next up previous contents index
Next: Assessment of Speech Quality Up: Measuring Speech Quality in Previous: Our Method and Session   Contents   Index


A Mean Opinion Score (MOS) Database for Different Languages

Here, we collected a database conformed by a set of samples of distorted speech signals, according to the quality-affecting parameters variations chosen as described in Section 5.2.1 and as shown in Table 5.2. Distorted speech signals were generated by using an IP network testbed, comprised by a sender, a router, and a receiver. The sender controlled the packetization interval and the selection of the encoding algorithm. The router controlled the loss rate, and the loss pattern distribution. Finally, the receiver stored the received signals, decoded them, substituted lost packets by silence periods, and calculated the loss rate and number of consecutively lost packets. Of course, one can substitute lost packets by comfort noise, waveform substitution, etc. (See Section 3.3.2, page [*] for more details). For simplicity we chose silence insertion. Each sample consists of speech material sent from the sender to the receiver according to a given combination of network parameters values obtained in Section 5.2.1 and in data from the literature. In addition, it has been established that encoders' performance shows language dependency [79]. Thus, language type is another variable included in our database. We conducted MOS tests in three different languages: Spanish, Arabic and French. The quality scores were obtained through a series of MOS experiments, which were carried out following an ITU-recommended method [70] named ACR (See Section 4.3 for more details about how to carry out subjective quality tests). During the tests, groups of 15, 15 and 7 subjects (for Arabic, Spanish, and French langauges respectively) were asked to indicate the quality of the speech they heard on a 5-point quality scale for each sample (a total of 96, 96 and 65 for Arabic, Spanish and French languages respectively). Then, a specific statistical analysis was carried out to identify the subjects who were not able to provide reliable ratings as described in Section 4.4. As a result, we removed all the rates of 1 and 3 subjects from the Spanish and Arabic languages respectively. After that, the MOS for each sample were calculated. In this way, we generated the database of distorted speech signals and their corresponding quality scores. The results are shown in Table 5.2.
Table 5.2: The quality databases for both Arabic and Spanish languages to train and test the NN. We omitted the data of French language as the subjective test were carried out by only 7 subjects. In addition, we did not consider nor ADPCM codec nor the same combinations of the parameters as Arabic and Spanish languages.
Codec Packetization Loss # Consecutive MOS for Arabic MOS for Spanish
    Name Interval Rate Lost   Actual Predicted Actual Predicted
PI (ms) LR (%) Packets CLP
GSM 40 10 1 2.92 2.72 3.13 2.79
GSM 20 10 2 3.17 2.80 2.40 2.75
PCM 40 20 1 2.08 2.40 2.53 2.51
GSM 80 40 2 1.33 1.41 1.40 1.46
PCM 80 10 2 3.08 2.79 3.33 3.20
ADPCM 40 10 5 3.00 2.97 3.40 3.15
PCM 60 5 2 3.50 3.69 3.60 3.80
PCM 60 10 2 3.28 3.02 3.33 3.19
PCM 20 20 2 2.50 2.58 2.53 2.49
ADPCM 80 10 3 3.08 2.86 3.00 3.03
ADPCM 20 10 1 2.25 2.53 2.13 2.70
PCM 40 10 5 3.00 2.90 3.73 3.67
PCM 40 10 3 3.42 3.20 3.00 3.34
PCM 60 5 3 3.58 3.67 3.87 3.99
PCM 40 20 2 2.50 2.59 2.40 2.64
GSM 80 5 3 3.67 3.50 3.67 3.64
PCM 40 40 2 2.00 1.88 1.80 1.67
PCM 40 10 4 3.17 3.08 3.47 3.50
ADPCM 80 5 3 3.33 3.56 3.27 3.67
PCM 40 20 3 2.25 2.54 2.40 2.78
PCM 40 5 3 3.75 3.75 4.00 3.93
PCM 80 5 2 3.58 3.52 3.93 3.85
PCM 20 5 3 3.67 3.63 3.67 3.85
PCM 40 40 2 1.75 1.88 1.73 1.67
GSM 60 5 3 3.29 3.54 3.40 3.59
ADPCM 80 10 5 2.58 2.80 2.93 3.25
PCM 40 40 1 1.42 1.56 1.67 1.61
PCM 40 20 1 2.58 2.40 2.60 2.51
ADPCM 60 5 3 3.34 3.70 3.47 3.62
PCM 40 5 2 3.42 3.71 4.13 3.75
PCM 20 40 2 1.67 1.67 1.40 1.70
GSM 40 10 2 3.00 2.88 2.80 2.84
ADPCM 60 10 3 3.00 3.11 3.13 2.98
ADPCM 60 10 5 2.75 2.82 3.13 3.21
PCM 60 20 2 2.67 2.30 2.60 2.65
ADPCM - 0 - 4.25 4.23 4.07 4.04
ADPCM 40 5 3 3.67 3.67 3.60 3.55
GSM 60 40 2 1.50 1.47 1.40 1.38
GSM 60 20 2 2.50 2.39 2.20 2.24
ADPCM 40 40 1 1.75 1.67 1.27 1.44
GSM 40 20 2 2.08 2.49 2.13 2.23
ADPCM 40 10 1 2.92 2.83 2.73 2.77
ADPCM 80 10 4 2.67 2.87 2.93 3.13
ADPCM 80 10 2 2.75 2.76 3.07 2.93
GSM 80 20 2 2.08 2.12 2.33 2.23
GSM 20 5 2 3.50 3.15 3.20 3.34
ADPCM 40 10 1 2.67 2.83 2.93 2.77
GSM 80 5 2 3.67 3.39 3.27 3.58
GSM 40 40 2 1.67 1.66 1.53 1.40
GSM 20 40 2 1.50 1.60 1.27 1.41
PCM 40 5 3 3.92 3.75 3.87 3.93
ADPCM 20 10 5 3.28 2.98 3.27 3.08
ADPCM 60 10 4 3.00 3.02 3.13 3.09
ADPCM 60 10 2 2.92 3.01 3.00 2.89
ADPCM 20 10 3 3.08 3.16 2.80 2.87
PCM 40 5 2 3.67 3.71 3.73 3.75
PCM 40 40 5 1.50 1.58 1.80 1.92
PCM 20 5 2 3.33 3.48 3.53 3.68
PCM 80 5 3 3.58 3.59 3.93 4.03
GSM - 0 - 3.75 3.90 3.80 3.94
ADPCM 40 20 1 2.58 2.41 2.53 2.24
ADPCM 40 10 2 3.17 3.10 2.80 2.85
PCM - 0 - 4.67 4.49 4.60 4.45
GSM 40 5 3 3.58 3.48 3.87 3.52
PCM 40 5 1 3.42 3.47 3.67 3.59
GSM 40 5 1 3.00 3.08 3.13 3.39
ADPCM 20 10 4 3.00 3.13 2.73 2.97
PCM 40 20 4 2.17 2.39 3.27 2.92
ADPCM 20 10 2 3.00 2.98 2.67 2.78
PCM 40 40 3 2.08 1.91 2.13 1.74
PCM 40 20 5 2.17 2.21 2.80 3.07
PCM 40 5 4 3.92 3.67 4.27 4.12
PCM 40 40 4 1.83 1.76 1.93 1.83
PCM 40 5 1 3.58 3.47 3.60 3.59
ADPCM 40 5 1 2.75 3.25 3.13 3.34
PCM 80 20 2 2.25 2.13 2.53 2.62
ADPCM 40 10 3 2.92 3.22 3.00 2.94
PCM 80 40 2 1.83 1.84 1.53 1.65
ADPCM 40 10 4 3.17 3.17 3.33 3.04
PCM 20 10 2 3.42 3.05 3.27 3.15
GSM 40 20 1 2.17 2.38 2.30 2.19
PCM 40 10 2 3.33 3.20 3.33 3.19
GSM 60 5 2 3.50 3.34 3.73 3.52
PCM 40 5 5 3.75 3.53 4.00 4.31
GSM 80 10 2 2.57 2.81 3.20 2.98
GSM 60 10 2 2.83 2.89 2.60 2.91
PCM 40 10 1 2.75 2.97 2.73 3.05
PCM 60 40 2 1.83 1.90 1.93 1.62
ADPCM 60 10 1 2.75 2.88 2.73 2.80
GSM 20 5 3 3.33 3.35 3.20 3.41
ADPCM 20 5 3 3.25 3.53 3.17 3.45
GSM 20 20 2 2.08 2.38 2.13 2.10
ADPCM 80 10 1 2.92 2.77 2.73 2.85
PCM 40 10 2 3.25 3.20 3.13 3.19
GSM 40 40 1 1.58 1.76 1.27 1.39
GSM 40 5 2 3.17 3.27 3.53 3.45

next up previous contents index
Next: Assessment of Speech Quality Up: Measuring Speech Quality in Previous: Our Method and Session   Contents   Index
Samir Mohamed 2003-01-08