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In this paper, a dynamic scene understanding concept is proposed and applied on
multispectral image time-series. Information mining enables the exploration and
discovery of spatio temporal patterns localized in given spatio temporal windows.
With this in mind, a hierarchical information representation which comprises sev-
eral processing steps is developed. The features are extracted locally in a time
window. Several classifications are then performed for each time window accord-
ing to a Gaussian mixture model constrained by a minimum description length
criterion. The non-parametric clustering algorithm is presented and evaluated.
Then, the cluster dynamic is investigated in order to enable a graph representa-
tion displaying flow of feature points. The analyzis is also performed in the space
of the image time-series. Lastly, the concept is applied on remotely sensed data
and a couple of pattern behaviors are presented.

1. Introduction
1.1. Times series of satellite images

Time-series, or more generally, temporal sequences, appear naturally in a
variety of different domains, from engineering to scientific studies, finance
and medicine. Satellite image sequences are different from usually consid-
ered image time-series. They contain useful information in various space-
scales including objects at pixel scale or large structures spread on hundreds
of pixels. Moreover, the acquisition depends on various constraints which
impose an irregular sampling rate and a long acquisition period to build
a consistent dataset. Consequently, the temporal phenomenon considered
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can be at various time-scales which include events occurring on a range of
years, months, shorter events such as occlusion by clouds, wind effects on
water, etc, or even evanescent phenomena.

Accordingly, we should consider the above properties in the architecture
of a dynamic scene understanding concept, able to mine patterns in space
and time at various scales, thus with a global or precise spatio-temporal
location and to discover the interactions and causalities between them.

1.2. Information mining by analyzing the cluster dynamics

To achieve the goal of dynamic scene understanding and information min-
ing, these spatio-temporal patterns can be modeled by analyzing the cluster
changes in their feature spaces.

In this paper, a minimum description length based clustering algorithm is
applied to model, in consecutive times and according to a Gaussian mix-
ture assumption, features extracted from temporal windows. New meth-
odes, based on cross entropy, are developed to quantify the changes of the
clusters and thus, to formalize them as cluster trajectories.

2. Investigating the dynamics of clusters
2.1. Multitemporal clustering

An important issue for the understanding of spatio-temporal scenes is the
process of finding "good” models for the hierarchical information repre-
sentation along its transmission through the architecture. This standard
concept previously developed in I2M5 2 for the mining of static scenes was
adopted and redesigned for multitemporal information mining* Exploration
is driven by the interaction of a user, in a Bayesian framework. The learn-
ing process updates posterior maps A threshold of these maps produces the
desired classifications.

2.2. Time-localized clustering

So far in this paper, the considered classifications were multitemporal. In-
deed, information from the whole time-series was processed with no defined
time location ¢;. Mining in a time-window over the time-series enables time
dependent classifications f(zy,) of localized spatio-temporal patterns where
the z;, are the features extracted in a given time-window related to time
t;- The biggest time sample index is denoted by N. A global time-localized
clustering f(UX , {z¢,}) produced by the union of all the features extracted
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from each windowed image time-series UYN ,{z,}, leads to a single clas-
sification of all the time-localized spatio-temporal patterns present in the
different windows. Thus, each time-window in the time-series possesses a
corresponding classification.

2.3. Analyzes of the dynamics of the feature space

Nevertheless, in a time-localized clustering, the information about the
causalities between the windowed time-series is neglected. To obtain this
complementary information, an investigation of the dynamics of the fea-
ture space is necessary. The temporal behavior of the features grouped
in clusters is a complex matter. There are various sorts of exchanges of
features between the clusters in time. Mainly, there are stable behaviors
characterized by cluster evolutions in which the cluster features are distin-
guished from the others. There also exist evolutions such as the splitting
or the merging of clusters in which there are relatively to some features,
exchanges of populations between the concerned clusters. In order to detect
such phenomena, a classification f(z;,) of each windowed time-series has
to be performed. The crucial problem of estimating the number of clusters
for each time remains. The causalities between the time dependent classi-
fications has also to be modeled.

Solving these two problems will enable us to build a graph of flowof fea-
ture points specific to the image time-series. The features specific to each
node are the dynamic cluster attributes around the given node (centroid
trajectory values and their associated covariance evolutions in the case of a
evolving Gaussian mixture), the flow of features points between these nodes
and the splitting/merging phenomena.

2.4. Proposal of solutions for dynamic cluster modeling

2.4.1. Minimum description length (MDL) principle for Gaussian
mixture modeling

Let us make the assumption that the data is distributed with a d dimen-
sional Gaussian mixture (GM) distribution defined for K Gaussian as

k=K

k=K
fr(@) = > mNa(Mi, Ay) , Y mp =1 1)
k=1

k=1
where N (M, Ag) is a normal distribution of mean M}y and covariance Ay,
and 7, a weighting fuction . In order to perform classifications without any
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constraint neither on the number of Gaussian present in the mixture nor
on their parameters, we need to define a criterion to select the best model
among all the possible GM configurations. The MDL principle gives us a
solution to the problem.

The MDL principle

Let us present the MDL principle by introducing a few considerations :
First, there is a 1-1 correspondence between probability distributions and
code length functions. Given data z" = {z1,...,z,}, V2", Vn

L(z") = —log(P(z")) (2)

where L(z™) denotes the length (in bits) needed to describe z" and P a
probability distribution. Then, let M be a probabilistic model, i.e. a finite
set of distributions : M = {P(.|61), ..., P(.|0m)}. Pa is a universal model
for M, if

—log(Pu(z™)) < —log(P(z")8)) + K (3)

where K is a constant independent of n.
In the perspective of equation 2, a universal model called the ”2-part MDL

~

code” is derived. It is the length of coding ™ by first coding 6(z"), then

~

coding z™ with the help of §(z™). It is defined by
Lap(z™) = —log{W ((z"™))} — log{P(z"|8(z"™))} (4)

where W is a prior over M and g is an estimate corresponding to the func-
tion minimum. The second term can be seen as the log-likelihood function.
Obviously, the code length for coding the prior W depends on the prior
function over M that we are considering. The 2-part MDL code is not an
optimal universal model and there are some equivalences with the Bayesian
inference®. However, its computation is easier than the calculation based
on a Bayesian framework used for instance in the Autoclass algorithm?®.
The MDL principle holds for all universal models. It states that the best
model among a collection of tentatively suggested ones is the one that gives
the smallest stochastic complexity to the given data. The stochastic com-
plexity is represented by the chosen universal model.

Application to Gaussian mixture modeling

On the basis of the 2-part MDL code, a criterion is derived, corresponding
to the length of coding the data assuming a Gaussian mixture distribu-
tion. The estimated model (in the sense of the MDL principle) is used to
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perform a non parametric clustering. A simplified model, assuming each
data component independent from the others and all clusters with constant
variances, was previously developed in'.

The first part composing the cost function is the length of code used for
coding the model itself :

Each Gaussian of the mixture must have its parameters coded and the code
length for the K Gaussian is

~log{W (8(z"))} = K (L1 + L) (5)

where L; and L» are respectively the number of bits necessary to code a
mean vector and a covariance matrix. A remark is that in the clustering
perspective, we do not intend to favor either independence or correlation
between the data components. In other words, the prior function is equal
for these two configurations and we do not intend to code the covariance
matrix optimally to reduce the code length Ls. Equally, no optimal coding
will be performed on L;.

The second part composing the criterion is the number of bits necessary to
code the data using the GM parameters : We decompose this coding in two
parts: a) the coding of the index of the n data points to their respective
Gaussian and 2) the coding of the indexed data points according to their
respective Gaussian probability distributions. The number of bits needed
to encode all the index is given by

K n
— E nglogs k (6)
n
k=1

where ny, is the number of data points assigned to the class k£ and n the
sample size. The number of bits needed to encode the indexed data points
is
Ly, Al L, S
Z > ( Jlog2—5 = + in(2) (zi — Mi) Ay (2 —Mk)) (7)

k=1z;EG

where G}, is a the Gaussian k with its mean vector M}, and its covariance

matrix Ag.
Thus, adding the two parts we obtain the cost of encoding z™ using the
GM model
sz( n) = K(Ll + L2) (8)
|A 1| L, -1
—Z [nkl092_ + Z ( + m (.fEl — Mk)Ak (.CC, — Mk))]

z;€Gxr
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Optimization

Our goal is to minimize Lyp(z™), i.e., determine K and {(Mjy, Ar)}. Enu-
merating all configurations and evaluating the cost function is not feasible.
Instead, we use an optimization algorithm which evaluates the changes of
the code length between two configurations rather than the code length
itself.

Before introducing the general algorithm, let us present the change of the
code length if a given Gaussian Gy is removed. One can proove that this
quantity is defined by the expression

Ag,, (L2p(z")) = —(L1 + L2)

K

ny + Nyg n
— Z ((nl+nlk:)logzw—nllogg—l)
n n
I1=1,I£k’
+ Z log + Z Z 9)
2:€G, P (i) I=1,14k' 2,€G) p”“'

where n; and ny are respectively the number of data points assigned to
the class | before and after removal of G/, and where p; and p;s are re-
spectively the probability distribution of G; before and after removal of
G- prie (x;) is the probability distribution of the most probable Gaussian
which is assigned to x; after removal of G:.

The optimization algorithm is composed by the following steps :
1-Initialization : A GM with a high number of Gaussian K and given
parameters {(Mjy, Ag)} is produced. There are many strategies to perform
such an initialization.

2-Adaptation : An EM-type algorithm is used to estimate the parameters
{(My, Ag)}-

3-Selection : Evaluation of the changes in Lop(z™) while we simulate the
removal of each G}, for k € [1, K]. If there are more than one decrease of
Lyp(z™),the Gy, corresponding to the maximum decrease is removed.
4-Convergence : If the selection step has not removed any G} and the
adaptation step has reached convergence then ’exit’, otherwise ’go to step
2.

The initialization is done by spreading randomly K;,;; clusters according
to a Gaussian distribution of mean and variance learnt from each data
component. With such an initialization and performing the algorithm on
simulated Gaussian mixtures with a sufficiently large sample size, the true
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number and parameters of the GM is recovered, even for very intricate GM.
Of course training on an insufficient number of samples and considering too
‘close’ Gaussians in the mixture does not permit to find the true parameters.
Thus, the MDL based Gaussian mixture clustering algorithm, which is able
for sufficiently large sample size, to estimate the true number of clusters
and their parameters.

However, in spite of an initialization of the cluster center values with the
previous classification, the complexity of the flow of feature points does not
enable clear trajectories identification.

2.4.2. Modeling a Gaussian mizture evolution

/H.

fc1)._

Time

Figure 1. Dynamic clusters modeling; A: Data, B:Multitemporal clustering, C:Time-
localized clustering, D: Graph characterizing the dynamic clusters.

Unfortunately, the traceability of the clusters attributes which are in the
case of a Gaussian mixture modeling resumed to the centroid trajectories
and the covariance evolutions, is not an easy task. The irregular sampling
and the difficulty of the calibration between the image time samples forbid a
direct modeling of the flow of feature points and in particular a direct Gaus-
sian mixture evolution modeling. To face these causality problems, which
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are necessary for the construction of the graph of flow of feature points,
a multitemporal classification over the complete image time-series exhibit-
ing spatio-temporal patterns is required. Such a classification has been
described previously in section 2.1. Actually, possessing a multitemporal
classification f(zy,..., Tty ) of spatio-temporal patterns and several time-
localized ones {f(z¢;);¢ € [1,N]}, and assuming a model to measure the
distance between the multitemporal clusters and the time-localized clusters,
it is possible to trace the cluster evolutions. Hence, by assigning multitem-
poral classes to each time-localized class, the graph of flow of feature points
in which each node contains the center and covariance values, the quantity
of feature points exchanged and the splitting/merging information can be
built. The concept is schematized in figure 1.
The problem of measuring the distance between multitemporal clusters
Cflly___’tN € f(x¢,---, Tty ) and time-localized clusters C,ff € f(=z;) can be
solved by estimating the probability distribution function (p.d.f.) of the
clusters in order to evaluate their cross entropy. j; and j» represents re-
spectively the index of a Gaussians of the mixture in time ¢; and the index
of a Gaussian of the mixture for the multitemporal classification. Obvi-
ously, the multitemporal features considered here must be commensurable
with the features used for the time-localized classifications thus, the multi-
temporal clusters must be projected in the time-localized feature space to
enable a coherent cross entropy measurement. At time ¢;, each multitempo-
ral clusters ng’m’tN for j; € [1, K] is assigned to one of the time-localized
clusters {C’gz2 ;j2 € [1, Ky,]} according to a maximum cross entropy criterion
formalized as
H(pctjiz (x)”th,- {th'll ’’’’’ tN}(:L.)),
where K and K3, are respectively the number of multitemporal clusters and
the number of time-localized clusters at time t;, where P, {.} is a projec-
tion operator projecting the multitemporal feature space in the subspace
embeding the Cff (z) and where p; 1(x) are d dimensional Gaussian p.d.f.
In order to simplify the notations, let us denote respectively by £ and F
a clusters C’,?Z and a cluster Pt,.{C’gllwitN}. The cross entropy measure is
defined between the two d dimensional Gaussian p.d.f pg(x) and pr(z) by
the expression :
1 5’|
Hou@) || pe@) =5 [ po(o).(log 5
R4 |AF |

+ (@ = Mp) AR @ = Mp) = (o = Mp)Ag (@ — Mg)| )dz (10)

2
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where Ag and Ar are the associated covariance matrixes and Mg and Mg
their respective mean vectors.

3. Results

The experiments were performed on a database subset which consists of 10
multispectral SPOT remotely sensed images of 100x100 pixels of a rural
scene in Romania. The time-localized features were simply the radiomet-
ric values in a temporal window size 1 (for each image time sample). In
this case, the features which are the original images are displayed in the
middle of figure 2. A multitemporal and 10 time-localized clusterings were
respectively produced on the space constituted by the union of the 10 time-
localized features and by each of them separately. We obtained 9 Gaussians
for the multitemporal classification and cluster numbers fluctuating from
6 to 9 for the time-localized classifications. At first sight, it is likely that
the number of Gaussians representing the 9 class evolutions was underesti-
mated. Then, the Gaussian mixture evolution was modeled using the cross
entropy measurements. Thus, the graph was infered. In figure 2, a graph
displaying some of the feature information is drawn. The horizontal axis
represents time (in correspondence with the original images above); the
vertical axis represents the red radiometric value. Each node, on which the
assigned multitemporal classes are written and the variances represented
(vertical black lines), is linked to the past and future nodes. Thus, merging
and splitting information in the red spectral band is available. In parallel,
the above table of images in figure 2 presents the spatial class evolutions.
The first column displays the 9 multitemporal classes indexed upward from
”0” to ”8”. The next columns display these 9 class evolutions (time is
increasing from left to right). Each image displays in principle, a single
time-localized class including at least one multitemporal class. Two impor-
tant remarks can be made. First, as expected, the number of multitemporal
classes was underestimated and consequently in some images, we observe
?interclass-splitting” phenomena : two time-localized classes are regrouped
in a single multitemporal class (the other class is colored in gray in figure 2).
Second, one can of course notice that at a given time, some other connected
components are sharing the same mulitemporal class.

In order to interprete the results, one can intersect some selected informa-
tion directly in the feature-graph and in the spatial class evolutions in order
to characterize some typical behaviors with a time and a spatial address.
For instance, one can notice that in ”time sample 5”7, the "multitemporal
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class 07 (in blue) is the only present class in a node. But in ”time sample
4 and 6”, "class 0” shared the same node as the multitemporal class 8.
We observe here a splitting and a merging phenomena, along with a radio-
metric jump corresponding to a plane apparition. Indeed, this is obvious
in the original images and in the spatial evolution of the multitemporal
classes 0 and 8. This typical behavior can be used to identify other similar
phenomena.

4. Conclusion

This work is an attempt to solve the complex problem of spatio-temporal
patterns recognition in image times series. A flow of feature points model-
ing of the dynamic feature space is proposed to extract information related
to the trajectory of clusters in a time-window. The modeling is decomposed
into two processing levels :

1- The Gaussian mixture assumption is used to perform a multitemporal
and several time-localized non-parametric clustering according to a MDL
criterion.

2- The Gaussian mixture evolution is modeled on cross-entropy measure-
ments. It leads to the information decomposition detailed above.

A couple of queries investigating into the graph are made and some pattern
behaviors are pointed out. The concept presented is generic and can be
extended to all kind of spatio-temporal features.
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Figure 2. Class spatial evolutions in correspondence with the original time-series and
the graph characterizing the dynamic clusters.



