next up previous contents index
Next: Different Variants of the Up: New Levenberg-Marquardt Training Algorithms Previous: New Levenberg-Marquardt Training Algorithms   Contents   Index

Analytical Formulation of the Algorithm

Following Gelenbe's notations, let us write
\begin{displaymath}
N_i=\lambda^+_i+\sum_j \varrho_jw^+_{i,j},
\end{displaymath} (1010)


\begin{displaymath}
D_i=r_i+\lambda^-_i+\sum_j \varrho_jw^-_{i,j},
\end{displaymath} (1011)


\begin{displaymath}
\varrho_i=N_i/D_i,
\end{displaymath} (1012)

where $i\in 1,\ldots, n$ represents the neuron index, $w^-, w^+$ the weights, $\lambda^+_i, \lambda^-_i$ the excitation and inhibition external signals for neuron $i$, and $\varrho_i$ the output of the neuron $i$. Define
\begin{displaymath}
E=\sum_{k=1}^K E^{(k)},
\end{displaymath} (1013)

recalling that
\begin{displaymath}
E^{(k)}= \textstyle \frac{1}{2} \displaystyle \sum_{i=1}^n a_i(\varrho_i^{(k)}-y_i^{(k)})^2, \quad a_i \geq 0.
\end{displaymath} (1014)

The mathematical formulation of LM method applied to RNN is as follows: $\bullet$
next up previous contents index
Next: Different Variants of the Up: New Levenberg-Marquardt Training Algorithms Previous: New Levenberg-Marquardt Training Algorithms   Contents   Index
Samir Mohamed 2003-01-08