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Abstract

Visual servoing is a framework for achieving the
tight coupling of camera movements and information
from images. We consider a typical visual servoing
approach that uses geometric information about im-
age features for controlling the position and attitude
of a camera. We claim that tmage motion informa-
tion can be used as well. We substantiate this claim
by presenting two different approaches to visual tasks
that use motion information. The first one uses the
focus of expansion. The second one incorporates the
parameters of the 2D affine motion model in the con-
trol equations. We illustrate both these approaches by
means of a task to align the optical azxis of the camera
with the unknown direction of the translational motion
of the system on which it is mounted, and present re-
sults of experiments done with a six DOF robot. The
contribution of this work is in showing that a tight cou-
pling between the camera behavior and image motion
s possible.

1 Introduction
Recently, many new approaches have been taken to
perform tasks based on responses to visual informa-
tion. Visual inputs are processed, and based on this in-
formation, camera behavior is controlled, usually with
the goal of attaining a configuration that simplifies fur-
ther action. The approaches span a broad spectrum
ranging from methods that perform very specific tasks,
to methods that provide general framework. An ex-
tensive survey of all the methods is outside the scope
of this paper. We mention just a few in each of the
broad categories.

There are many examples for approaches that per-
form specific tasks. Nelson and Aloimonos proposed
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a scheme to detect obstacles by using flow field diver-
gence [13]; Santos-Victor et. al. [17], and Coombs and
Roberts [6] present methods to steer a camera between
two walls, and to veer around obstacles, both methods
being based on a simple analysis of the computed optic
flow fields. Performing saccades in real time to moving
regions of interest has been demonstrated in [11].

In the middle of the spectrum, there are methods
that perform more general tasks such as gaze control
and fixation; these are more general because fixation
or gaze control can be used as a means to accomplish
other tasks. In [2], the uses of gaze control, and fix-
ation in particular, in obtaining an object-centered
reference-frame and in figure-ground discrimination
have been outlined. A system performing several ac-
tive visual tasks, including closed-loop gaze-control
(based on a differential analysis) for fixating on an ob-
ject has been presented in [9]. A fixation method run-
ning in real-time on a head-eye system can be found
in [15]. Target-tracking methods by cameras mounted
on robots have been demonstrated [1, 16].

On the farther side of the spectrum, there are meth-
ods which provide more general solutions. Visual ser-
voing methods [7, 8, 19] present control-theoretic ap-
proaches for controlling the position and attitude of
the camera by using visual information. These meth-
ods are general, and can be used to perform a vari-
ety of tasks with specific goals. Our present work is
in extending the power of this class of approaches, by
showing how motion information can be incorporated.

We start from one of the visual servoing for-
malisms [7]. The procedure outlined in [7] for deter-
mining the control equations is suited for the use of
geometric information about features such as points,
lines and circles. We show how this formalism can
make use of motion-based information. In particular,
the methods described in this paper use dynamic im-
age parameters such as the focus of expansion or the
coefficients in the 2D affine motion model. More de-
tails can be found in [18]. Such a use of the dynamic
image parameters for the purpose of visual servoing is



new, and it provides a starting point for other inter-
esting closed-loop methods using these parameters.

2 Visual Servoing

In this section, we review the basic principles of
visual servoing. Detailed descriptions can be found
in [7, 8, 19].

The principle of visual servoing is to use visual in-
formation as observation in closed-loop control when
the desired configuration can be described as a par-
ticular visual observation. The control is effected on
the camera position and orientation, or on an external
object such as a robot arm. The only condition is that
the instantaneous change in the visual information (in
the sense of temporal derivative) as a function of the
controllable parameters be known analytically. Intu-
itively, if the effect of the control parameters on the
observation is known, we could provide the appropri-
ate control in order to result in obtaining the desired
observation. The visual servoing theory provides a
framework for determining the control law which is
simply a set of equations to calculate the control pa-
rameters.

More precisely, for a given vision-based task, we
have to choose a set s of visual features (for example,
the coordinates of an image point, the parameters of
a selected line, etc.) suited for achieving the task. In
order to perform a control law based on s, we need
to know the equations for the temporal variation of
s with respect to camera translational and rotational
motion (T, Q). In other words, we have to determine
the matrix L described by the following equation:

(1)

A task function e can be defined as

T

o (1)

e=M (s—s"), (2)
where s is the measured visual features currently ob-
served by the camera, s* is the desired final configu-
ration for s in the image, and M is a constant matrix
which allows, for robustness issues, to take into ac-
count more visual features than necessary.

The control problem thus appears as the regulation
of the task function e to zero or, equivalently, as the
minimization of ||e|| in the image by appropriate cam-
era motion. We would like the task function to decay
exponentially towards zero. For such a requirement,
€ = —)e, where A(> 0) is the exponent that controls
the speed of the decay. Noting that M and s* are
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constant and assuming for simplicity that the scene is
static, we obtain from Eqns. (1) and (2),

(o)

where LT and M™T are the pseudo-inverses of L and
M.

Thus the principle of visual servoing is to use vi-
sual information to perform a closed-loop control to
reduce an “error” in the visual information. Various
tasks have been performed within the framework of
the visual servoing outlined here and described in de-
tail in [7].

T

Q= —ALtMte,

(3)

3 Image motion information

We claim that the visual servoing approach can be
applied to features other than geometric image fea-
tures. We confirm this claim by using parameters ob-
tained from image motion. First, we show that we can
use the focus of expansion. This is a only a modest
step forward because the focus of expansion (FOE) is
a geometric property in some sense; this is so because
the FOE is a location on the image plane, and can be
treated as such. Nevertheless, this viewpoint brings
out the notion of using motion information available
as a simple geometric feature.

Secondly, we show how to use the parameters of
the affine model (henceforth, 2D affine motion pa-
rameters) of the optic flow. Here, we truly deviate
from the tradition of using geometric information for
visual servoing. The affine motion parameters have
been well-studied theoretically as well as empirically,
and have been used in many applications. But they
have not been exploited so far as entities useful in di-
rectly controlling camera behavior.

We will illustrate these two approaches by their ap-
plication in a task to align the optical axis of the cam-
era with its unknown direction of translation. For
the purposes of this paper, we restrict ourselves to
the pure translation situation, expecting that this will
provide an initiative to solve the more general cases.

4 Control using the FOE

The focus of expansion (zy,ys) is the projection
of the 3D translational vector on the image plane:
%, ys = ~. The location (z¢,y;) may be
treated as a geometric feature and used to obtain con-

Ty = W
trol laws. For instance, we could apply control to bring



this feature to the center of the image: this control
corresponds to the task of aligning the camera optical
axis with the direction of translation.

For the alignment task, it is easy to see that two of
the rotational parameters are sufficient to provide the
necessary control. We only control camera pan A and
tilt B, we know, from the optic flow equations [10],

()-e(3) = (2 )

In that case, the matrix L can be estimated on-line
since it only depends on the position (zj,ys) of the
FOE measured in the image. In Eqn 3, we can set M
as the identity matrix and we finally obtain:

(8)-(373)

For the alignment task, :L‘;‘C = y% = 0. One could also
position the FOE at any desired location (2}, y};) using
exactly the same method.

A
B

—(1+ xj%)
—LfYs

Zryf

,’.L‘:f
1+ y7

Ys

A
B

T — 2%
T
Y5 — Yy

(4)

5 Control using the affine parameters

The 2D affine motion model is often useful. It is
possible to derive expressions for the affine motion pa-
rameters assuming that an analytical surface is imaged
(i.e., it is possible to describe the depth by a Taylor
series expansion).

Let the first-order
be

approximation to the optic flow

u(z, y)

v(z,y)

a1 + axx + azy,
a4 + asx + agy.
Using the first-order model for the imaged sur-

face, Z = Zog + X + 7Y, we get [3, 12] expressions
of the form

U Vv
alz———B, (14:——+A.
Z Z
Consider the two “parameters” U, = Z% and
V, = ZLD If we apply control in such a way to result

in zero values for these variables, we will achieve the
goal of setting the components U and V of the trans-
lational velocity to zero (the tacit assumption is that
infinite depth does not occur).

The components of 7', which are assumed to re-
main constant in a global (world) coordinate system
during the time taken for the alignment, change how-
ever in the camera coordinate system as T=-QxT.
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Figure 1: A typical image in the sequence processed.

Starting from the time derivatives of U, and V,, it is
possible to obtain the following control law [18]:

()50 )6 (5),

where 7. can be computed from the affine parameters,
and the observations U, and V, are given by

ai
Tc
aq
Tc

A
B

U,
V.

U,=—a;— B, and V, = —a4 + A,

where we use the previous measured values for A and
B (under normal conditions, these are simply the con-
trol rotational velocity components applied at the pre-
ceding instant).

6 Experiments

We used a camera with a field of view of about 35
degrees mounted on a six degrees-of-freedom cartesian
robot (AFMA). The size of the images processed was
128 x 182 pixels. All the image processing and con-
trol velocity computations are carried out on the host
(Sparc IPX) and the computed control is transmitted
to the robot controller.

The experiments were conducted indoors; a sample
image can be seen in Fig. 1. The translational mo-
tion was towards the floor with cluttered objects; the
floor was not fronto-planar, but with an average angle
of inclination in the range 45-70 degrees between the
floor surface and the optical axis.

6.1 The FOE-based method

The FOE-based method described in Section 4 has
been implemented. The FOE is calculated as in [4].
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Figure 2: The angular error plot for the FOE method.

The normal flow field is computed, and the fraction A,
of positively oriented (i.e., towards the left) horizon-
tal components and the fraction v, of positively ori-
ented (upwards) vertical components are determined
by counting. The approximate FOE is computed as
(—(hp—0.5)«W;/2,—(v, —0.5)* Hr/2), where W; and
Hy are the width and the height of the image in focal
length units. As explained in [4], this gives a location
on the image if the FOE is within the image, or a lo-
cation on the border of the image if the FOE is on the
border or is outside the image; in the last situation
where the FOE is outside the image, the computed
position is in the direction of the FOE.

The camera is attached to the end-effector of the
robot undergoing an arbitrary translational motion.
The control loop utilizing Eqn. 4 is repeated to obtain
alignment. Note that the control is applied for only a
finite duration during each iteration. This is because
the qualitative method used for the FOE computation
works only for pure translation. The total time spent
in one iteration is about two seconds.

The result of a typical experiment is shown in
Fig. 2. The plot shows the variation of the angle be-
tween the direction of translation 7" and the optical
axis Z with respect to time. As expected, the angle
decreases and converges to zero. The final error plot-
ted in Fig. 2 is 0.25 degrees.

6.2 The Affine Parameters method

The affine parameters method described in Sec-
tion 5 has also been implemented. The spatiotemporal
derivatives of the (smoothed) intensity function are
calculated using a simple procedure [10]. The affine
parameters are computed using an over-constrained
set of equations by considering points from all over the
image, thresholded by gradient magnitude to suppress
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Figure 3: The error plot for the affine parameter method.

contribution from relatively uniform regions where the
estimates are noisy.

The error plot from an experiment using the con-
trol law in Eqn. 5 is shown in Fig. 3 (final error =
0.75 degrees). The linear (as opposed to an expo-
nential) decrease in the error is due to experimental
constraints.

7 Conclusions

We restricted ourselves to the pure translation sit-
uation. It would be interesting to examine the general
case where there is also rotation. We know that if
there is a small amount of external rotation, it could
be still accommodated in the “pure translation” sit-
uation, with residual errors remaining as tracking er-
rors, which can be in principle compensated for by
estimating their effects and representing them using
an additional term in the control law [5]. With large
rotational velocities, it remains to be seen if workable
methods can be developed.

We have also not examined the possibility of
predicting the motion. Standard methods such as
Kalman filtering could be employed to predict the fo-
cus of expansion or the affine motion parameters; this
would increase the stability of the methods.

In the affine parameter method, we assume that the
affine approximation to the optical flow field is valid.
This is supported by several useful methods based on
the affine approximation [3, 12]. Nevertheless, this
approximation can fail for the entire image when there
are objects located at very different depth in the scene,
or moving objects of significant size. However, we have
recently developed a robust estimation method able to
correctly compute the 2D dominant affine motion in
the presence of outliers [14].



An application for the task described here can be
found in [4]. It consists in detecting moving objects in
a qualitative way as explained in [3], once alignement
is achieved.

In summary, we have proposed the use of motion
information in the visual servoing framework where
only geometric information has been used so far. Two
control schemes, one using the focus of expansion, and
the other using 2D affine motion parameters, were pre-
sented. Experimental results from a camera mounted
on a robot serve to validate our proposal. We believe
that tightly coupled visual behavior formalized in the
fashion described here, and the kind of coupling be-
tween qualitative and active visual methods like the
one we have proposed [4] have significant roles to play

Future work will include processing on the image-
processing board to improve speed and performance,
and to investigate other forms of tight coupling be-
tween camera behavior and motion information.
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