Decomposition of Message Sequence Charts

Loic Hélouét, Pierre Le Maigat
IRISA, Campus de Beaulieu
35042 Rennes Cedex, France

{helouet,plemaiga }@irisa.fr

Abstract: High level Message Sequence charts describe compositions of communication
patterns, that can be less intuitive than expected. This points out the need for analysis
tools. Due to the complexity of languages generated by HMSCS, analysis such as temporal
studies generally take as granularity the basic Message sequence charts. For such cases, a
decomposition of a HMSC into smaller patterns can provide a finer analysis. It can also
enhance the understanding of a specification.

Keywords: Message Sequence Charts, decomposition.

1 Introduction

Message Sequence Charts is a normalized formalism for the definition of scenarios. It
is composed of two levels of definition. At a low level of the description, basic Message
sequence Charts (bMSCs for short) describe possible communications between processes.
Processes are represented by vertical axes, messages by arrows from the emitting to the
receiving process. bMSCs are built form very few graphical elements, which allow for a
very fast understanding. In addition to this simplicity, concurrency between events can
be easily detected.

BMSCs only allow for the specification of simple and finite communication patterns.
In order to allow for the description of more elaborated behaviours, High-level Message
Sequence Charts (HMSCs for short) have been proposed ([6]). A HMSC allows for the
composition of bMSCs using parallel compositions, sequences, alternatives, and loops.
Unfortunately, the initial simplicity of bMSCs disappears when they are composed. This
is mainly due to the semantics of the sequential composition. The assumed meaning of
bMSC sequence is weak sequential composition, i.e a local concatenation along process
axis (similar to the local partial order composition defined in [5]). This composition
allows events from basic message sequence charts to be executed in an order that do not
respect the declared order in the specification, and may therefore seem counter intuitive.
Consider, for example, the High-level Message Sequence Chart of Figure 1. Basic Message
Sequence Chart M; precedes Basic Message Sequence Chart Ms. However, due to the
weak sequential composition, sending of message mg can be executed before all events of
M;.

So, a HMSC can describe very complex behaviours. This unexpected complexity un-
derlines the need for tools allowing behavioral and temporal analysis of requirements ex-
pressed by means of High-level Message Sequence Charts. Due to the complexity of the
language generated by a HMSC, temporal analysis tools often use bMSC as the granularity
of study [3], or consider strong sequential composition between charts [7], hence reducing

. bMSC M; bMSC M

\A\\B\ \A\\B\\C\

Figure 1: An example of weak sequential composition

the expressivity of the formalism. When weak sequential composition is assumed, using
events as the granularity for the analysis is not always possible.

In addition to the granularity problem, all the advantages of a graphical notation
such as scenarios can be lost when the specification is too large. When a sequence of
communications is too long, detecting concurrency becomes a difficult task. Furthermore,
different graphical specification may express the same behaviours. Consider the example
in Figure 2: the three specifications express the same behaviours, but are decomposed in a
different way. many equivalence problems have been proved undecidable for HMSCs. Yet,
one may ask if there is a way of expressing a HMSC as a composition of communication
patterns as small as possible, in order to identify obvious equivalences between HMSCs.

Figure 2: Different decompositions of a MSC

The example of Figure 2 can be treated easily, as messages m1,mg, m3 and action ¢
are disposed in layers. However, MSCs allow for message crossing, and a pattern such as
bMSC in Figure 3 can not be decomposed without cutting a message.

We propose an automatic method for decomposing High-level Message Sequence Charts
into equivalent HMSCs composing the smallest basic MSCs contained in the specification.
This is performed into two steps: first, the bMSCs of the initial specification are decom-
posed into basic patterns, and then, these patterns are factorized. This article is organized

my
my

mao
ms

Figure 3: Non decomposable pattern

as follows: section 2 introduces our notation for Message Sequence Charts. Then, section 3
shows how a basic Message Sequence Chart can be decomposed into a set of basic pat-
terns. Section 4 introduces the notion of irreducible message sequence charts, a kind of
“normal form” based on composition of basic patterns. Section 5 provides an algorithm
for computing an irreducible form for a HMSC, before conclusion.

2 Notations

A Basic Message Sequence Chart define the behaviour of communicating processes. Each
process is represented by a vertical axis, and message exchanges are represented by arrows.
Clearly, a bMSC defines a precedence relation on a set of events: along the instance axis,
events are put in a top-down order (except in specific parts of the axis called coregions),
and a message emission must precede the corresponding reception. It seems very natural
to provide bMSCs with a non interleaving semantics as in [1, 2]. A bMSC can be defined
by a labeled partial order on a set of events M =< E, <, A,I,«a >, where:

e F is a set of events,

e < is a partial order relation on events called causal order,

A is a set of action names,

I is a set of instance names, denoted by I(M) when the bMSC considered is not
obvious,

e a: F — A x I is a labeling function associating an action name and an instance
to each event. We will note ¢(e) =i when a(e) = (a,).

Definition 1 Two bMSCs M =< E,<,A,I,a > and M' =< E'.<'A".I'.d' > are
independant if I(M) N I(M') = &. The parallel composition of two independant bMSCs
M and M', is denoted by M||M', and is defined by the bMSC < EUE', < U<'JAUA',TU
I'.w >, where:

m: EUE — (AUA)x(IUTI)
ecE +— afe)
e el +— o (e)
When two bMSCs M and M' are not independent, we will write M jf M'. A bMSC N
is a parallel component of M if there exists a bMSC M' such that M = M'||N.

As we are dealing with weak sequential composition, if two bMSCs M; and Ms are in-
dependent, then M;||My = Mj; Ms. Parallel composition will be discussed in more detail
section 4.

Basic Message Sequence Charts only allow for a finite set of behaviours. In order to
compose bMSCs, a higher level formalism called High-level Message sequgnce Charts has
been introduced, which allows for parallel composition, alternatives, loops, an hierarchical
definitions. Within our approach, we will not consider the parallel composition of highlevel
message sequence charts. As a hierarchy can be transformed into a two-level specification
(one bMSC level, and one HMSC level), we can give the following definition:

Definition 2 A HMSC is a graph H =< N, —, ¢init, Qend, M >, where:

e N is a set of nodes,

e —C N xMxN is a transition relation,
® Qinit 15 the initial node,

® Qecng s a (possibly empty) set of end nodes,
e M is a set of bMSCs.

Definition 3 Let M =< E,<,A,I,a > be a bMSC. We will say that M' =< E',<'
LA T o > is a sub-bMSC of M if:

L] E,gE, §|EI:SI, AIgA’ IIgI’ OZ‘EI:OZI,
e lme M &?me M

The first step for decomposing a bMSC M is to search for the smallest sub-bMSCs of
M. These minimal sub-bMSCs are called basic patterns of M. The search for such bMSCs
is the aim of the next section.

3 Basic Patterns
Definition 4 A cutting point is a subset cp C E such that:

e Jicl, Veccp, ¢p(e) =1 (all elements of cp are events of the same instance)

e Ve € cp, Ve' <e, if p(e') = P(e) then €' € cp, (all predecessors of an event of cp on
the same instance are also in cp)

e Vecop (¢ € B ple) = ple) Ne L&' N/ £ e} Cap

Slightly extending our notations, we will note ¢(cp) = ¢ for a cutting point c¢p when
Ve € cp, ¢p(e) =i. A cutting point defines a “point”, on the graphical representation of the
instances, situated between two events. Note that our definition do not allow a cutting
point to be placed within a coregion.

On the example of Figure 4, cutting points allowed on instance A are: Iy = 0, Iy = {e1 },
Is = {ei1,ea,e3}, Iy = {e1,e2,e3,e4}, which define points pi,p2,ps,ps on instance axis
(symbolized by black crosses).

[[
D1
€1
.pz/' “
e e /0 €6
e3 O~ |
b3
€4
D4
[] [

Figure 4: Cutting points

Definition 5 A cut of a bMSC M =< E,<,A,I,a > is a subset C of E such that
C = U;¢cr cpi is the union the cutting points associated to each instance.

A cut can be represented graphically by a line going through the points defined by
cutting points. Figure 5 shows three possible cuts C1, C and C3. All cuts are not pertinent,
ie they do not provide information about how a bMSC can be split.

Figure 5: Some cuts

Definition 6 A cut partitions a bMSC M into two partially ordered sets My = (C, S‘C)

and My = (E\C, §|E\C)- A cut C will be called a valid cut if M7 and Ms are sub-bMSCs
of M.

A wvalid cut of a bMSC M is a cut that allows to partition M without cutting any
message. In example Figure 5, C5 is not a valid cut, as message mo is cut off. Note
that our definition of cutting points also prevents coregions from being partitionned. This
definition of valid cuts is similar to the definition of distributed control points without
Z-Path of [4]. The main difference is that a Z-path free observation point ensures that a

reception can appear in an observation if and only if the emission also appears in the same
observation point, which allows to save observations in which a message is transitting. In
the case of valid cuts, we do not want to separate message emission and reception.

Definition 7 A basic pattern of a bMSC M is a subset B C E such that
any cut C of M with BNC # 0 and BN (E\C) # 0, is not a valid cut.

A basic patern is a set of events such that any cut separating them is invalid. bMSC
in Figure 3 is a basic pattern, as it is impossible to separate its events without cutting a
message. A decomposition of a bMSC is a partition into basic patterns, ie into elementary
patterns that can not be cut without cutting a message.

Theorem 1 Let M =< E, <, A,I,a > be a bMSC, and X C E be a subset of events of
E, let G(M) be the covering graph of the quasi-order generated by:

<U{(e,e),e el U{(e,€)U(c,¢e), e and ¢ in the same coregion}

then X 1is a basic pattern of M if and only if X is a strongly connected component of

G(M).
Proof:

e X not basic pattern of M = X not strongly connected component of G(M):

As we know that G(M) contains an reverse edge between two events connected by a
message, then no message is cut in X. Similarly, no coregion is cut. Let us suppose
that X is not a basic pattern of M. This would mean that there exists a valid cut
C of M such that X can be partitioned into two non empty sets X; and X, (see
illustration in Figure 6). Edges connecting X; and X, are edges from causality on
instances as a valid cut do not split messages. If C' partitions X into X; and Xo,
then X; = XNC and Xy = X N(E\C). So, any edge between X; and X, goes from
X1 to X5. Consequently, X is not a strongly connected component of G(M).

Figure 6: partition of X by the cut C

e X not strongly connected component of G(M) = X is not a basic pattern of G(M):

Let us suppose that a set X C G(M) of events is not strongly connected. Then,
there exists a pair of events (e, s) such that no cycle of X goes through e and s.
Consequently, the strongly connected component containing e (noted scc(e)) do not
contain s, therefore scc(e) # X. Furthermore, as e € scc(e), scc(e) # 0. Let
C =] scc(e). Then, X can be partitioned into {C, X\C}. If X is a bMSC, then C
is a valid cut: any edge z — y from C to X\C can not be a message or coregion
edge (else y would be contained in C). So, X can not be a basic pattern.(]

4 Decomposition of bMSCs into irreducible sub-bMSCs

When considering basic patterns within an bMSC, it seems obvious that independent
patterns can be placed in any order. Even more, a bMSC can be considered as layers of
parallel basic patterns.

Definition 8 A bMSC M is said reducible if there exist sub-bMSCs My # 0 and My # ()
of M with M }f My, such that M = My; My. A bMSC that is not reducible will be said to
be irreducible.

Let us note that if there exists a valid cut C partitioning M in M; et My, then we
have M = Mj; M5 and the bMSC M is reducible if M }f Ms. Therefore, a basic pattern
is necessarily irreducible. Furthermore, a parallel composition of irreducible bMSCs is
irreducible. Conversely, if M = M;||Ms is an irreducible bMSCs, then so are My et M.
This suffices to characterize irreducible bMSCs as follows.

Proposition 1 A bMSC M is irreducible if and only if M is a parallel composition of
basic patterns: M = by||ba||---||bn-

A decomposition of a bMSC into irreducible elements is unique, up to permutations
between parallel compositions.

Proposition 2 The irreducible form of a bMSC M is the HMSC H = Ni;Na;...; N,
equivalent to M (the local concatenation of N1,..., N, defines the same order as M), and
such that:

i) Vi,1 <i <mn, N; is an irreducible bMSC,

i1) for all basic patterns b of Nj, where 2 < j < n, there ezists a basic pattern, b, of
Nj_1 such that b} b.

Proof:
It can be easily shown that the irreducible form of M is unique. To conclude the proof of
proposition 2, we need the following lemma, which proof is immediate:

Lemma 1 Let SC be the set of all strongly connected components of the graph G(M) and
=< be the relation defined by:

X<X' &o3JeecX,IecX e<¢

Then =< is a partial order relation on SC.

This lemma implies that if X < X’ then the basic pattern X’ is not parallel to X.
Conversely, X is parallel to X’ if and only if X et X’ are incomparable in <.

Now, let us consider the following algorithm which constructs a HMSC H from M.
Algorithm:

Build the graph G(M)
Compute the strongly connected components of G(M): SC = X1,.., X,
H=9
while SC # @ do
N:=0
for all X € min(SC) do
N = N||X
end for
SC := SC\min(SC)
H.=H;N
end while

The computation of the strongly connected components can be performed using the
well known algorithm of Tarjan ([8]). As |SC]| is finite, this algorithm terminates. One
has to show that H verifies the conditions of proposition 2.

According to the construction method, any component N; in H = Ni;...; N, is an
irreducible bMSC. Furthermore, as any basic pattern X of N;, with 2 < ¢ < n, is not
minimal in SC for the order <, there exists X’ € SC such that X’ covers X. According to
lemma 1, H satisfies the second condition of the proposition. Now, the last thing to prove
is that the behaviours of H and M are the same: if e—<,s €’ (e covers €’ for the order of M)
then, in the case where e and €’ are in the same strongly connected component, there exists
1 such that e, e’ € N;. As Nj; is a sub-bMSC of M, we obtain e—< g €’. In the case where
e€ X and € € X' with X # X’ and X, X' are two strongly connected components; We
necessarily have ¢(e) = ¢(e’) and the weak sequential composition implies that e—<pg €.
The converse is similar.[]

Example:
Consider bMSC in Figure 7. The irreducible form of this bMSC is shown in Figure 8.

T
m

Figure 7: A reducible bMSC

bMSC M1 bMSC M2 bMSC M3

bMSC M4
B C bMSC M5

Figure 8: Irreducible form of bMSCs Figure 7

5 Irreducible form for HMSCs

We now want to define an irreducible form for a HMSC. We want a HMSC to define a
composition of irreducible bMSCs, and choices to be choices between different basic pat-
terns. Common basic patterns are factorized. Furthermore, in order to detect concurrency
between patterns, basic patterns are moved as upward as possible.

Definition 9 Let H =< N, =, qinit, Qend, M > be a HMSC, let My = N||N' a bMSC of

H, where N and N' are bMSCs and qo,q1 € N such that qq Mo q1; we will say that we
can lift up the bMSC N if qo is not a choice node, qo # Ginit, and one of the following
conditions holds:

i) there ezists only one predecessor q of qo such that q M, qo and IIN)NI(M) =2

i1) there exists more than one predecessor of qo, there is no cycle going through qo, and
for all ¢i 25 qo, i > 1, I(N) N I(M;) = @

As qo is not a choice node, then any cycle going through gy goes through at least one
of the g;’s. The conditions ii) prevents from copying pattern outside loops, hence doing
unfoldings, which may prevent the irreducible form algorithm of section 5 from terminat-
ing.

If we can lift up the parallel component N; we define a new HMSC H' =< N, =, M' >
with N/ = N, My € M is replaced by N', the bMSCs M are replaced by M || N, the

!
relation — is unchanged and finally we change ¢ Mo, q1 into qo N q1 and g M, qo into

q — qo
[] [] [] [] T T T T
P P Ps Py PN | P|N| B|N| PN
T 0 :> T
NN]
1
¢ * ¢

Figure 9: The lift up of a bMSC

Let r be the transformation witch lifts up all the bMSCs of H. This transformation is
well defined, as does not depend on the order in which irreducible components are lift up.
It is straightforward that the image of H by r has the same behaviour as H. The graph of
H has a finite depth, so the iteration, r™, of the transformation r are constant for n large
enough. The limit transformation is noted R, the HMSC R(H) has the property that no
bMSC can be lift up, moreover his behaviours are equivalent to those of H.

Definition 10 Let H =< N, =, ginit, Qend, M > be a HMSC. Let ¢ € N be a node such
that there exists a set of bMSCs My, ..., My, k > 1, defined by g ELIN g;. If all M;’s have a
common parallel component N, then we will say that N can be factorized if ¢ and all ¢;’s
are in the same strongly connected component of H, or if there is no cycle containing q
and one of the ¢;’s.

If a common bMSC N can be factorized, then all its parallel sub-components can
also be factorized. Among all the components that can be factorized, we can always
find the maximal component with respect to bMSC inclusion. So, we can define for this
component an operation called factorization of N, which constructs a new HMSC H' from
H the following way:

From HMSC H, we define a new node ¢’ and a new transition ¢ N, ¢'. On each branch
of the choice, the bMSC M; is equivalent to M, || N (M, can be an empty bMSC). Then,
the following cases may occur for each branch of the choice originally starting from g¢:

Case 1: If M/ = (), then the transition g M, g; is suppressed, and ¢; and ¢’ are identified.

. M!
Case 2: if M/ # (), then the transition ¢ M, g; is removed, and a transition ¢’ —% ¢; is
added.

The factorization procedure is described on Figure 10. In this exemple, nodes ¢; and
g2 are assumed to belong to the same strongly connected component as q.

[] [] [] [] [] [} [] []
Py P> Ps3 Py P Py Ps3 Py
e g — — 0 ¢
= — |
N
| | | |
My N My N Ms N o ¢
I I I
q1 q2 M, Mo Ms
q1 q2

Figure 10: Factorization of bMSC N

We define a transformation F' for a HMSC which replaces H by the HMSC H' consisting
of the factorization of the maximal common parallel component on each choice of H. The
result of this transformation can not be factorized.

Definition 11 A HMSC H =< N, =, Ginit, Qend, M > is said to be in irreducible form
if:

i) All the bMSCs of M are irreducible

ii) For all choice node g € N between branches q M q; , the bMSCs M;’s have no common
parallel component that can be factorized,

iii) For all bBMSC M = by||--- ||bn and for all 1 <i < N, the bMSC b; can not be lift up.

We can define an algorithm for computing a HMSC in irreduible form from an initial
HMSC Hjy. For this, we will need the refinement procedure defined as follows:

Definition 12 Let H =< N, —, ¢init, QenaM > be a HMSC, and Hpyr =< Npyr,—um
s Qinitay Qendy» My > be the irreducible form of a bMSC M. Note that as Hp is a
sequence, Qend,, 5 reduced to an unique node Gepq,,. The refinement of H by Hys is the
HMSC H' =< N", =, qinit, Qend, M' > obtained by replacing each transition q M, q in
H by Hu:

e N'=N\{q,¢'} UNNy

M
(—\M¢—dHU—nu
o —'= U{x i) Qinit such that x i} q E—)}
U{QendM L) y such that q’ L} Y €_>}

o« M'= M\{M} UMy

Algorithm:

Hy =< No,—)o,M() >
H” = HO
for all bMSC M € M do
compute H s
H" := H" refined by H,
end for
repeat
H:=H"
Compute H' = R(H) /* parallel components of irreducible bMSCs of H are
lift up as high as possible */
Compute H" = F(H') /* for all choices, common parallel components are
factorized */
until H" # H /* loop if H has been modified */
Hir — H

Proposition 3 This algorithm terminates, and H™" is in irreducible form. The HMSC
H' will be called the irreducible form of Hy.

Proof:

First, let us show that if, for a HMSC H, Fo R(H) = H, then H is in irreducible form.
We have seen that for a HMSC in which all bMSCs are irreducible, then the transformation
of H by R or F do not contain reducible bMSCs. So, F'(R(H)) satisfies 7) in the definition
of an irreducible form. Furthermore, the HMSC F(R(H)) can not be factorized, so i) is
also verified. It remains to verify 7i7).

If there exists an irreducible component N that can be lift up in F o R(H), then as
R(H) is stable for R, the component N comes from a factorization. Consequently, there

exists in R(H) a choice node g such that for all branches ¢ Mi, ¢, originating from ¢,
M; = N || M]. Now, as R(F(R(H)) = R(H), the transformation R o F' applied to R(H)
will give the same configuration at node ¢g. Let Conf be the set of choice nodes in R(H)
where N can be factorized. Let €2 be the set of strongly connected components associated
to each node of Conf. It is obvious that €2 is ordered. Let ¢ € max €2, we note K the num-
ber of choice nodes in ¢, and n, the number of branches in a choice g € c. The restriction
of R(H) to c contains ¥,cqng occurrences of the irreducible bMSCs N, and the restriction
of F(R(H)) to ¢ contains K occurrences of N. As || > 1, and Vg € Q,n, > 1, we have
Ygeang > K. As c is maximal in R(H) for the factorization of N, no new occurrence of N
can be added from H\c in ¢ by the transformation F followed by R. So, from the equation
R(F(R(H)) = R(H), and as Y4cqnq > K, at least one bMSC N must be duplicated by a
lift up operation. So, there exists in F(R(H)) restricted to ¢ a node g with at least two
predecessors ¢q; and g2 allowing for the lift up of N. As c is strongly connected, there is
at least on cycle going through ¢, which prevents from lifting up V.

Now, let us prove that the algorithm terminates. If the initial HMSC is a tree, then
it is obvious that the algorithm terminates after a finite number of steps. Now, let us
consider the case when H consist on only one single strongly connected component. We
can show by induction on the number of elementary cycles in H that the algorithm termi-
nates. If H is an elementary cycle, then it contains the initial node, and no choice node.
Therefore, the factorization F' has no effect on both H and R(H). By definition, R is
a limit transformation and so, R o R(H) = R(H). Consequently, for all £ > 1, we have
(F o R)*(H) = R*(H) = R(H). Suppose H has n + 1 elementary cycles, oy, ...,0oy, and
o¢ contains the initial node of H. We define a new HMSC H’ constituted of the cycles
O1,...,0,. There exist a transition ¢ — ¢’ of o¢ such that ¢’ € H' and q € H'. Let us
consider ¢’ as the new initial node for H’. By hypothesis of induction, there is a k € N such
that Vn > 1, (F o R)**"(H') = (F o R)¥(H'). Moreover, (F o R)"0y is also constant for n
large enough. And then, thanks to the decomposition of H into ¢ and H’', (F o R)"(H)
also converges.

We can see a HMSC as a tree of strongly connected components. By induction on the
number of strongly connected components, and from the previous result on the convergence
of the algorithm for a tree, it can be easily shown that the iteration of the transformation
converges. [

6

Conclusion

This article has defined an irreducible form for High-level Message Sequence Charts. This
transformation can be useful for analysis procedures considering bMSCs as the granular-
ity of the study, such as the temporal study of [3]. It can also help showing structural
equivalence of specifications.

References

[1]

[2]

3]

[4]

[5]

[6]

[7]

8]

[9]

J.-P. Katoen, L. Lambert. Pomsets for Message Sequence Charts. 1st Workshop of
the SDL Forum Society on SDL and MSC, SAM98, Berlin, June/July 1998.

L.Helouet, C.Jard, B.Caillaud An effective equivalence for sets of scenar-
ios represented by Message Sequence Charts. INRIA research report no 3499,
ftp://ftp.inria.fr/INRIA /publication/RR/RR-3499.ps.gz

P.Le Maigat, L.Helouet, A (max,+) approach for time in Message Sequence Charts,
5th workshop on Discrete Event Systems (WODES 2000), Ghent, Belgium, August
2000.

R.H.B Netzer, J.Xu, Necessary and sufficient conditions for Consistent Global Snap-
shots, IEEE Transactions on Parallel and distributed Systems, 6(2):165-169,1995.

V.Pratt Modeling Concurrency with Partial Orders, International Journal of Parallel
Programming, Vol 15, No 1, 1986, pp 33-71

E. Rudolph, J. Grabowski, P. Graubmann. Tutorial on Message Sequence Charts (M-
SC’96). In: Tutorials of the First joint International Conference on Formal Descrip-
tion Techniques for Distributed Systems and Communication Protocols, and Protocol
Specification, Testing, and Verification(FORTE/PSTV’96), Kaiserslautern, Germany,
October 1996. FORTE’96.

F. Slomka, J. Zant, L. Lambert. MSC-based Schedulability Analysis. Workshop on
Performance and Time in SDL and MSC. Technical Report 1/98, IMMD VII, Uni-
versity of Erlangen-Nuremberg, Erlangen, February 1998

R. Tarjan, Depth-first search and linear graph algorithms, STAM Journal of Comput-
ing, vol 1, no 2, 1992

ITU, Norm Z.120, Message Sequence Charts.

