Module Fcore_rnd_ne
Rounding to nearest, ties to even: existence, unicity...
Require Import Fcore_Raux.
Require Import Fcore_defs.
Require Import Fcore_rnd.
Require Import Fcore_generic_fmt.
Require Import Fcore_float_prop.
Require Import Fcore_ulp.
Notation ZnearestE := (
Znearest (
fun x =>
negb (
Zeven x))).
Section Fcore_rnd_NE.
Variable beta :
radix.
Notation bpow e := (
bpow beta e).
Variable fexp :
Z ->
Z.
Context {
valid_exp :
Valid_exp fexp }.
Notation format := (
generic_format beta fexp).
Notation canonic := (
canonic beta fexp).
Definition NE_prop (
_ :
R)
f :=
exists g :
float beta,
f =
F2R g /\
canonic g /\
Zeven (
Fnum g) =
true.
Definition Rnd_NE_pt :=
Rnd_NG_pt format NE_prop.
Definition DN_UP_parity_pos_prop :=
forall x xd xu,
(0 <
x)%
R ->
~
format x ->
canonic xd ->
canonic xu ->
F2R xd =
round beta fexp Zfloor x ->
F2R xu =
round beta fexp Zceil x ->
Zeven (
Fnum xu) =
negb (
Zeven (
Fnum xd)).
Definition DN_UP_parity_prop :=
forall x xd xu,
~
format x ->
canonic xd ->
canonic xu ->
F2R xd =
round beta fexp Zfloor x ->
F2R xu =
round beta fexp Zceil x ->
Zeven (
Fnum xu) =
negb (
Zeven (
Fnum xd)).
Lemma DN_UP_parity_aux :
DN_UP_parity_pos_prop ->
DN_UP_parity_prop.
Proof.
Class Exists_NE :=
exists_NE :
Zeven beta =
false \/
forall e,
((
fexp e <
e)%
Z -> (
fexp (
e + 1) <
e)%
Z) /\ ((
e <=
fexp e)%
Z ->
fexp (
fexp e + 1) =
fexp e).
Context {
exists_NE_ :
Exists_NE }.
Theorem DN_UP_parity_generic_pos :
DN_UP_parity_pos_prop.
Proof with
auto with typeclass_instances.
intros x xd xu H0x Hfx Hd Hu Hxd Hxu.
destruct (
ln_beta beta x)
as (
ex,
Hexa).
specialize (
Hexa (
Rgt_not_eq _ _ H0x)).
generalize Hexa.
intros Hex.
rewrite (
Rabs_pos_eq _ (
Rlt_le _ _ H0x))
in Hex.
destruct (
Zle_or_lt ex (
fexp ex))
as [
Hxe|
Hxe].
assert (
Hd3 :
Fnum xd =
Z0).
apply F2R_eq_0_reg with beta (
Fexp xd).
change (
F2R xd =
R0).
rewrite Hxd.
apply round_DN_small_pos with (1 :=
Hex) (2 :=
Hxe).
assert (
Hu3 :
xu =
Float beta (1 *
Zpower beta (
fexp ex -
fexp (
fexp ex + 1))) (
fexp (
fexp ex + 1))).
apply canonic_unicity with (1 :=
Hu).
apply (
f_equal fexp).
rewrite <-
F2R_change_exp.
now rewrite F2R_bpow,
ln_beta_bpow.
now apply valid_exp.
rewrite <-
F2R_change_exp.
rewrite F2R_bpow.
apply sym_eq.
rewrite Hxu.
apply sym_eq.
apply round_UP_small_pos with (1 :=
Hex) (2 :=
Hxe).
now apply valid_exp.
rewrite Hd3,
Hu3.
rewrite Zmult_1_l.
simpl.
destruct exists_NE_ as [
H|
H].
apply Zeven_Zpower_odd with (2 :=
H).
apply Zle_minus_le_0.
now apply valid_exp.
rewrite (
proj2 (
H ex)).
now rewrite Zminus_diag.
exact Hxe.
assert (
Hd4: (
bpow (
ex - 1) <=
Rabs (
F2R xd) <
bpow ex)%
R).
rewrite Rabs_pos_eq.
rewrite Hxd.
split.
apply (
round_DN_pt beta fexp x).
apply generic_format_bpow.
ring_simplify (
ex - 1 + 1)%
Z.
omega.
apply Hex.
apply Rle_lt_trans with (2 :=
proj2 Hex).
apply (
round_DN_pt beta fexp x).
rewrite Hxd.
apply (
round_DN_pt beta fexp x).
apply generic_format_0.
now apply Rlt_le.
assert (
Hxe2 : (
fexp (
ex + 1) <=
ex)%
Z)
by now apply valid_exp.
assert (
Hud: (
F2R xu =
F2R xd +
ulp beta fexp x)%
R).
rewrite Hxu,
Hxd.
now apply ulp_DN_UP.
destruct (
total_order_T (
bpow ex) (
F2R xu))
as [[
Hu2|
Hu2]|
Hu2].
elim (
Rlt_not_le _ _ Hu2).
rewrite Hxu.
apply round_bounded_large_pos...
assert (
Hu3:
xu =
Float beta (1 *
Zpower beta (
ex -
fexp (
ex + 1))) (
fexp (
ex + 1))).
apply canonic_unicity with (1 :=
Hu).
apply (
f_equal fexp).
rewrite <-
F2R_change_exp.
now rewrite F2R_bpow,
ln_beta_bpow.
now apply valid_exp.
rewrite <-
Hu2.
apply sym_eq.
rewrite <-
F2R_change_exp.
apply F2R_bpow.
exact Hxe2.
assert (
Hd3:
xd =
Float beta (
Zpower beta (
ex -
fexp ex) - 1) (
fexp ex)).
assert (
H:
F2R xd =
F2R (
Float beta (
Zpower beta (
ex -
fexp ex) - 1) (
fexp ex))).
unfold F2R.
simpl.
rewrite Z2R_minus.
unfold Rminus.
rewrite Rmult_plus_distr_r.
rewrite Z2R_Zpower, <-
bpow_plus.
ring_simplify (
ex -
fexp ex +
fexp ex)%
Z.
rewrite Hu2,
Hud.
unfold ulp,
canonic_exp.
rewrite ln_beta_unique with beta x ex.
unfold F2R.
simpl.
ring.
rewrite Rabs_pos_eq.
exact Hex.
now apply Rlt_le.
apply Zle_minus_le_0.
now apply Zlt_le_weak.
apply canonic_unicity with (1 :=
Hd) (3 :=
H).
apply (
f_equal fexp).
rewrite <-
H.
apply sym_eq.
now apply ln_beta_unique.
rewrite Hd3,
Hu3.
unfold Fnum.
rewrite Zeven_mult.
simpl.
unfold Zminus at 2.
rewrite Zeven_plus.
rewrite eqb_sym.
simpl.
fold (
negb (
Zeven (
beta ^ (
ex -
fexp ex)))).
rewrite Bool.negb_involutive.
rewrite (
Zeven_Zpower beta (
ex -
fexp ex)). 2:
omega.
destruct exists_NE_.
rewrite H.
apply Zeven_Zpower_odd with (2 :=
H).
now apply Zle_minus_le_0.
apply Zeven_Zpower.
specialize (
H ex).
omega.
revert Hud.
unfold ulp,
F2R.
rewrite Hd,
Hu.
unfold canonic_exp.
rewrite ln_beta_unique with beta (
F2R xu)
ex.
rewrite ln_beta_unique with (1 :=
Hd4).
rewrite ln_beta_unique with (1 :=
Hexa).
intros H.
replace (
Fnum xu)
with (
Fnum xd + 1)%
Z.
rewrite Zeven_plus.
now apply eqb_sym.
apply sym_eq.
apply eq_Z2R.
rewrite Z2R_plus.
apply Rmult_eq_reg_r with (
bpow (
fexp ex)).
rewrite H.
simpl.
ring.
apply Rgt_not_eq.
apply bpow_gt_0.
rewrite Rabs_pos_eq.
split.
apply Rle_trans with (1 :=
proj1 Hex).
rewrite Hxu.
apply (
round_UP_pt beta fexp x).
exact Hu2.
apply Rlt_le.
apply Rlt_le_trans with (1 :=
H0x).
rewrite Hxu.
apply (
round_UP_pt beta fexp x).
Qed.
Theorem DN_UP_parity_generic :
DN_UP_parity_prop.
Proof.
Theorem Rnd_NE_pt_total :
round_pred_total Rnd_NE_pt.
Proof.
Theorem Rnd_NE_pt_monotone :
round_pred_monotone Rnd_NE_pt.
Proof.
Theorem Rnd_NE_pt_round :
round_pred Rnd_NE_pt.
split.
apply Rnd_NE_pt_total.
apply Rnd_NE_pt_monotone.
Qed.
Lemma round_NE_pt_pos :
forall x,
(0 < x)%R ->
Rnd_NE_pt x (round beta fexp ZnearestE x).
Proof with
auto with typeclass_instances.
intros x Hx.
split.
now apply round_N_pt.
unfold NE_prop.
set (
mx :=
scaled_mantissa beta fexp x).
set (
xr :=
round beta fexp ZnearestE x).
destruct (
Req_dec (
mx -
Z2R (
Zfloor mx)) (/2))
as [
Hm|
Hm].
left.
exists (
Float beta (
Ztrunc (
scaled_mantissa beta fexp xr)) (
canonic_exp beta fexp xr)).
split.
apply round_N_pt...
split.
unfold Fcore_generic_fmt.canonic.
simpl.
apply f_equal.
apply round_N_pt...
simpl.
unfold xr,
round,
Znearest.
fold mx.
rewrite Hm.
rewrite Rcompare_Eq. 2:
apply refl_equal.
case_eq (
Zeven (
Zfloor mx)) ;
intros Hmx.
change (
Zeven (
Ztrunc (
scaled_mantissa beta fexp (
round beta fexp Zfloor x))) =
true).
destruct (
Rle_or_lt (
round beta fexp Zfloor x) 0)
as [
Hr|
Hr].
rewrite (
Rle_antisym _ _ Hr).
unfold scaled_mantissa.
rewrite Rmult_0_l.
change R0 with (
Z2R 0).
now rewrite (
Ztrunc_Z2R 0).
rewrite <- (
round_0 beta fexp Zfloor).
apply round_le...
now apply Rlt_le.
rewrite scaled_mantissa_DN...
now rewrite Ztrunc_Z2R.
change (
Zeven (
Ztrunc (
scaled_mantissa beta fexp (
round beta fexp Zceil x))) =
true).
destruct (
ln_beta beta x)
as (
ex,
Hex).
specialize (
Hex (
Rgt_not_eq _ _ Hx)).
rewrite (
Rabs_pos_eq _ (
Rlt_le _ _ Hx))
in Hex.
destruct (
Z_lt_le_dec (
fexp ex)
ex)
as [
He|
He].
assert (
Hu :=
round_bounded_large_pos _ _ Zceil _ _ He Hex).
assert (
Hfc:
Zceil mx = (
Zfloor mx + 1)%
Z).
apply Zceil_floor_neq.
intros H.
rewrite H in Hm.
unfold Rminus in Hm.
rewrite Rplus_opp_r in Hm.
elim (
Rlt_irrefl 0).
rewrite Hm at 2.
apply Rinv_0_lt_compat.
now apply (
Z2R_lt 0 2).
destruct (
proj2 Hu)
as [
Hu'|
Hu'].
unfold scaled_mantissa.
rewrite canonic_exp_fexp_pos with (1 :=
conj (
proj1 Hu)
Hu').
unfold round,
F2R.
simpl.
rewrite canonic_exp_fexp_pos with (1 :=
Hex).
rewrite Rmult_assoc, <-
bpow_plus,
Zplus_opp_r,
Rmult_1_r.
rewrite Ztrunc_Z2R.
fold mx.
rewrite Hfc.
now rewrite Zeven_plus,
Hmx.
rewrite Hu'.
unfold scaled_mantissa,
canonic_exp.
rewrite ln_beta_bpow.
rewrite <-
bpow_plus, <-
Z2R_Zpower.
rewrite Ztrunc_Z2R.
case_eq (
Zeven beta) ;
intros Hr.
destruct exists_NE_ as [
Hs|
Hs].
now rewrite Hs in Hr.
destruct (
Hs ex)
as (
H,
_).
rewrite Zeven_Zpower.
exact Hr.
omega.
assert (
Zeven (
Zfloor mx) =
true). 2:
now rewrite H in Hmx.
replace (
Zfloor mx)
with (
Zceil mx + -1)%
Z by omega.
rewrite Zeven_plus.
apply eqb_true.
unfold mx.
replace (
Zceil (
scaled_mantissa beta fexp x))
with (
Zpower beta (
ex -
fexp ex)).
rewrite Zeven_Zpower_odd with (2 :=
Hr).
easy.
omega.
apply eq_Z2R.
rewrite Z2R_Zpower. 2:
omega.
apply Rmult_eq_reg_r with (
bpow (
fexp ex)).
unfold Zminus.
rewrite bpow_plus.
rewrite Rmult_assoc, <-
bpow_plus,
Zplus_opp_l,
Rmult_1_r.
pattern (
fexp ex) ;
rewrite <-
canonic_exp_fexp_pos with (1 :=
Hex).
now apply sym_eq.
apply Rgt_not_eq.
apply bpow_gt_0.
generalize (
proj1 (
valid_exp ex)
He).
omega.
assert (
Zeven (
Zfloor mx) =
true). 2:
now rewrite H in Hmx.
unfold mx,
scaled_mantissa.
rewrite canonic_exp_fexp_pos with (1 :=
Hex).
now rewrite mantissa_DN_small_pos.
right.
intros g Hg.
destruct (
Req_dec x g)
as [
Hxg|
Hxg].
rewrite <-
Hxg.
apply sym_eq.
apply round_generic...
rewrite Hxg.
apply Hg.
set (
d :=
round beta fexp Zfloor x).
set (
u :=
round beta fexp Zceil x).
apply Rnd_N_pt_unicity with (
d :=
d) (
u :=
u) (4 :=
Hg).
now apply round_DN_pt.
now apply round_UP_pt.
2:
now apply round_N_pt.
rewrite <- (
scaled_mantissa_mult_bpow beta fexp x).
unfold d,
u,
round,
F2R.
simpl.
fold mx.
rewrite <- 2!
Rmult_minus_distr_r.
intros H.
apply Rmult_eq_reg_r in H.
apply Hm.
apply Rcompare_Eq_inv.
rewrite Rcompare_floor_ceil_mid.
now apply Rcompare_Eq.
contradict Hxg.
apply sym_eq.
apply Rnd_N_pt_idempotent with (1 :=
Hg).
rewrite <- (
scaled_mantissa_mult_bpow beta fexp x).
fold mx.
rewrite <-
Hxg.
change (
Z2R (
Zfloor mx) *
bpow (
canonic_exp beta fexp x))%
R with d.
now eapply round_DN_pt.
apply Rgt_not_eq.
apply bpow_gt_0.
Qed.
Theorem round_NE_opp :
forall x,
round beta fexp ZnearestE (-x) = (- round beta fexp ZnearestE x)%R.
Proof.
Theorem round_NE_pt :
forall x,
Rnd_NE_pt x (round beta fexp ZnearestE x).
Proof with
End Fcore_rnd_NE.
Notations for backward-compatibility with Flocq 1.4.
Notation rndNE := ZnearestE (only parsing).