Correctness proof for clean-up of labels
Require Import Coqlib.
Require Import Ordered.
Require Import FSets.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Op.
Require Import Locations.
Require Import Linear.
Require Import CleanupLabels.
Require Import Annotations.
Module LabelsetFacts :=
FSetFacts.Facts(
Labelset).
Section CLEANUP.
Variable prog:
program.
Let tprog :=
transf_program prog.
Let ge :=
Genv.globalenv prog.
Let tge :=
Genv.globalenv tprog.
Lemma symbols_preserved:
forall (
s:
ident),
Genv.find_symbol tge s =
Genv.find_symbol ge s.
Proof.
Lemma public_preserved:
forall (
s:
ident),
Genv.public_symbol tge s =
Genv.public_symbol ge s.
Proof.
Lemma varinfo_preserved:
forall b,
Genv.find_var_info tge b =
Genv.find_var_info ge b.
Proof.
Lemma functions_translated:
forall (
v:
val) (
f:
fundef),
Genv.find_funct ge v =
Some f ->
Genv.find_funct tge v =
Some (
transf_fundef f).
Proof.
Lemma function_ptr_translated:
forall (
b:
block) (
f:
fundef),
Genv.find_funct_ptr ge b =
Some f ->
Genv.find_funct_ptr tge b =
Some (
transf_fundef f).
Proof.
Lemma sig_function_translated:
forall f,
funsig (
transf_fundef f) =
funsig f.
Proof.
intros. destruct f; reflexivity.
Qed.
Lemma find_function_translated:
forall ros ls f,
find_function ge ros ls =
Some f ->
find_function tge ros ls =
Some (
transf_fundef f).
Proof.
Correctness of labels_branched_to.
Definition instr_branches_to (
i:
instruction) (
lbl:
label) :
Prop :=
match i with
|
Lgoto lbl' =>
lbl =
lbl'
|
Lcond cond args lbl' =>
lbl =
lbl'
|
Ljumptable arg tbl =>
In lbl tbl
|
_ =>
False
end.
Remark add_label_branched_to_incr:
forall ls i,
Labelset.Subset ls (
add_label_branched_to ls i).
Proof.
Remark add_label_branched_to_contains:
forall ls i lbl,
instr_branches_to i lbl ->
Labelset.In lbl (
add_label_branched_to ls i).
Proof.
Lemma labels_branched_to_correct:
forall c i lbl,
In i c ->
instr_branches_to i lbl ->
Labelset.In lbl (
labels_branched_to c).
Proof.
Commutation with find_label.
Lemma remove_unused_labels_cons:
forall bto i c,
remove_unused_labels bto (
i ::
c) =
match i with
|
Llabel lbl =>
if Labelset.mem lbl bto then i ::
remove_unused_labels bto c else remove_unused_labels bto c
|
_ =>
i ::
remove_unused_labels bto c
end.
Proof.
Lemma find_label_commut:
forall lbl bto,
Labelset.In lbl bto ->
forall c c',
find_label lbl c =
Some c' ->
find_label lbl (
remove_unused_labels bto c) =
Some (
remove_unused_labels bto c').
Proof.
Corollary find_label_translated:
forall f i c'
lbl c,
incl (
i ::
c') (
fn_code f) ->
find_label lbl (
fn_code f) =
Some c ->
instr_branches_to i lbl ->
find_label lbl (
fn_code (
transf_function f)) =
Some (
remove_unused_labels (
labels_branched_to (
fn_code f))
c).
Proof.
Lemma find_label_incl:
forall lbl c c',
find_label lbl c =
Some c' ->
incl c'
c.
Proof.
induction c;
simpl;
intros.
discriminate.
destruct (
is_label lbl a).
inv H;
auto with coqlib.
auto with coqlib.
Qed.
Correctness of clean-up
Inductive match_stackframes:
stackframe ->
stackframe ->
Prop :=
|
match_stackframe_intro:
forall f sp ls c,
incl c f.(
fn_code) ->
match_stackframes
(
Stackframe f sp ls c)
(
Stackframe (
transf_function f)
sp ls
(
remove_unused_labels (
labels_branched_to f.(
fn_code))
c)).
Inductive match_states:
state ->
state ->
Prop :=
|
match_states_intro:
forall s f sp c ls m ts
(
STACKS:
list_forall2 match_stackframes s ts)
(
INCL:
incl c f.(
fn_code)),
match_states (
State s f sp c ls m)
(
State ts (
transf_function f)
sp (
remove_unused_labels (
labels_branched_to f.(
fn_code))
c)
ls m)
|
match_states_call:
forall s f ls m ts,
list_forall2 match_stackframes s ts ->
match_states (
Callstate s f ls m)
(
Callstate ts (
transf_fundef f)
ls m)
|
match_states_return:
forall s ls m ts,
list_forall2 match_stackframes s ts ->
match_states (
Returnstate s ls m)
(
Returnstate ts ls m).
Definition measure (
st:
state) :
nat :=
match st with
|
State s f sp c ls m =>
List.length c
|
_ =>
O
end.
Lemma match_parent_locset:
forall s ts,
list_forall2 match_stackframes s ts ->
parent_locset ts =
parent_locset s.
Proof.
induction 1; simpl. auto. inv H; auto.
Qed.
Theorem transf_step_correct:
forall s1 t s2,
step ge s1 t s2 ->
forall s1' (
MS:
match_states s1 s1'),
(
exists s2',
step tge s1'
t s2' /\
match_states s2 s2')
\/ (
measure s2 <
measure s1 /\
t =
E0 /\
match_states s2 s1')%
nat.
Proof.
Lemma transf_initial_states:
forall st1,
initial_state prog st1 ->
exists st2,
initial_state tprog st2 /\
match_states st1 st2.
Proof.
Lemma transf_final_states:
forall st1 st2 r,
match_states st1 st2 ->
final_state st1 r ->
final_state st2 r.
Proof.
intros. inv H0. inv H. inv H6. econstructor; eauto.
Qed.
Theorem transf_program_correct:
forward_simulation (
Linear.semantics prog) (
Linear.semantics tprog).
Proof.
Lemma match_stackframes_same_sps:
forall s ts,
list_forall2 match_stackframes s ts ->
map (
fun s =>
match s with |
Stackframe _ sp _ _ =>
sp end)
s =
map (
fun s =>
match s with |
Stackframe _ sp _ _ =>
sp end)
ts.
Proof.
induction 1; intros.
- reflexivity.
- inv H; simpl; rewrite IHlist_forall2; reflexivity.
Qed.
Theorem transf_step_correct':
forall s1 t s2,
step_safe ge s1 t s2 ->
forall s1' (
MS:
match_states s1 s1'),
(
exists s2',
step_safe tge s1'
t s2' /\
match_states s2 s2')
\/ (
measure s2 <
measure s1 /\
t =
E0 /\
match_states s2 s1')%
nat.
Proof.
Theorem transf_program_correct':
forward_simulation (
Linear.semantics_safe prog) (
Linear.semantics_safe tprog).
Proof.
End CLEANUP.