Linearization of the control-flow graph: translation from LTL to Linear
Require Import Coqlib.
Require Import Maps.
Require Import Ordered.
Require Import FSets.
Require FSetAVL.
Require Import AST.
Require Import Errors.
Require Import Op.
Require Import Locations.
Require Import LTL.
Require Import Linear.
Require Import Kildall.
Require Import Lattice.
Open Scope error_monad_scope.
To translate from LTL to Linear, we must lay out the nodes
of the LTL control-flow graph in some linear order, and insert
explicit branches and conditional branches to make sure that
each node jumps to its successors as prescribed by the
LTL control-flow graph. However, branches are not necessary
if the fall-through behaviour of LTLin instructions already
implements the desired flow of control. For instance,
consider the two LTL blocks
L1: Lop op args res; Lbranch L2
L2: ...
If the instructions
L1 and
L2 are laid out consecutively in the LTLin
code, we can generate the following Linear code:
L1: Lop op args res
L2: ...
However, if this is not possible, an explicit
Lgoto is needed:
L1: Lop op args res
Lgoto L2
...
L2: ...
The main challenge in code linearization is therefore to pick a
``good'' order for the nodes that exploits well the
fall-through behavior. Many clever trace picking heuristics
have been developed for this purpose.
In this file, we present linearization in a way that clearly
separates the heuristic part (choosing an order for the basic blocks)
from the actual code transformation parts. We proceed in two passes:
-
Choosing an order for the nodes. This returns an enumeration of CFG
nodes stating that they must be laid out in the order shown in the
list.
-
Generate Linear code where each node branches explicitly to its
successors, except if one of these successors is the immediately
following instruction.
The beauty of this approach is that correct code is generated
under surprisingly weak hypotheses on the enumeration of
CFG nodes: it suffices that every reachable instruction occurs
exactly once in the enumeration. We therefore follow an approach
based on validation a posteriori: a piece of untrusted Caml code
implements the node enumeration heuristics, and the resulting
enumeration is checked for correctness by Coq functions that are
proved to be sound.
Determination of the order of basic blocks
We first compute a mapping from CFG nodes to booleans,
indicating whether a CFG instruction is reachable or not.
This computation is a trivial forward dataflow analysis
where the transfer function is the identity: the successors
of a reachable instruction are reachable, by the very
definition of reachability.
Module DS :=
Dataflow_Solver(
LBoolean)(
NodeSetForward).
Definition reachable_aux (
f:
LTL.function) :
option (
PMap.t bool) :=
DS.fixpoint
(
LTL.fn_code f)
successors_block
(
fun pc r =>
r)
f.(
fn_entrypoint)
true.
Definition reachable (
f:
LTL.function) :
PMap.t bool :=
match reachable_aux f with
|
None =>
PMap.init true
|
Some rs =>
rs
end.
We then enumerate the nodes of reachable blocks.
This task is performed by external, untrusted Caml code.
Parameter enumerate_aux:
LTL.function ->
PMap.t bool ->
list node.
Now comes the a posteriori validation of a node enumeration.
Module Nodeset :=
FSetAVL.Make(
OrderedPositive).
Build a Nodeset.t from a list of nodes, checking that the list
contains no duplicates.
Fixpoint nodeset_of_list (
l:
list node) (
s:
Nodeset.t)
{
struct l}:
res Nodeset.t :=
match l with
|
nil =>
OK s
|
hd ::
tl =>
if Nodeset.mem hd s
then Error (
msg "
Linearize:
duplicates in enumeration")
else nodeset_of_list tl (
Nodeset.add hd s)
end.
Definition check_reachable_aux
(
reach:
PMap.t bool) (
s:
Nodeset.t)
(
ok:
bool) (
pc:
node) (
bb:
LTL.bblock) :
bool :=
if reach!!
pc then ok &&
Nodeset.mem pc s else ok.
Definition check_reachable
(
f:
LTL.function) (
reach:
PMap.t bool) (
s:
Nodeset.t) :
bool :=
PTree.fold (
check_reachable_aux reach s)
f.(
LTL.fn_code)
true.
Definition enumerate (
f:
LTL.function) :
res (
list node) :=
let reach :=
reachable f in
let enum :=
enumerate_aux f reach in
do s <-
nodeset_of_list enum Nodeset.empty;
if check_reachable f reach s
then OK enum
else Error (
msg "
Linearize:
wrong enumeration").
Translation from LTL to Linear
We now flatten the structure of the CFG graph, laying out
LTL blocks consecutively in the order computed by
enumerate,
and inserting branches to the labels of sucessors if necessary.
Whether to insert a branch or not is determined by
the
starts_with function below.
For LTL conditional branches
Lcond cond args s1 s2,
we have two possible translations:
Lcond cond args s1; or Lcond (not cond) args s2;
Lgoto s2 Lgoto s1
We favour the first translation if
s2 is the label of the
next instruction, and the second if
s1 is the label of the
next instruction, thus avoiding the insertion of a redundant
Lgoto
instruction.
Fixpoint starts_with (
lbl:
label) (
k:
code) {
struct k} :
bool :=
match k with
|
Llabel lbl' ::
k' =>
if peq lbl lbl'
then true else starts_with lbl k'
|
_ =>
false
end.
Definition add_branch (
s:
label) (
k:
code) :
code :=
if starts_with s k then k else Lgoto s ::
k.
Fixpoint linearize_block (
b:
LTL.bblock) (
k:
code) :
code :=
match b with
|
nil =>
k
|
LTL.Lop op args res ::
b' =>
Lop op args res ::
linearize_block b'
k
|
LTL.Lload alpha chunk addr args dst ::
b' =>
Lload alpha chunk addr args dst ::
linearize_block b'
k
|
LTL.Lgetstack sl ofs ty dst ::
b' =>
Lgetstack sl ofs ty dst ::
linearize_block b'
k
|
LTL.Lsetstack src sl ofs ty ::
b' =>
Lsetstack src sl ofs ty ::
linearize_block b'
k
|
LTL.Lstore alpha chunk addr args src ::
b' =>
Lstore alpha chunk addr args src ::
linearize_block b'
k
|
LTL.Lcall sig ros ::
b' =>
Lcall sig ros ::
linearize_block b'
k
|
LTL.Ltailcall sig ros ::
b' =>
Ltailcall sig ros ::
k
|
LTL.Lbuiltin ef args res ::
b' =>
Lbuiltin ef args res ::
linearize_block b'
k
|
LTL.Lbranch s ::
b' =>
add_branch s k
|
LTL.Lcond cond args s1 s2 ::
b' =>
if starts_with s1 k then
Lcond (
negate_condition cond)
args s2 ::
add_branch s1 k
else
Lcond cond args s1 ::
add_branch s2 k
|
LTL.Ljumptable arg tbl ::
b' =>
Ljumptable arg tbl ::
k
|
LTL.Lreturn ::
b' =>
Lreturn ::
k
end.
Linearize a function body according to an enumeration of its nodes.
Definition linearize_node (
f:
LTL.function) (
pc:
node) (
k:
code) :
code :=
match f.(
LTL.fn_code)!
pc with
|
None =>
k
|
Some b =>
Llabel pc ::
linearize_block b k
end.
Definition linearize_body (
f:
LTL.function) (
enum:
list node) :
code :=
list_fold_right (
linearize_node f)
enum nil.
Entry points for code linearization
Definition transf_function (
f:
LTL.function) :
res Linear.function :=
do enum <-
enumerate f;
OK (
mkfunction
(
LTL.fn_sig f)
(
LTL.fn_stacksize f)
(
add_branch (
LTL.fn_entrypoint f) (
linearize_body f enum))).
Definition transf_fundef (
f:
LTL.fundef) :
res Linear.fundef :=
AST.transf_partial_fundef transf_function f.
Definition transf_program (
p:
LTL.program) :
res Linear.program :=
transform_partial_program transf_fundef p.