Jump to : Download | Abstract | Contact | BibTex reference | EndNote reference |

Fablet01d

R. Fablet. Modélisation statistique non paramétrique et reconnaissance du mouvement dans des séquences d'images ; application à l'indexation vidéo. PhD Thesis Université de Rennes 1, mention Traitement du signal et télécommunication, July 2001.

Download [help]

Download paper: Adobe portable document (pdf) pdf

Copyright notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Abstract

Cette étude traite de l'analyse statistique non paramétrique du mouvement dans des séquences d'images pour des applications en reconnaissance et classification du mouvement. L'évaluation de similarité entre vidéos en indexation vidéo par le contenu constitue un domaine d'application privilégié des méthodes développées. Nous proposons tout d'abord un cadre original de modélisation statistique de l'information de mouvement dans des séquences d'images. Ces modèles captent des propriétés d'activité de mouvement et permettent de caractériser une large gamme de situations dynamiques (mouvements rigide, mouvements articulé, texture temporelle). Ils reposent sur l'évaluation de cooccurrences dans des séquences de cartes de mesures locales de mouvement, directement calculées à partir des intensités dans les images. L'exploitation de modèles causaux permet de proposer des schémas simples d'estimation des modèles au sens du maximum de vraisemblance. Elle permet également de construire une mesure de similarité entre séquences d'images, basée sur le contenu de mouvement et définie à partir de la divergence de Kullback-Leibler. Nous utilisons ces techniques de caractérisation non paramétrique du mouvement pour des problèmes de reconnaissance du mouvement et d'extraction et de caractérisation simultanées d'entités d'intérêt relativement à des propriétés d'activité de mouvement. Dans le contexte de l'indexation vidéo par le contenu, nous nous intéressons plus particulièrement à la recherche par l'exemple dans des bases de vidéo en exploitant des similarités de mouvement. Ce problème de recherche est formulé dans un cadre statistique suivant le critère du MAP et exploite les modèles statistiques d'activité de mouvement. Par ailleurs, nous pouvons considérer des requêtes globales, à partir d'une caractérisation globale du contenu de mouvement des vidéos, comme des requêtes partielles, en exploitant le schéma d'extraction et de caractérisation d'entités d'intérêt

BibTex Reference

@PhdThesis{Fablet01d,
   Author = {Fablet, R.},
   Title = {Modélisation statistique non paramétrique et reconnaissance du mouvement dans des séquences d'images ; application à l'indexation vidéo},
   School = {Université de Rennes 1, mention Traitement du signal et télécommunication},
   Month = {July},
   Year = {2001}
}

EndNote Reference [help]

Get EndNote Reference (.ref)

This document was translated automatically from BibTEX by bib2html (Copyright 2003 © Eric Marchand, INRIA, Vista Project).