Module Fcore_FLT


Floating-point format with gradual underflow

Require Import Fcore_Raux.
Require Import Fcore_defs.
Require Import Fcore_rnd.
Require Import Fcore_generic_fmt.
Require Import Fcore_float_prop.
Require Import Fcore_FLX.
Require Import Fcore_FIX.
Require Import Fcore_ulp.
Require Import Fcore_rnd_ne.

Section RND_FLT.

Variable beta : radix.

Notation bpow e := (bpow beta e).

Variable emin prec : Z.

Context { prec_gt_0_ : Prec_gt_0 prec }.

Definition FLT_format (x : R) :=
  exists f : float beta,
  x = F2R f /\ (Zabs (Fnum f) < Zpower beta prec)%Z /\ (emin <= Fexp f)%Z.

Definition FLT_exp e := Zmax (e - prec) emin.

Properties of the FLT format
Global Instance FLT_exp_valid : Valid_exp FLT_exp.
Proof.
intros k.
unfold FLT_exp.
generalize (prec_gt_0 prec).
repeat split ;
  intros ; zify ; omega.
Qed.

Theorem generic_format_FLT :
  forall x, FLT_format x -> generic_format beta FLT_exp x.
Proof.
clear prec_gt_0_.
intros x ((mx, ex), (H1, (H2, H3))).
simpl in H2, H3.
rewrite H1.
apply generic_format_F2R.
intros Zmx.
unfold canonic_exp, FLT_exp.
rewrite ln_beta_F2R with (1 := Zmx).
apply Zmax_lub with (2 := H3).
apply Zplus_le_reg_r with (prec - ex)%Z.
ring_simplify.
now apply ln_beta_le_Zpower.
Qed.

Theorem FLT_format_generic :
  forall x, generic_format beta FLT_exp x -> FLT_format x.
Proof.
intros x.
unfold generic_format.
set (ex := canonic_exp beta FLT_exp x).
set (mx := Ztrunc (scaled_mantissa beta FLT_exp x)).
intros Hx.
rewrite Hx.
eexists ; repeat split ; simpl.
apply lt_Z2R.
rewrite Z2R_Zpower. 2: now apply Zlt_le_weak.
apply Rmult_lt_reg_r with (bpow ex).
apply bpow_gt_0.
rewrite <- bpow_plus.
change (F2R (Float beta (Zabs mx) ex) < bpow (prec + ex))%R.
rewrite F2R_Zabs.
rewrite <- Hx.
destruct (Req_dec x 0) as [Hx0|Hx0].
rewrite Hx0, Rabs_R0.
apply bpow_gt_0.
unfold canonic_exp in ex.
destruct (ln_beta beta x) as (ex', He).
simpl in ex.
specialize (He Hx0).
apply Rlt_le_trans with (1 := proj2 He).
apply bpow_le.
cut (ex' - prec <= ex)%Z. omega.
unfold ex, FLT_exp.
apply Zle_max_l.
apply Zle_max_r.
Qed.


Theorem FLT_format_bpow :
  forall e, (emin <= e)%Z -> generic_format beta FLT_exp (bpow e).
Proof.
intros e He.
apply generic_format_bpow; unfold FLT_exp.
apply Z.max_case; try assumption.
unfold Prec_gt_0 in prec_gt_0_; omega.
Qed.




Theorem FLT_format_satisfies_any :
  satisfies_any FLT_format.
Proof.
refine (satisfies_any_eq _ _ _ (generic_format_satisfies_any beta FLT_exp)).
intros x.
split.
apply FLT_format_generic.
apply generic_format_FLT.
Qed.

Theorem canonic_exp_FLT_FLX :
  forall x,
  (bpow (emin + prec - 1) <= Rabs x)%R ->
  canonic_exp beta FLT_exp x = canonic_exp beta (FLX_exp prec) x.
Proof.
intros x Hx.
assert (Hx0: x <> 0%R).
intros H1; rewrite H1, Rabs_R0 in Hx.
contradict Hx; apply Rlt_not_le, bpow_gt_0.
unfold canonic_exp.
apply Zmax_left.
destruct (ln_beta beta x) as (ex, He).
unfold FLX_exp. simpl.
specialize (He Hx0).
cut (emin + prec - 1 < ex)%Z. omega.
apply (lt_bpow beta).
apply Rle_lt_trans with (1 := Hx).
apply He.
Qed.

Links between FLT and FLX
Theorem generic_format_FLT_FLX :
  forall x : R,
  (bpow (emin + prec - 1) <= Rabs x)%R ->
  generic_format beta (FLX_exp prec) x ->
  generic_format beta FLT_exp x.
Proof.
intros x Hx H.
destruct (Req_dec x 0) as [Hx0|Hx0].
rewrite Hx0.
apply generic_format_0.
unfold generic_format, scaled_mantissa.
now rewrite canonic_exp_FLT_FLX.
Qed.

Theorem generic_format_FLX_FLT :
  forall x : R,
  generic_format beta FLT_exp x -> generic_format beta (FLX_exp prec) x.
Proof.
clear prec_gt_0_.
intros x Hx.
unfold generic_format in Hx; rewrite Hx.
apply generic_format_F2R.
intros _.
rewrite <- Hx.
unfold canonic_exp, FLX_exp, FLT_exp.
apply Zle_max_l.
Qed.

Theorem round_FLT_FLX : forall rnd x,
  (bpow (emin + prec - 1) <= Rabs x)%R ->
  round beta FLT_exp rnd x = round beta (FLX_exp prec) rnd x.
intros rnd x Hx.
unfold round, scaled_mantissa.
rewrite canonic_exp_FLT_FLX ; trivial.
Qed.

Links between FLT and FIX (underflow)
Theorem canonic_exp_FLT_FIX :
  forall x, x <> 0%R ->
  (Rabs x < bpow (emin + prec))%R ->
  canonic_exp beta FLT_exp x = canonic_exp beta (FIX_exp emin) x.
Proof.
intros x Hx0 Hx.
unfold canonic_exp.
apply Zmax_right.
unfold FIX_exp.
destruct (ln_beta beta x) as (ex, Hex).
simpl.
cut (ex - 1 < emin + prec)%Z. omega.
apply (lt_bpow beta).
apply Rle_lt_trans with (2 := Hx).
now apply Hex.
Qed.

Theorem generic_format_FIX_FLT :
  forall x : R,
  generic_format beta FLT_exp x ->
  generic_format beta (FIX_exp emin) x.
Proof.
clear prec_gt_0_.
intros x Hx.
rewrite Hx.
apply generic_format_F2R.
intros _.
rewrite <- Hx.
apply Zle_max_r.
Qed.

Theorem generic_format_FLT_FIX :
  forall x : R,
  (Rabs x <= bpow (emin + prec))%R ->
  generic_format beta (FIX_exp emin) x ->
  generic_format beta FLT_exp x.
Proof with
auto with typeclass_instances.
apply generic_inclusion_le...
intros e He.
unfold FIX_exp.
apply Zmax_lub.
omega.
apply Zle_refl.
Qed.

Theorem ulp_FLT_small: forall x, (Rabs x < bpow (emin+prec))%R ->
    ulp beta FLT_exp x = bpow emin.
Proof with
auto with typeclass_instances.
intros x Hx.
unfold ulp; case Req_bool_spec; intros Hx2.
 x = 0 *)case (negligible_exp_spec FLT_exp).
intros T; specialize (T (emin-1)%Z); contradict T.
apply Zle_not_lt; unfold FLT_exp.
apply Zle_trans with (2:=Z.le_max_r _ _); omega.
assert (V:FLT_exp emin = emin).
unfold FLT_exp; apply Z.max_r.
unfold Prec_gt_0 in prec_gt_0_; omega.
intros n H2; rewrite <-V.
apply f_equal, fexp_negligible_exp_eq...
omega.
 x <> 0 *)apply f_equal; unfold canonic_exp, FLT_exp.
apply Z.max_r.
assert (ln_beta beta x-1 < emin+prec)%Z;[idtac|omega].
destruct (ln_beta beta x) as (e,He); simpl.
apply lt_bpow with beta.
apply Rle_lt_trans with (2:=Hx).
now apply He.
Qed.

Theorem ulp_FLT_le: forall x, (bpow (emin+prec) <= Rabs x)%R ->
  (ulp beta FLT_exp x <= Rabs x * bpow (1-prec))%R.
Proof.
intros x Hx.
assert (x <> 0)%R.
intros Z; contradict Hx; apply Rgt_not_le, Rlt_gt.
rewrite Z, Rabs_R0; apply bpow_gt_0.
rewrite ulp_neq_0; try assumption.
unfold canonic_exp, FLT_exp.
destruct (ln_beta beta x) as (e,He).
apply Rle_trans with (bpow (e-1)*bpow (1-prec))%R.
rewrite <- bpow_plus.
right; apply f_equal.
apply trans_eq with (e-prec)%Z;[idtac|ring].
simpl; apply Z.max_l.
assert (emin+prec <= e)%Z; try omega.
apply le_bpow with beta.
apply Rle_trans with (1:=Hx).
left; now apply He.
apply Rmult_le_compat_r.
apply bpow_ge_0.
now apply He.
Qed.


Theorem ulp_FLT_ge: forall x, (Rabs x * bpow (-prec) < ulp beta FLT_exp x)%R.
Proof.
intros x; case (Req_dec x 0); intros Hx.
rewrite Hx, ulp_FLT_small, Rabs_R0, Rmult_0_l; try apply bpow_gt_0.
rewrite Rabs_R0; apply bpow_gt_0.
rewrite ulp_neq_0; try exact Hx.
unfold canonic_exp, FLT_exp.
apply Rlt_le_trans with (bpow (ln_beta beta x)*bpow (-prec))%R.
apply Rmult_lt_compat_r.
apply bpow_gt_0.
now apply bpow_ln_beta_gt.
rewrite <- bpow_plus.
apply bpow_le.
apply Z.le_max_l.
Qed.



FLT is a nice format: it has a monotone exponent...
Global Instance FLT_exp_monotone : Monotone_exp FLT_exp.
Proof.
intros ex ey.
unfold FLT_exp.
zify ; omega.
Qed.

and it allows a rounding to nearest, ties to even.
Hypothesis NE_prop : Zeven beta = false \/ (1 < prec)%Z.

Global Instance exists_NE_FLT : Exists_NE beta FLT_exp.
Proof.
destruct NE_prop as [H|H].
now left.
right.
intros e.
unfold FLT_exp.
destruct (Zmax_spec (e - prec) emin) as [(H1,H2)|(H1,H2)] ;
  rewrite H2 ; clear H2.
generalize (Zmax_spec (e + 1 - prec) emin).
generalize (Zmax_spec (e - prec + 1 - prec) emin).
omega.
generalize (Zmax_spec (e + 1 - prec) emin).
generalize (Zmax_spec (emin + 1 - prec) emin).
omega.
Qed.

End RND_FLT.