else get i m.
Hypothesis gsident:
forall (
A:
Type) (
i:
elt) (
m:
t A) (
v:
A),
get i m =
Some v ->
set i v m =
m.
Hypothesis grs:
forall (
A:
Type) (
i:
elt) (
m:
t A),
get i (
remove i m) =
None.
Hypothesis gro:
forall (
A:
Type) (
i j:
elt) (
m:
t A),
i <>
j ->
get i (
remove j m) =
get i m.
Hypothesis grspec:
forall (
A:
Type) (
i j:
elt) (
m:
t A),
get i (
remove j m) =
if elt_eq i j then None else get i m.
Extensional equality between trees.
Variable beq:
forall (
A:
Type), (
A ->
A ->
bool) ->
t A ->
t A ->
bool.
Hypothesis beq_correct:
forall (
A:
Type) (
P:
A ->
A ->
Prop) (
cmp:
A ->
A ->
bool),
(
forall (
x y:
A),
cmp x y =
true ->
P x y) ->
forall (
t1 t2:
t A),
beq cmp t1 t2 =
true ->
forall (
x:
elt),
match get x t1,
get x t2 with
|
None,
None =>
True
|
Some y1,
Some y2 =>
P y1 y2
|
_,
_ =>
False
end.
Applying a function to all data of a tree.
Variable map:
forall (
A B:
Type), (
elt ->
A ->
B) ->
t A ->
t B.
Hypothesis gmap:
forall (
A B:
Type) (
f:
elt ->
A ->
B) (
i:
elt) (
m:
t A),
get i (
map f m) =
option_map (
f i) (
get i m).
Same as map, but the function does not receive the elt argument.
Variable map1:
forall (
A B:
Type), (
A ->
B) ->
t A ->
t B.
Hypothesis gmap1:
forall (
A B:
Type) (
f:
A ->
B) (
i:
elt) (
m:
t A),
get i (
map1 f m) =
option_map f (
get i m).
Filtering data that match a given predicate. * )
Variable filter1:
forall (A: Type), (A -> bool) -> t A -> t A.
Hypothesis gfilter1:
forall (A: Type) (pred: A -> bool) (i: elt) (m: t A),
get i (filter1 pred m) =
match get i m with None => None | Some x => if pred x then Some x else None end.
Applying a function pairwise to all data of two trees.
Variable combine:
forall (
A B:
Type), (
option A ->
option A ->
option B) ->
t A ->
t A ->
t B.
Hypothesis gcombine:
forall (
A B:
Type) (
f:
option A ->
option A ->
option B),
f None None =
None ->
forall (
m1 m2:
t A) (
i:
elt),
get i (
combine f m1 m2) =
f (
get i m1) (
get i m2).
Hypothesis combine_commut:
forall (
A B:
Type) (
f g:
option A ->
option A ->
option B),
(
forall (
i j:
option A),
f i j =
g j i) ->
forall (
m1 m2:
t A),
combine f m1 m2 =
combine g m2 m1.
Enumerating the bindings of a tree.
Variable elements:
forall (
A:
Type),
t A ->
list (
elt *
A).
Hypothesis elements_correct:
forall (
A:
Type) (
m:
t A) (
i:
elt) (
v:
A),
get i m =
Some v ->
In (
i,
v) (
elements m).
Hypothesis elements_complete:
forall (
A:
Type) (
m:
t A) (
i:
elt) (
v:
A),
In (
i,
v) (
elements m) ->
get i m =
Some v.
Hypothesis elements_keys_norepet:
forall (
A:
Type) (
m:
t A),
list_norepet (
List.map (@
fst elt A) (
elements m)).
Folding a function over all bindings of a tree.
Variable fold:
forall (
A B:
Type), (
B ->
elt ->
A ->
B) ->
t A ->
B ->
B.
Hypothesis fold_spec:
forall (
A B:
Type) (
f:
B ->
elt ->
A ->
B) (
v:
B) (
m:
t A),
fold f m v =
List.fold_left (
fun a p =>
f a (
fst p) (
snd p)) (
elements m)
v.
End TREE.
The abstract signatures of maps
Module Type MAP.
Variable elt:
Type.
Variable elt_eq:
forall (
a b:
elt), {
a =
b} + {
a <>
b}.
Variable t:
Type ->
Type.
Variable init:
forall (
A:
Type),
A ->
t A.
Variable get:
forall (
A:
Type),
elt ->
t A ->
A.
Variable set:
forall (
A:
Type),
elt ->
A ->
t A ->
t A.
Hypothesis gi:
forall (
A:
Type) (
i:
elt) (
x:
A),
get i (
init x) =
x.
Hypothesis gss:
forall (
A:
Type) (
i:
elt) (
x:
A) (
m:
t A),
get i (
set i x m) =
x.
Hypothesis gso:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
i <>
j ->
get i (
set j x m) =
get i m.
Hypothesis gsspec:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
get i (
set j x m) =
if elt_eq i j then x else get i m.
Hypothesis gsident:
forall (
A:
Type) (
i j:
elt) (
m:
t A),
get j (
set i (
get i m)
m) =
get j m.
Variable map:
forall (
A B:
Type), (
A ->
B) ->
t A ->
t B.
Hypothesis gmap:
forall (
A B:
Type) (
f:
A ->
B) (
i:
elt) (
m:
t A),
get i (
map f m) =
f(
get i m).
End MAP.
An implementation of trees over type positive
Module PTree <:
TREE.
Definition elt :=
positive.
Definition elt_eq :=
peq.
Inductive tree (
A :
Type) :
Type :=
|
Leaf :
tree A
|
Node :
tree A ->
option A ->
tree A ->
tree A
.
Implicit Arguments Leaf [
A].
Implicit Arguments Node [
A].
Definition t :=
tree.
Theorem eq :
forall (
A :
Type),
(
forall (
x y:
A), {
x=
y} + {
x<>
y}) ->
forall (
a b :
t A), {
a =
b} + {
a <>
b}.
Proof.
intros A eqA.
decide equality.
generalize o o0; decide equality.
Qed.
Definition empty (
A :
Type) := (
Leaf :
t A).
Fixpoint get (
A :
Type) (
i :
positive) (
m :
t A) {
struct i} :
option A :=
match m with
|
Leaf =>
None
|
Node l o r =>
match i with
|
xH =>
o
|
xO ii =>
get ii l
|
xI ii =>
get ii r
end
end.
Fixpoint set (
A :
Type) (
i :
positive) (
v :
A) (
m :
t A) {
struct i} :
t A :=
match m with
|
Leaf =>
match i with
|
xH =>
Node Leaf (
Some v)
Leaf
|
xO ii =>
Node (
set ii v Leaf)
None Leaf
|
xI ii =>
Node Leaf None (
set ii v Leaf)
end
|
Node l o r =>
match i with
|
xH =>
Node l (
Some v)
r
|
xO ii =>
Node (
set ii v l)
o r
|
xI ii =>
Node l o (
set ii v r)
end
end.
Fixpoint remove (
A :
Type) (
i :
positive) (
m :
t A) {
struct i} :
t A :=
match i with
|
xH =>
match m with
|
Leaf =>
Leaf
|
Node Leaf o Leaf =>
Leaf
|
Node l o r =>
Node l None r
end
|
xO ii =>
match m with
|
Leaf =>
Leaf
|
Node l None Leaf =>
match remove ii l with
|
Leaf =>
Leaf
|
mm =>
Node mm None Leaf
end
|
Node l o r =>
Node (
remove ii l)
o r
end
|
xI ii =>
match m with
|
Leaf =>
Leaf
|
Node Leaf None r =>
match remove ii r with
|
Leaf =>
Leaf
|
mm =>
Node Leaf None mm
end
|
Node l o r =>
Node l o (
remove ii r)
end
end.
Theorem gempty:
forall (
A:
Type) (
i:
positive),
get i (
empty A) =
None.
Proof.
induction i; simpl; auto.
Qed.
Theorem gss:
forall (
A:
Type) (
i:
positive) (
x:
A) (
m:
t A),
get i (
set i x m) =
Some x.
Proof.
induction i; destruct m; simpl; auto.
Qed.
Lemma gleaf :
forall (
A :
Type) (
i :
positive),
get i (
Leaf :
t A) =
None.
Proof.
Theorem gso:
forall (
A:
Type) (
i j:
positive) (
x:
A) (
m:
t A),
i <>
j ->
get i (
set j x m) =
get i m.
Proof.
induction i;
intros;
destruct j;
destruct m;
simpl;
try rewrite <- (
gleaf A i);
auto;
try apply IHi;
congruence.
Qed.
Theorem gsspec:
forall (
A:
Type) (
i j:
positive) (
x:
A) (
m:
t A),
get i (
set j x m) =
if peq i j then Some x else get i m.
Proof.
intros.
destruct (
peq i j); [
rewrite e;
apply gss |
apply gso;
auto ].
Qed.
Theorem gsident:
forall (
A:
Type) (
i:
positive) (
m:
t A) (
v:
A),
get i m =
Some v ->
set i v m =
m.
Proof.
induction i; intros; destruct m; simpl; simpl in H; try congruence.
rewrite (IHi m2 v H); congruence.
rewrite (IHi m1 v H); congruence.
Qed.
Theorem set2:
forall (
A:
Type) (
i:
elt) (
m:
t A) (
v1 v2:
A),
set i v2 (
set i v1 m) =
set i v2 m.
Proof.
induction i; intros; destruct m; simpl; try (rewrite IHi); auto.
Qed.
Lemma rleaf :
forall (
A :
Type) (
i :
positive),
remove i (
Leaf :
t A) =
Leaf.
Proof.
destruct i; simpl; auto. Qed.
Theorem grs:
forall (
A:
Type) (
i:
positive) (
m:
t A),
get i (
remove i m) =
None.
Proof.
induction i;
destruct m.
simpl;
auto.
destruct m1;
destruct o;
destruct m2 as [ |
ll oo rr];
simpl;
auto.
rewrite (
rleaf A i);
auto.
cut (
get i (
remove i (
Node ll oo rr)) =
None).
destruct (
remove i (
Node ll oo rr));
auto;
apply IHi.
apply IHi.
simpl;
auto.
destruct m1 as [ |
ll oo rr];
destruct o;
destruct m2;
simpl;
auto.
rewrite (
rleaf A i);
auto.
cut (
get i (
remove i (
Node ll oo rr)) =
None).
destruct (
remove i (
Node ll oo rr));
auto;
apply IHi.
apply IHi.
simpl;
auto.
destruct m1;
destruct m2;
simpl;
auto.
Qed.
Theorem gro:
forall (
A:
Type) (
i j:
positive) (
m:
t A),
i <>
j ->
get i (
remove j m) =
get i m.
Proof.
induction i;
intros;
destruct j;
destruct m;
try rewrite (
rleaf A (
xI j));
try rewrite (
rleaf A (
xO j));
try rewrite (
rleaf A 1);
auto;
destruct m1;
destruct o;
destruct m2;
simpl;
try apply IHi;
try congruence;
try rewrite (
rleaf A j);
auto;
try rewrite (
gleaf A i);
auto.
cut (
get i (
remove j (
Node m2_1 o m2_2)) =
get i (
Node m2_1 o m2_2));
[
destruct (
remove j (
Node m2_1 o m2_2));
try rewrite (
gleaf A i);
auto
|
apply IHi;
congruence ].
destruct (
remove j (
Node m1_1 o0 m1_2));
simpl;
try rewrite (
gleaf A i);
auto.
destruct (
remove j (
Node m2_1 o m2_2));
simpl;
try rewrite (
gleaf A i);
auto.
cut (
get i (
remove j (
Node m1_1 o0 m1_2)) =
get i (
Node m1_1 o0 m1_2));
[
destruct (
remove j (
Node m1_1 o0 m1_2));
try rewrite (
gleaf A i);
auto
|
apply IHi;
congruence ].
destruct (
remove j (
Node m2_1 o m2_2));
simpl;
try rewrite (
gleaf A i);
auto.
destruct (
remove j (
Node m1_1 o0 m1_2));
simpl;
try rewrite (
gleaf A i);
auto.
Qed.
Theorem grspec:
forall (
A:
Type) (
i j:
elt) (
m:
t A),
get i (
remove j m) =
if elt_eq i j then None else get i m.
Proof.
intros.
destruct (
elt_eq i j).
subst j.
apply grs.
apply gro;
auto.
Qed.
Section EXTENSIONAL_EQUALITY.
Variable A:
Type.
Variable eqA:
A ->
A ->
Prop.
Variable beqA:
A ->
A ->
bool.
Hypothesis beqA_correct:
forall x y,
beqA x y =
true ->
eqA x y.
Definition exteq (
m1 m2:
t A) :
Prop :=
forall (
x:
elt),
match get x m1,
get x m2 with
|
None,
None =>
True
|
Some y1,
Some y2 =>
eqA y1 y2
|
_,
_ =>
False
end.
Fixpoint bempty (
m:
t A) :
bool :=
match m with
|
Leaf =>
true
|
Node l None r =>
bempty l &&
bempty r
|
Node l (
Some _)
r =>
false
end.
Lemma bempty_correct:
forall m,
bempty m =
true ->
forall x,
get x m =
None.
Proof.
induction m;
simpl;
intros.
change (@
Leaf A)
with (
empty A).
apply gempty.
destruct o.
congruence.
destruct (
andb_prop _ _ H).
destruct x;
simpl;
auto.
Qed.
Fixpoint beq (
m1 m2:
t A) {
struct m1} :
bool :=
match m1,
m2 with
|
Leaf,
_ =>
bempty m2
|
_,
Leaf =>
bempty m1
|
Node l1 o1 r1,
Node l2 o2 r2 =>
match o1,
o2 with
|
None,
None =>
true
|
Some y1,
Some y2 =>
beqA y1 y2
|
_,
_ =>
false
end
&&
beq l1 l2 &&
beq r1 r2
end.
Lemma beq_correct:
forall m1 m2,
beq m1 m2 =
true ->
exteq m1 m2.
Proof.
induction m1;
destruct m2;
simpl.
intros;
red;
intros.
change (@
Leaf A)
with (
empty A).
repeat rewrite gempty.
auto.
destruct o;
intro.
congruence.
red;
intros.
change (@
Leaf A)
with (
empty A).
rewrite gempty.
rewrite bempty_correct.
auto.
assumption.
destruct o;
intro.
congruence.
red;
intros.
change (@
Leaf A)
with (
empty A).
rewrite gempty.
rewrite bempty_correct.
auto.
assumption.
destruct o;
destruct o0;
simpl;
intro;
try congruence.
destruct (
andb_prop _ _ H).
destruct (
andb_prop _ _ H0).
red;
intros.
destruct x;
simpl.
apply IHm1_2;
auto.
apply IHm1_1;
auto.
apply beqA_correct;
auto.
destruct (
andb_prop _ _ H).
red;
intros.
destruct x;
simpl.
apply IHm1_2;
auto.
apply IHm1_1;
auto.
auto.
Qed.
End EXTENSIONAL_EQUALITY.
Fixpoint append (
i j :
positive) {
struct i} :
positive :=
match i with
|
xH =>
j
|
xI ii =>
xI (
append ii j)
|
xO ii =>
xO (
append ii j)
end.
Lemma append_assoc_0 :
forall (
i j :
positive),
append i (
xO j) =
append (
append i (
xO xH))
j.
Proof.
induction i;
intros;
destruct j;
simpl;
try rewrite (
IHi (
xI j));
try rewrite (
IHi (
xO j));
try rewrite <- (
IHi xH);
auto.
Qed.
Lemma append_assoc_1 :
forall (
i j :
positive),
append i (
xI j) =
append (
append i (
xI xH))
j.
Proof.
induction i;
intros;
destruct j;
simpl;
try rewrite (
IHi (
xI j));
try rewrite (
IHi (
xO j));
try rewrite <- (
IHi xH);
auto.
Qed.
Lemma append_neutral_r :
forall (
i :
positive),
append i xH =
i.
Proof.
induction i; simpl; congruence.
Qed.
Lemma append_neutral_l :
forall (
i :
positive),
append xH i =
i.
Proof.
simpl; auto.
Qed.
Fixpoint xmap (
A B :
Type) (
f :
positive ->
A ->
B) (
m :
t A) (
i :
positive)
{
struct m} :
t B :=
match m with
|
Leaf =>
Leaf
|
Node l o r =>
Node (
xmap f l (
append i (
xO xH)))
(
option_map (
f i)
o)
(
xmap f r (
append i (
xI xH)))
end.
Definition map (
A B :
Type) (
f :
positive ->
A ->
B)
m :=
xmap f m xH.
Lemma xgmap:
forall (
A B:
Type) (
f:
positive ->
A ->
B) (
i j :
positive) (
m:
t A),
get i (
xmap f m j) =
option_map (
f (
append j i)) (
get i m).
Proof.
Theorem gmap:
forall (
A B:
Type) (
f:
positive ->
A ->
B) (
i:
positive) (
m:
t A),
get i (
map f m) =
option_map (
f i) (
get i m).
Proof.
Fixpoint map1 (
A B:
Type) (
f:
A ->
B) (
m:
t A) {
struct m} :
t B :=
match m with
|
Leaf =>
Leaf
|
Node l o r =>
Node (
map1 f l) (
option_map f o) (
map1 f r)
end.
Theorem gmap1:
forall (
A B:
Type) (
f:
A ->
B) (
i:
elt) (
m:
t A),
get i (
map1 f m) =
option_map f (
get i m).
Proof.
induction i; intros; destruct m; simpl; auto.
Qed.
Definition Node' (
A:
Type) (
l:
t A) (
x:
option A) (
r:
t A):
t A :=
match l,
x,
r with
|
Leaf,
None,
Leaf =>
Leaf
|
_,
_,
_ =>
Node l x r
end.
Lemma gnode':
forall (
A:
Type) (
l r:
t A) (
x:
option A) (
i:
positive),
get i (
Node'
l x r) =
get i (
Node l x r).
Proof.
intros.
unfold Node'.
destruct l;
destruct x;
destruct r;
auto.
destruct i;
simpl;
auto;
rewrite gleaf;
auto.
Qed.
Section COMBINE.
Variable A B:
Type.
Variable f:
option A ->
option A ->
option B.
Hypothesis f_none_none:
f None None =
None.
Fixpoint xcombine_l (
m :
t A) {
struct m} :
t B :=
match m with
|
Leaf =>
Leaf
|
Node l o r =>
Node' (
xcombine_l l) (
f o None) (
xcombine_l r)
end.
Lemma xgcombine_l :
forall (
m:
t A) (
i :
positive),
get i (
xcombine_l m) =
f (
get i m)
None.
Proof.
induction m;
intros;
simpl.
repeat rewrite gleaf.
auto.
rewrite gnode'.
destruct i;
simpl;
auto.
Qed.
Fixpoint xcombine_r (
m :
t A) {
struct m} :
t B :=
match m with
|
Leaf =>
Leaf
|
Node l o r =>
Node' (
xcombine_r l) (
f None o) (
xcombine_r r)
end.
Lemma xgcombine_r :
forall (
m:
t A) (
i :
positive),
get i (
xcombine_r m) =
f None (
get i m).
Proof.
induction m;
intros;
simpl.
repeat rewrite gleaf.
auto.
rewrite gnode'.
destruct i;
simpl;
auto.
Qed.
Fixpoint combine (
m1 m2 :
t A) {
struct m1} :
t B :=
match m1 with
|
Leaf =>
xcombine_r m2
|
Node l1 o1 r1 =>
match m2 with
|
Leaf =>
xcombine_l m1
|
Node l2 o2 r2 =>
Node' (
combine l1 l2) (
f o1 o2) (
combine r1 r2)
end
end.
Theorem gcombine:
forall (
m1 m2:
t A) (
i:
positive),
get i (
combine m1 m2) =
f (
get i m1) (
get i m2).
Proof.
induction m1;
intros;
simpl.
rewrite gleaf.
apply xgcombine_r.
destruct m2;
simpl.
rewrite gleaf.
rewrite <-
xgcombine_l.
auto.
repeat rewrite gnode'.
destruct i;
simpl;
auto.
Qed.
End COMBINE.
Lemma xcombine_lr :
forall (
A B :
Type) (
f g :
option A ->
option A ->
option B) (
m :
t A),
(
forall (
i j :
option A),
f i j =
g j i) ->
xcombine_l f m =
xcombine_r g m.
Proof.
induction m; intros; simpl; auto.
rewrite IHm1; auto.
rewrite IHm2; auto.
rewrite H; auto.
Qed.
Theorem combine_commut:
forall (
A B:
Type) (
f g:
option A ->
option A ->
option B),
(
forall (
i j:
option A),
f i j =
g j i) ->
forall (
m1 m2:
t A),
combine f m1 m2 =
combine g m2 m1.
Proof.
intros A B f g EQ1.
assert (
EQ2:
forall (
i j:
option A),
g i j =
f j i).
intros;
auto.
induction m1;
intros;
destruct m2;
simpl;
try rewrite EQ1;
repeat rewrite (
xcombine_lr f g);
repeat rewrite (
xcombine_lr g f);
auto.
rewrite IHm1_1.
rewrite IHm1_2.
auto.
Qed.
Fixpoint xelements (
A :
Type) (
m :
t A) (
i :
positive) {
struct m}
:
list (
positive *
A) :=
match m with
|
Leaf =>
nil
|
Node l None r =>
(
xelements l (
append i (
xO xH))) ++ (
xelements r (
append i (
xI xH)))
|
Node l (
Some x)
r =>
(
xelements l (
append i (
xO xH)))
++ ((
i,
x) ::
xelements r (
append i (
xI xH)))
end.
Definition elements A (
m :
t A) :=
xelements m xH.
Lemma xelements_correct:
forall (
A:
Type) (
m:
t A) (
i j :
positive) (
v:
A),
get i m =
Some v ->
In (
append j i,
v) (
xelements m j).
Proof.
Theorem elements_correct:
forall (
A:
Type) (
m:
t A) (
i:
positive) (
v:
A),
get i m =
Some v ->
In (
i,
v) (
elements m).
Proof.
Fixpoint xget (
A :
Type) (
i j :
positive) (
m :
t A) {
struct j} :
option A :=
match i,
j with
|
_,
xH =>
get i m
|
xO ii,
xO jj =>
xget ii jj m
|
xI ii,
xI jj =>
xget ii jj m
|
_,
_ =>
None
end.
Lemma xget_left :
forall (
A :
Type) (
j i :
positive) (
m1 m2 :
t A) (
o :
option A) (
v :
A),
xget i (
append j (
xO xH))
m1 =
Some v ->
xget i j (
Node m1 o m2) =
Some v.
Proof.
induction j; intros; destruct i; simpl; simpl in H; auto; try congruence.
destruct i; congruence.
Qed.
Lemma xelements_ii :
forall (
A:
Type) (
m:
t A) (
i j :
positive) (
v:
A),
In (
xI i,
v) (
xelements m (
xI j)) ->
In (
i,
v) (
xelements m j).
Proof.
induction m.
simpl;
auto.
intros;
destruct o;
simpl;
simpl in H;
destruct (
in_app_or _ _ _ H);
apply in_or_app.
left;
apply IHm1;
auto.
right;
destruct (
in_inv H0).
injection H1;
intros EQ1 EQ2;
rewrite EQ1;
rewrite EQ2;
apply in_eq.
apply in_cons;
apply IHm2;
auto.
left;
apply IHm1;
auto.
right;
apply IHm2;
auto.
Qed.
Lemma xelements_io :
forall (
A:
Type) (
m:
t A) (
i j :
positive) (
v:
A),
~
In (
xI i,
v) (
xelements m (
xO j)).
Proof.
induction m.
simpl;
auto.
intros;
destruct o;
simpl;
intro H;
destruct (
in_app_or _ _ _ H).
apply (
IHm1 _ _ _ H0).
destruct (
in_inv H0).
congruence.
apply (
IHm2 _ _ _ H1).
apply (
IHm1 _ _ _ H0).
apply (
IHm2 _ _ _ H0).
Qed.
Lemma xelements_oo :
forall (
A:
Type) (
m:
t A) (
i j :
positive) (
v:
A),
In (
xO i,
v) (
xelements m (
xO j)) ->
In (
i,
v) (
xelements m j).
Proof.
induction m.
simpl;
auto.
intros;
destruct o;
simpl;
simpl in H;
destruct (
in_app_or _ _ _ H);
apply in_or_app.
left;
apply IHm1;
auto.
right;
destruct (
in_inv H0).
injection H1;
intros EQ1 EQ2;
rewrite EQ1;
rewrite EQ2;
apply in_eq.
apply in_cons;
apply IHm2;
auto.
left;
apply IHm1;
auto.
right;
apply IHm2;
auto.
Qed.
Lemma xelements_oi :
forall (
A:
Type) (
m:
t A) (
i j :
positive) (
v:
A),
~
In (
xO i,
v) (
xelements m (
xI j)).
Proof.
induction m.
simpl;
auto.
intros;
destruct o;
simpl;
intro H;
destruct (
in_app_or _ _ _ H).
apply (
IHm1 _ _ _ H0).
destruct (
in_inv H0).
congruence.
apply (
IHm2 _ _ _ H1).
apply (
IHm1 _ _ _ H0).
apply (
IHm2 _ _ _ H0).
Qed.
Lemma xelements_ih :
forall (
A:
Type) (
m1 m2:
t A) (
o:
option A) (
i :
positive) (
v:
A),
In (
xI i,
v) (
xelements (
Node m1 o m2)
xH) ->
In (
i,
v) (
xelements m2 xH).
Proof.
Lemma xelements_oh :
forall (
A:
Type) (
m1 m2:
t A) (
o:
option A) (
i :
positive) (
v:
A),
In (
xO i,
v) (
xelements (
Node m1 o m2)
xH) ->
In (
i,
v) (
xelements m1 xH).
Proof.
Lemma xelements_hi :
forall (
A:
Type) (
m:
t A) (
i :
positive) (
v:
A),
~
In (
xH,
v) (
xelements m (
xI i)).
Proof.
induction m;
intros.
simpl;
auto.
destruct o;
simpl;
intro H;
destruct (
in_app_or _ _ _ H).
generalize H0;
apply IHm1;
auto.
destruct (
in_inv H0).
congruence.
generalize H1;
apply IHm2;
auto.
generalize H0;
apply IHm1;
auto.
generalize H0;
apply IHm2;
auto.
Qed.
Lemma xelements_ho :
forall (
A:
Type) (
m:
t A) (
i :
positive) (
v:
A),
~
In (
xH,
v) (
xelements m (
xO i)).
Proof.
induction m;
intros.
simpl;
auto.
destruct o;
simpl;
intro H;
destruct (
in_app_or _ _ _ H).
generalize H0;
apply IHm1;
auto.
destruct (
in_inv H0).
congruence.
generalize H1;
apply IHm2;
auto.
generalize H0;
apply IHm1;
auto.
generalize H0;
apply IHm2;
auto.
Qed.
Lemma get_xget_h :
forall (
A:
Type) (
m:
t A) (
i:
positive),
get i m =
xget i xH m.
Proof.
destruct i; simpl; auto.
Qed.
Lemma xelements_complete:
forall (
A:
Type) (
i j :
positive) (
m:
t A) (
v:
A),
In (
i,
v) (
xelements m j) ->
xget i j m =
Some v.
Proof.
Theorem elements_complete:
forall (
A:
Type) (
m:
t A) (
i:
positive) (
v:
A),
In (
i,
v) (
elements m) ->
get i m =
Some v.
Proof.
Lemma in_xelements:
forall (
A:
Type) (
m:
t A) (
i k:
positive) (
v:
A),
In (
k,
v) (
xelements m i) ->
exists j,
k =
append i j.
Proof.
induction m;
simpl;
intros.
tauto.
assert (
k =
i \/
In (
k,
v) (
xelements m1 (
append i 2))
\/
In (
k,
v) (
xelements m2 (
append i 3))).
destruct o.
elim (
in_app_or _ _ _ H);
simpl;
intuition.
replace k with i.
tauto.
congruence.
elim (
in_app_or _ _ _ H);
simpl;
intuition.
elim H0;
intro.
exists xH.
rewrite append_neutral_r.
auto.
elim H1;
intro.
elim (
IHm1 _ _ _ H2).
intros k1 EQ.
rewrite EQ.
rewrite <-
append_assoc_0.
exists (
xO k1);
auto.
elim (
IHm2 _ _ _ H2).
intros k1 EQ.
rewrite EQ.
rewrite <-
append_assoc_1.
exists (
xI k1);
auto.
Qed.
Definition xkeys (
A:
Type) (
m:
t A) (
i:
positive) :=
List.map (@
fst positive A) (
xelements m i).
Lemma in_xkeys:
forall (
A:
Type) (
m:
t A) (
i k:
positive),
In k (
xkeys m i) ->
exists j,
k =
append i j.
Proof.
unfold xkeys;
intros.
elim (
list_in_map_inv _ _ _ H).
intros [
k1 v1] [
EQ IN].
simpl in EQ;
subst k1.
apply in_xelements with A m v1.
auto.
Qed.
Remark list_append_cons_norepet:
forall (
A:
Type) (
l1 l2:
list A) (
x:
A),
list_norepet l1 ->
list_norepet l2 ->
list_disjoint l1 l2 ->
~
In x l1 -> ~
In x l2 ->
list_norepet (
l1 ++
x ::
l2).
Proof.
Lemma append_injective:
forall i j1 j2,
append i j1 =
append i j2 ->
j1 =
j2.
Proof.
induction i; simpl; intros.
apply IHi. congruence.
apply IHi. congruence.
auto.
Qed.
Lemma xelements_keys_norepet:
forall (
A:
Type) (
m:
t A) (
i:
positive),
list_norepet (
xkeys m i).
Proof.
Theorem elements_keys_norepet:
forall (
A:
Type) (
m:
t A),
list_norepet (
List.map (@
fst elt A) (
elements m)).
Proof.
Theorem elements_canonical_order:
forall (
A B:
Type) (
R:
A ->
B ->
Prop) (
m:
t A) (
n:
t B),
(
forall i x,
get i m =
Some x ->
exists y,
get i n =
Some y /\
R x y) ->
(
forall i y,
get i n =
Some y ->
exists x,
get i m =
Some x /\
R x y) ->
list_forall2
(
fun i_x i_y =>
fst i_x =
fst i_y /\
R (
snd i_x) (
snd i_y))
(
elements m) (
elements n).
Proof.
intros until R.
assert (
forall m n j,
(
forall i x,
get i m =
Some x ->
exists y,
get i n =
Some y /\
R x y) ->
(
forall i y,
get i n =
Some y ->
exists x,
get i m =
Some x /\
R x y) ->
list_forall2
(
fun i_x i_y =>
fst i_x =
fst i_y /\
R (
snd i_x) (
snd i_y))
(
xelements m j) (
xelements n j)).
induction m;
induction n;
intros;
simpl.
constructor.
destruct o.
exploit (
H0 xH).
simpl.
reflexivity.
simpl.
intros [
x [
P Q]].
congruence.
change (@
nil (
positive*
A))
with ((@
nil (
positive *
A))++
nil).
apply list_forall2_app.
apply IHn1.
intros.
rewrite gleaf in H1.
congruence.
intros.
exploit (
H0 (
xO i)).
simpl;
eauto.
rewrite gleaf.
intros [
x [
P Q]].
congruence.
apply IHn2.
intros.
rewrite gleaf in H1.
congruence.
intros.
exploit (
H0 (
xI i)).
simpl;
eauto.
rewrite gleaf.
intros [
x [
P Q]].
congruence.
destruct o.
exploit (
H xH).
simpl.
reflexivity.
simpl.
intros [
x [
P Q]].
congruence.
change (@
nil (
positive*
B))
with (
xelements (@
Leaf B) (
append j 2) ++ (
xelements (@
Leaf B) (
append j 3))).
apply list_forall2_app.
apply IHm1.
intros.
exploit (
H (
xO i)).
simpl;
eauto.
rewrite gleaf.
intros [
y [
P Q]].
congruence.
intros.
rewrite gleaf in H1.
congruence.
apply IHm2.
intros.
exploit (
H (
xI i)).
simpl;
eauto.
rewrite gleaf.
intros [
y [
P Q]].
congruence.
intros.
rewrite gleaf in H1.
congruence.
exploit (
IHm1 n1 (
append j 2)).
intros.
exploit (
H (
xO i)).
simpl;
eauto.
simpl.
auto.
intros.
exploit (
H0 (
xO i)).
simpl;
eauto.
simpl;
auto.
intro REC1.
exploit (
IHm2 n2 (
append j 3)).
intros.
exploit (
H (
xI i)).
simpl;
eauto.
simpl.
auto.
intros.
exploit (
H0 (
xI i)).
simpl;
eauto.
simpl;
auto.
intro REC2.
destruct o;
destruct o0.
apply list_forall2_app;
auto.
constructor;
auto.
simpl;
split;
auto.
exploit (
H xH).
simpl;
eauto.
simpl.
intros [
y [
P Q]].
congruence.
exploit (
H xH).
simpl;
eauto.
simpl.
intros [
y [
P Q]];
congruence.
exploit (
H0 xH).
simpl;
eauto.
simpl.
intros [
x [
P Q]];
congruence.
apply list_forall2_app;
auto.
unfold elements;
auto.
Qed.
Theorem elements_extensional:
forall (
A:
Type) (
m n:
t A),
(
forall i,
get i m =
get i n) ->
elements m =
elements n.
Proof.
intros.
exploit (
elements_canonical_order (
fun (
x y:
A) =>
x =
y)
m n).
intros.
rewrite H in H0.
exists x;
auto.
intros.
rewrite <-
H in H0.
exists y;
auto.
induction 1.
auto.
destruct a1 as [
a2 a3];
destruct b1 as [
b2 b3];
simpl in *.
destruct H0.
congruence.
Qed.
Fixpoint xfold (
A B:
Type) (
f:
B ->
positive ->
A ->
B)
(
i:
positive) (
m:
t A) (
v:
B) {
struct m} :
B :=
match m with
|
Leaf =>
v
|
Node l None r =>
let v1 :=
xfold f (
append i (
xO xH))
l v in
xfold f (
append i (
xI xH))
r v1
|
Node l (
Some x)
r =>
let v1 :=
xfold f (
append i (
xO xH))
l v in
let v2 :=
f v1 i x in
xfold f (
append i (
xI xH))
r v2
end.
Definition fold (
A B :
Type) (
f:
B ->
positive ->
A ->
B) (
m:
t A) (
v:
B) :=
xfold f xH m v.
Lemma xfold_xelements:
forall (
A B:
Type) (
f:
B ->
positive ->
A ->
B)
m i v,
xfold f i m v =
List.fold_left (
fun a p =>
f a (
fst p) (
snd p))
(
xelements m i)
v.
Proof.
induction m;
intros.
simpl.
auto.
simpl.
destruct o.
rewrite fold_left_app.
simpl.
rewrite IHm1.
apply IHm2.
rewrite fold_left_app.
simpl.
rewrite IHm1.
apply IHm2.
Qed.
Theorem fold_spec:
forall (
A B:
Type) (
f:
B ->
positive ->
A ->
B) (
v:
B) (
m:
t A),
fold f m v =
List.fold_left (
fun a p =>
f a (
fst p) (
snd p)) (
elements m)
v.
Proof.
End PTree.
An implementation of maps over type positive
Module PMap <:
MAP.
Definition elt :=
positive.
Definition elt_eq :=
peq.
Definition t (
A :
Type) :
Type := (
A *
PTree.t A)%
type.
Definition eq:
forall (
A:
Type), (
forall (
x y:
A), {
x=
y} + {
x<>
y}) ->
forall (
a b:
t A), {
a =
b} + {
a <>
b}.
Proof.
intros.
generalize (
PTree.eq X).
intros.
decide equality.
Qed.
Definition init (
A :
Type) (
x :
A) :=
(
x,
PTree.empty A).
Definition get (
A :
Type) (
i :
positive) (
m :
t A) :=
match PTree.get i (
snd m)
with
|
Some x =>
x
|
None =>
fst m
end.
Definition set (
A :
Type) (
i :
positive) (
x :
A) (
m :
t A) :=
(
fst m,
PTree.set i x (
snd m)).
Theorem gi:
forall (
A:
Type) (
i:
positive) (
x:
A),
get i (
init x) =
x.
Proof.
intros.
unfold init.
unfold get.
simpl.
rewrite PTree.gempty.
auto.
Qed.
Theorem gss:
forall (
A:
Type) (
i:
positive) (
x:
A) (
m:
t A),
get i (
set i x m) =
x.
Proof.
intros.
unfold get.
unfold set.
simpl.
rewrite PTree.gss.
auto.
Qed.
Theorem gso:
forall (
A:
Type) (
i j:
positive) (
x:
A) (
m:
t A),
i <>
j ->
get i (
set j x m) =
get i m.
Proof.
intros.
unfold get.
unfold set.
simpl.
rewrite PTree.gso;
auto.
Qed.
Theorem gsspec:
forall (
A:
Type) (
i j:
positive) (
x:
A) (
m:
t A),
get i (
set j x m) =
if peq i j then x else get i m.
Proof.
intros.
destruct (
peq i j).
rewrite e.
apply gss.
auto.
apply gso.
auto.
Qed.
Theorem gsident:
forall (
A:
Type) (
i j:
positive) (
m:
t A),
get j (
set i (
get i m)
m) =
get j m.
Proof.
intros.
destruct (
peq i j).
rewrite e.
rewrite gss.
auto.
rewrite gso;
auto.
Qed.
Definition map (
A B :
Type) (
f :
A ->
B) (
m :
t A) :
t B :=
(
f (
fst m),
PTree.map1 f (
snd m)).
Theorem gmap:
forall (
A B:
Type) (
f:
A ->
B) (
i:
positive) (
m:
t A),
get i (
map f m) =
f(
get i m).
Proof.
intros.
unfold map.
unfold get.
simpl.
rewrite PTree.gmap1.
unfold option_map.
destruct (
PTree.get i (
snd m));
auto.
Qed.
Theorem set2:
forall (
A:
Type) (
i:
elt) (
x y:
A) (
m:
t A),
set i y (
set i x m) =
set i y m.
Proof.
intros.
unfold set.
simpl.
decEq.
apply PTree.set2.
Qed.
End PMap.
An implementation of maps over any type that injects into type positive
Module Type INDEXED_TYPE.
Variable t:
Type.
Variable index:
t ->
positive.
Hypothesis index_inj:
forall (
x y:
t),
index x =
index y ->
x =
y.
Variable eq:
forall (
x y:
t), {
x =
y} + {
x <>
y}.
End INDEXED_TYPE.
Module IMap(
X:
INDEXED_TYPE).
Definition elt :=
X.t.
Definition elt_eq :=
X.eq.
Definition t :
Type ->
Type :=
PMap.t.
Definition eq:
forall (
A:
Type), (
forall (
x y:
A), {
x=
y} + {
x<>
y}) ->
forall (
a b:
t A), {
a =
b} + {
a <>
b} :=
PMap.eq.
Definition init (
A:
Type) (
x:
A) :=
PMap.init x.
Definition get (
A:
Type) (
i:
X.t) (
m:
t A) :=
PMap.get (
X.index i)
m.
Definition set (
A:
Type) (
i:
X.t) (
v:
A) (
m:
t A) :=
PMap.set (
X.index i)
v m.
Definition map (
A B:
Type) (
f:
A ->
B) (
m:
t A) :
t B :=
PMap.map f m.
Lemma gi:
forall (
A:
Type) (
x:
A) (
i:
X.t),
get i (
init x) =
x.
Proof.
intros.
unfold get,
init.
apply PMap.gi.
Qed.
Lemma gss:
forall (
A:
Type) (
i:
X.t) (
x:
A) (
m:
t A),
get i (
set i x m) =
x.
Proof.
intros.
unfold get,
set.
apply PMap.gss.
Qed.
Lemma gso:
forall (
A:
Type) (
i j:
X.t) (
x:
A) (
m:
t A),
i <>
j ->
get i (
set j x m) =
get i m.
Proof.
Lemma gsspec:
forall (
A:
Type) (
i j:
X.t) (
x:
A) (
m:
t A),
get i (
set j x m) =
if X.eq i j then x else get i m.
Proof.
Lemma gmap:
forall (
A B:
Type) (
f:
A ->
B) (
i:
X.t) (
m:
t A),
get i (
map f m) =
f(
get i m).
Proof.
intros.
unfold map,
get.
apply PMap.gmap.
Qed.
Lemma set2:
forall (
A:
Type) (
i:
elt) (
x y:
A) (
m:
t A),
set i y (
set i x m) =
set i y m.
Proof.
End IMap.
Module ZIndexed.
Definition t :=
Z.
Definition index (
z:
Z):
positive :=
match z with
|
Z0 =>
xH
|
Zpos p =>
xO p
|
Zneg p =>
xI p
end.
Lemma index_inj:
forall (
x y:
Z),
index x =
index y ->
x =
y.
Proof.
unfold index; destruct x; destruct y; intros;
try discriminate; try reflexivity.
congruence.
congruence.
Qed.
Definition eq :=
zeq.
End ZIndexed.
Module ZMap :=
IMap(
ZIndexed).
Module NIndexed.
Definition t :=
N.
Definition index (
n:
N):
positive :=
match n with
|
N0 =>
xH
|
Npos p =>
xO p
end.
Lemma index_inj:
forall (
x y:
N),
index x =
index y ->
x =
y.
Proof.
unfold index; destruct x; destruct y; intros;
try discriminate; try reflexivity.
congruence.
Qed.
Lemma eq:
forall (
x y:
N), {
x =
y} + {
x <>
y}.
Proof.
decide equality.
apply peq.
Qed.
End NIndexed.
Module NMap :=
IMap(
NIndexed).
An implementation of maps over any type with decidable equality
Module Type EQUALITY_TYPE.
Variable t:
Type.
Variable eq:
forall (
x y:
t), {
x =
y} + {
x <>
y}.
End EQUALITY_TYPE.
Module EMap(
X:
EQUALITY_TYPE) <:
MAP.
Definition elt :=
X.t.
Definition elt_eq :=
X.eq.
Definition t (
A:
Type) :=
X.t ->
A.
Definition init (
A:
Type) (
v:
A) :=
fun (
_:
X.t) =>
v.
Definition get (
A:
Type) (
x:
X.t) (
m:
t A) :=
m x.
Definition set (
A:
Type) (
x:
X.t) (
v:
A) (
m:
t A) :=
fun (
y:
X.t) =>
if X.eq y x then v else m y.
Lemma gi:
forall (
A:
Type) (
i:
elt) (
x:
A),
init x i =
x.
Proof.
intros. reflexivity.
Qed.
Lemma gss:
forall (
A:
Type) (
i:
elt) (
x:
A) (
m:
t A), (
set i x m)
i =
x.
Proof.
intros.
unfold set.
case (
X.eq i i);
intro.
reflexivity.
tauto.
Qed.
Lemma gso:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
i <>
j -> (
set j x m)
i =
m i.
Proof.
intros.
unfold set.
case (
X.eq i j);
intro.
congruence.
reflexivity.
Qed.
Lemma gsspec:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
get i (
set j x m) =
if elt_eq i j then x else get i m.
Proof.
intros. unfold get, set, elt_eq. reflexivity.
Qed.
Lemma gsident:
forall (
A:
Type) (
i j:
elt) (
m:
t A),
get j (
set i (
get i m)
m) =
get j m.
Proof.
intros.
unfold get,
set.
case (
X.eq j i);
intro.
congruence.
reflexivity.
Qed.
Definition map (
A B:
Type) (
f:
A ->
B) (
m:
t A) :=
fun (
x:
X.t) =>
f(
m x).
Lemma gmap:
forall (
A B:
Type) (
f:
A ->
B) (
i:
elt) (
m:
t A),
get i (
map f m) =
f(
get i m).
Proof.
intros. unfold get, map. reflexivity.
Qed.
End EMap.
Additional properties over trees
Module Tree_Properties(
T:
TREE).
An induction principle over fold.
Section TREE_FOLD_IND.
Variables V A:
Type.
Variable f:
A ->
T.elt ->
V ->
A.
Variable P:
T.t V ->
A ->
Prop.
Variable init:
A.
Variable m_final:
T.t V.
Hypothesis P_compat:
forall m m'
a,
(
forall x,
T.get x m =
T.get x m') ->
P m a ->
P m'
a.
Hypothesis H_base:
P (
T.empty _)
init.
Hypothesis H_rec:
forall m a k v,
T.get k m =
None ->
T.get k m_final =
Some v ->
P m a ->
P (
T.set k v m) (
f a k v).
Definition f' (
a:
A) (
p :
T.elt *
V) :=
f a (
fst p) (
snd p).
Definition P' (
l:
list (
T.elt *
V)) (
a:
A) :
Prop :=
forall m,
list_equiv l (
T.elements m) ->
P m a.
Remark H_base':
P'
nil init.
Proof.
Remark H_rec':
forall k v l a,
~
In k (
List.map (@
fst T.elt V)
l) ->
In (
k,
v) (
T.elements m_final) ->
P'
l a ->
P' (
l ++ (
k,
v) ::
nil) (
f a k v).
Proof.
Lemma fold_rec_aux:
forall l1 l2 a,
list_equiv (
l2 ++
l1) (
T.elements m_final) ->
list_disjoint (
List.map (@
fst T.elt V)
l1) (
List.map (@
fst T.elt V)
l2) ->
list_norepet (
List.map (@
fst T.elt V)
l1) ->
P'
l2 a ->
P' (
l2 ++
l1) (
List.fold_left f'
l1 a).
Proof.
induction l1;
intros;
simpl.
rewrite <-
List.app_nil_end.
auto.
destruct a as [
k v];
simpl in *.
inv H1.
change ((
k,
v) ::
l1)
with (((
k,
v) ::
nil) ++
l1).
rewrite <-
List.app_ass.
apply IHl1.
rewrite app_ass.
auto.
red;
intros.
rewrite map_app in H3.
destruct (
in_app_or _ _ _ H3).
apply H0;
auto with coqlib.
simpl in H4.
intuition congruence.
auto.
unfold f'.
simpl.
apply H_rec';
auto.
eapply list_disjoint_notin;
eauto with coqlib.
rewrite <- (
H (
k,
v)).
apply in_or_app.
simpl.
auto.
Qed.
Theorem fold_rec:
P m_final (
T.fold f m_final init).
Proof.
End TREE_FOLD_IND.
A nonnegative measure over trees
Section MEASURE.
Variable V:
Type.
Definition cardinal (
x:
T.t V) :
nat :=
List.length (
T.elements x).
Remark list_incl_length:
forall (
A:
Type) (
l1:
list A),
list_norepet l1 ->
forall (
l2:
list A),
List.incl l1 l2 -> (
List.length l1 <=
List.length l2)%
nat.
Proof.
induction 1;
simpl;
intros.
omega.
exploit (
List.in_split hd l2).
auto with coqlib.
intros [
l3 [
l4 EQ]].
subst l2.
assert (
length tl <=
length (
l3 ++
l4))%
nat.
apply IHlist_norepet.
red;
intros.
exploit (
H1 a);
auto with coqlib.
repeat rewrite in_app_iff.
simpl.
intuition.
subst.
contradiction.
repeat rewrite app_length in *.
simpl.
omega.
Qed.
Remark list_length_incl:
forall (
A:
Type) (
l1:
list A),
list_norepet l1 ->
forall l2,
List.incl l1 l2 ->
List.length l1 =
List.length l2 ->
List.incl l2 l1.
Proof.
induction 1;
simpl;
intros.
destruct l2;
simpl in *.
auto with coqlib.
discriminate.
exploit (
List.in_split hd l2).
auto with coqlib.
intros [
l3 [
l4 EQ]].
subst l2.
assert (
incl (
l3 ++
l4)
tl).
apply IHlist_norepet.
red;
intros.
exploit (
H1 a);
auto with coqlib.
repeat rewrite in_app_iff.
simpl.
intuition.
subst.
contradiction.
repeat rewrite app_length in *.
simpl in H2.
omega.
red;
simpl;
intros.
rewrite in_app_iff in H4;
simpl in H4.
intuition.
Qed.
Remark list_strict_incl_length:
forall (
A:
Type) (
l1 l2:
list A) (
x:
A),
list_norepet l1 ->
List.incl l1 l2 -> ~
In x l1 ->
In x l2 ->
(
List.length l1 <
List.length l2)%
nat.
Proof.
Remark list_norepet_map:
forall (
A B:
Type) (
f:
A ->
B) (
l:
list A),
list_norepet (
List.map f l) ->
list_norepet l.
Proof.
induction l;
simpl;
intros.
constructor.
inv H.
constructor;
auto.
red;
intros;
elim H2.
apply List.in_map;
auto.
Qed.
Theorem cardinal_remove:
forall x m y,
T.get x m =
Some y -> (
cardinal (
T.remove x m) <
cardinal m)%
nat.
Proof.
End MEASURE.
End Tree_Properties.
Module PTree_Properties :=
Tree_Properties(
PTree).
Useful notations
Notation "
a !
b" := (
PTree.get b a) (
at level 1).
Notation "
a !!
b" := (
PMap.get b a) (
at level 1).