
Requirements by Contracts allow Automated System Testing

Clémentine Nebut, Franck Fleurey, Yves Le Traon and Jean-Marc Jézéquel
IRISA-Université de Rennes 1,

Campus Universitaire de Beaulieu,
35042 Rennes Cedex, France

{Clementine.Nebut, Franck.Fleurey, Yves.Le_Traon, Jean-Marc.Jezequel}@irisa.fr

Abstract

Use-cases and scenarios have been identified as good in-
puts to generate test cases and oracles at requirement level.
Yet to have an automated generation, information is missing
from use cases and sequence diagrams, such as the exact
inputs of the system, and the ordering constraints between
the use case. The contribution of this paper is then two-
fold. First we propose a contract language for functional
requirements expressed as parameterized use cases. Then
we provide a method, a formal model and a prototype tool
to automatically derive both functional and robustness test
cases from the requirements enhanced with contracts. We
study the efficiency of the generated test cases on a case
study.

1 Introduction

The conclusion of a survey [17] of industrial software
projects insists on the industrial need to base system tests
on use cases and scenarios. However, most projects lack a
systematic approach for defining test cases based on func-
tional requirements, expressed within the UML with use
cases. Important benefits are expected from expressing and
deriving functional test objectives at this level. Time-to-
market constraints are easier to satisfy since integration and
unit test stages are lightened. Moreover, the consistency be-
tween requirements and implementation is guaranteed, and
test objectives are more reusable than code specific tests in
the case of software evolution. While in the literature, it
is admitted that use-cases and scenarios offer a good input
to generate test cases and oracles [16, 14, 3, 4], many ob-
stacles remain, that have been identified by Binder [2] in
terms of three questions : How do I choose test cases? ;
In what order should I apply my tests? ; How do I know
when I’m done? The first question concerns the domain def-
inition of inputs and output variables at requirement level.
The second one concerns the generation of test cases that

are consistent with sequential constraints, and the last one
concerns the definition of a non-ambiguous test adequacy
criterion. To our knowledge, the only work in that direction
is Briand’s one [3, 4] with a complete system-based testing
methodology. In this paper, we go along the same lines and
focus on requirement-based testing and not on system test-
ing in the sense we want our approach to be independent
from analysis and design steps. We propose a systematic
requirement-by-contract approach, close to the design-by-
contract approach proposed in [10], except that logical ex-
pression are very simple to fit with requirement level of pre-
ciseness. This approach answers Binder’s problematic by
identifying in the contracts the variables involved in testing,
by generating a formal representation of all valid use-cases
sequences (with a labeled transition system model) and by
proposing, for this representation, coverage criteria, unam-
biguous and intuitively meaningful. The key question we
address here is to determine whether test cases generated at
very high level are still relevant at code-level. Secondary
issues also addressed in this paper concern which criteria
may be the most efficient to generate test objectives, and an
evaluation of using activity diagrams for requirement-based
testing.

The rest of the paper is organized as follows. Section
2 presents a contract language for requirements and illus-
trates it on a case study. Section 3 details the generation
of functional test objectives from requirements enhanced
with contracts. This generation is based on a use case la-
beled transition system, and we propose test coverage cri-
teria to extract test objectives from this model. Section 4
explains how this generation can be extended to automated
robustness test generation, with a complementary criterion.
Section 5 is an experimental part aiming at studying the ef-
fectiveness of generated test cases on a case study, and at
comparing it with another approach based on activity dia-
grams. Section 6 and 7 state the related work and give our
conclusions and future work.

1

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

2 A contract language for requirements

In this section, we present a way to express the sequential
constraints existing between the use cases of an application,
remaining within the UML. This approach proposes to as-
sociate contracts – i.e. pre and post conditions – to each
use case, in the form of logical expressions. Such contracts
allow the designer to express for each use case both the sys-
tem properties making it applicable, and the properties ac-
quired by the system after its application. This approach
provides a rigorous language as a response to the proposal
of the Catalysis approach[6], which proposes to see the use
cases as joint actions, thus owning pre and post conditions.
We seek to build a simple language, so that it can be used
during the requirements analysis; we did not want to intro-
duce a new formalism for which the requirement analyst
would need a specific learning.

In the next sections, we present how those contracts on
the use cases are used to build a transition system represent-
ing all the valid sequences of use cases. As shown in Figure
1, this execution model is then exploited to generate test ob-
jectives, using several coverage criteria. The experimental
studies is then made using a test generator to go from test
objectives to test cases. Note that the method is totally sup-
ported by prototype tools, which can be found in [1].

Figure 1. Global methodology for
requirement-based testing

In the following, we present a case study which is used
to illustrate the rest of the paper.

2.1 A case study: a virtual meeting server

The case study is a product instantiated from a product
line which has been implemented in Java, Eiffel and C# lan-
guages. It is used in the advanced courses of the Univ. of
Rennes.

The virtual meeting server offers simplified web confer-
ence services, simulating work meetings on a distributed
platform (a kind of generalized "chat" program). When
connected to the server, a user can enter or exit a meeting,
speak, or plan new meetings. Each meeting has a manager.
The manager is the participant who has planned the meet-
ing and set its main parameters (such as its name, its agenda,
and its moderator). Each meeting may also have a moder-
ator, designated by the meeting manager. The moderator
gives the floor to the participants asking to speak. The cor-
responding use case diagram is given on figure 2.

VirtualMtg

enter

plan

open

close

consult

leave

hand over

speak

moderator

manager

user

connect

Figure 2. Use case diagram of the virtual
meeting

At any time, a user can consult the status of the system,
i.e. the meeting planned and their attributes. The discon-
nection is conditioned to certain natural constraints such as:
a participant entered in a meeting must leave it before dis-
connecting from the server.

2.2 Expressing use cases sequential constraints
with pre and post conditions

In general, the partial order existing between the uses
cases is given in the use cases textual description, or just left
implicit. Here, we propose to make it explicit in a declara-
tive way. Indeed, we claim that a declarative specification
is easier to express than an activity diagram as proposed
in [3, 4] (activity diagrams are a graphical language used
in [3, 4] to express sequential constraints between the use

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

cases). As shown in Section 5.3, activity diagrams rapidly
become too complex while their expressiveness in our con-
text is limited to specify communication between actions.
They even lead to some false sequences of use cases. Since
the use cases are described very early in the software life
cycle, we think that their ordering must be expressed with
a light formalism, such that the use case diagram remains a
good communication basis with the domain experts. That is
why the use of preconditions and postconditions is a good
way to easily and quickly express the mutual obligations
and benefits among functional requirements, expressed with
use-cases. Pre and postconditions are attached as UML
notes to each use case, and are expressed with logical ex-
pressions, as it is explained and illustrated below. The se-
quential constraints are then deduced from the set of con-
tracts.

2.3 Use cases parameters and contracts

Use cases parameters

As proposed in Catalysis[6], we consider parameterized use
cases. The parameters of a use case (denoted UC in the fol-
lowing) are generally used in the scenarios attached to it.
Actors involved in the use case are particular parameters.
For example, the use case plan is parameterized by the man-
ager of the meeting, and the name of the planned meeting.
It is expressed as follows:

UC plan (u:participant, m:meeting).
Parameters can either be actors (like the participant u in

the UC plan) or main concepts of the application (like the
meeting m in our example). Those main concepts will prob-
ably be reified (i.e. transformed in our case into UML ele-
ments such as classes) in the design process, and are pointed
out as business concepts during the requirements analysis.
All types are enumerated types, the enumerations are only
needed when the use case orderings are deduced (from the
execution model presented below). For example, each par-
ticipant and each meeting are declared by a specific label.

The use case parameters answer Binder’s first question.
First, the inputs and outputs of the use cases are defined
in the form of parameters, and second, the parameters are
propagated as it is explained in the following.

Contracts: logical expressions on predicates

When the parameters of a use case have been determined,
one can express contracts on the use case in the form of pre
and post conditions. The UC contracts are logical expres-
sions on predicates, that are declared as follows:

UC plan (u:participant, m:meeting).
pre logical-expression
post logical-expression

A logical expression combines predicates with logical
operators. In the following, we first define the predicates,
and then the set of logical operators.

A predicate has a name, and a potentially empty set of
typed formal parameters. Those parameters are a subset of
the use cases parameters. As a consequence, their types
are either names of actors or main business concepts, as ex-
plained above. The predicates are used to describe facts in
the system: facts on the status of the actors, or main con-
cepts involved, facts on actors roles, etc. In this way, the
predicates names are generally either semantical derivatives
of a use case name (as opened), or role name (as modera-
tor), or a combination of both.

The predicates’ names are semantically rich: in this way,
the predicates are easy to write and to understand. In order
for the contracts to be fully understandable, the semantics
of each predicate has to be made as explicit as possible.

As an illustration, here are two examples of predicates,
with their semantics:

� created(m) is a predicate which is true when the meet-
ing m is created and false otherwise;

� manager(u,m) is a predicate which is true when the
participant u is the manager of the meeting m and false
otherwise.

Since we use classical boolean logic, a predicate is either
true or false, but never undefined. Consequently a system
of use cases with pre and post condition needs an initial
state setting which predicates are true at the initial state of
the system.

The precondition expression is the guard of the use case
execution. The postcondition expresses the new values of
the predicates after the execution of the use case. Note that
all the predicates that are not involved in the post condition
are left unchanged.

Figure 3 provides the grammar of the logical expressions
we use. The operators are the classical ones of boolean
logic: the conjunction (and), the disjunction (or) and the
negation (not). The implication (implies) is used to condi-
tion a new assertion with an expression. It allows postcon-
ditions depending on the preconditions to be specified. In
a postcondition, the values of the predicates involved in the
left part of an implies are the values of the predicates be-
fore the execution of the use case. Quantifiers are also used
in order to increase the expressive power of the contracts:
those quantifiers are forall and exists.

An example of a choice of contracts is given on figure
4. The use case open requires that the actor performing the
opening on a meeting is its moderator and is connected. It
also requires that the meeting is created, and neither closed
nor already opened. After performing an opening, the meet-
ing is opened. The use case close requires the meeting to be

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

BOOLEXPR ::= DISJONCTION
DISJONCTION ::= CONJONCTION (or CONJONC-
TION)*
CONJONCTION ::= UNARYEXPR (and UNARY-
EXPR)*
UNARYEXPR ::= (BOOLEXPR)|NEGATION|FORALL|

IM-
PLIES|EXISTS|PREDICATE|DIFF|EQUALITY
PREDICATE ::= IDENT(,IDENT)*
EQUALITY ::= IDENT = IDENT
DIFF ::= IDENT /= IDENT
NEGATION ::= not BOOLEXPR
FORALL ::= forall (LISTFORMAL-
PARAMS){BOOLEXPR}
EXISTS ::= exists (LISTFORMAL-
PARAMS){BOOLEXPR}
IMPLIES ::= {BOOLEXPR} implies {BOOLEXPR}

where IDENT is an identifier (used for parameters and predicate names),
and LISTFORMALPARAMS is a list of formal parameters, i.e. a name and
a type.

Figure 3. Grammar of the logical expressions
for contracts

UC open(u:participant;m:meeting)
pre created(m) and modera-
tor(u,m) and not closed(m)

and not opened(m) and connected(u)
post opened(m)
.

UC close(u:participant; m:meeting)
pre opened(m) and moderator(u,m)
post not opened(m) and closed(m) and

forall(v:participant) {not en-
tered(v,m) and

not asked(v,m) and not speaker(v,m) }

Figure 4. Contracts of the use cases open and
close

opened, and the actor performing the closing to be its mod-
erator. After closing a meeting, it is closed, not opened, and
all its participants are out of the meeting (in particular, there
are neither waiting to speak nor speaking participants). Af-
ter opening a meeting, an actor can immediately close it,
since the precondition and the postcondition of the enter
UC implies the precondition of the close UC. The declara-
tive definition of the contracts makes them simple to write
and forces the requirement analyst to be precise and rigor-
ous in the semantics given to each use case. The declarative
definition is in the same time flexible and easy to maintain
and to modify: writing contracts is quite an easy task as
soon as the use cases are well defined. The only formalism
that the requirement analyst needs is predicate logic, which
is a well known formalism.

Thanks to a complete set of enhanced use cases, the pro-
tocol a user has to follow to speak can be made clearer: the

current speaker is designated by a moderator (nominated
by the organizer of the meeting). In order to speak, a par-
ticipant has to ask for the floor, then be designated as the
current speaker by the moderator. The speaker can speak
as long as he or she wants; he or she can decide to stop
speaking by using the over action. The moderator can then
designate another speaker. The moderator can also stops the
speaker using the same over action.

Dealing with use cases relationships

The use cases of a system can be divided into fundamental
ones, and operational ones. The fundamental ones repre-
sent the key-functionalities of the system, whereas the op-
erational ones represent secondary use cases used by the
fundamental ones. In order for our method to generate rele-
vant test objectives, we need a description of the operational
use cases, and the links existing between fundamental and
operational use cases.

Independently from this distinction between use cases,
the UML proposes 3 types of relationships between the use
cases: “include”, “extend” and “generalization”. We pro-
pose the following rules to deal with the refinement of use
cases, but we did not yet exploited them.

� include link: we here assume that the include link is
used to link a fundamental use case with operational
use cases. We also assume that if a use case UC�

uses a use case UC�, then pre�UC�� � pre�UC��.
Then when UC� is applied, then UC� is also applied,
and thus post(UC�) is transformed into the conjunc-
tion post(UC�) and post(UC�).

� extend link: we do not treat here the notion of exten-
sion point, since its semantics is not so clear in the
UML 1.x semantics. We then propose to treat exten-
sions and inclusions the same way.

� generalization link: the semantics we propose for gen-
eralization is the same as the one proposed in [10] for
contracts on methods. If a use case UC� inherits of
a use case UC�, then pre�UC�� is transformed into
the disjunction pre(UC�) or pre(UC�), and post(UC�)
is transformed into the conjunction post(UC�) and
post(UC�). In other words, preconditions may only
be weakened and postconditions strengthened.

3 Automatic test generation from Use cases
enhanced with contracts

In this section, we explain how we exploit use cases en-
hanced with contracts to generate test objectives. We first
build a use case transition system and then exploit it with
several criteria to generate relevant test objectives.

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

3.1 The Use Case Transition System

From the requirement artifacts composed of a use case
diagram, whose use cases are enhanced with pre and post
conditions, we propose to build a representation of the valid
sequences of use cases. Since pre and post conditions con-
tain parameters, this representation will also deal with those
parameters. The idea is to “instantiate” the use cases with
a set of effective values replacing its parameters. For ex-
ample, suppose that one wants to obtain the ordering of the
use cases of the virtual meeting system containing 2 partic-
ipants p1 and p2, and 1 meeting m1. The instantiated use
cases of the use case plan(p:participant,m:meeting) are in
this case plan(p1,m1) and plan(p2,m1). In the following,
we call instantiated use cases (resp. predicates) the set of
use cases (resp. predicates) obtained by replacing their sets
of formal parameters by all the possible combinations of
their possible effective values.

A transition system to represent the valid sequences of
use cases

The sequences of use cases are represented by a transition
system M defined by M � �Q� q�� A� ��� where:

� Q is a finite non-empty set of states, each state being
defined as a set of instantiated predicates,

� q� is the initial state,

� A is the alphabet of actions, an action being an instan-
tiated use case,

� ��� Q�A�Q is the transition function.

We call such a transition system a Use Case Transition Sys-
tem (UCTS). The states of the transition system represent
the state of the system (in terms of predicates) at differ-
ent stages of execution. Each transition is labeled with an
instantiated use case, and represents the execution of this
instantiated use case. A path in the UCTS is thus a valid
sequence of use cases. A partial UCTS obtained for the vir-
tual meeting example (with 2 participants p1 and p2 and 1
meeting m1) is given on figure 5.

Due to its finite set of states (itself due to the finite num-
ber of combinations of instantiated predicates), the UCTS is
itself finite. Its maximal size in the worst case is �np

Qnv
i��

vi

states, where nv is the number of types used, vi is the num-
ber of possible values for each type i, and np is the number
of predicates. This maximal size is reached when all the
predicates have parameters of each possible type, and when
all the possible states are reachable from the initial state. In
practice, this maximal size is never reached. For the virtual
meeting with 3 participants and one meeting, the UCTS has
1616 states.

Figure 5. Extract of the UCTS for the virtual
meeting

The UCTS is an answer for Binder’s second question: a
test objective has to be a path in the UCTS to be a correct
sequence of use cases. The UCTS represents all the valid
sequences of use cases. In a way, the contract system it-
self is already an answer since it contains the information to
build the UCTS, but the UCTS makes the ordering explicit.

Building algorithm

The algorithm that builds such a UCTS from a set of con-
tracts is given in Algorithm 1. The initial state is built from
the initial true predicates. Then the algorithm tries to suc-
cessively apply each instantiated use case, as a puzzle game.
Applying an instantiated use case is possible when its pre-
condition is true w.r.t the set of true instantiated predicates
contained in the current state’s label. Applying an instanti-
ated use case leads to create an edge from the current state
to the state representing the system after that the postcondi-
tion is applied. The algorithm stops when all the reachable
states have been explored.

To obtain the instantiated use cases from the formal de-
scription of the use cases, the possible instances (values) of
each type are given, that corresponds to the enumeration of
all the types of the system. In practice, we give the building
algorithm all the instances it has to deal with, in the form
of a declaration. As an example, to deal with 3 participants
and 1 meeting, we declared:

p1, p2, p3:PARTICIPANT
m1: MEETING

3.2 Test case generation w.r.t coverage criterion

A UCTS is a compact representation of all the possible
orderings of the use cases. From an UCTS, we aim at gen-
erating test objectives w.r.t a given UCTS covering crite-
rion. We define in this sub-section four structural criteria
to cover an UCTS and then one semantical criterion.

A test objective is defined here as a finite sequence of in-
stantiated use cases. It has to be noticed that in most cases,
a test objective cannot be directly used on an implementa-
tion, a test case generator has to be used to go from test
objectives to test cases (see section 5.1).

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

Algorithm 1 Algorithm producing the UCTS
algorithm buildUCTS
param initState: STATE ; useCases : SET[ACTION]

var
result : UCTS
to_visit : STACK[STATE]
currentState : STATE
newState : STATE

init
result.initialState�initState
to_visit.push(initState)

body
while (to_visit ���)
do
currentState�to_visit.pop
� uc �useCases | cur-

rentState �uc.pre
do
newState � apply(currentState, uc)
if newState ��result
then
result.Q �result.Q � {newState}
to_visit.push(newState)

fi
result.�� �result.�� � {(cur-

rentState,uc,newState)}
done

done
end
return result

A set of test objectives is said to be consistent with an
UCTS iff each test objective exercises a path of the UCTS.
A path in the UCTS is here defined as the classical notion of
path in a graph, the first vertex corresponding to the initial
state.

All Edges criterion: A set of test objectives TOs satisfies
the all edges coverage criterion for a use case transition
system ucts iff each edge involved in ucts is exercised
by at least one test objective from TOs, more formally
iff �t ���� �toi � TOs� t�action � toi

All Vertices criterion: A set of test objective TOs satis-
fies the all vertices coverage criterion for a use case
transition system ucts iff each vertex v involved in
ucts is exercised by at least one test objective from
TOs (i.e. when a transition leading to or incom-
ing from v is exercised), more formally iff �q �
Q� �toi � TOs� �iuc � toi� �t ���� t�action �
iuc � �t�origin � q � t�dest � q�

All Instantiated Use Cases criterion: A set of test objec-
tives TOs satisfies the all instantiated use cases cov-
erage criterion for a use case transition system ucts iff
each instantiated use case of the system is exercised
by at least one test objective from TOs, more formally
iff �iuc � IUC� �toi � TOs� �iucto � toi� �t ���

� iuc � iucto � iucto � t�action, IUC being the set
of all the instantiated use cases of the system.

All Vertices And All Instantiated Use cases criterion:
(AV-AIUC) A set of test objectives TOs satisfies the
all instantiated use cases coverage criterion for a use
case transition system ucts iff each instantiated use
case of the system and each vertex involved in ucts are
exercised by at least one test objective from TOs.

The all edges and all vertices criteria are classical criteria
used for automata or graph coverage. The all edges criterion
subsumes all the other criteria: having each edge exercised
at least once obviously implies that each instantiated use
case is exercised, since edges are labeled with instantiated
use cases; it also implies that the vertices are exercised.

In addition, we propose a semantical criterion, which is
not directly based on the UCTS but rather on the contracts
system. This criterion is similar (but not identical) to the full
predicate coverage proposed in [12] in the context of test
criteria for state-based functional specification. The philos-
ophy of the criterion All Precondition Terms is to guaran-
tee that all the possible ways to apply a use case are exer-
cised. A use case can be applied iff its precondition is true;
this precondition being a logical expression on predicates,
there are several valuations of the predicates which makes it
true (as an example, if a precondition is a or b, three valua-
tions makes it true: �a� b�� �a� not b�� �not a� b�). The crite-
rion All Precondition Terms will find sequences of use cases
such that each use case is applied with all the reachable val-
uations of the expression : �precondition � true�.

All Precondition Terms criterion: A set of test objectives
TOs satisfies the All Precondition terms criterion for
a contracts system iff each use case is exercised in as
many different ways as there are predicates combina-
tions to make its precondition true. More formally, for
each uc � ensuc, let E be the set of valuations mak-
ing uc�pre true. Then, �uc � setuc��e � Ej�q �
Q� q�label � e�� �t ���� t�action � uc�setiuc �
t�origin�label� e.

Each of the proposed criterion has a corresponding algo-
rithm (implemented in our prototype tool), that produces
a set of consistent test objectives satisfying the criterion.
All those algorithms are based on a breadth-first search in
the UCTS, from its initial state. Such a technique ensures
that the obtained sets of test objectives are consistent with
the considered UCTS. The result of our algorithms depends
on the order the nodes are visited, they thus contain some
indeterminism, even if our implementation is totally deter-
ministic. The choice of a breadth-first search is made in
order to obtain small test objectives: small tests are more
meaningful and humanely understandable than large ones.

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

Using a breadth-first search algorithm ensures that the size
of the computed paths is minimal, but does not ensure that
the number of paths found is minimimal.

Algorithm 2 Algorithm producing the set of test objectives
satisfying the all vertices criterion
algorithm buildTestObjectives_With_criterion_All_vertices
param ucts : UCTS

var
result : LIST[LIST[IUC]]
built_paths : LIST[LIST[EDGES]]

init
ucts.resetVisitingMarks;
ucts.initState.set(visited)
� t �ucts.initState.getOutgoingTransitions()
do
List l=new List;l.add(t);
built_paths.add(l);
t.destination.set(visited);

done
body

while (ucts.nodes_to_visit ���)
do
var new_built_paths : LIST[LIST[EDGES]];
� p �built_paths
do
if (p.getLastElement.
getOutgoingTransitions()=�)
then
result.add(p.dumpIUC())

else
� t �p.getLastElement.

getOutgoingTransitions()
do

if t.destination.is_visited
then
result.add(p.dumpIUC())
else
temp_p:LIST[EDGES];
temp_p�clone(p);temp_p.addLast(t);
new_built_paths.add(temp_p);
t.destination.set(visited);

fi
done

fi
done
built_paths=new_built_paths

done
end
return result

Algorithm 2 provides the algorithm allowing to generate
the set of test objectives consistent with the all vertices cri-
terion. The algorithms for the 4 structural criteria are very
similar, they differ essentially from the marking process and
the stop condition. For the all edges criterion, the edges
are marked (instead of the vertices), and the algorithm stops
when all the transitions has been visited. For the all IUC cri-
terion, the IUC are marked, and the algorithm stops when all
the existing IUC have been marked. Algorithm 3 provides
the algorithm for the semantical criterion: All Precondition

Algorithm 3 Algorithm producing the set of test objectives
satisfying the all precondition terms criterion
algorithm buildTestObjectives_with_APT_criterion
param ucts : UCTS, set_uc : LIST[USECASE]

body
� uc �set_uc
do

var set_b : LIST[BoolExpr]
set_b � getAllTrueValuations(uc.pre)
� e �set_b
do
if (getPath(e,ucts).dumpIUC()) ��Ø then
result.add(getPath(e,ucts).dumpIUC)
fi
done

done
return result

end
.

function getAllTrueValuations
param b :BoolExpr
return LIST[BoolExpr]
// return all the valuations making b true,
//under the form of boolean expressions
.

function getPath
param b:BoolExpr, ucts:UCTS
return LIST[EDGES]� Ø
// return the first ucts path found leading
//to a state where b is true,
//or an empty list if such a path can-
not be found

Terms. In this algorithm, all the valuations making the pre-
condition true are computed, and then paths in the UCTS
are found to reach states that verify those constraints.

4 Robustness testing

In the previous section, we have proposed a structure –
the UCTS– describing all the possible orderings of instan-
tiated use cases, and criteria to cover it with test objectives.
For each criterion, we provided an algorithm to compute a
set of test objectives satisfying it. Those functional tests ob-
jectives aim at testing whether the functional requirements
expressed in the use cases are satisfied, but do not verify that
unexpected behaviors occur when contracts are violated. In
other words, this method and its associated criteria does not
provide robustness tests. This section explains how it is
possible to generate robustness tests from the requirements
with contracts.

In order to be able to generate robustness tests from use
cases enhanced with contracts, the contracts must be de-
tailed enough so that all the unspecified behaviors are in-
correct. If so, the UCTS built from the enhanced use cases
will be used as an oracle for the robustness. To improve the
contracts, we propose to use a requirement simulator, which
allows the requirement analyst to see step by step which use

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

cases are applicable, and then to determine if their contracts
are sufficient. This simulator interactively computes valid
sequences of instantiated use cases: all the choices are made
by the simulator’s user, by selecting an instantiated use case
in a list of all the applicable instantiated use cases.

Robustness test generation

As soon as the requirements are precise enough, the gen-
erated UCTS can be used as an oracle for robustness tests.
The principle is to generate paths that lead to an invalid ap-
plication of a use case. The idea is thus to correctly exercise
the system and then to make a non specified action. The
execution of such a robustness test must lead to a failure
(in our example, the receipt of an error message). If not,
a robustness weakness has been detected. The goal is thus
to test the robustness/defensive code of the system. The
difficulty is to propose an adequate criterion. The UCTS
plus the contracts provide all the information we need for
that purpose. The criterion we use to generate robustness
paths with the UCTS is quite similar to the All Precondition
Terms one: for each use case, it looks for all the shortest
paths leading to each of the possible valuations that violate
its precondition.

Robustness criterion : A set of test objectives TOs satis-
fies the robustness criterion for a contracts system iff
each use case is exercised in as many different ways as
there are predicates combinations to make its precon-
dition false. More formally, for each uc � ensuc, let
E be the set of valuations making uc�pre false. Then,
�uc � setuc��e � Ej�q � Q� q�label � e�� �t ���
� t�action � uc�setiuc � t�origin�label� e.

The robustness tests will test the defensive code of the ap-
plication, which is not tested with the functional tests previ-
ously generated. Joining the two sets of tests, not only will
we test that the application does what it should (according
to the requirements) but also that it does not what it should
not.

5 Experimental validation: test cases gener-
ation and criteria comparison

This section offers an experimental validation of the pro-
posed approach. We first detail the experimental process
we used to bridge the gap between the test objectives and
the test cases runnable on an implementation of our vir-
tual meeting. Then, we study and compare the efficiency
of the generated tests (both the functional and robustness
ones) w.r.t a code-coverage measure. Finally, we compare
our approach (use cases enhanced with contracts) with an
approach using activity diagrams (ADs) as a basis to gener-
ate test objectives.

5.1 From test objectives to test cases

As explained in Section 3, our test generation from re-
quirements provides the tester with test objectives, i.e. se-
quences of instantiated use cases. A test case generator has
to be used in order to produce concrete test cases from those
test objectives.

The test case generator is based on the use of scenarios
documenting use cases. Indeed, we assume that sequence
diagrams are attached to each use case. The idea is, for
each test objective, to “substitute” the use case by one of its
scenarios. In our example, there is only one scenario per use
case, which corresponds to a single command of the system.
Then we obtain the test cases using a template associated
to each use case giving the syntactic requirements of the
implementation. Other existing test cases generation can be
used such as TGV[13] or AGATHA[9].

5.2 Study of the generated test efficiency

System structure. For the experimental validation, we used
a Java implementation of the virtual meeting. This imple-
mentation is made of about 35 classes and 150 methods. We
analyzed our implementation code and partitioned it into
four categories as shown in figure 6. Around 9% of the
code is dead code. Nevertheless, this code is relevant: it
consists of pertinent but unused accessors, which could be
used in future evolutions of the system. Functional testing
cannot deal with this code: it has to be tested during the unit
testing. For the following study, we removed those 9% of
dead code to focus on the efficiency of our tests on reach-
able code. Around 26% of the code is robustness code: ro-
bustness w.r.t. the specification which asserts that only the
required functions are present, and robustness w.r.t. the en-
vironment which asserts that the inputs coming from the
environment are correct.

A lesson learnt during this study is that our testing ap-
proach does not replace integration or unit testing stages,
that allow specific aspects that are not described at very high
level to be covered.
Results for functional testing. For criteria comparison, we
generated the test cases with each of the criteria, and mea-
sured the percentage of covered code (using the tool JTra-
cor [7]). Statistics on the test cases generated for the virtual
meeting system are given in table 1. For all the criteria,
the average size of each test case (length of a use case se-
quence) varies from 5 to 11 instantiated use cases, and so
the test cases are easy to interpret.

The results of the code coverage measures are given in
figure 7, in the form of a percentage of covered by func-
tional test cases. Except for the All vertices criterion, a 70%
code coverage is reached by all the criteria, and combined
with robustness criterion, 80% of the code is covered. The

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

Figure 6. Code analysis

Criterion
generated test

objectives

average size

of the tests

All edges 13841 11
All vertices 769 10

All instantiated UC 50 5
AV-AIUC 819 10

All precondition terms 15 5

Table 1. Statistics on generated tests

code coverage of the All vertices criterion is weak since op-
timally covering all vertices of the graph does not even en-
sure that all the use cases are used once: the use cases that
do not modify the system state are not covered (since they
appear as loops on a single vertex of the UCTS).

If All vertices, AV-AIUC, All instantiated UC, and All pre-
condition term criteria are equivalent for code coverage,
their respective efficiency is not equal. In figure 8 , we pro-
pose to estimate their efficiency, in terms of a ratio between
the covered statements and the test cases. Intuitively, it cor-
responds to the relative contribution a test case makes to
code coverage. It clearly appears that each test case gener-
ated with the criteria All edges, All vertices and AV-AIUC has
a low efficiency in average. This is due to the fact that the
sets of test cases generated with those criteria are not more
efficient (in terms of code coverage) but only larger than
the sets of test cases generated with the All instantiated UC
and All precondition terms criterion. Indeed, the All edges
criterion generates for example 13841 test cases (see Table
1).

As a conclusion to this study, the All instantiated UC and
All precondition terms criteria appear as the most efficient
criteria in terms of code coverage. Those criteria thus an-
swer the third Binder’s question: functional test is achieved
when all the test cases generated with one of the criteria
have succeeded.
Robustness tests. To estimate the quality of the robustness

Code covered by functional test cases

Code covered by robustness test cases

50

55

60

65

70

75

80

85

All edges All vertices All inst. UC All inst. UC
and All
edges

All
precondition

terms

% covered code

Code covered by functional test cases

Code covered by robustness test cases

50

55

60

65

70

75

80

85

All edges All vertices All inst. UC All inst. UC
and All
edges

All
precondition

terms

% covered code

Figure 7. A comparison of criterion w.r.t. code
coverage

0

4

8

12

16

20

All edges All vertices All inst. UC All inst. UC

and All
edges

All

precondition
terms

covered satements

test cases

0

4

8

12

16

20

All edges All vertices All inst. UC All inst. UC

and All
edges

All

precondition
terms

covered satements

test cases

Figure 8. A comparison of criterion w.r.t test
cases efficiency

criterion presented in Section 4, we generated the 62 test
cases with the robustness criterion. Since the code cover-
age of those robustness tests is not meaningful on its own,
we computed the coverage of the union of sets of functional
test cases (previously generated) with those 62 test cases.
The obtained results are presented in Figure 7, as a percent-
age of code covered by the robustness test cases. As men-
tioned above, the robustness code can be divided into two
categories, the robustness w.r.t. the environment, and the ro-
bustness w.r.t. the requirements. Since our robustness tests
come from functional requirements, they cannot cover all
the robustness code but they cover 100% of the robustness
code w.r.t. the requirements. The uncovered code concerns
syntactical verifications of the inputs, and treatments of net-
work exceptions (these aspects are specific to the distributed
platform).

So far, we thus identified two relevant functional criteria

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

and a robustness one. In the next section, we compare in
terms of test efficiency our approach (using contracts) with
another one using activity diagrams to express the use cases
dependencies.

5.3 Activity diagrams vs contracts

Since several methods propose to use activity diagrams
to express sequential dependencies of the use cases, we
compare our contract approach with an approach using ac-
tivity diagrams. Our activity diagram is divided into swim-
lanes, one per actor in the system and seeks to express the
dependencies between use cases, similarly to what we ex-
press with contracts. Precedence constraints are expressed
thanks to ControlFlows and JoinNodes. Choices are rep-
resented by DecisionNodes and correspond to the different
calls users can perform. Such an activity diagram is given
on figure 9.

ModeratorParticipantManager

Connect Connect Connect

Plan

Consult

Open

Enter
Enter

Ask

HandOver

Speak
Leave

Close
Over

Leave

Disconnect

Disconnect

Disconnect

Figure 9. A simplified activity diagram for the
virtual meeting system

To compare the two approaches in terms of test effi-
ciency, we translated the activity diagrams into a contracts
system. The algorithm is available in [1]. Then we com-
pared the tests obtained with the original contracts system
and with the one stemming from the activity diagram. In
the following, we first explain the translation from activity
diagrams to a contracts systems, then we discuss which lan-
guage is most adapted to express dependency between the

use cases, and finally we compare the obtained test cases in
terms of code coverage.

A qualitative comparison. So far, we had expressed
the virtual meeting requirements in both AD and contract
system formalism. In the following, we compare those two
approaches in terms of expressiveness and easiness of use.

On the one hand, the activity diagram is much more dif-
ficult to build, since the use cases interactions have to be
thought globally. On the opposite, writing contracts is much
easier, since we only have to think in terms of the require-
ments a use case has in order to be applicable, and in terms
of the consequences the execution of a use case has on the
system.

On the other hand, the activity diagrams being a graph-
ical language, they are supposed to be more easily under-
standable. But as soon as the activity diagrams have to com-
pletely describe the system behavior, they quickly become
very difficult to read, due to a huge number of control nodes
introduced to handle loops and interactions between actors.
Due to this complexity, we studied two activity diagrams for
the virtual meeting system. The first one (AD1) is simple
and without loops (AD1 is given on Figure 9). The second
one (AD2) was built by completing the first one to express
all the system behaviors. Yet, AD2 is not complete since all
interactions between actors are not possible to express. For
example, it is not possible to express that when the moder-
ator closes a meeting, then all the participants are ejected
from the meeting.

To conclude, ADs are well-suitable for very simple sys-
tems (or to document partial behaviors), but for complete
and realistic systems, the contracts approach is more ade-
quate regarding both complexity and expressiveness.
Comparison of tests efficiency. To compare the efficiency
of the generated tests, we first studied the inclusion rela-
tion existing between them. As shown in Table 2, 80 %
of the tests generated from AD1 (resp. AD2) are included
in the UCTS built from the contracts system. Studying the
remaining 20% of tests showed that those tests were not cor-
rect. This means that the test generation from an AD may
lead to generate sequences of use cases that are expected to
be valid, while they contradict the requirements. Those in-
correct test sequences come from the fact that, as previously
said, some interactions were not possible to express with an
AD.

Expressing use cases dependencies with an AD thus
leads to generate tests accepting (and requiring) incorrect
behaviors. That is why we consider the AD as a wrong ba-
sis to generate test objectives.

To estimate the quality of the test cases generated using
activity diagrams as a way to express dependency of use
cases, we compare them with the test cases obtained using
the contracts system. To perform a meaningful compari-
son, we removed the incorrect test cases generated from the

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

AD1 AD2

Number of test objectives

with the all edges criterion
346 436

Inclusion of the generated

paths in the original UCTS
278/346 (80%) 350/436 (80%)

Table 2. Inclusion of tests generated from ac-
tivity diagrams in the UCTS of the contracts
system

ADs. The results of this comparison are given in Figure 10.

0

10

20

30

40

50

60

70

80

All inst. UC All precondition terms

contracts sys.

Simple AD

Completed AD

% code covered

0

10

20

30

40

50

60

70

80

All inst. UC All precondition terms

contracts sys.

Simple AD

Completed AD

% code covered

Figure 10. Compared test coverage of test
cases generated from activity diagrams and
contracts system

Due to the low expressiveness of ADs, their generated test
cases lead to a poor code coverage, as it clearly appears in
Figure 10. An interesting point is that completing the sim-
ple AD did not significantly improve the efficiency of the
generated test cases.

To conclude, expressing requirements dependencies with
contracts is more adapted to automated test generation than
using ADs since:

� contracts are more expressive than AD and thus lead to
a more complete test coverage,

� for the same level of specification, the relative effort to
write contracts is less important than to draw an activ-
ity diagram,

� the ADs may lead to generate a significant amount of
invalid test cases.

6 Related work

The main contribution for system testing from use cases
can be found in [3, 4]. The authors propose to express the

sequential constraints of the use cases with an extended ac-
tivity diagram, with new stereotypes for expressing itera-
tion. One activity diagram is provided per actor, and the use
cases are grouped into swimlanes depending on the respon-
sibilities they have w.r.t the main objects of the system. The
activity diagram is then transformed into a weighted graph,
from which regular expressions are exhaustively extracted.
The regular expressions correspond to use case sequences.
Then, all use cases are supposed to be documented with se-
quence diagrams. Those ones are also transformed into reg-
ular expressions. Finally, in each sequence of use cases, the
use cases are replaced with their scenarios’s regular expres-
sion. In this way, test cases are obtained. However, several
limitations appear. First, the test criteria is based on the
coverage of the regular expressions obtained by the projec-
tion from the activity diagram. This criterion leads to a very
high number of test cases: we believe that test criteria have
to be found, leading to a more realistic number of test cases.
Second, as outlined in 5.3, the activity diagram is either a
very incomplete basis to generate significant test sequences
(so all functions are not covered) or very complex to define
(with the risk of specifying infeasible use-case sequences).
Moreover, not all the interactions between actors are taken
into account.

Other approaches rely on use cases and scenarios to gen-
erate system tests. In [16] a method is detailed in order to
systematically derive test cases for system testing. In [8],
a complete approach is proposed to generate system-level
test cases from an accurate description of the use cases of
a system. The use cases description includes pre and post
conditions in natural language, and scenarios, also in nat-
ural languages. Then each use case is transformed into a
state machine. The test objective is described in the form of
a certain state to reach. Then the problem to find a test se-
quence to achieve the test objective is modeled (and solved)
as a planning problem. Coverage criteria are given to cover
the state machines. The limitations of this method is that it
does not take into account the sequential dependencies ex-
isting between the use cases, independently from the rela-
tionships proposed by the UML. Moreover, the transforma-
tion from a use case description to a state machine is done
manually.

Concerning requirements-based testing, a good overview
of the state of the art is given in [15]. The conclusion of
this state of the art is that automated test case generation
is mainly done from formal specification, and so is far too
expensive for a practical use. Moreover it does not lead
to good coverage. The authors suggest then to focus on
methods guiding the testers into a systematic test approach.

The test generation from UML artifacts is now the object
of a large number of works. In particular, [11] proposes an
approach to generate tests from UML state machines, w.r.t.
efficient test coverage. This technique is well suited for unit

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

testing, but not for system testing (or for system of small
size), since a system can hardly be entirely described with a
unique state machine (and if it is possible, its size would be
too large to use it).

Generating tests from contracts has been done in [5] for
unit testing. The principle was to use contracts written in
JML to generate a test oracle. Nevertheless only the oracle
is generated, and not the entry data in this method.

7 Conclusion and future work

This paper describes a requirement-based testing tech-
nique that leverages use-cases to generate functional test
objectives. These test objectives may be easily derived
as test cases for sequential systems such as the one stud-
ied in the paper. This technique is associated with a light
declarative formalism to express the mutual dependencies
between the use cases, in terms of pre/post conditions (kind
of “contracts”). From these enhanced requirements, a la-
beled transition system is built to capture all the possible
valid sequences of use-cases from an initial configuration.
Several structural coverage criteria are proposed and com-
pared. Two other criteria (semantical coverage) are also in-
troduced and their efficiency compared with the others. The
first aims at covering, with short sequences of use-cases, all
the semantically different ways to exercise a use case. The
second is similar except that at the end of a valid sequence
of use-cases, it violates one use case precondition, in ev-
ery semantically different possible ways, in order to exer-
cise the robustness capability of the system under test. One
structural criterion (all instantiated use cases) and the two
semantic criteria (all preconditions terms and robustness)
have clearly been found more efficient than the others.

Concerning the efficiency of such requirement-based
testing approach, the main lesson is probably that it does
not replace integration or unit testing, that allow specific
aspects to be covered, that are not described at very high
level. The promising result is that, for the strict coverage
of functional and robustness code, results are good since all
the code that could be covered has been covered.

Unlike previous testing techniques that order use-cases
to generate tests (e.g. using activity diagrams), this ap-
proach only generates valid use-case sequences, as shown
in a comparison with tests generated from an activity dia-
gram (20 % of the sequences of use-cases are invalid on the
studied example).

Future work are two-fold : first connecting the prototype
to a UML CASE tool, using specific more adequate (less
ad hoc) test case generator, and validating the approach on
other case studies. Second, we would like to study the func-
tional variants for product-line software and also the flexi-
bility of the approach to deal with the fact that requirements
are frequently modified in an OO life-cycle.

References

[1] technical and experimental material.
http://www.irisa.fr/triskell/results/ISSRE03/.

[2] R. Binder. Testing object-oriented systems, chapter 8.
Addison-Wesley, 2000.

[3] L. Briand and Y. Labiche. A UML-based approach to system
testing. Technical report, Carleton University, 2001.

[4] L. Briand and Y. Labiche. A uml-based approach to system
testing. Journal of Software and Systems Modeling, pages
10–42, 2002.

[5] Y. Cheon and G. T. Leavens. A simple and practical ap-
proach to unit testing: The JML and JUnit way. Technical
Report 01–12, 2001.

[6] D. D’Souza and A. Wills. Objects, Component, ans Frame-
works with UML, The Catalysis approach, chapter Inter-
action Models: Uses cases, ACtions, and collaborations.
Addison-Wesley, 1999.

[7] F. Fleurey. A framework to trace execution of java programs.
url: http://franck.fleurey.free.fr/JTracor/.

[8] P. Fröhlich and J. Link. Automated test case generation from
dynamic models. In Proc. of the 14th European Conference
on Object-Orinted Programming (ECOOP’00), 2000.

[9] D. Lugato, C. Bigot, and Y. Valot. Validation and auto-
matic test generation on uml models: the AGATHA ap-
proach. Electronics notes in Theorical Computer Science,
66(2), 2002.

[10] B. Meyer. Applying design by contract. Computer,
25(10):40–51, oct. 1992.

[11] J. Offutt and A. Abdurazik. Generating tests from uml spec-
ifications. In Proc. of the Second International Confer-
ence on Unified Modeling Language. Beyond the Standard
(UML’99), 1999.

[12] J. Offutt, Y. Xiong, and S. Liu. Criteria for generating
specification-based tests. In Proc. of the Fifth IEEE Inter-
national Conefernce on Engineering of Complex Systems,
1999.

[13] S. Pickin, C. Jard, Y. Le Traon, T. Jéron, J.-M. Jézéquel, and
A. Le Guennec. System test synthesis from UML models
of distributed software. In Proc. of the 22nd Conference on
Formal Techniques for Networked and Distributed Systems
(FORTE’02), Houston, Texas, 2002.

[14] B. Regnell, P. Runeson, and C. Wohlin. Towards integration
of use case modelling and usage-based testing. The Journal
of Systems and Software, 50(2):117–130, 2000.

[15] J. Ryser, S. Berner, and M. Glinz. On the state of the art in
requuirements-based validation and test of software. Tech-
nical report, Institut für Informatik, University of Zurich,
1998.

[16] J. Ryser and M. Glinz. A scenario-based approach to val-
idating and testing software systems using statecharts. In
CNAM, editor, Proc. 12th International Conference on Soft-
ware and Systems Engineering and their Applications, dec.
1999.

[17] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer. Scenario
usage in system development: A report on current practice.
IEEE Software, mar. 1998.

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

