IEEE-754 arithmetic
Require Import Fcore.
Require Import Fcore_digits.
Require Import Fcalc_digits.
Require Import Fcalc_round.
Require Import Fcalc_bracket.
Require Import Fcalc_ops.
Require Import Fcalc_div.
Require Import Fcalc_sqrt.
Require Import Fprop_relative.
Section AnyRadix.
Inductive full_float :=
|
F754_zero :
bool ->
full_float
|
F754_infinity :
bool ->
full_float
|
F754_nan :
bool ->
positive ->
full_float
|
F754_finite :
bool ->
positive ->
Z ->
full_float.
Definition FF2R beta x :=
match x with
|
F754_finite s m e =>
F2R (
Float beta (
cond_Zopp s (
Zpos m))
e)
|
_ =>
R0
end.
End AnyRadix.
Section Binary.
Implicit Arguments exist [[
A] [
P]].
prec is the number of bits of the mantissa including the implicit one;
emax is the exponent of the infinities.
For instance, binary32 is defined by prec = 24 and emax = 128.
Variable prec emax :
Z.
Context (
prec_gt_0_ :
Prec_gt_0 prec).
Hypothesis Hmax : (
prec <
emax)%
Z.
Let emin := (3 -
emax -
prec)%
Z.
Let fexp :=
FLT_exp emin prec.
Instance fexp_correct :
Valid_exp fexp :=
FLT_exp_valid emin prec.
Instance fexp_monotone :
Monotone_exp fexp :=
FLT_exp_monotone emin prec.
Definition canonic_mantissa m e :=
Zeq_bool (
fexp (
Zpos (
digits2_pos m) +
e))
e.
Definition bounded m e :=
andb (
canonic_mantissa m e) (
Zle_bool e (
emax -
prec)).
Definition valid_binary x :=
match x with
|
F754_finite _ m e =>
bounded m e
|
F754_nan _ pl => (
Zpos (
digits2_pos pl) <?
prec)%
Z
|
_ =>
true
end.
Basic type used for representing binary FP numbers.
Note that there is exactly one such object per FP datum.
Definition nan_pl := {
pl | (
Zpos (
digits2_pos pl) <?
prec)%
Z =
true}.
Inductive binary_float :=
|
B754_zero :
bool ->
binary_float
|
B754_infinity :
bool ->
binary_float
|
B754_nan :
bool ->
nan_pl ->
binary_float
|
B754_finite :
bool ->
forall (
m :
positive) (
e :
Z),
bounded m e =
true ->
binary_float.
Definition FF2B x :=
match x as x return valid_binary x =
true ->
binary_float with
|
F754_finite s m e =>
B754_finite s m e
|
F754_infinity s =>
fun _ =>
B754_infinity s
|
F754_zero s =>
fun _ =>
B754_zero s
|
F754_nan b pl =>
fun H =>
B754_nan b (
exist pl H)
end.
Definition B2FF x :=
match x with
|
B754_finite s m e _ =>
F754_finite s m e
|
B754_infinity s =>
F754_infinity s
|
B754_zero s =>
F754_zero s
|
B754_nan b (
exist pl _) =>
F754_nan b pl
end.
Definition B2R f :=
match f with
|
B754_finite s m e _ =>
F2R (
Float radix2 (
cond_Zopp s (
Zpos m))
e)
|
_ =>
R0
end.
Theorem FF2R_B2FF :
forall x,
FF2R radix2 (
B2FF x) =
B2R x.
Proof.
now intros [sx|sx|sx [plx Hplx]|sx mx ex Hx].
Qed.
Theorem B2FF_FF2B :
forall x Hx,
B2FF (
FF2B x Hx) =
x.
Proof.
now intros [sx|sx|sx plx|sx mx ex] Hx.
Qed.
Theorem valid_binary_B2FF :
forall x,
valid_binary (
B2FF x) =
true.
Proof.
now intros [sx|sx|sx [plx Hplx]|sx mx ex Hx].
Qed.
Theorem FF2B_B2FF :
forall x H,
FF2B (
B2FF x)
H =
x.
Proof.
Theorem FF2B_B2FF_valid :
forall x,
FF2B (
B2FF x) (
valid_binary_B2FF x) =
x.
Proof.
Theorem B2R_FF2B :
forall x Hx,
B2R (
FF2B x Hx) =
FF2R radix2 x.
Proof.
now intros [sx|sx|sx plx|sx mx ex] Hx.
Qed.
Theorem match_FF2B :
forall {
T}
fz fi fn ff x Hx,
match FF2B x Hx return T with
|
B754_zero sx =>
fz sx
|
B754_infinity sx =>
fi sx
|
B754_nan b (
exist p _) =>
fn b p
|
B754_finite sx mx ex _ =>
ff sx mx ex
end =
match x with
|
F754_zero sx =>
fz sx
|
F754_infinity sx =>
fi sx
|
F754_nan b p =>
fn b p
|
F754_finite sx mx ex =>
ff sx mx ex
end.
Proof.
now intros T fz fi fn ff [sx|sx|sx plx|sx mx ex] Hx.
Qed.
Theorem canonic_canonic_mantissa :
forall (
sx :
bool)
mx ex,
canonic_mantissa mx ex =
true ->
canonic radix2 fexp (
Float radix2 (
cond_Zopp sx (
Zpos mx))
ex).
Proof.
Theorem generic_format_B2R :
forall x,
generic_format radix2 fexp (
B2R x).
Proof.
Theorem FLT_format_B2R :
forall x,
FLT_format radix2 emin prec (
B2R x).
Proof with
Theorem B2FF_inj :
forall x y :
binary_float,
B2FF x =
B2FF y ->
x =
y.
Proof.
intros [
sx|
sx|
sx [
plx Hplx]|
sx mx ex Hx] [
sy|
sy|
sy [
ply Hply]|
sy my ey Hy] ;
try easy.
*)
intros H.
now inversion H.
*)
intros H.
now inversion H.
*)
intros H.
inversion H.
clear H.
revert Hplx.
rewrite H2.
intros Hx.
apply f_equal,
f_equal,
eqbool_irrelevance.
*)
intros H.
inversion H.
clear H.
revert Hx.
rewrite H2,
H3.
intros Hx.
apply f_equal,
eqbool_irrelevance.
Qed.
Definition is_finite_strict f :=
match f with
|
B754_finite _ _ _ _ =>
true
|
_ =>
false
end.
Theorem B2R_inj:
forall x y :
binary_float,
is_finite_strict x =
true ->
is_finite_strict y =
true ->
B2R x =
B2R y ->
x =
y.
Proof.
Definition Bsign x :=
match x with
|
B754_nan s _ =>
s
|
B754_zero s =>
s
|
B754_infinity s =>
s
|
B754_finite s _ _ _ =>
s
end.
Definition sign_FF x :=
match x with
|
F754_nan s _ =>
s
|
F754_zero s =>
s
|
F754_infinity s =>
s
|
F754_finite s _ _ =>
s
end.
Theorem Bsign_FF2B :
forall x H,
Bsign (
FF2B x H) =
sign_FF x.
Proof.
now intros [sx|sx|sx plx|sx mx ex] H.
Qed.
Definition is_finite f :=
match f with
|
B754_finite _ _ _ _ =>
true
|
B754_zero _ =>
true
|
_ =>
false
end.
Definition is_finite_FF f :=
match f with
|
F754_finite _ _ _ =>
true
|
F754_zero _ =>
true
|
_ =>
false
end.
Theorem is_finite_FF2B :
forall x Hx,
is_finite (
FF2B x Hx) =
is_finite_FF x.
Proof.
now intros [| | |].
Qed.
Theorem is_finite_FF_B2FF :
forall x,
is_finite_FF (
B2FF x) =
is_finite x.
Proof.
now intros [| |? []|].
Qed.
Theorem B2R_Bsign_inj:
forall x y :
binary_float,
is_finite x =
true ->
is_finite y =
true ->
B2R x =
B2R y ->
Bsign x =
Bsign y ->
x =
y.
Proof.
intros.
destruct x,
y;
try (
apply B2R_inj;
now eauto).
-
simpl in H2.
congruence.
-
symmetry in H1.
apply Rmult_integral in H1.
destruct H1.
apply eq_Z2R with (
n:=0%
Z)
in H1.
destruct b0;
discriminate H1.
simpl in H1.
pose proof (
bpow_gt_0 radix2 e).
rewrite H1 in H3.
apply Rlt_irrefl in H3.
destruct H3.
-
apply Rmult_integral in H1.
destruct H1.
apply eq_Z2R with (
n:=0%
Z)
in H1.
destruct b;
discriminate H1.
simpl in H1.
pose proof (
bpow_gt_0 radix2 e).
rewrite H1 in H3.
apply Rlt_irrefl in H3.
destruct H3.
Qed.
Definition is_nan f :=
match f with
|
B754_nan _ _ =>
true
|
_ =>
false
end.
Definition is_nan_FF f :=
match f with
|
F754_nan _ _ =>
true
|
_ =>
false
end.
Theorem is_nan_FF2B :
forall x Hx,
is_nan (
FF2B x Hx) =
is_nan_FF x.
Proof.
now intros [| | |].
Qed.
Theorem is_nan_FF_B2FF :
forall x,
is_nan_FF (
B2FF x) =
is_nan x.
Proof.
now intros [| |? []|].
Qed.
Opposite
Definition Bopp opp_nan x :=
match x with
|
B754_nan sx plx =>
let '(
sres,
plres) :=
opp_nan sx plx in B754_nan sres plres
|
B754_infinity sx =>
B754_infinity (
negb sx)
|
B754_finite sx mx ex Hx =>
B754_finite (
negb sx)
mx ex Hx
|
B754_zero sx =>
B754_zero (
negb sx)
end.
Theorem Bopp_involutive :
forall opp_nan x,
is_nan x =
false ->
Bopp opp_nan (
Bopp opp_nan x) =
x.
Proof.
Theorem B2R_Bopp :
forall opp_nan x,
B2R (
Bopp opp_nan x) = (-
B2R x)%
R.
Proof.
intros opp_nan [
sx|
sx|
sx plx|
sx mx ex Hx];
apply sym_eq ;
try apply Ropp_0.
simpl.
destruct opp_nan.
apply Ropp_0.
simpl.
rewrite <-
F2R_opp.
now case sx.
Qed.
Theorem is_finite_Bopp :
forall opp_nan x,
is_finite (
Bopp opp_nan x) =
is_finite x.
Proof.
intros opp_nan [| | |] ; try easy.
intros s pl.
simpl.
now case opp_nan.
Qed.
Absolute value
Definition Babs abs_nan (
x :
binary_float) :
binary_float :=
match x with
|
B754_nan sx plx =>
let '(
sres,
plres) :=
abs_nan sx plx in B754_nan sres plres
|
B754_infinity sx =>
B754_infinity false
|
B754_finite sx mx ex Hx =>
B754_finite false mx ex Hx
|
B754_zero sx =>
B754_zero false
end.
Theorem B2R_Babs :
forall abs_nan x,
B2R (
Babs abs_nan x) =
Rabs (
B2R x).
Proof.
intros abs_nan [
sx|
sx|
sx plx|
sx mx ex Hx];
apply sym_eq ;
try apply Rabs_R0.
simpl.
destruct abs_nan.
simpl.
apply Rabs_R0.
simpl.
rewrite <-
F2R_abs.
now destruct sx.
Qed.
Theorem is_finite_Babs :
forall abs_nan x,
is_finite (
Babs abs_nan x) =
is_finite x.
Proof.
intros abs_nan [| | |] ; try easy.
intros s pl.
simpl.
now case abs_nan.
Qed.
Theorem Bsign_Babs :
forall abs_nan x,
is_nan x =
false ->
Bsign (
Babs abs_nan x) =
false.
Proof.
now intros abs_nan [| | |].
Qed.
Theorem Babs_idempotent :
forall abs_nan (
x:
binary_float),
is_nan x =
false ->
Babs abs_nan (
Babs abs_nan x) =
Babs abs_nan x.
Proof.
now intros abs_nan [sx|sx|sx plx|sx mx ex Hx].
Qed.
Theorem Babs_Bopp :
forall abs_nan opp_nan x,
is_nan x =
false ->
Babs abs_nan (
Bopp opp_nan x) =
Babs abs_nan x.
Proof.
now intros abs_nan opp_nan [| | |].
Qed.
Comparison
Some c means ordered as per c; None means unordered.
Definition Bcompare (
f1 f2 :
binary_float) :
option comparison :=
match f1,
f2 with
|
B754_nan _ _,
_ |
_,
B754_nan _ _ =>
None
|
B754_infinity true,
B754_infinity true
|
B754_infinity false,
B754_infinity false =>
Some Eq
|
B754_infinity true,
_ =>
Some Lt
|
B754_infinity false,
_ =>
Some Gt
|
_,
B754_infinity true =>
Some Gt
|
_,
B754_infinity false =>
Some Lt
|
B754_finite true _ _ _,
B754_zero _ =>
Some Lt
|
B754_finite false _ _ _,
B754_zero _ =>
Some Gt
|
B754_zero _,
B754_finite true _ _ _ =>
Some Gt
|
B754_zero _,
B754_finite false _ _ _ =>
Some Lt
|
B754_zero _,
B754_zero _ =>
Some Eq
|
B754_finite s1 m1 e1 _,
B754_finite s2 m2 e2 _ =>
match s1,
s2 with
|
true,
false =>
Some Lt
|
false,
true =>
Some Gt
|
false,
false =>
match Zcompare e1 e2 with
|
Lt =>
Some Lt
|
Gt =>
Some Gt
|
Eq =>
Some (
Pcompare m1 m2 Eq)
end
|
true,
true =>
match Zcompare e1 e2 with
|
Lt =>
Some Gt
|
Gt =>
Some Lt
|
Eq =>
Some (
CompOpp (
Pcompare m1 m2 Eq))
end
end
end.
Theorem Bcompare_correct :
forall f1 f2,
is_finite f1 =
true ->
is_finite f2 =
true ->
Bcompare f1 f2 =
Some (
Rcompare (
B2R f1) (
B2R f2)).
Proof.
Ltac apply_Rcompare :=
match goal with
| [ |-
Some Lt =
Some (
Rcompare _ _) ] =>
f_equal;
symmetry;
apply Rcompare_Lt
| [ |-
Some Eq =
Some (
Rcompare _ _) ] =>
f_equal;
symmetry;
apply Rcompare_Eq
| [ |-
Some Gt =
Some (
Rcompare _ _) ] =>
f_equal;
symmetry;
apply Rcompare_Gt
end.
unfold Bcompare;
intros.
destruct f1,
f2 ;
try easy.
now rewrite Rcompare_Eq.
destruct b0 ;
apply_Rcompare.
now apply F2R_lt_0_compat.
now apply F2R_gt_0_compat.
destruct b ;
apply_Rcompare.
now apply F2R_lt_0_compat.
now apply F2R_gt_0_compat.
simpl.
clear H H0.
apply andb_prop in e0;
destruct e0;
apply (
canonic_canonic_mantissa false)
in H.
apply andb_prop in e2;
destruct e2;
apply (
canonic_canonic_mantissa false)
in H1.
pose proof (
Zcompare_spec e e1);
unfold canonic,
Fexp in H1,
H.
assert (
forall m1 m2 e1 e2,
let x := (
Z2R (
Zpos m1) *
bpow radix2 e1)%
R in
let y := (
Z2R (
Zpos m2) *
bpow radix2 e2)%
R in
(
canonic_exp radix2 fexp x <
canonic_exp radix2 fexp y)%
Z -> (
x <
y)%
R).
{
intros;
apply Rnot_le_lt;
intro;
apply (
ln_beta_le radix2)
in H5.
apply Zlt_not_le with (1 :=
H4).
now apply fexp_monotone.
now apply (
F2R_gt_0_compat _ (
Float radix2 (
Zpos m2)
e2)).
}
assert (
forall m1 m2 e1 e2, (
Z2R (-
Zpos m1) *
bpow radix2 e1 <
Z2R (
Zpos m2) *
bpow radix2 e2)%
R).
{
intros;
apply (
Rlt_trans _ 0%
R).
now apply (
F2R_lt_0_compat _ (
Float radix2 (
Zneg m1)
e0)).
now apply (
F2R_gt_0_compat _ (
Float radix2 (
Zpos m2)
e2)).
}
unfold F2R,
Fnum,
Fexp.
destruct b,
b0;
try (
now apply_Rcompare;
apply H5);
inversion H3;
try (
apply_Rcompare;
apply H4;
rewrite H,
H1 in H7;
assumption);
try (
apply_Rcompare;
do 2
rewrite Z2R_opp,
Ropp_mult_distr_l_reverse;
apply Ropp_lt_contravar;
apply H4;
rewrite H,
H1 in H7;
assumption);
rewrite H7,
Rcompare_mult_r,
Rcompare_Z2R by (
apply bpow_gt_0);
reflexivity.
Qed.
Theorem Bcompare_swap :
forall x y,
Bcompare y x =
match Bcompare x y with Some c =>
Some (
CompOpp c) |
None =>
None end.
Proof.
intros.
destruct x as [ ? | [] | ? ? | []
mx ex Bx ];
destruct y as [ ? | [] | ? ? | []
my ey By ];
simpl;
try easy.
-
rewrite <- (
Zcompare_antisym ex ey).
destruct (
ex ?=
ey)%
Z;
try easy.
now rewrite (
Pcompare_antisym mx my).
-
rewrite <- (
Zcompare_antisym ex ey).
destruct (
ex ?=
ey)%
Z;
try easy.
now rewrite Pcompare_antisym.
Qed.
Theorem bounded_lt_emax :
forall mx ex,
bounded mx ex =
true ->
(
F2R (
Float radix2 (
Zpos mx)
ex) <
bpow radix2 emax)%
R.
Proof.
Theorem abs_B2R_lt_emax :
forall x,
(
Rabs (
B2R x) <
bpow radix2 emax)%
R.
Proof.
Theorem bounded_canonic_lt_emax :
forall mx ex,
canonic radix2 fexp (
Float radix2 (
Zpos mx)
ex) ->
(
F2R (
Float radix2 (
Zpos mx)
ex) <
bpow radix2 emax)%
R ->
bounded mx ex =
true.
Proof.
Truncation
Record shr_record := {
shr_m :
Z ;
shr_r :
bool ;
shr_s :
bool }.
Definition shr_1 mrs :=
let '(
Build_shr_record m r s) :=
mrs in
let s :=
orb r s in
match m with
|
Z0 =>
Build_shr_record Z0 false s
|
Zpos xH =>
Build_shr_record Z0 true s
|
Zpos (
xO p) =>
Build_shr_record (
Zpos p)
false s
|
Zpos (
xI p) =>
Build_shr_record (
Zpos p)
true s
|
Zneg xH =>
Build_shr_record Z0 true s
|
Zneg (
xO p) =>
Build_shr_record (
Zneg p)
false s
|
Zneg (
xI p) =>
Build_shr_record (
Zneg p)
true s
end.
Definition loc_of_shr_record mrs :=
match mrs with
|
Build_shr_record _ false false =>
loc_Exact
|
Build_shr_record _ false true =>
loc_Inexact Lt
|
Build_shr_record _ true false =>
loc_Inexact Eq
|
Build_shr_record _ true true =>
loc_Inexact Gt
end.
Definition shr_record_of_loc m l :=
match l with
|
loc_Exact =>
Build_shr_record m false false
|
loc_Inexact Lt =>
Build_shr_record m false true
|
loc_Inexact Eq =>
Build_shr_record m true false
|
loc_Inexact Gt =>
Build_shr_record m true true
end.
Theorem shr_m_shr_record_of_loc :
forall m l,
shr_m (
shr_record_of_loc m l) =
m.
Proof.
now intros m [|[| |]].
Qed.
Theorem loc_of_shr_record_of_loc :
forall m l,
loc_of_shr_record (
shr_record_of_loc m l) =
l.
Proof.
now intros m [|[| |]].
Qed.
Definition shr mrs e n :=
match n with
|
Zpos p => (
iter_pos shr_1 p mrs, (
e +
n)%
Z)
|
_ => (
mrs,
e)
end.
Lemma inbetween_shr_1 :
forall x mrs e,
(0 <=
shr_m mrs)%
Z ->
inbetween_float radix2 (
shr_m mrs)
e x (
loc_of_shr_record mrs) ->
inbetween_float radix2 (
shr_m (
shr_1 mrs)) (
e + 1)
x (
loc_of_shr_record (
shr_1 mrs)).
Proof.
Theorem inbetween_shr :
forall x m e l n,
(0 <=
m)%
Z ->
inbetween_float radix2 m e x l ->
let '(
mrs,
e') :=
shr (
shr_record_of_loc m l)
e n in
inbetween_float radix2 (
shr_m mrs)
e'
x (
loc_of_shr_record mrs).
Proof.
Definition shr_fexp m e l :=
shr (
shr_record_of_loc m l)
e (
fexp (
Zdigits2 m +
e) -
e).
Theorem shr_truncate :
forall m e l,
(0 <=
m)%
Z ->
shr_fexp m e l =
let '(
m',
e',
l') :=
truncate radix2 fexp (
m,
e,
l)
in (
shr_record_of_loc m'
l',
e').
Proof.
intros m e l Hm.
case_eq (
truncate radix2 fexp (
m,
e,
l)).
intros (
m',
e')
l'.
unfold shr_fexp.
rewrite Zdigits2_Zdigits.
case_eq (
fexp (
Zdigits radix2 m +
e) -
e)%
Z.
*)
intros He.
unfold truncate.
rewrite He.
simpl.
intros H.
now inversion H.
*)
intros p Hp.
assert (
He: (
e <=
fexp (
Zdigits radix2 m +
e))%
Z).
clear -
Hp ;
zify ;
omega.
destruct (
inbetween_float_ex radix2 m e l)
as (
x,
Hx).
generalize (
inbetween_shr x m e l (
fexp (
Zdigits radix2 m +
e) -
e)
Hm Hx).
assert (
Hx0 : (0 <=
x)%
R).
apply Rle_trans with (
F2R (
Float radix2 m e)).
now apply F2R_ge_0_compat.
exact (
proj1 (
inbetween_float_bounds _ _ _ _ _ Hx)).
case_eq (
shr (
shr_record_of_loc m l)
e (
fexp (
Zdigits radix2 m +
e) -
e)).
intros mrs e''
H3 H4 H1.
generalize (
truncate_correct radix2 _ x m e l Hx0 Hx (
or_introl _ He)).
rewrite H1.
intros (
H2,
_).
rewrite <-
Hp,
H3.
assert (
e'' =
e').
change (
snd (
mrs,
e'') =
snd (
fst (
m',
e',
l'))).
rewrite <-
H1, <-
H3.
unfold truncate.
now rewrite Hp.
rewrite H in H4 |- *.
apply (
f_equal (
fun v => (
v,
_))).
destruct (
inbetween_float_unique _ _ _ _ _ _ _ H2 H4)
as (
H5,
H6).
rewrite H5,
H6.
case mrs.
now intros m0 [|] [|].
*)
intros p Hp.
unfold truncate.
rewrite Hp.
simpl.
intros H.
now inversion H.
Qed.
Rounding modes
Inductive mode :=
mode_NE |
mode_ZR |
mode_DN |
mode_UP |
mode_NA.
Definition round_mode m :=
match m with
|
mode_NE =>
ZnearestE
|
mode_ZR =>
Ztrunc
|
mode_DN =>
Zfloor
|
mode_UP =>
Zceil
|
mode_NA =>
ZnearestA
end.
Definition choice_mode m sx mx lx :=
match m with
|
mode_NE =>
cond_incr (
round_N (
negb (
Zeven mx))
lx)
mx
|
mode_ZR =>
mx
|
mode_DN =>
cond_incr (
round_sign_DN sx lx)
mx
|
mode_UP =>
cond_incr (
round_sign_UP sx lx)
mx
|
mode_NA =>
cond_incr (
round_N true lx)
mx
end.
Global Instance valid_rnd_round_mode :
forall m,
Valid_rnd (
round_mode m).
Proof.
destruct m ;
unfold round_mode ;
auto with typeclass_instances.
Qed.
Definition overflow_to_inf m s :=
match m with
|
mode_NE =>
true
|
mode_NA =>
true
|
mode_ZR =>
false
|
mode_UP =>
negb s
|
mode_DN =>
s
end.
Definition binary_overflow m s :=
if overflow_to_inf m s then F754_infinity s
else F754_finite s (
match (
Zpower 2
prec - 1)%
Z with Zpos p =>
p |
_ =>
xH end) (
emax -
prec).
Definition binary_round_aux mode sx mx ex lx :=
let '(
mrs',
e') :=
shr_fexp (
Zpos mx)
ex lx in
let '(
mrs'',
e'') :=
shr_fexp (
choice_mode mode sx (
shr_m mrs') (
loc_of_shr_record mrs'))
e'
loc_Exact in
match shr_m mrs''
with
|
Z0 =>
F754_zero sx
|
Zpos m =>
if Zle_bool e'' (
emax -
prec)
then F754_finite sx m e''
else binary_overflow mode sx
|
_ =>
F754_nan false xH
end.
Theorem binary_round_aux_correct :
forall mode x mx ex lx,
inbetween_float radix2 (
Zpos mx)
ex (
Rabs x)
lx ->
(
ex <=
fexp (
Zdigits radix2 (
Zpos mx) +
ex))%
Z ->
let z :=
binary_round_aux mode (
Rlt_bool x 0)
mx ex lx in
valid_binary z =
true /\
if Rlt_bool (
Rabs (
round radix2 fexp (
round_mode mode)
x)) (
bpow radix2 emax)
then
FF2R radix2 z =
round radix2 fexp (
round_mode mode)
x /\
is_finite_FF z =
true /\
sign_FF z =
Rlt_bool x 0
else
z =
binary_overflow mode (
Rlt_bool x 0).
Proof with
auto with typeclass_instances.
intros m x mx ex lx Bx Ex z.
unfold binary_round_aux in z.
revert z.
rewrite shr_truncate. 2:
easy.
refine (
_ (
round_trunc_sign_any_correct _ _ (
round_mode m) (
choice_mode m)
_ x (
Zpos mx)
ex lx Bx (
or_introl _ Ex))).
refine (
_ (
truncate_correct_partial _ _ _ _ _ _ _ Bx Ex)).
destruct (
truncate radix2 fexp (
Zpos mx,
ex,
lx))
as ((
m1,
e1),
l1).
rewrite loc_of_shr_record_of_loc,
shr_m_shr_record_of_loc.
set (
m1' :=
choice_mode m (
Rlt_bool x 0)
m1 l1).
intros (
H1a,
H1b)
H1c.
rewrite H1c.
assert (
Hm: (
m1 <=
m1')%
Z).
. *)
unfold m1',
choice_mode,
cond_incr.
case m ;
try apply Zle_refl ;
match goal with |- (
m1 <=
if ?
b then _ else _)%
Z =>
case b ; [
apply Zle_succ |
apply Zle_refl ]
end.
assert (
Hr:
Rabs (
round radix2 fexp (
round_mode m)
x) =
F2R (
Float radix2 m1'
e1)).
. *)
rewrite <- (
Zabs_eq m1').
replace (
Zabs m1')
with (
Zabs (
cond_Zopp (
Rlt_bool x 0)
m1')).
rewrite F2R_Zabs.
now apply f_equal.
apply abs_cond_Zopp.
apply Zle_trans with (2 :=
Hm).
apply Zlt_succ_le.
apply F2R_gt_0_reg with radix2 e1.
apply Rle_lt_trans with (1 :=
Rabs_pos x).
exact (
proj2 (
inbetween_float_bounds _ _ _ _ _ H1a)).
. *)
assert (
Br:
inbetween_float radix2 m1'
e1 (
Rabs (
round radix2 fexp (
round_mode m)
x))
loc_Exact).
now apply inbetween_Exact.
destruct m1'
as [|
m1'|
m1'].
. m1' = 0 *)
rewrite shr_truncate. 2:
apply Zle_refl.
generalize (
truncate_0 radix2 fexp e1 loc_Exact).
destruct (
truncate radix2 fexp (
Z0,
e1,
loc_Exact))
as ((
m2,
e2),
l2).
rewrite shr_m_shr_record_of_loc.
intros Hm2.
rewrite Hm2.
repeat split.
rewrite Rlt_bool_true.
repeat split.
apply sym_eq.
case Rlt_bool ;
apply F2R_0.
rewrite <-
F2R_Zabs,
abs_cond_Zopp,
F2R_0.
apply bpow_gt_0.
. 0 < m1' *)
assert (
He: (
e1 <=
fexp (
Zdigits radix2 (
Zpos m1') +
e1))%
Z).
rewrite <-
ln_beta_F2R_Zdigits, <-
Hr,
ln_beta_abs.
2:
discriminate.
rewrite H1b.
rewrite canonic_exp_abs.
fold (
canonic_exp radix2 fexp (
round radix2 fexp (
round_mode m)
x)).
apply canonic_exp_round_ge...
rewrite H1c.
case (
Rlt_bool x 0).
apply Rlt_not_eq.
now apply F2R_lt_0_compat.
apply Rgt_not_eq.
now apply F2R_gt_0_compat.
refine (
_ (
truncate_correct_partial _ _ _ _ _ _ _ Br He)).
2:
now rewrite Hr ;
apply F2R_gt_0_compat.
refine (
_ (
truncate_correct_format radix2 fexp (
Zpos m1')
e1 _ _ He)).
2:
discriminate.
rewrite shr_truncate. 2:
easy.
destruct (
truncate radix2 fexp (
Zpos m1',
e1,
loc_Exact))
as ((
m2,
e2),
l2).
rewrite shr_m_shr_record_of_loc.
intros (
H3,
H4) (
H2,
_).
destruct m2 as [|
m2|
m2].
elim Rgt_not_eq with (2 :=
H3).
rewrite F2R_0.
now apply F2R_gt_0_compat.
rewrite F2R_cond_Zopp,
H3,
abs_cond_Ropp, <-
F2R_abs.
simpl Zabs.
case_eq (
Zle_bool e2 (
emax -
prec)) ;
intros He2.
assert (
bounded m2 e2 =
true).
apply andb_true_intro.
split.
unfold canonic_mantissa.
apply Zeq_bool_true.
rewrite Zpos_digits2_pos.
rewrite <-
ln_beta_F2R_Zdigits.
apply sym_eq.
now rewrite H3 in H4.
discriminate.
exact He2.
apply (
conj H).
rewrite Rlt_bool_true.
repeat split.
apply F2R_cond_Zopp.
now apply bounded_lt_emax.
rewrite (
Rlt_bool_false _ (
bpow radix2 emax)).
refine (
conj _ (
refl_equal _)).
unfold binary_overflow.
case overflow_to_inf.
apply refl_equal.
unfold valid_binary,
bounded.
rewrite Zle_bool_refl.
rewrite Bool.andb_true_r.
apply Zeq_bool_true.
rewrite Zpos_digits2_pos.
replace (
Zdigits radix2 (
Zpos (
match (
Zpower 2
prec - 1)%
Z with Zpos p =>
p |
_ =>
xH end)))
with prec.
unfold fexp,
FLT_exp,
emin.
generalize (
prec_gt_0 prec).
clear -
Hmax ;
zify ;
omega.
change 2%
Z with (
radix_val radix2).
case_eq (
Zpower radix2 prec - 1)%
Z.
simpl Zdigits.
generalize (
Zpower_gt_1 radix2 prec (
prec_gt_0 prec)).
clear ;
omega.
intros p Hp.
apply Zle_antisym.
cut (
prec - 1 <
Zdigits radix2 (
Zpos p))%
Z.
clear ;
omega.
apply Zdigits_gt_Zpower.
simpl Zabs.
rewrite <-
Hp.
cut (
Zpower radix2 (
prec - 1) <
Zpower radix2 prec)%
Z.
clear ;
omega.
apply lt_Z2R.
rewrite 2!
Z2R_Zpower. 2:
now apply Zlt_le_weak.
apply bpow_lt.
apply Zlt_pred.
now apply Zlt_0_le_0_pred.
apply Zdigits_le_Zpower.
simpl Zabs.
rewrite <-
Hp.
apply Zlt_pred.
intros p Hp.
generalize (
Zpower_gt_1 radix2 _ (
prec_gt_0 prec)).
clear -
Hp ;
zify ;
omega.
apply Rnot_lt_le.
intros Hx.
generalize (
refl_equal (
bounded m2 e2)).
unfold bounded at 2.
rewrite He2.
rewrite Bool.andb_false_r.
rewrite bounded_canonic_lt_emax with (2 :=
Hx).
discriminate.
unfold canonic.
now rewrite <-
H3.
elim Rgt_not_eq with (2 :=
H3).
apply Rlt_trans with R0.
now apply F2R_lt_0_compat.
now apply F2R_gt_0_compat.
rewrite <-
Hr.
apply generic_format_abs...
apply generic_format_round...
. not m1' < 0 *)
elim Rgt_not_eq with (2 :=
Hr).
apply Rlt_le_trans with R0.
now apply F2R_lt_0_compat.
apply Rabs_pos.
*)
apply Rlt_le_trans with (2 :=
proj1 (
inbetween_float_bounds _ _ _ _ _ Bx)).
now apply F2R_gt_0_compat.
all the modes are valid *)
clear.
case m.
exact inbetween_int_NE_sign.
exact inbetween_int_ZR_sign.
exact inbetween_int_DN_sign.
exact inbetween_int_UP_sign.
exact inbetween_int_NA_sign.
Qed.
Multiplication
Lemma Bmult_correct_aux :
forall m sx mx ex (
Hx :
bounded mx ex =
true)
sy my ey (
Hy :
bounded my ey =
true),
let x :=
F2R (
Float radix2 (
cond_Zopp sx (
Zpos mx))
ex)
in
let y :=
F2R (
Float radix2 (
cond_Zopp sy (
Zpos my))
ey)
in
let z :=
binary_round_aux m (
xorb sx sy) (
mx *
my) (
ex +
ey)
loc_Exact in
valid_binary z =
true /\
if Rlt_bool (
Rabs (
round radix2 fexp (
round_mode m) (
x *
y))) (
bpow radix2 emax)
then
FF2R radix2 z =
round radix2 fexp (
round_mode m) (
x *
y) /\
is_finite_FF z =
true /\
sign_FF z =
xorb sx sy
else
z =
binary_overflow m (
xorb sx sy).
Proof.
Definition Bmult mult_nan m x y :=
let f pl :=
B754_nan (
fst pl) (
snd pl)
in
match x,
y with
|
B754_nan _ _,
_ |
_,
B754_nan _ _ =>
f (
mult_nan x y)
|
B754_infinity sx,
B754_infinity sy =>
B754_infinity (
xorb sx sy)
|
B754_infinity sx,
B754_finite sy _ _ _ =>
B754_infinity (
xorb sx sy)
|
B754_finite sx _ _ _,
B754_infinity sy =>
B754_infinity (
xorb sx sy)
|
B754_infinity _,
B754_zero _ =>
f (
mult_nan x y)
|
B754_zero _,
B754_infinity _ =>
f (
mult_nan x y)
|
B754_finite sx _ _ _,
B754_zero sy =>
B754_zero (
xorb sx sy)
|
B754_zero sx,
B754_finite sy _ _ _ =>
B754_zero (
xorb sx sy)
|
B754_zero sx,
B754_zero sy =>
B754_zero (
xorb sx sy)
|
B754_finite sx mx ex Hx,
B754_finite sy my ey Hy =>
FF2B _ (
proj1 (
Bmult_correct_aux m sx mx ex Hx sy my ey Hy))
end.
Theorem Bmult_correct :
forall mult_nan m x y,
if Rlt_bool (
Rabs (
round radix2 fexp (
round_mode m) (
B2R x *
B2R y))) (
bpow radix2 emax)
then
B2R (
Bmult mult_nan m x y) =
round radix2 fexp (
round_mode m) (
B2R x *
B2R y) /\
is_finite (
Bmult mult_nan m x y) =
andb (
is_finite x) (
is_finite y) /\
(
is_nan (
Bmult mult_nan m x y) =
false ->
Bsign (
Bmult mult_nan m x y) =
xorb (
Bsign x) (
Bsign y))
else
B2FF (
Bmult mult_nan m x y) =
binary_overflow m (
xorb (
Bsign x) (
Bsign y)).
Proof.
Definition Bmult_FF mult_nan m x y :=
let f pl :=
F754_nan (
fst pl) (
snd pl)
in
match x,
y with
|
F754_nan _ _,
_ |
_,
F754_nan _ _ =>
f (
mult_nan x y)
|
F754_infinity sx,
F754_infinity sy =>
F754_infinity (
xorb sx sy)
|
F754_infinity sx,
F754_finite sy _ _ =>
F754_infinity (
xorb sx sy)
|
F754_finite sx _ _,
F754_infinity sy =>
F754_infinity (
xorb sx sy)
|
F754_infinity _,
F754_zero _ =>
f (
mult_nan x y)
|
F754_zero _,
F754_infinity _ =>
f (
mult_nan x y)
|
F754_finite sx _ _,
F754_zero sy =>
F754_zero (
xorb sx sy)
|
F754_zero sx,
F754_finite sy _ _ =>
F754_zero (
xorb sx sy)
|
F754_zero sx,
F754_zero sy =>
F754_zero (
xorb sx sy)
|
F754_finite sx mx ex,
F754_finite sy my ey =>
binary_round_aux m (
xorb sx sy) (
mx *
my) (
ex +
ey)
loc_Exact
end.
Theorem B2FF_Bmult :
forall mult_nan mult_nan_ff,
forall m x y,
mult_nan_ff (
B2FF x) (
B2FF y) = (
let '(
sr,
exist plr _) :=
mult_nan x y in (
sr,
plr)) ->
B2FF (
Bmult mult_nan m x y) =
Bmult_FF mult_nan_ff m (
B2FF x) (
B2FF y).
Proof.
intros mult_nan mult_nan_ff m x y Hmult_nan.
unfold Bmult_FF.
rewrite Hmult_nan.
destruct x as [
sx|
sx|
sx [
plx Hplx]|
sx mx ex Hx],
y as [
sy|
sy|
sy [
ply Hply]|
sy my ey Hy] ;
simpl;
try match goal with |-
context [
mult_nan ?
x ?
y] =>
destruct (
mult_nan x y)
as [? []]
end;
try easy.
apply B2FF_FF2B.
Qed.
Normalization and rounding
Definition shl_align mx ex ex' :=
match (
ex' -
ex)%
Z with
|
Zneg d => (
shift_pos d mx,
ex')
|
_ => (
mx,
ex)
end.
Theorem shl_align_correct :
forall mx ex ex',
let (
mx',
ex'') :=
shl_align mx ex ex'
in
F2R (
Float radix2 (
Zpos mx)
ex) =
F2R (
Float radix2 (
Zpos mx')
ex'') /\
(
ex'' <=
ex')%
Z.
Proof.
Theorem snd_shl_align :
forall mx ex ex',
(
ex' <=
ex)%
Z ->
snd (
shl_align mx ex ex') =
ex'.
Proof.
intros mx ex ex'
He.
unfold shl_align.
case_eq (
ex' -
ex)%
Z ;
simpl.
intros H.
now rewrite Zminus_eq with (1 :=
H).
intros p.
clear -
He ;
zify ;
omega.
intros.
apply refl_equal.
Qed.
Definition shl_align_fexp mx ex :=
shl_align mx ex (
fexp (
Zpos (
digits2_pos mx) +
ex)).
Theorem shl_align_fexp_correct :
forall mx ex,
let (
mx',
ex') :=
shl_align_fexp mx ex in
F2R (
Float radix2 (
Zpos mx)
ex) =
F2R (
Float radix2 (
Zpos mx')
ex') /\
(
ex' <=
fexp (
Zdigits radix2 (
Zpos mx') +
ex'))%
Z.
Proof.
Definition binary_round m sx mx ex :=
let '(
mz,
ez) :=
shl_align_fexp mx ex in binary_round_aux m sx mz ez loc_Exact.
Theorem binary_round_correct :
forall m sx mx ex,
let z :=
binary_round m sx mx ex in
valid_binary z =
true /\
let x :=
F2R (
Float radix2 (
cond_Zopp sx (
Zpos mx))
ex)
in
if Rlt_bool (
Rabs (
round radix2 fexp (
round_mode m)
x)) (
bpow radix2 emax)
then
FF2R radix2 z =
round radix2 fexp (
round_mode m)
x /\
is_finite_FF z =
true /\
sign_FF z =
sx
else
z =
binary_overflow m sx.
Proof.
Definition binary_normalize mode m e szero :=
match m with
|
Z0 =>
B754_zero szero
|
Zpos m =>
FF2B _ (
proj1 (
binary_round_correct mode false m e))
|
Zneg m =>
FF2B _ (
proj1 (
binary_round_correct mode true m e))
end.
Theorem binary_normalize_correct :
forall m mx ex szero,
if Rlt_bool (
Rabs (
round radix2 fexp (
round_mode m) (
F2R (
Float radix2 mx ex)))) (
bpow radix2 emax)
then
B2R (
binary_normalize m mx ex szero) =
round radix2 fexp (
round_mode m) (
F2R (
Float radix2 mx ex)) /\
is_finite (
binary_normalize m mx ex szero) =
true /\
Bsign (
binary_normalize m mx ex szero) =
match Rcompare (
F2R (
Float radix2 mx ex)) 0
with
|
Eq =>
szero
|
Lt =>
true
|
Gt =>
false
end
else
B2FF (
binary_normalize m mx ex szero) =
binary_overflow m (
Rlt_bool (
F2R (
Float radix2 mx ex)) 0).
Proof with
auto with typeclass_instances.
intros m mx ez szero.
destruct mx as [|
mz|
mz] ;
simpl.
rewrite F2R_0,
round_0,
Rabs_R0,
Rlt_bool_true...
split...
split...
rewrite Rcompare_Eq...
apply bpow_gt_0.
. mz > 0 *)
generalize (
binary_round_correct m false mz ez).
simpl.
case Rlt_bool_spec.
intros _ (
Vz, (
Rz, (
Rz',
Rz''))).
split.
now rewrite B2R_FF2B.
split.
now rewrite is_finite_FF2B.
rewrite Bsign_FF2B,
Rz''.
rewrite Rcompare_Gt...
apply F2R_gt_0_compat.
simpl.
zify;
omega.
intros Hz' (
Vz,
Rz).
rewrite B2FF_FF2B,
Rz.
apply f_equal.
apply sym_eq.
apply Rlt_bool_false.
now apply F2R_ge_0_compat.
. mz < 0 *)
generalize (
binary_round_correct m true mz ez).
simpl.
case Rlt_bool_spec.
intros _ (
Vz, (
Rz, (
Rz',
Rz''))).
split.
now rewrite B2R_FF2B.
split.
now rewrite is_finite_FF2B.
rewrite Bsign_FF2B,
Rz''.
rewrite Rcompare_Lt...
apply F2R_lt_0_compat.
simpl.
zify;
omega.
intros Hz' (
Vz,
Rz).
rewrite B2FF_FF2B,
Rz.
apply f_equal.
apply sym_eq.
apply Rlt_bool_true.
now apply F2R_lt_0_compat.
Qed.
Addition
Definition Bplus plus_nan m x y :=
let f pl :=
B754_nan (
fst pl) (
snd pl)
in
match x,
y with
|
B754_nan _ _,
_ |
_,
B754_nan _ _ =>
f (
plus_nan x y)
|
B754_infinity sx,
B754_infinity sy =>
if Bool.eqb sx sy then x else f (
plus_nan x y)
|
B754_infinity _,
_ =>
x
|
_,
B754_infinity _ =>
y
|
B754_zero sx,
B754_zero sy =>
if Bool.eqb sx sy then x else
match m with mode_DN =>
B754_zero true |
_ =>
B754_zero false end
|
B754_zero _,
_ =>
y
|
_,
B754_zero _ =>
x
|
B754_finite sx mx ex Hx,
B754_finite sy my ey Hy =>
let ez :=
Zmin ex ey in
binary_normalize m (
Zplus (
cond_Zopp sx (
Zpos (
fst (
shl_align mx ex ez)))) (
cond_Zopp sy (
Zpos (
fst (
shl_align my ey ez)))))
ez (
match m with mode_DN =>
true |
_ =>
false end)
end.
Theorem Bplus_correct :
forall plus_nan m x y,
is_finite x =
true ->
is_finite y =
true ->
if Rlt_bool (
Rabs (
round radix2 fexp (
round_mode m) (
B2R x +
B2R y))) (
bpow radix2 emax)
then
B2R (
Bplus plus_nan m x y) =
round radix2 fexp (
round_mode m) (
B2R x +
B2R y) /\
is_finite (
Bplus plus_nan m x y) =
true /\
Bsign (
Bplus plus_nan m x y) =
match Rcompare (
B2R x +
B2R y) 0
with
|
Eq =>
match m with mode_DN =>
orb (
Bsign x) (
Bsign y)
|
_ =>
andb (
Bsign x) (
Bsign y)
end
|
Lt =>
true
|
Gt =>
false
end
else
(
B2FF (
Bplus plus_nan m x y) =
binary_overflow m (
Bsign x) /\
Bsign x =
Bsign y).
Proof with
auto with typeclass_instances.
intros plus_nan m [
sx|
sx| |
sx mx ex Hx] [
sy|
sy| |
sy my ey Hy]
Fx Fy ;
try easy.
*)
rewrite Rplus_0_r,
round_0,
Rabs_R0,
Rlt_bool_true...
simpl.
rewrite Rcompare_Eq by auto.
destruct sx,
sy;
try easy;
now case m.
apply bpow_gt_0.
*)
rewrite Rplus_0_l,
round_generic,
Rlt_bool_true...
split...
split...
simpl.
unfold F2R.
erewrite <-
Rmult_0_l,
Rcompare_mult_r.
rewrite Rcompare_Z2R with (
y:=0%
Z).
destruct sy...
apply bpow_gt_0.
apply abs_B2R_lt_emax.
apply generic_format_B2R.
*)
rewrite Rplus_0_r,
round_generic,
Rlt_bool_true...
split...
split...
simpl.
unfold F2R.
erewrite <-
Rmult_0_l,
Rcompare_mult_r.
rewrite Rcompare_Z2R with (
y:=0%
Z).
destruct sx...
apply bpow_gt_0.
apply abs_B2R_lt_emax.
apply generic_format_B2R.
*)
clear Fx Fy.
simpl.
set (
szero :=
match m with mode_DN =>
true |
_ =>
false end).
set (
ez :=
Zmin ex ey).
set (
mz := (
cond_Zopp sx (
Zpos (
fst (
shl_align mx ex ez))) +
cond_Zopp sy (
Zpos (
fst (
shl_align my ey ez))))%
Z).
assert (
Hp: (
F2R (
Float radix2 (
cond_Zopp sx (
Zpos mx))
ex) +
F2R (
Float radix2 (
cond_Zopp sy (
Zpos my))
ey))%
R =
F2R (
Float radix2 mz ez)).
rewrite 2!
F2R_cond_Zopp.
generalize (
shl_align_correct mx ex ez).
generalize (
shl_align_correct my ey ez).
generalize (
snd_shl_align mx ex ez (
Zle_min_l ex ey)).
generalize (
snd_shl_align my ey ez (
Zle_min_r ex ey)).
destruct (
shl_align mx ex ez)
as (
mx',
ex').
destruct (
shl_align my ey ez)
as (
my',
ey').
simpl.
intros H1 H2.
rewrite H1,
H2.
clear H1 H2.
intros (
H1,
_) (
H2,
_).
rewrite H1,
H2.
clear H1 H2.
rewrite <- 2!
F2R_cond_Zopp.
unfold F2R.
simpl.
now rewrite <-
Rmult_plus_distr_r, <-
Z2R_plus.
rewrite Hp.
assert (
Sz: (
bpow radix2 emax <=
Rabs (
round radix2 fexp (
round_mode m) (
F2R (
Float radix2 mz ez))))%
R ->
sx =
Rlt_bool (
F2R (
Float radix2 mz ez)) 0 /\
sx =
sy).
. *)
rewrite <-
Hp.
intros Bz.
destruct (
Bool.bool_dec sx sy)
as [
Hs|
Hs].
.. *)
refine (
conj _ Hs).
rewrite Hs.
apply sym_eq.
case sy.
apply Rlt_bool_true.
rewrite <- (
Rplus_0_r 0).
apply Rplus_lt_compat.
now apply F2R_lt_0_compat.
now apply F2R_lt_0_compat.
apply Rlt_bool_false.
rewrite <- (
Rplus_0_r 0).
apply Rplus_le_compat.
now apply F2R_ge_0_compat.
now apply F2R_ge_0_compat.
.. *)
elim Rle_not_lt with (1 :=
Bz).
generalize (
bounded_lt_emax _ _ Hx) (
bounded_lt_emax _ _ Hy) (
andb_prop _ _ Hx) (
andb_prop _ _ Hy).
intros Bx By (
Hx',
_) (
Hy',
_).
generalize (
canonic_canonic_mantissa sx _ _ Hx') (
canonic_canonic_mantissa sy _ _ Hy').
clear -
Bx By Hs prec_gt_0_.
intros Cx Cy.
destruct sx.
... *)
destruct sy.
now elim Hs.
clear Hs.
apply Rabs_lt.
split.
apply Rlt_le_trans with (
F2R (
Float radix2 (
cond_Zopp true (
Zpos mx))
ex)).
rewrite F2R_Zopp.
now apply Ropp_lt_contravar.
apply round_ge_generic...
now apply generic_format_canonic.
pattern (
F2R (
Float radix2 (
cond_Zopp true (
Zpos mx))
ex))
at 1 ;
rewrite <-
Rplus_0_r.
apply Rplus_le_compat_l.
now apply F2R_ge_0_compat.
apply Rle_lt_trans with (2 :=
By).
apply round_le_generic...
now apply generic_format_canonic.
rewrite <- (
Rplus_0_l (
F2R (
Float radix2 (
Zpos my)
ey))).
apply Rplus_le_compat_r.
now apply F2R_le_0_compat.
... *)
destruct sy.
2:
now elim Hs.
clear Hs.
apply Rabs_lt.
split.
apply Rlt_le_trans with (
F2R (
Float radix2 (
cond_Zopp true (
Zpos my))
ey)).
rewrite F2R_Zopp.
now apply Ropp_lt_contravar.
apply round_ge_generic...
now apply generic_format_canonic.
pattern (
F2R (
Float radix2 (
cond_Zopp true (
Zpos my))
ey))
at 1 ;
rewrite <-
Rplus_0_l.
apply Rplus_le_compat_r.
now apply F2R_ge_0_compat.
apply Rle_lt_trans with (2 :=
Bx).
apply round_le_generic...
now apply generic_format_canonic.
rewrite <- (
Rplus_0_r (
F2R (
Float radix2 (
Zpos mx)
ex))).
apply Rplus_le_compat_l.
now apply F2R_le_0_compat.
. *)
generalize (
binary_normalize_correct m mz ez szero).
case Rlt_bool_spec.
split;
try easy.
split;
try easy.
destruct (
Rcompare_spec (
F2R (
beta:=
radix2) {|
Fnum :=
mz;
Fexp :=
ez |}) 0);
try easy.
rewrite H1 in Hp.
apply Rplus_opp_r_uniq in Hp.
rewrite <-
F2R_Zopp in Hp.
eapply canonic_unicity in Hp.
inversion Hp.
destruct sy,
sx,
m;
try discriminate H3;
easy.
apply canonic_canonic_mantissa.
apply Bool.andb_true_iff in Hy.
easy.
replace (-
cond_Zopp sx (
Z.pos mx))%
Z with (
cond_Zopp (
negb sx) (
Z.pos mx))
by (
destruct sx;
auto).
apply canonic_canonic_mantissa.
apply Bool.andb_true_iff in Hx.
easy.
intros Hz'
Vz.
specialize (
Sz Hz').
split.
rewrite Vz.
now apply f_equal.
apply Sz.
Qed.
Subtraction
Definition Bminus minus_nan m x y :=
Bplus minus_nan m x (
Bopp pair y).
Theorem Bminus_correct :
forall minus_nan m x y,
is_finite x =
true ->
is_finite y =
true ->
if Rlt_bool (
Rabs (
round radix2 fexp (
round_mode m) (
B2R x -
B2R y))) (
bpow radix2 emax)
then
B2R (
Bminus minus_nan m x y) =
round radix2 fexp (
round_mode m) (
B2R x -
B2R y) /\
is_finite (
Bminus minus_nan m x y) =
true /\
Bsign (
Bminus minus_nan m x y) =
match Rcompare (
B2R x -
B2R y) 0
with
|
Eq =>
match m with mode_DN =>
orb (
Bsign x) (
negb (
Bsign y))
|
_ =>
andb (
Bsign x) (
negb (
Bsign y))
end
|
Lt =>
true
|
Gt =>
false
end
else
(
B2FF (
Bminus minus_nan m x y) =
binary_overflow m (
Bsign x) /\
Bsign x =
negb (
Bsign y)).
Proof with
Division
Definition Fdiv_core_binary m1 e1 m2 e2 :=
let d1 :=
Zdigits2 m1 in
let d2 :=
Zdigits2 m2 in
let e := (
e1 -
e2)%
Z in
let (
m,
e') :=
match (
d2 +
prec -
d1)%
Z with
|
Zpos p => (
Z.shiftl m1 (
Zpos p),
e +
Zneg p)%
Z
|
_ => (
m1,
e)
end in
let '(
q,
r) :=
Zfast_div_eucl m m2 in
(
q,
e',
new_location m2 r loc_Exact).
Lemma Bdiv_correct_aux :
forall m sx mx ex sy my ey,
let x :=
F2R (
Float radix2 (
cond_Zopp sx (
Zpos mx))
ex)
in
let y :=
F2R (
Float radix2 (
cond_Zopp sy (
Zpos my))
ey)
in
let z :=
let '(
mz,
ez,
lz) :=
Fdiv_core_binary (
Zpos mx)
ex (
Zpos my)
ey in
match mz with
|
Zpos mz =>
binary_round_aux m (
xorb sx sy)
mz ez lz
|
_ =>
F754_nan false xH
end in
valid_binary z =
true /\
if Rlt_bool (
Rabs (
round radix2 fexp (
round_mode m) (
x /
y))) (
bpow radix2 emax)
then
FF2R radix2 z =
round radix2 fexp (
round_mode m) (
x /
y) /\
is_finite_FF z =
true /\
sign_FF z =
xorb sx sy
else
z =
binary_overflow m (
xorb sx sy).
Proof.
Definition Bdiv div_nan m x y :=
let f pl :=
B754_nan (
fst pl) (
snd pl)
in
match x,
y with
|
B754_nan _ _,
_ |
_,
B754_nan _ _ =>
f (
div_nan x y)
|
B754_infinity sx,
B754_infinity sy =>
f (
div_nan x y)
|
B754_infinity sx,
B754_finite sy _ _ _ =>
B754_infinity (
xorb sx sy)
|
B754_finite sx _ _ _,
B754_infinity sy =>
B754_zero (
xorb sx sy)
|
B754_infinity sx,
B754_zero sy =>
B754_infinity (
xorb sx sy)
|
B754_zero sx,
B754_infinity sy =>
B754_zero (
xorb sx sy)
|
B754_finite sx _ _ _,
B754_zero sy =>
B754_infinity (
xorb sx sy)
|
B754_zero sx,
B754_finite sy _ _ _ =>
B754_zero (
xorb sx sy)
|
B754_zero sx,
B754_zero sy =>
f (
div_nan x y)
|
B754_finite sx mx ex _,
B754_finite sy my ey _ =>
FF2B _ (
proj1 (
Bdiv_correct_aux m sx mx ex sy my ey))
end.
Theorem Bdiv_correct :
forall div_nan m x y,
B2R y <>
R0 ->
if Rlt_bool (
Rabs (
round radix2 fexp (
round_mode m) (
B2R x /
B2R y))) (
bpow radix2 emax)
then
B2R (
Bdiv div_nan m x y) =
round radix2 fexp (
round_mode m) (
B2R x /
B2R y) /\
is_finite (
Bdiv div_nan m x y) =
is_finite x /\
(
is_nan (
Bdiv div_nan m x y) =
false ->
Bsign (
Bdiv div_nan m x y) =
xorb (
Bsign x) (
Bsign y))
else
B2FF (
Bdiv div_nan m x y) =
binary_overflow m (
xorb (
Bsign x) (
Bsign y)).
Proof.
Square root
Definition Fsqrt_core_binary m e :=
let d :=
Zdigits2 m in
let s :=
Zmax (2 *
prec -
d) 0
in
let e' := (
e -
s)%
Z in
let (
s',
e'') :=
if Zeven e'
then (
s,
e')
else (
s + 1,
e' - 1)%
Z in
let m' :=
match s'
with
|
Zpos p =>
Z.shiftl m (
Zpos p)
|
_ =>
m
end in
let (
q,
r) :=
Z.sqrtrem m'
in
let l :=
if Zeq_bool r 0
then loc_Exact
else loc_Inexact (
if Zle_bool r q then Lt else Gt)
in
(
q,
Zdiv2 e'',
l).
Lemma Bsqrt_correct_aux :
forall m mx ex (
Hx :
bounded mx ex =
true),
let x :=
F2R (
Float radix2 (
Zpos mx)
ex)
in
let z :=
let '(
mz,
ez,
lz) :=
Fsqrt_core_binary (
Zpos mx)
ex in
match mz with
|
Zpos mz =>
binary_round_aux m false mz ez lz
|
_ =>
F754_nan false xH
end in
valid_binary z =
true /\
FF2R radix2 z =
round radix2 fexp (
round_mode m) (
sqrt x) /\
is_finite_FF z =
true /\
sign_FF z =
false.
Proof with
Definition Bsqrt sqrt_nan m x :=
let f pl :=
B754_nan (
fst pl) (
snd pl)
in
match x with
|
B754_nan sx plx =>
f (
sqrt_nan x)
|
B754_infinity false =>
x
|
B754_infinity true =>
f (
sqrt_nan x)
|
B754_finite true _ _ _ =>
f (
sqrt_nan x)
|
B754_zero _ =>
x
|
B754_finite sx mx ex Hx =>
FF2B _ (
proj1 (
Bsqrt_correct_aux m mx ex Hx))
end.
Theorem Bsqrt_correct :
forall sqrt_nan m x,
B2R (
Bsqrt sqrt_nan m x) =
round radix2 fexp (
round_mode m) (
sqrt (
B2R x)) /\
is_finite (
Bsqrt sqrt_nan m x) =
match x with B754_zero _ =>
true |
B754_finite false _ _ _ =>
true |
_ =>
false end /\
(
is_nan (
Bsqrt sqrt_nan m x) =
false ->
Bsign (
Bsqrt sqrt_nan m x) =
Bsign x).
Proof.
End Binary.