Module Initializers


Compile-time evaluation of initializers for global C variables.

Require Import Coqlib.
Require Import Maps.
Require Import Errors.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import AST.
Require Import Memory.
Require Import Globalenvs.
Require Import Ctypes.
Require Import Cop.
Require Import Csyntax.

Open Scope error_monad_scope.

Evaluation of compile-time constant expressions


To evaluate constant expressions at compile-time, we use the same value type and the same sem_* functions that are used in CompCert C's semantics (module Csem). However, we interpret pointer values symbolically: Vptr id ofs represents the address of global variable id plus byte offset ofs.

constval a evaluates the constant expression a. If a is a r-value, the returned value denotes: If a is a l-value, the returned value denotes:

Definition do_cast (v: val) (t1 t2: type) : res val :=
  match sem_cast v t1 t2 with
  | Some v' => OK v'
  | None => Error(msg "undefined cast")
  end.

Definition lookup_composite (ce: composite_env) (id: ident) : res composite :=
  match ce!id with
  | Some co => OK co
  | None => Error (MSG "Undefined struct or union " :: CTX id :: nil)
  end.

Fixpoint constval (ce: composite_env) (a: expr) : res val :=
  match a with
  | Eval v ty =>
      match v with
      | Vint _ | Vfloat _ | Vsingle _ | Vlong _ => OK v
      | Vptr _ _ | Vundef => Error(msg "illegal constant")
      end
  | Evalof l ty =>
      match access_mode ty with
      | By_reference | By_copy => constval ce l
      | _ => Error(msg "dereferencing of an l-value")
      end
  | Eaddrof l ty =>
      constval ce l
  | Eunop op r1 ty =>
      do v1 <- constval ce r1;
      match sem_unary_operation op v1 (typeof r1) Mem.empty with
      | Some v => OK v
      | None => Error(msg "undefined unary operation")
      end
  | Ebinop op r1 r2 ty =>
      do v1 <- constval ce r1;
      do v2 <- constval ce r2;
      match sem_binary_operation ce op v1 (typeof r1) v2 (typeof r2) Mem.empty with
      | Some v => OK v
      | None => Error(msg "undefined binary operation")
      end
  | Ecast r ty =>
      do v1 <- constval ce r; do_cast v1 (typeof r) ty
  | Esizeof ty1 ty =>
      OK (Vint (Int.repr (sizeof ce ty1)))
  | Ealignof ty1 ty =>
      OK (Vint (Int.repr (alignof ce ty1)))
  | Eseqand r1 r2 ty =>
      do v1 <- constval ce r1;
      do v2 <- constval ce r2;
      match bool_val v1 (typeof r1) Mem.empty with
      | Some true => do_cast v2 (typeof r2) type_bool
      | Some false => OK (Vint Int.zero)
      | None => Error(msg "undefined && operation")
      end
  | Eseqor r1 r2 ty =>
      do v1 <- constval ce r1;
      do v2 <- constval ce r2;
      match bool_val v1 (typeof r1) Mem.empty with
      | Some false => do_cast v2 (typeof r2) type_bool
      | Some true => OK (Vint Int.one)
      | None => Error(msg "undefined || operation")
      end
  | Econdition r1 r2 r3 ty =>
      do v1 <- constval ce r1;
      do v2 <- constval ce r2;
      do v3 <- constval ce r3;
      match bool_val v1 (typeof r1) Mem.empty with
      | Some true => do_cast v2 (typeof r2) ty
      | Some false => do_cast v3 (typeof r3) ty
      | None => Error(msg "condition is undefined")
      end
  | Ecomma r1 r2 ty =>
      do v1 <- constval ce r1; constval ce r2
  | Evar x ty =>
      OK(Vptr x Int.zero)
  | Ederef r ty =>
      constval ce r
  | Efield l f ty =>
      match typeof l with
      | Tstruct id _ =>
          do co <- lookup_composite ce id;
          do delta <- field_offset ce f (co_members co);
          do v <- constval ce l;
          OK (Val.add v (Vint (Int.repr delta)))
      | Tunion id _ =>
          constval ce l
      | _ =>
          Error(msg "ill-typed field access")
      end
  | Eparen r tycast ty =>
      do v <- constval ce r; do_cast v (typeof r) tycast
  | _ =>
    Error(msg "not a compile-time constant")
  end.

Translation of initializers


Inductive initializer :=
  | Init_single (a: expr)
  | Init_array (il: initializer_list)
  | Init_struct (il: initializer_list)
  | Init_union (f: ident) (i: initializer)
with initializer_list :=
  | Init_nil
  | Init_cons (i: initializer) (il: initializer_list).

Translate an initializing expression a for a scalar variable of type ty. Return the corresponding initialization datum.

Definition transl_init_single (ce: composite_env) (ty: type) (a: expr) : res init_data :=
  do v1 <- constval ce a;
  do v2 <- do_cast v1 (typeof a) ty;
  match v2, ty with
  | Vint n, Tint (I8|IBool) sg _ => OK(Init_int8 n)
  | Vint n, Tint I16 sg _ => OK(Init_int16 n)
  | Vint n, Tint I32 sg _ => OK(Init_int32 n)
  | Vint n, Tpointer _ _ => OK(Init_int32 n)
  | Vlong n, Tlong _ _ => OK(Init_int64 n)
  | Vsingle f, Tfloat F32 _ => OK(Init_float32 f)
  | Vfloat f, Tfloat F64 _ => OK(Init_float64 f)
  | Vptr id ofs, Tint I32 sg _ => OK(Init_addrof id ofs)
  | Vptr id ofs, Tpointer _ _ => OK(Init_addrof id ofs)
  | Vundef, _ => Error(msg "undefined operation in initializer")
  | _, _ => Error (msg "type mismatch in initializer")
  end.

Translate an initializer i for a variable of type ty. transl_init ce ty i returns the appropriate list of initialization data. The intermediate functions transl_init_rec, transl_init_array and transl_init_struct append initialization data to the given list k, and build the list of initialization data in reverse order, so as to remain tail-recursive.

Definition padding (frm to: Z) (k: list init_data) : list init_data :=
  if zlt frm to then Init_space (to - frm) :: k else k.

Fixpoint transl_init_rec (ce: composite_env) (ty: type) (i: initializer)
                         (k: list init_data) {struct i} : res (list init_data) :=
  match i, ty with
  | Init_single a, _ =>
      do d <- transl_init_single ce ty a; OK (d :: k)
  | Init_array il, Tarray tyelt nelt _ =>
      transl_init_array ce tyelt il (Zmax 0 nelt) k
  | Init_struct il, Tstruct id _ =>
      do co <- lookup_composite ce id;
      match co_su co with
      | Struct => transl_init_struct ce ty (co_members co) il 0 k
      | Union => Error (MSG "struct/union mismatch on " :: CTX id :: nil)
      end
  | Init_union f i1, Tunion id _ =>
      do co <- lookup_composite ce id;
      match co_su co with
      | Struct => Error (MSG "union/struct mismatch on " :: CTX id :: nil)
      | Union =>
          do ty1 <- field_type f (co_members co);
          do k1 <- transl_init_rec ce ty1 i1 k;
          OK (padding (sizeof ce ty1) (sizeof ce ty) k1)
      end
  | _, _ =>
      Error (msg "wrong type for compound initializer")
  end

with transl_init_array (ce: composite_env) (ty: type) (il: initializer_list) (sz: Z)
                       (k: list init_data) {struct il} : res (list init_data) :=
  match il with
  | Init_nil =>
      if zeq sz 0 then OK k
      else if zle 0 sz then OK (Init_space (sz * sizeof ce ty) :: k)
      else Error (msg "wrong number of elements in array initializer")
  | Init_cons i1 il' =>
      do k1 <- transl_init_rec ce ty i1 k;
      transl_init_array ce ty il' (sz - 1) k1
  end

with transl_init_struct (ce: composite_env) (ty: type)
                        (fl: members) (il: initializer_list) (pos: Z)
                        (k: list init_data)
                        {struct il} : res (list init_data) :=
  match il, fl with
  | Init_nil, nil =>
      OK (padding pos (sizeof ce ty) k)
  | Init_cons i1 il', (_, ty1) :: fl' =>
      let pos1 := align pos (alignof ce ty1) in
      do k1 <- transl_init_rec ce ty1 i1 (padding pos pos1 k);
      transl_init_struct ce ty fl' il' (pos1 + sizeof ce ty1) k1
  | _, _ =>
      Error (msg "wrong number of elements in struct initializer")
  end.

Definition transl_init (ce: composite_env) (ty: type) (i: initializer)
                       : res (list init_data) :=
  do k <- transl_init_rec ce ty i nil; OK (List.rev' k).