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«The discovery of nuclear reactions need not bring aboutiélsgruction of mankind any more
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Abstract

Scientific discovery often culminates into representingcitire in nature asetworks (graphs)
of objects For instance, certain biological reaction networks aimejaresent living processes
such as burning fat or switching genes on/off. Knowledgenfrexperiments, data analysis
and mental tacit lead to the discovery of sfectivestructures in nature. Can this process of
scientific discovery using various sources of knowledgeuberaated? In this thesis, we address
the same question in the contemporary context of modeedrangineering (MDE) of complex
software systems.

MDE aims to grease the wheels of complex software creatimyigst class artifacts called
models Very much like the process of effective structure discpverscience a modeler creates
effective models, representing useful software artifaicisa modelling domain In this thesis,
we consideitwo such modelling domains: metamodieis modelling languages arfdature di-
agramsfor Software Product Lines (SPLs). Can wetomate effective model discoveryn
a modelling domain? The central challenge in discovery ésatitomatic generation of mod-
els Models are graphs of inter-connected objects with coimsran their structure and the
data contained in them. These constraints are enforced bydaltimg domain and heteroge-
neous sources of knowledge including several well-forneedrrules. How can we automati-
cally generate models that simultaneously satisfy themstints? In this thesis, we present a
model-driven framework to answer this question.

The framework for automatic model discovery uses heterages sources of knowledge to

first setup a concise and relevant subset of a modelling dospegcification called theffective



modelling domainNext, ittransforms the effective modelling domain defined in pbssdilfer-
ent languageso aconstraint satisfaction problerim the unique formal specification language
Alloy. Finally, the framework invokes a solver on the Alloy modelbenerate one or more ef-
fective models. We embody the framework in two tooGartier for model discovery in any
modelling language andvishkarfor product discovery in a SPL. We validate our framework
throughrigorous experiments in test model generation, partial ei@dmpletion, product gen-
eration in SPLsandgeneration of web-service orchestrations The results qualify that our
framework consistently generates effective findings in efloty domains from commensurate

case studies.



Abstrait

Les découvertes scientifiques aboutissent souvent a kEseqation de structures dans I'environnement
sous forme dgraphes d’'objetsPar exemple, certains réseaux de réactions biologigsesta
représenter les processus vitaux tels que la consommagignag ou |'activation/désactivation
des génes. L'extraction de connaissances a partir d’erpétations, I'analyse des données et
I'inférence conduisent a la découverte steuctures effectivedans la nature. Ce processus de
découverte scientifiques peut-il étre automatisé au mogelivgrses sources de connaissances?
Dans cette thése, nous abordons la méme question dansdgteortintemporain de I'ingénierie
dirigée par les modéles (IDM) de systémes logiciels congdex

L'IDM vise a accélérer la création de logiciels complexesutitisant de artefacts de base
appelésmodeles Tout comme le processus de découverte de structuresiedfeen science
un modeleur crée dans wiomaine de modélisatiodes modeéles effectifs, qui représente des
artefacts logiciels utiles. Dans cette thése, nous corwidédeux domaines de modélisation:
métamodelepour la modélisation des langages et fisgure diagramgpour les lignes de pro-
duits (LPL) logiciels. Pouvons-nowsutomatiser la découverte de modéles effectifdans un
domaine de modélisation? Le principal défi dans la décoe\est lagénération automatique
de modeles Les modéles sont degaphes d’objets interconnectévec des contraintes sur
leur structure et les données gu'ils contiennent. Ces aimiés sont imposées par un domaine
de modeélisation et des sources hétérogenes de connaissiactigant plusieurs régles de bonne
formation. Comment pouvons-nous générer automatiquedesninodéles qui satisfont ces con-

traintes? Dans cette thése, nous présentons un framewiy pdar les modéles pour répondre
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a cette question.

Le framework pour la découverte automatique de modelesaitiles sources hétérogénes
de connaissances pour construire, dans un premier temmEusaensemble concis et perti-
nent d’'une spécification du domaine de modélisation apmkiéeine de modélisation effectif
Ensuite, iltransforme le domaine de modélisation effectif défini dans ifférent langages
vers unprobléme de satisfaction de contrainteslans le langage de spécification formAdby.
Enfin, le framework invoque un solveur sur le modéle Alloy pgénérer un ou plusieurs mod-
eles effectifs. Nous incorporons le framework dans deuksou€artier pour la découverte de
modéles a partir de n’importe quel langage de modélisatigkvishkarpour la découverte de
produits dans une LPL. Nous validons notre framework paredpgrimentations rigoureuses
pour la génération de test, la complétion de modeles partigla génération de produits etla
génération d’'orchestrations web service Les résultats montrent que notre framework génére
systématiqguement des solutions effectives dans des demdi® modélisation a partir de cas

d’étude significatifs.
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Résumeé en francais

(French Summary)

L'ingénierie dirigée par les modeéles (IDM) est une appropber spécifier, construire, va-
lider et maintenir des systémes logiciels complexes eisamt des artefacts primitifs appelés
modelesIDM est issu d’un certain nombre de domaines dans le dépetopnt de logiciels tels
gue I'analyse de langages de conception orientes objetsnéthodologies orientées objetl[24]
[I73] [LZ24], et Computer-Aided Software Engineering (CA®Hbores dans les années 80 et 90

afin d’automatiser plusieurs étapes dans le génie logEls][[27].

Les modéles sont degraphes d'objets interconnectefans undomaine de modélisation
Un domaine de modélisation définit emsemble des modélea chaque modéle est construit
en utilisant un ensemble commun de concepts, et des redaffar exemple, dans cette thése,
nous considérons la spécification de deux domaines de reatiéfi : (a) lesnétamodélesgui
spécifient un ensemble de modéles dans un langage de modgligs feature diagrams qui
spécifient un ensemble des produits donnant lieu a une ligr@ratiuits logiciels (LPL). Trés
souvent, la création damodeles effectifdans un domaine de modélisation exige la satisfac-
tion de contraintes a partir de sources hétérogénes. Pampéxela création d’'un modéle de
workflow en utilisant le diagramme d’activitémified Modelling Language (UML) exige que le
modele satisfasse les regles de forme, logique métieraintgs économiques, les qualités de

service, et les restrictions de sécurité. Les modeleuentgrogressivement avec I'expérience
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les modéles en vigueur en veillant tacitement a ce que legl@®doientorrects par construc-
tion et satisfassent les contraintes provenant de source®@énds. Malgré tout, ce processus
est extrémement difficile et parfois impossible s'il y a ursdia de créer des milliers de mo-
deéles.Peut-on automatiser la création de modeéles effectifs comptenu de I'hétérogénéité
des sources de la connaissanceC?est la question qui nous intrigue et le sujet de cette these
L'introduction est organisée comme suit. La notion de deede des modéles effectifs se
situe dans le contexte global de découverte des structfieesivees dans les sciences et I'ingé-
nierie. Nous décrivons brievement ce contexte global dasedtior 0l1. Cette theése aborde le
probléme de la découverte automatique dans le contextergatest et spécifiques de la IDM
gue nous décrivons dans la sectignl 0.2. Un certain nombreé&f®@sos dans IDM nécessitent
la génération de modéles effectifs. Notre motivation vmtes scénarios que nous décrivons
dans la sectiof_0.3. Dans la sect[on] 0.4, nous présentarentexte général du problemet
ses défis. Nous présentons notre thése et décrivons notiedeéle découverte automatique de
modelés et de produits effectifs dans la sediioh 0.5. Nowsngons les contributions de notre

thése dans la secti@nD.6. Enfin, nous présentons I'orgamsde la thése dans la sect{onl0.7.

0.1 Découverte de structures effective en sciences et génie

Les découvertes scientifiqualsoutissent souvent en représentant la structure dantuta na

comme urréseaux d’entitésu graphes d’objetsPar exemple,

— Les réseaux trophiquessont des représentations des relations prédateur-proie lea
especes dans un écosysteme ou d’habitat. Un exemple cestdrtéseau alimentaire
du solillustré & la figurdll. La chaine alimentaire du sol est soutrenvé dans un jardin
bio-compost.

— Les réseaux réaction biochimiqueou des voies métaboliques représentent des échanges
moléculaires dans les étres vivants. \Igie suppresseur de tumelargement étudié de

la figure[l (b) illustre le réle crucial de la protéine p53 démsnort cellulaire. La mort
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Soil Food Web

Animals

Target genes

Mdm2 p21 Noxa
Cop1 Ptprv Bax
Pirh2 Puma

S

Cell cycle arrest Apoptosis

P53 Tumor Supressor Pathway

(b)

FIG. 1 — Des structures effectives en découverte scientifigagRéseau alimentaire du sol (b)

\oie suppresseur de tumeur

cellulaire est importante pour réguler I'évolution carmése.

Les connaissances a partir de I'expérience, I'analyse alessts et de tacite mentale mene a

la découverte de tellegructures utiledans la nature. L'existence de structures effective nast p

limitée a la virtuosité de la nature. Nous, les humains sostuineés de la capacité de représenter

et de créer des structures utiles tels que les batimen{mes, les robots et logiciels complexes.

La conception en ingénieriaboutissent souvent en représentant effectif structutéds a

cielles comme des graphes d’objets. Par exemple,

— Diagrammes de circuits électroniqueseprésentent un réseau de composants électriques

qui permettent d’atteindre un but donné. tiecuit de récepteur FMde la figurdR, par

exemple, est utilisé dans des millions d’appareils radio.

— Les patrons de conceptiorreprésentent en général des solutions réutilisables anx pr

blémes fréquemment rencontrés dans la conception dedtsyitis sont souvent repré-

sentés commies diagrammes de classks patron observateur de logiciels orientés ob-

jet dans Figur&l2 (b) est un modele commun dans les logiaels#eessitant la gestion

des événements distribues. Le célébre logiciel d’'éditiootep Adobe Photoshop est un
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®
5V Subject
absaerver Obzerver
*Attach(in Observer)
[+Detachiin Obsarver)| [FUpdate()
[+Notify()
ssoc aJuF foreach oin abservers
Lecoc ]—@ o.Update()
T 1+—
[I]] - o i subject [EonETEteObsCrVer
@ [FGatStatal) FOpdate}
L1=10turn /0.5 mm SWG25 d = 3mm 1 |
L2 =12 turn /0.5mm SWG25 d = 5mm
3= 1 curn/ 13 W18 - S b s D
retumn subjectState sublect GeiSiate()
FM Receiver Circuit Observer Pattern in Software Design

FiG. 2 — Des structures effectives en ingénierie : (a) Circuitéepteur FM (b) Le patron de
conception observateur

exemple.

Comme la découverte scientifique, la conception en ingénést dirigée par la connais-
sance d'un certain nombre de sources associée a la cativit ingénieur. Puis ce proces-
sus de découverte scientifique ou de conception en ingéreerutilisant diverses sources de
connaissances peut-il éteeitomatisé€ Cette question a fait I'objet d’études depuis plusieurs

décennies avec l'arrivée de l'informatique moderne.

Des programmes informatiques ont été utilisés pour dégdastructure dans la nature. Par
exemple, inspiré par le logique de découverte scientifiqu&arl Popperl[123], Pat Langley,
Herbert Simon, G. Bradshaw, et Zytkow ont mit au point pluseprogrammes informatiques
tels que Bacon, Glauber, Dalton, and Stahl décrit dans ieer [94]. Ces programmes ont été

dirigée par des heuristiques pour réussir a re-découwsitale anciennes de la chimie.

Approches de computations évolutionnaire a été développe gutomatiser la conception
tels que la production de circuits électroniquEsl [88]. Unaowirs lors de la conférence an-
nuelle GECCO, le "Humies award", récompense des progranmm@émentent une approche
évolutive. L'attribution d’un prix de 10,000$ est accord&éa solution la plus proche des rai-

sonnement humaine. Dans la communauté du génie logicgetaigérences récentes, telles que



Résumé en francais
(French Summary) 23

le conférence Automated Software Engineering(ASE) faudas lieus de compétition pour la
présentation des approches de génération des structuiegiaels.
Dans cette thése, nous abordons la question de la décoautot@atique dans le contexte

contemporain de l'ingénierie dirigée par les modéles deeayss logiciels complexes.

0.2 Contexte : Lingénierie dirigée par les modelés

IDM [LI0] vise a accélérer la création de logiciels comptega utilisant des objets de base
appelémodélesLa philosophie IDM utilise des modéles pour représentsradgets importants
dans un systéme, comme d’exigences, les dessins de haat nigs structures de données, les
vues, les interfaces, les transformations de modelescé&meos de test, et le code source. Un
modéle est construit dans wlomaine de modélisatioqui capture un ensemble de concepts
communs et des relations. La construction d’'un modéle dam®maine de modélisation peut-
étre encore réduite en utilisant des régles de bonne famatides contraintes de hétérogeéne
sources.

La notion générale d'un domaine de modélisation peut gbécialiséesa de nombreux
égards. Une description précise de concepts et de relatéiimsssant un ensemble de modéles
appelé un domaine de modélisation. Par exemplenétamodelspécifie le domaine d’un lan-
gage de modélisation. Le célébre langage de modélisatiofied Modelling Language (UML)
[L18], a son propre métamodele qui spécifie I'ensemble defeles WML. Un autre exemple,
d’'un domaine de modélisation est fgature diagranmou feature modetjui spécifie un ensemble
de produits appelé un ligne des produits logiciels (LPL)d&les peuvent étre chargé stockeé,
manipulé et transformer a d’autres modéles ou code sounzergsoudre les problemes logi-
ciels.

IDM fournit un certain nombre de processus logiciels et d@anelogies permettant la mo-
délisation des domaines et la transformation de ses modé&eblodel-Driven Architecture

(MDA) est une marque commercialisée par I'Object Managér@®oup (OMG), qui propose
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une approche pilotée par modéles pour développer un syst@oel. L'approche MDA com-
mence par le développement d’'un domaine de modélisationlesyplatform independent mo-
dels (PIM), ces modeles sont progressivement transforméafiinés dans des platform specific
models (PSM). Les PSM sont réifiés au code exécutable. Geittraction automatique de sys-
temes a partir de modéles de haut niveau permet de captexpeftise en génie logiciel sous la
forme detransformations de modéles réutilisablésctuellement, le framework largement ac-
cepté pour la spécification de domaines de modélisatioboiste Modeling Framework (EMF)
[58]. Par exemple, les métamodeéles sont créés dans le f@iM&tEcorepour spécifier le do-
maine d’'un langage de modélisation. Langages de transfiormaes modeles [142] telles que
le langage impératif Kermeta [82]1108], les fondé sur deges ATL [76] [75] [3], AToM3
[67], Viatra [I56] base sur une grammaire de graphes peentdé transformation des modeéles.
Langages de transformation de modéle sont tenus de se g@mifau standard Query-View-
Transformation (QVT)I[/5]. Différents types de transfotimas de modeles peuvent étre créées
en utilisant ces langages, comme classés danslle [44]. arsfarmations de modeles peuvent
transformer des modeles dans le méme domaine de modéligaaasformations endogéenes),
entre les différents domaines de modélisation (transfooms exogenes) et méme réaliser du
code exécutable a partir d'un modéle de haut niveau.

Notre objectif dans cette these est la découverte autougatig assistée, de modeles dans

un domaine de modélisation.

0.3 Motivation : Pourquoi le besoin de découverte automatige mo-

dele ?

Notre motivation pour la découverte automatique dans leest® général de tiges d'ingé-
nierie dirigée par les modéles existants de la découveraldel efforts dans des domaines
hétérogenes. Ces domaines vont des systdmed[33] [126¢n&idps systéemes physiquisl [97]

[L32] [5€], [88]. Nous voyons la découverte automatique deléfes efficaces dans un domaine
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de la modélisation en tant que cadre général subsumant peechies existantes a la décou-
verte de structure effective dans des domaines hétérogenascience et I'ingénierie. IDM des
systemes a logiciel ne fait pas exception. Dans cette timéses, étudions trois scénarios IDM

comme décrit ci-dessous :

0.3.1 Scénario 1 : La génération de tests pour les transfornians de modéles

Les transformations de modeéles sont des entite logicietmde en IDM. Un modéle simple
de transformatiotMT prend les modéles d’entrée conforme a un métamdddlie d’entrée et
de sortie produit des modéles conformes au méta-modelertie BMo comme le montre la
figure FigurdB. Pas tous les modeles spécifiés par le métatendéntrée peutétre executer par
la transformation du modeéle. Par conséquent, nous compatmpost-conditionpostMT).
Les transformations du modéle lui-méme est construit disant des connaissances a partir

d’'un ensemble d’exigenced Trequirements

Test d'une transformation de modéles nécessite modelérééequi permet de détecter des
bogues dans la transformatidhT. Création manuelle des modéles de test est fastidieuse car
il doitétre un graphe d’'objets qui doiventétre conformeg BIM,, pre(MT), et d'utiliser les
connaissances adTrequirements Création manuelle devient impossible lorsque nous avens b
soin de créer des milliers de modéles de ces essais qui cool@nobbjectifs de test différentes.
Par conséquent, il est clairement nécessaire de automkigénération de modeles d'essai
qui satisfont les connaissances provenant de diversesesotglles queMM,;, pre(MT), et
MTRrequirements La génération automatique de modeles d’entrée exaltevaaunide la décou-
verte automatique si nous validons gu’ils peuvent détdeteibugs dans une transformation.
On peut qualifier I'efficacité des modéles d'essai par demigoes telles queanalyse de mu-
tation pour les transformations modéle [107]. Basé sur une déigrigle ce scénario, nous
demandonsComment pouvons-nous générer des modéles de tester etlifieqglear efficacité

pour la détection des bugs
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0.3.2 Scénario 2 : Achévement d’'un modéle partiel dans un éeur de modéles

Les modélisateurs ont souvent recours a des éditeurs ddemsadeonstruire des modeles
progressivement. Par exemple, le éditeur TopCaseD [54¢peuwitilisé a construire des modeles
UML comme dans la figuld 4. Le modéle présenté est une machiré iiéompléte en WL.
Par exemple, le modele ne contient pas un état initial quuestregle de bonne formation.
Il ya une infinité des moyens possible pour compléter le meot&l qu’il devient une valable
modéle UL de la machine d'état et répond a toutes les régles de bonmation. Ce qui est
probablement plus intéressant est la modeéle plus proclesticompatible a ML et qui contient
tous les éléments du modéle partiel. Il peut y avoir un aemaimbre de possibilités de mener
a bien les modéles partiellement spécifié. On peut rapplatdrevement mode automatique au
probléme de complétion de code automatique dans les eneineents de programmatidn [15].
Ce scénario souléve la question suivan@mment pouvons-nous des modeéles de découverte

automatique complete ou recommandations pour complé&entaéles partielle ?

0.3.3 Scénario 3 : La génération de produits dans une ligne dgroduits logiciels

Un ligne des produits logiciel (LPL) se référe a un ensemiglegobduits partageant en-
semble commune de caractéristiques/features qui répbadribesoins spécifiques d’'une mis-
sion particuliere[[37]. UrFeature Diagram(FD) ou unfeature modeprécise un domaine de
la modélisation d’'un LPL. Feature diagrams introduite pan et al. [/I7][[7B] compacte re-
présentent tous les produits d'un LPL en termes de carsiitgres qui peuventétre composes.

Un FD se compose defeaturesfy, f, ..., fx et les contraintes de dépendance entre les features.
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Par exemple, la sélection de certaines features dans unippedit obligatoirement imposer la
sélection d’autres features. En outre, certaines desrésapeutétre associé a un actif de logi-
ciels tels que service web. Considérons le FD pour un systingestion des crises accident
de voiture dans la figuld 5. Le FD contient 47 éléments dont’@dtré eux sont optionnels.
Certaines des features sont associées a des services atifddsgiciels. Le FD décrit 33, 554,
432 configurations différentes de features. Puis touteslefigurations se composer en des pro-
duits valide ? Pour répondre a cette question, il faut ci@es kes produits ou un sous-ensemble
représentatif de tous les produits. Par exemple, ce sorgdiable des produits qui répondent a
I'interaction entre les paires de features. La créationegeproduits nous aidera a dévoiler des
produits non valide. Manuellement créer des produits disfeat toutes les contraintes FD est
trés fastidieux. Par conséquent, nous demanddosyment peut-on automatiser la génération

de produits dans une ligne des produits logiciels pour difiés objectifs ?
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FiG. 6 — Contexte du probléme pour la découverte automatiquenddsle
0.4 Contexte du probleme et défis

Nous sommes motivés par la nécessité de génération aujoimale modeéles effectifs dans
un domaine de modélisation. Le contexte du probleme de gédeuautomatique de modéle est
illustré dans la figufd6. Le contexte identifie les pointyauis :

— Spécification d’'un domaine de modélisation :le domaine de la modélisation spécifie
un ensemble de modélés. Les exemples de spécifications pour les domaines de modé-
lisation sont des métamodeéles pour la langage de modéfisetfeature diagramsgour
LPLs.

— Sources hétérogénes de connaissancesconnaissances provenant de sources hétéro-
géenes
Source, Source, ...Sourcg éventuellement dans différents langages de modélisatién s
cifient des sous-ensembles du domaine de modélisktioM,, .., M. L'intersection de
ces sous-ensembles
M1, Ma, ..., My est le domaine de modélisation effectif représenté par sareble de mo-

déles effectifMettective NOUS pouvons voir les sources hétérogénes de la connedgssan
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comme un ensemble de contraintes dans les différentesgesggui limitent I'ensemble

des modeled a un sous-ensembMe+ fective

Compte tenu de ces apports, nous demandons : quel est leiemdeate découverte auto-
matique qui peut créer des modéles dans I'enseiviblgcctive? Telle est la question globale qui
nous intrigue.

Cette question donne lieu a un certain nombre de défis ayéird ta découverte automatique
de modéle. Nous décrivons les défis les plus importantssseales :

Défi 1. Mécanisme de découverte : générative ou satisfactiale contraintes ? Notre re-
cherche a commencé avec I'exploration des mécanismesugsigiour automatiser la généra-
tion / découverte de modeles dans un domaine de modélisitimus classons les approches
existantes que so@énérativeou ceux basés sur gatisfaction de contrainted a question était
de savoir lequel est le plus prometteur ?

Une approche générative tente a incrémentalment créer ddéles dans un domaine de
la modélisation par instanciation de I'objet. Par exemglms [29], les auteurs présentent un
algorithme impératif et un outil pour générer des modeélésigsont conformes qu’aux spécifi-
cation,Ecore d’'un métamodéle. L'approche ne garantit pas la satisfacteocontraintes a partir
de sources hétérogénes de connaissances telles que &ssdedbonne formation. De méme,
dans Ehrig et al[]82], les auteurs proposent une approcheelsur les grammaires de graphe
pour générer des modéles conformes a un diagramme de dlessaae un model&core). Ces

modeles ne sont pas conforme a toute contrai@t@s sur le métamodéle.

Les approches fondées sur la satisfaction de contraingagees de transformer un domaine
de modélisation & un ensemble de variables et de contraifiegsemble des contraintes est
résolu en utilisant un solveur de contraintes [91]. Une asipurs solutions de bas niveau sont
transformés comme des modéles du domaine de modélisattte. &pproche a été utilisée dans
des contextes spécifiqgues & un domaine comme les tests dellmdie systeme Korat (Chandra
et al.) [28] est capable de générer des structures de domimpisnentées dans le framework

de Java Collections Framework qui satisfont des prédi€zsméme, Sarfraz Khurshid dans
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son these doctordl[83] présente I'outil TestEra tool patméger des structures de données Java
telles que les listes chainées, tree maps, jeux de hacleagapleaux tas, et les arbres binaires
pour les tests. Les deux approches sont limitées a deswstaate données standard et non pas
a la notion plus générique de modeles. L'approche la plésdssant est I'outil UML2Alloy
[92]. L'outil tente de transformer les diagrammes de clddse , qui ressemblent largement a
de métamodeles, a le langage de spécification formelleo® [[7Z]. On peut alors utiliser A-
LoY pour analyser modélesNd. en générant des exemples et des contre-exemples. Bien que
I'outil ne soit pas directement lié a la découverte du madélgse a transformer les éléments
d’'un diagramme de classe a un probléme de satisfaction deagtuas dans ALOY. Toutefois,
UMLZ2Alloy ne transforme pas les éléments complexes d’uramédéle tels que I'héritage mul-
tiple et lesmultiple containersUML2Alloy ne parvient pas a solliciter I'utilisation delAoy
lorsque la taille de le modéleN. est grand, rendent cette qui rendre I'approche non scalable

Les approches génératives créent des modéles progressivetme peuvent pas satisfaire
les contraintes simultanément. Par conséquent, un certairbre de modeles doit étre rejeté
parce qu’ils ne peuvent pas satisfaire les contraintescétesequent, les approches fondées sur
le satisfaction de contraintes semblent plus prometteuses
Défi 2. Transformer la spécification d’'un domaine de la modéfiation a un probléeme de
satisfaction de contrainted_a spécification d’'un domaine de modélisation contient searble
de concepts et de relations entre eux. Ces relations pentredder des contraintes complexes
qui ne sont pas facilement transformées en un probléme idéastibn de contraintes. En outre,
un grand nombre de concepts et de relations peut conduirepgobieme de satisfaction de
contraintes trés grand qui devient incalculable.

Par exemple, la transformation d'un spécification des métite a un probléme de satis-
faction de contraintes requiert un modeéle de contraintes ges constructions telles que :

— Héritage multiple

— Plusieurs conteneurs pour une classe

— Propriétés opposées
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— Propriétés d'identité

— Propriétés composite

La grande taille d'un métamodeéle tels que IsUavec environ 246 classes empéche la trans-

formation directe en un probléme de satisfaction de cortgaitraitable.

Défi 3. Transformer les connaissances provenant de sourceétBrogénes a des contraintes
Les connaissances provenant de sources hétérogeneséafiésp dans les différents langages
de modélisation. Toutefois, pour la satisfaction de camies, ils doivent tous étre transformés
a des contraintes dans une langage commun. Par exemplehéadé génération des modéles
de tests pour une transformation de modéles doit satigiéreontraintes spécifiees dans un
langage de contraintes textuelles, telles Qbgct Constraint Language, objectifs de test, et la

pré-condition de la transformation de modéles exprimés tlatangage de la transformation.

Défi 4. La génération de modeles doivent étre dans des limitesaniable et finis La dé-
couverte de modéles dans un domaine de modélisation r&cksgiénération de modeéles de
taille finie. Quels sont les heuristiques pour déterminéailee appropriée d’'un modéle qui soit

suffisant pour satisfaire a la connaissance a partir de asinétérogenes de la connaissance ?

Défi 5. Détection des sources incohérentes de la connaissahea connaissance provenant de
diverses sources peut étre incompatible avec le spédificdti domaine de modélisation. Com-

ment pouvons-nous détecter de telles sources de conra@ssacompatibles et les éliminer ?

Défi 6. Validation de I'efficacite des modeledl est nécessaire de procéder a degériences ri-
goureusegjui qualifient les modéles générés par satisfaction deaates. La qualification ga-
rantit que les modeles sont effectifs ou utiles pour desatifgedonnés. Ces expériences doivent
tenir compte de l'effet de divers facteurs qui influent suglelité des modéles générés. Par
exemple, on peut se demander quelle est l'influence de laa@mede modéles multiples en
utilisant la méme solveur de contraintes sur leur efficamitéant que modéles de test ? Les dif-
férents paramétres de solveur de contrainte ont ils undence considérable sur la qualité des

solutions ?
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0.5 These

Dans cette these, nous montrons qu'’il est possible de décawomatiquement des mo-
deles effectifs dans un domaine de modélisation. Nous aheri@ probleme de la découverte de
modeéle effectif dans deux domaines de modélisation : (apiiétieles (b) Feature Diagrams.

Un métamodele est une spécification générale du domaindatigage de modélisation. Un
métamodele peut étre utilisé pour spécifier le domaine dingdge spécifigue au domaine de la
modélisation. Cependant, les systémes logiciels exst&tries composants ne peuvent pas tou-
jours étre modélisé ou transformé dans un langage de maitiigfisa partir de zéro. Idéalement,
des composants fiables dans le temps doivent étre réutilases leur forme mature pour étre
combines avec d’autres composants a fin de construire uensgdogiciel. Si nous voyons ces
composants matures comme des features alors les cominig@isssibles de features sont mieux
modélise avec le langage feature diagram aboutissant dgmeede produits logiciels (LPLS).
Les macro composants associés aux features peuvent étbinées dans des configurations
différentes faisant partie du domaine de modélisation dtufe diagram. Cette distinction entre
les modeles purs dans le domaine d 'un langage de modétigttia configuration des compo-
sants matures dans une ligne de produits logiciels perngenistruction dirigée par les modéles
a différents niveaux. Par conséquent, nous considérorasrdérme maniére les spécifications de
domaines de modélisation dans cette these.

Par conséquent, nous proposons deux frameworks pour lavkyte de modéles qui spéci-

fient le framework général de la figurk 6 :

1. Le framework pour la découverte automatique de modeékctdffdans le domaine de
la modélisation spécifiée par un métamodéle. Ce framewdrinesrporé dans I'outil

CARTIER.

2. Le framework pour la découverte automatique des proétfiestifs dans le domaine de
la modélisation spécifiée par un feature diagram. Ce framewsi incorporé dans I'outil

AVISHKAR.
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FIG. 7 — Un framework pour la découverte automatique de modéiestiés

0.5.1 Un framework pour la découverte automatique de modekeeffectifs

La figure[T présente la vue d’ensemble du framework pour lawégte automatique de
modéle effectif. Le framework est incorporé dans I'outh®rIER. Le nom CARTIER vient
du célebre découvreur francais originaire de Saint-Malocaggecouvert les terres du Québec
au Canada. L'entrée principale du framework est la spétiditalu domaine de la modélisa-
tion donnée par umétamodele d’entrééd_e input métamodéle MM spécifie un ensemble de
modelesM. Le métamodele d’entrée se compose d’'un ensemble de tylpssg@vec des pro-

priétés, des enumerations, primitive) pour former des nesdé'un langage de modélisation.
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Concrétement, le métamodéle d’entrée est stocké commenstamce du métamodélecERE
qui fait partie de la norme de I'industriclipse Modeling Framework (EMF) [58]. Les modéles
eux-mémes sont stockées sous forme de fichiers KMI [10] fisheprésentant des instances du

métamodel&core.

Les sources hétérogénes de connaissantiestent le domaine de la modélisation spécifié
par un métamodele :

— TypesTieq et propriétés Peq requisesdans le métamodele d’entrée. L'ensemble des types
et propriétés requis aide a extraire un sous-ensemble dammoétle d’entrée appetge-
tamodele effectifLe métamodéle effectif précise le sous-ensemble de molkle M. II
peut y avoir plusieurs sources possibles pour I'ensemldayges et propriétés requises :
— L'analyse statique d’une transformation modele donnensemble de types et de pro-

priétés dans le métamodeéle d’entrée effectivement mahjma la transformation.

— Un ensemble de modéles conformes au métamodéle d’entréaesautre source de
types et propriétés requises. Visiter les modeles dansdiable nous donne un en-
semble de types et propriétés utilisées dans le métamadieExemple typique de cette
initialisation dans le monde réel pourrait étre dans unle sk classe pour la concep-
tion orientée objet en utilisantML. Le professeur peut faire remarquer aux éléves les
types et propriétés requises, utilisé a créerLlJen visitant automatiquement tous les
objets d’'un ensemble de modéles.

— Contraintes sur métamodeéleC sont exprimés sur un métamodeéle d’entrée en utilisant un
langage de contraintes textuelles, telles@pject Constraint Language (OCL) [L14]. Ces
contraintes encodent des restrictions qui ne peuvent @é@fges en utilisant un modeéle
Ecore. Nous illustrons ce dans I'ensemiie C M.

— Les sources spécifiques a un domaine de connaissanpegvent également aider a défi-
nir le domaine de la modélisation effectif. Nous en présenuelques-unes ci-dessous :
— Le modele partiel mp est un modele partiellement spécifié qui utilise les métasieod

d’entrée. Par exemple, un éditeur de modéle graphique péromeutilisateur de créer
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des modéles dans un langage de modélisation telles que &snas d’'état WiL. Un
modéle incomplet dans I'éditeur est un modele partiel dangdge machine d’état de
UML. Le modéle partiel peut ne pas respecter toutes les comsaitu métamodéle
UML. Par conséquent, un modeéle partiel est souvent exprimé eamminstance d’'un
version relaxée du métamodéle d’entrée modele partiel définit le sous-ensemble
M3 C M.

La stratégie de couvertureSaider a définir et générer démgments de model¢S5]
qui couvrent un large éventail d'aspects structurels damadtamodele d’entrée. Par
exemple, la stratégie d’'une partition de domaine d’entréenpt de générer un en-
semble de fragments modélb&- qui couvrent les partitions sur tous les types et
les propriétés du métamodeéle d’entrée. Ces fragments deélesodider a définir un
domaine de modélisation effectif pour woverage-based testindune transforma-
tion de modéles. Tous les modéles de test qui répondent anainégse de couverture
contiennent le modéle de fragments générés par la stratégidragments de modeles
sont exprimé dans un langage de modélisation qui permetéléspr des rangs sur
les propriétés d’'un métamodeéle d’entrée. Une stratégieodeecture définit le sous-
ensembleéM, C M.

La pré-condition d’'une transformation pre(MT) est un ensemble d’invariants sur
le métamodéle qui est spécifique a une transformation de lesddd . Une transfor-
mation de modeéles ne peu souvent pas étre congue pour traesftous les modeéles
spécifiés par son métamodéle d’entrée. Par exemple, lddraragion des modeéles de
diagramme de classe vers des modeles entité relation diaggd22] exige que toutes
les classes dans le modéle d’entrée aient au moins un apribngipal. LeOCL [114]
est souvent utilisé pour exprimer des pré-conditions. #agandition définit le sous-

ensembléMs C M.

L'intersection de toutes les sources de connaissancestdéfiomaine de la modélisa-

tion effectif Le domaine de la modélisation effectif est I'ensemble deslétes définis par



Résumé en francais
(French Summary) 37

Meft tective— M N M1N M2 M3 Mg N Ms.
La méthodologie pour la découverte de modeéles utilise lasces de connaissances pré-
sentées ci-dessus pour générer automatiguement des medfeletifs dans le domaine de la

modeélisation. Nous suivons les étapes ci-dessous :

Etape 1. Identification métamodéle effectif :Nous élaguons les métamodeéle d’enthél;,

pour obtenir le métamodéle effeckifMe t rectiveutilisant un algorithme d’élagage de métamodeéle[141].
Le métamodele effectifs contient 'ensemble des tyfeget propriétés requiseReq fournies

en entrée et toutes ses dépendances obligatoires calculélgarithme de I'élagage métamo-

dele. Tous les types de biens inutiles et sont élimiv@¥e fective €St UN super type delMiy,

d’'un point de vue théorie de typage et un sous-ensembiéMg d’un point de vue théorie des
ensembles. La taille du métamodéle effebtife+ rective€St SOUVENt beaucoup plus petite que la

taille du métamodéle d’entrédM;p.

Etape 2. Transformation de la spécification de domaine efféi¢ & A LLOY : La spécification
de domaine effectif de la modélisation est définie par uraserombre d'artefacts. Elle est
d’abord définie par le métamodeéle effed#Me1 tective €t CONtrainte par la connaissance d'une
ou plusieurs sources : (b) Contraintes sur metamati¢ly Modele partieim, (c) Modeéle frag-
mentsMF de la stratégie de couvertug et (d) Pré-conditiorpre(MT) d’une transformation
de modéleMT. Nous transformons ces artefacts exprimés dans des landdfggentes, éven-
tuellement a urconstraint satisfaction problem (CSP) dans la langage pour la spécification
formelle ALLoy [[71] [[7Z]. Le formalisme théorique pour exprimer le CSP edobbique rela-
tionnelle de premier ordre.

Etape 3. Génération de modeéles dans un domaine de modélisati effectif : Nous résol-
vons le CSP enALoy pour générer des modéles effectifs dans le domaine de lalisetd.
CARTIER atteint cet objectif en invoquant KodKod[53] enLkoy de transformer le CSP a
Boolean Conjunctive Normal Form (CNF) . Nous invoquons urieesir de satisfiabilité (SAT)
comme MiniSAT [112], ZChaff[[159] pour résoudre le BooleaNFE Enfin, nous transformons

des solutions a faible niveau de la CNF vers des modéles mnagau métamodeéle d’entrée
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MMin.

La génération de modeles dans un domaine de modélisatisnwestnt orientée vers un ob-
jectif. Nous devons nous assurer que I'objectif est aténaniére cohérente en tenant compte
de tous les facteurs déterminants. Une question typique&ieiquel est I'effet d’'un solveur
SAT sur la qualité de la solution ? Pour répondre a cette mueabus avons besoin de réali-
ser des expériences qui génerent plusieurs solutions pauéine probléme de satisfaction de
contraintes. Il existe de nombreux autres facteurs pogukds nous effectuons des expériences
rigoureuses pour valider I'efficacité de la découverte. Degite these, nous réalisons des expé-

riences dans les domaines d’application suivants :
1. Génération de modéles de teste pour les transformatiomodéles

2. Complétion du modele partiel dans les éditeurs de modetihaine spécifique

0.5.2 Un framework pour la découverte automatique de produs effectifs

La figure[® présente la vision globale du framework pour laodeerte de produits effectifs.
Le framework est incorporé dans I'outivASHKAR. AVISHKAR en hindi signifieinventionet
représente capacité de I'outil a découvrir les produitssdame LPL. L'entrée principale du
framework est la spécification d’'un domaine de modélisadimmée par ufeature diagranou
feature modelLefeature diagram Fpécifie un ensemble de produitd_esFeature Diagrams
(FD) introduits par Kang et al]78] représentent tous lexlpits (ou configurations) d’'un LPL
en termes de features qui peuvent étre composés. Les Fditgrams ont été formalisés pour
effectuer des analyses des LPL[IL36]. Dans [136], Schobbtmas. proposent une définition
générique formelle de FD qui subsume les nombreux dialédDesxistants. Nous définissons
un FD comme suit :

— Un FD se compose defeaturesfy, fp, ..., fx

— Un featuref; peut étre associé a un morceau de logiciel.

— Les Features sont organisés dans une relation paremta&l#fas un arbr@. Un feature

sans enfant est appelé une feuille.
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— Les relations parent-enfant entre les featuest f. sont classee comme suit :
— Mandatory- enfant featuref; est requis sy est sélectionne.
— Optional - enfant featuref; peut étre sélectionné $§j est sélectionne.
— OR- au moins un des enfanfgy, fe,..,fc3 de fj, doit étre sélectionne.
— Alternative (XOR) I'un des enfantd¢y, fco,..,fck de fpp doit étre sélectionné.
— Relations a travers I'arbre entre deux featufiest f; dans I'arbreT sont classés comme
suit :
— fi requiresf; - La sélection def; dans un produit implique la sélection die
— fj excludesf; - f; et f; ne peuvent pas faire partie du méme produit et sarttiellement

exclusives
A partir du FD nous créons des produits / configurations deifes.

Un certain nombre de sources hétérogénes de connaissanoesitraignent le domaine
spécifié par un FD

— Contraintes textuelsC exprimée sur un ensemble de features. Les contraintes sont e
primées textuellement quand elles ne peuvent pas étraatimeat encodées dansH®.
Ces contraintes précisent le sous-enserRble P

— Produit partiel p est un ensemble de features choisis dans le produit. L'drisedes
features peut nécessiter la sélection d’autres featurasgienir un produit complet. Le
produit partiel précise le sous-ensemBje- P

— Stratégie T-wiseS est une stratégie de génération de produits pour détectetédauts
dans les lignes de produits logiciels[90]1120]. Le granchbee de produits visés par un
feature diagram peut étre échantillonné en utilisant uraésgtie tels qud — wise L'ob-
jectif est de générer un nombre minimal de produits qui ceniva toutes les interactions
T —wiseentre les features. Par exemple,RiID avec 25 options (voir la figuid 5) spécifie
au moins 2° produits. Une stratégie-2wiseou T = 2 permettra de sélectionner de seule-
ment 4x 25C, = 300 produits qui couvrent toutes les interactions entreepale features.

La stratégiel — wisepour une valeur particuliere despécifie le sous-ensembig C P.
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L'intersection de toutes les sources de connaissancestdgfidomaine de la modélisation
effectif Le domaine de modélisation effectif est 'ensemble desdlyite définis paPesfectit <
PNPLNPNPs.

La méthodologie de découverte utilise les sources de cesaraies présentées ci-dessus
pour générer automatiquement des produits dans le domeilzendodélisation effectifFD. La
génération se fait selon les étapes suivantes :

Etape 1. Transformation du feature diagram vers ALLOY : Nous transformons un feature
diagram vers un probléme de satisfaction de contraintesladangage formelle ALoY [[7Z]
(7).

Etape facultative. Transformation des produits partiels vers ALLOY et leur complétion :
Nous pouvons transformer un produit partelers ALLoy. Cela génére un prédicatLAoY

qui représente des informations partielles sur les fesitsétectionnés dans le produit partiel.
On peut alors résoudre le modéley pour générer un ou plusieurs produits complet.
Etape 2. Génération de tuplesT — wiseet la détection de tuples valide a I'aide d’ALOY :
Dans cette thése nous nous concentrons sur la création digitgrqui couvrent les interaction
T —wiseentre features. Nous avons d’abord généres les prédicatsyAreprésentent les tuples
T — wiseet détecte ceux qui ne sont pas compatibles avec les caagalans lé&-D.

Etape 3. Gestion de la taille des produitdNous proposons les stratégigivide-and-compose
pour générer un ensemble de produits qui couvre les tuplé=ati&res représentant les interac-
tions T-wise. L'approche divise le probléme de satisfaction poustles tuples. Nous résolvons
de multiples modéles A oY avec ces sous-ensembles pour obtenir des ensembles dégprodu
Les ensembles de produits sont fusionnés en un ensemblddmaloduits.

Le framework peut-il constamment decouvrir des produifsabées d’'atteindre leurs objec-
tifs ? Par exemple on peut se demander quel est l'effet dedtégte divide-and-compose sur
la redondance des produits générés ? Pour répondre a cetiiogunous avons besoin de gé-
nérer des produits compte tenu de tous les autres factetersmigants. Dans cette thése, nous

validons notre framework a l'aide d’'expériences rigouesudans les domaines d’application
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suivants :

1. Génération de produits de tests qui satisfont aux csitdednteraction-wise.

2. Avec nos travaux en cours, nous montrons que notre frankgyenit effectivement échan-
tillonner I'espace Qualité de Service (QoS) d’'un service dgnamique. La variabilité du

service web dynamique est modélisée ave€ Dn

0.6 Contributions

La définition des frameworks découverte de modéles et deujisooint conduit aux contri-
butions scientifiques dans cette thése. Nous expliquonsorgsbutions dans les sous-sections

suivantes. Nous citons les publications pertinentes def@nces par des pairs et des revues.

0.6.1 Contributions a la découverte automatique modéele edttif

Contribution 1.1 Nous présentons un framewaork global pour la génération dehas effectifs

de taille finie a partir de tout langage de modélisation etraimts par des sources hétérogénes
de connaissance. Le framework est incorporé dans I'outit1@ER. Nous utilisons le langage de
spécification formelle ALOY pour sa capacité a définir des contraintes sur les graphbgtso
et donc a représenter le métamodéle comme un probléme dfastidin de contraintes. Cette
contribution résume la réponse a tous les défis présentédalaectiof 0J4 pour un domaine de
modélisation spécifié par un métamodele. LoutdRIIER, est présente dars 130, [138].
Contribution 1.2. Le framework transforme touts les éléments d’un métamodsie ALLOY
pour la satisfaction de contraintes. Il traite égalemestrdétamodéles avec héritage multiple
en I'aplatissant vers I'héritage simple enl Y. En outre, le framework présente la transfor-
mation de contraintes imposées par multiple containeggpsife properties, identify properties,
et composite properties vers des faitsLAy . Cette contribution adresse défi 2 de la sedfioh 0.4.

La transformation vers ALOY a été brievement décrite dans deux de nos contributiong [138

and [T140].
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Contribution 1.3. Le framework est construit en utilisant Kermeta pour tragienultanément
traiter des modeles venant de langage différents. Chaqueesde connaissance est exprimée
comme un modéle dans un langage de modélisation. Par exet@sldragments de modéle
sont exprimés en tant que modéles d’'un langage de fragmemélendKermeta peut charger,
enregistrer et manipuler simultanément des modéles aoe®a des métamodeles différents.
Par conséquent, ARTIER, écrit en Kermeta, transforme la connaissance des dif2raadéles
vers des faits dans le langage cibleL®Y . Cette contribution adresse le défi 3 de la sedfioh 0.4
et est publié dans nos papiers [IL38[103].

Contribution 1.4. Nous présentons un algorithme pour élaguer un métambd@lefi utilise

un ensemble de types et propriétés requises pour généreétamadele effectif a partir d'un
grand métamodéle. Le métamodéle effectif est souvent &tisqt peut facilement étre trans-
formé vers ALOY comme un probleme de satisfaction de contraintes. Cetteilmation porte

sur une partie du défi 2 de la sectlonl0.4 est présentée daapitr fL41].

Contribution 1.5. Le framework inclut la possibilité de définir des bornes peurombre d’ob-
jets de chaque type dans le modele. Il transforme aussi leBoss du solveur SAT en &
Loy vers des modéles de haut niveau conformes a un métamodéjgnisation de modéles
conformes a des sources hétérogénes de connaissance gerdeéerminer les incohérences
le cas échéant. Des sources incohérentes de connaissama®isonodifiées ou supprimees a
partir de la spécification du domaine de modélisation effedCette contribution porte sur les
défis 4 et 5 de la sectidn 0.4 et est publiée ddns][138] et [140].
Contribution 1.6. Nous validons la pertinence des modeles générés avec lésdenges sui-
vantes :
— Geénération de modeles de test pour des transformations de rdeles :Nous générons
des milliers de modéles pour une transformation représemntdNous utilisons I'analyse
de mutation[[107] pour démontrer que les modeles de teshabigeuvent détecter 93%
des bugs par rapport a une génération aléatoire qui dét@%iel@s bugs. Nous montrons

que la stratégie de partitionnement n'est pas affectée iparsdbiais tels que la dépen-
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dance au solveur A 0Y. L'étude expérimentale est publié dans]i139] et la versonrjal
en revue([[128].

— La complétion du modéle partiel dans les éditeurs de modéleeddomaine spécifique :
Nous utilisons notre framework pour produire des recomraaods et compléter les mo-
deles partiels dans I'éditeur de modéle ATO[@7]. Nous montrons que notre framework
peut automatiquement compléter des modéles partiels damdsliteur de modéle. Les
expériences montrent que cela peut étre fait pour les mxEsIples dans des délais rai-
sonnables. Ces travaux sont publiés dans|[1B1]] [140].

Cette contribution adresse le défi 6 de la sediioh 0.4.

0.6.2 Contributions a la découverte automatique produits ectif

Contribution 2.1. Nous présentons un framework global pour la production dduyits effectifs
dans une ligne de produit logiciel spécifié par un featurgrdia. Le framework est incorporé
dans l'outil AvISHKAR. Le framework contient la transformation d’un feature déag vers
un probléme de satisfaction de contraintes em@y . Le framework invoque un solveur sur le
modele ALLOY pour automatiquement générer des produits conformes audatiagram. Cette
contribution résume la réponse a tous les défis dans la sedgotio 0K pour un domaine de
modélisation spécifié par un feature diagram.

Contribution 2.2. Etant donné un ensemble des features sélectionnes (digpdmon dispo-
nible) le framework utilise ALoY pour détecter si un produit peut étre créé a partir de cette
sélection. Une contrainte par exemple dit que la feafyrest présente dans le produit, tandis
que 2 ne devrait pas étre présente.fgiest un élément obligatoire alory SHKAR utilise AL-
LOY pour détecter que la contrainte n'est pas valide. Cetteibatiobn adresse le défi 5 de la
sectiol QK.

Contribution 2.3. Passage a I'échelle de la génération de pduits de test a partir d'un fea-
ture diagram Des travaux précédents ont transforme des FD vers un ensembbntraints. Par

exemple, Cohen et. al. ont appliqué les tests d'interact@mbinatoire pour systématiquement
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sélectionner les configuratioris_[42] a partir d’'un featuegchm. lls considérent les différents
algorithmes afin de calculer les configurations qui répondedtes critéres pair-wise et t-wise
[41]]. Les contraintes imposées en raison de relations ®gsefeatures sont résolues en invo-
guant les SAT solveurs tels que ZChaff [L59]. Toutefoisr Egpproche n’est pas trés extensible
si 'on considere les feature diagrams de grande tailleréeNfohmework contient des stratégies
divide-and-composegisant a scinder le probléme de la génération de produitestesttisfai-
santT — wiseen sous-problémes. L'outiMiSHKAR résout les sous-problémes et fusionne les
résultats dans un petit ensemble de produits qui conti¢noes les tuples valides requis par le
criteresT — wise Ce mécanisme rend notre méthodologie évolutive pour gémié&s produits

dans une ligne de produits logiciels. Cette contributioressk le défi 4 de la sectibnl0.4.

Contribution 2.4. Validation de l'efficacité des produits de test: Il est nécessaire de réaliser
des expériences qui valide la pertinence des produits gg@ddtaide de notre framework. Nous
effectuons des expériences pour générer des produits dataré diagram AspectOPTIMA.
Nous montrons qu’une certaimedondanceest introduite dans les produits en raison de straté-
gies de divide-and-compose. Dans les travaux en cours, gfteuons des expériences pour
générer des configurations différentes d’'une orchestratimamique de services Web. Nous
démontrons que la qualité de service d'un service compuwatie en fonction de différentes

configurations du web-service. Ces expériences d’analyss aident a identifier une méthodo-

logie effectif pour la définition d’accords contractuelsuptes services Web dynamiques.

Les contributions ci-dessus sont publiées dans|[120]. lpeepfl4] applique I'outil de dé-
couverte de produits WSHKAR a l'analyse des variables de la QoS dans une orchestration de
services web. L'articld [80] a été soumis pour vérifier I'egaghe d’une maniére globale avec les

grandes études de cas.
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0.7 Organisation de la these

La thése comprend 6 chapitres, dont I'introduction. Les&pihes suivants sont organises

comme sulit :

— Chapitrel® : nous introduisons le contexte de IDM et I'étl’drt dans la découverte
automatique de modeles effectifs dans un domaine de mati@tis

— ChapitrdB : nous présentons la découverte automatiqueodéles effectifs dans le do-
maine spécifié par un métamodéle.

— Chapitrd® : nous présentons une validation empiriqueagiptoche présente en Chapitre
B. En particulier, nous nous concentrons sur deux domaitagplitation pour la vali-
dation : (a) la génération des modéles du test pour une tranafion de modéle (b) la
complétion partielle de modéle dans I'éditeur de modéleMo

— Chapitre[b : nous décrivons I'approche de découverte attque de produits de test
dans une LPL. Nous validons empiriqguement le framework f@wuedondance dans les
produits généreés.

— Chapitrdb : nous résumons notre travail et ses perspgectii@is décrivons brievement
nos travaux en cours sur I'analyse de la variabilité de tpudke service dans un service

de web dynamique.
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Chapter 1

Introduction

Model-driven engineering (MDE) is an approach to specifyngtruct, validate and maintain
complex software systems using first class artifacts cattedels MDE has emerged from
a number of areas in software development such as objestted analysis and design lan-
guages, object-oriented methodologies! [24] [73]]1271] &omputer-Aided Software Engi-

neering (CASE) endeavours in the 80s and 90s to automateabstiaps in software engineering

[L13] [22].

Models aregraphs of inter-connected objedtsa modelling domain A modelling domain
defines aset of modelsvhere each model is constructed using a common set of canaegtre-
lationships. For instance, in this thesis we consider tleeifipation of two modelling domains:
(a) metamodelghat specify a set of models in a modelling languageféajure diagramsor
feature modelshat specify a set of product models or simply products in #&me Product
Line (SPL). Very often the creation of useful effective models a modelling domain require
the satisfaction of constraints from heterogeneous seurger instance, creating a workflow
model for a business process using the well-kndwmified Modelling Language (UML) activ-
ity diagram requires the model to satisfyU well-formedness rules, business logic, economic
constraints, quality of service constraints, and secuesyrictions. Human modellers with expe-

rience incrementally create such effective models byljeeitsuring that the models acerrect
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by constructionand satisfy constraints from heterogenous sources. 8tillladl, this process
is extremely tedious and sometimes impossible if there isalrio create thousands of mod-
els. Can we automate the creation of effective models given the tegogenous sources of

knowledge?This is the question that intrigues us and the subject ofthigsis.

The introduction is organized as follows. The notion of efifee model discovery situates
itself in the global contextof discovering effective structures in science and enginge We
briefly describe this global context in Sectlanl1.1. Thiste@addresses the problem of automat-
ing discovery in the contemporary and specific context of Mitiich we describe in Section
[L2. A number of scenarios in MDE necessitate generatiofffeftere models. Our motivation
stems from these scenarios that we describe in Sdciibnri Sedtio_LK, we present the gen-
eralproblem contexaind its challenges. We present our thesis and describe tiveadaodogy for
automatic effective model and product discovery in Sedlidh We enlist the contributions of

our thesis in Section1.6. Finally, we present the orgaitimaif the thesis in Sectidn1.7.

1.1 Discovery of Effective Structures in Science and Engimging

Scientific discovergften culminates into representing structure in natuneedworks of entities

or graphs of objectsFor instance,

e Food websare representations of the predator-prey relationshipsdas species within
an ecosystem or habitat. A common example issthié food webshown in Figurd_T]1.

The soil food web is often found in a garden bio-compost.

e Biochemical reaction networksor metabolic pathways represent vital molecular ex-
changes in living beings. The widely studitanor suppressor pathwahown in Figure
[ (b) illustrates the crucial role of protein p53 in celbte Cell death is important in

order to regulate cancerous growth.
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Figure 1.1: Effective Structures in Scienctific Discove(@) Soil Food Web (b) Tumor Suppres-
sion Pathway

Knowledge from experiments, data analysis and mental ligadt to the discovery of such
effective structurem nature. The existence of effective structures is nottéiohio the virtuosity
of nature. We humans are endowed with the ability to reptemsed create effective structures
such as buildings, bridges, robots, and complex software.

Design in engineeringften results into representing effective man-made sirastas graphs

of objects. For instance,

e Electronic circuits diagrams represent a network of electrical components that achieve
a given purpose. ThEM Receiver Circuitshown in Figurd_1]2, for instance, is used in

millions of radio devices.

e Software Design Patternsrepresent general reusable solutions to commonly ocegurrin
problems in software design. They are often representetlags diagramsn object-
oriented software engineering.Thbserver patteriin Figure[T2 (b) is a common pattern
in software requiring distributed event handling. The wvkelbwn photo editing program

Adobe Photoshop is one such software product.



50 CHAPTER 1. INTRODUCTION

t;L— POCKET FM RECEIVER
o

®
5.6k 59 Subject
1uF absarver Observer
= 33k |+Attach(in Observer)
[+Detachiin Obsarver)| [FUpdate()
sgonF [+Notify()
} BC550C
[
Q BC550C 4.7uf
Bcseoc 1 "
T 1+—
[I]] - B subject [EonETEteObsCrVer
© =T TUpamal
=101 /0.5 mim SWG25 d= 3 ' ‘
L2 =12 turn /0.5mm SWG25 d = 5mm
3= 1 curn/ 13 W18 - S P
subjecl GelState()
FM Receiver Circuit Observer Pattern in Software Design

Figure 1.2: Effective Structures in Engineering: (a) FM Ra@ircuit (b) Observer Design
Pattern

Very much like discovery in science, design in engineersmguided by knowledge from
a number of sources coupled with the creativity of an engin€an this process of scientific
discovery or design in engineering using various sourcesnowledge beautomate@ This

question has been a subject of study for several decadetheittdvent of the modern computer.

Computer programs have been used to discover structureunenag-or instance, inspired
by Karl Popper’s logic of scientific discovery [123], Pat lggey, Herbert Simon, G. Bradshaw,
and Zytkow developed several computer programs such asnB&lauber, Dalton, and Stahl
described in their book[94]. These programs were guided dayitics to successfully re-

discover historical laws in chemistry.

Evolutionary computing approaches have been develop tovaie design in engineering
such as generation of electronic circuifsl[88]. Computegmms implementing an evolutionary
approach contest for the "Humies Award" conferred each getire GECCO conference. The
award of $10,000 is given to the approach with most humanpetitive results. In the soft-
ware engineering community, recent conferences such asuteenated Software Engineering
(ASE) conference provide competitive venues for presgrdjpproaches to generating software

structures.
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In this thesis, we address the question of automatic disgamethe contemporary context

of Model-driven Engineering of complex software systems.

1.2 Context: Model Driven Engineering

MDE [I10] aims to grease the wheels of complex software wneaitsing first class artifacts
calledmodels The MDE philosophy is using models to represent importéifaats in a system
such as requirements, high-level designs, data structviess, interfaces, model transforma-
tions, test cases, and implementation-level artifacth siscsource code. A model is constructed
in amodelling domairthat captures a set of common concepts and relationshigscdristruc-
tion of a model in a modelling domain may be further consedinsing well-formedness rules
and constraints from various sources.

The general notion of a modelling domain can dmecializedin many ways. A precise
specification of concepts and relationships that defines af seodels is a modelling domain.
For instance, anetamodespecifies the modelling domain of a modelling language. Thik-w
known Unified Modelling Language (UML) modelling language [116] has its own metamodel
that specifies the set of allll models. Another, example of a modelling domain feature
diagram or feature modethat specifies a set of products in a Software Product Line(SP
Models in a modelling domain can be loaded/stored, manipdjeand transformed to other
models/implementation artifacts to solve software proise

MDE provides a number of software processes and technasldagiallow creation of mod-
elling domains and the transformation of its models. Histdly, the Model-driven Architecture
(MDA) trademark marketed by the Object Management Group GNpresents a model-driven
approach to system development. The MDA approach begirelaf@nent of a modelling do-
main for platform-independent models (PIMs), which argengentally transformed or refined
into lower-level platform specific models (PSMs) in anotheydelling domain. The PSMs are

reified into implementation artifacts such as implemeataitode. This automatic construc-
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tion of systems from high-level models allows software aegring expertise to be captured as
reusablanodel transformationgpplied more reliably and efficiently. Currently, the wiglel-
cepted framework for specifying modelling domains is Haépse Modeling Framework (EMF)
[58]. For instance, metamodels are created in the Bi&Bre format to specify the domain
of a modelling language. Model transformation [1142] largegsuch as the imperative Ker-
meta [82] [108], rule-based ATILTT6I1751]3], graph gramnimsed AToM [67], Viatra [156]
transform models. Model transformation languages area&gdeo conform to the Query-View-
Transformation (QVT) standard[l75]. Different types of nebttansformations can be created
using these languages as classified i [44]. Model transftioms may transform models within
the same modelling domain (endogenous transformatioretyyeen different modelling do-
mains (exogenous transformations) and even realize thsic# view of generating executable

code from a high-level model.

Our focus in this thesis is the automatic discovery or compassited discovery of models

in a modelling domain.

1.3 Motivation: Why the Need for Automatic Model Discovery?

Our motivation for automatic discovery in the general cantdé model-driven engineering stems
from existing computational discovery endeavors in hgfenous domains. Computational dis-
covery approaches in these domains range from systemghifg] [12€], to engineered physi-
cal systemd[97]1132[196][188]. We see automatic discp\adreffective models in a modelling
domain as general framework subsuming existing approachefective structural discovery
in heterogeneous areas. MDE of software systems is no ésnept this thesis, we investigate

three scenarios in MDE as described below:



CHAPTER 1. INTRODUCTION 53

MM | specifies input MTrows MM |
mode set : used fo devélop Ospecifes output

@ e [MT(1,0) i % 2%

Figure 1.3: A Model Transformation

model set

1.3.1 Scenario 1: Test Generation for Model Transformatios

Model transformations are core software artifacts in MDEifple model transformatioM T
takes input models conforming to an input metamdd®l;, and produces output models con-
forming the output metamoddéiMp as shown in Figur€l3. Not all models specified by
the input metamodel can be processed by the model trandformarherefore, we compose
pre-conditionspre(MT) that restrict some models from being processed by the moales$-t
formation. The output models must also satisfy a set of caim$ called the post-condition

postMT). The model transformation itself is built using knowledgenfi a set of requirements

I\/rl—Requirement‘s

Testing a model transformation requires input model thatd=stect bugs in the transforma-
tion MT. Manually creating such test models is tedious since thestinel graphs of objects
that must conform téM,, pre(MT ), and use information frorM Trequirements Manual creation
becomes impossible when we need to create thousands ofestaindadels that encode differ-
ent test objectives. Therefore, there is a clear need taraitothe generation of test models
that satisfy knowledge from various sources sucMa4, pre(MT ), and use information from
MTrequirements The automatic generation of input models exalts to thel leautomatic dis-
covery of test models if we validate that they can indeedalddegs in a transformation. We
can qualify the effectiveness of test models via technicue$) agnutation analysisor model
transformations[[107]. Based on a description of this séeneve askhow do we generate test

models and qualify their bug detecting effectivefless
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Figure 1.4: Partial Model in the TopCaseD UML Model Editor

1.3.2 Scenario 2: Partial Model Completion in a Model Editor

Modellers often use model editors to incrementally builddels. For instance, the TopCaseD
editor [54] can be used build ML models as shown in Figufe_l.4. The model shown is an
incomplete WL state machine. The model does not have an initial state wiithtes a well-
formedness rule. There are infinite possible ways to complet model such that it becomes a
valid UML state machine model and satisfies all the well-formedndss oif a state machine.
What is probably more interesting is the nearest considient state machine that contains all
elements of the partial model. There may be a number of pbsegto complete such partially
specified models. We can relate automatic model completidhet automatic code completion
problem in programming environmen{s_[15]. This scenarises the questionHow do we

automatically discovery complete models or recommendsitio complete partial models?
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1.3.3 Scenario 3: Generation of Products in a Software Prodz Line

A Software Product Line (SPL) references to a set of prodalesing a common, managed set of
features that satisfy the specific needs of a particulariomg§84]. A Feature Diagram(FD) or a
feature modespecifies of a modelling domain for a SPL. Feature diagratnsdaced by Kang
et al. [77] [78] compactly represent all the products of ah 8Rerms of features which can be
composed. A FD consists kffeaturesfy, fo, ..., fx and dependency constraints between features.
For instance, selection of some features in a product mayutsorily link the selection of
other features. Further, some of the features may be at=taidth a software asset such as
web service. Consider the FD for a car crash crisis managesystem in Figur€Il5. The FD
contains 47 features where 25 of them are optional. Someeodfetiitures are associated with
services or software assets. The FD describes 335,54, ffi82=di configurations of features.
Can software assets in all configurations be composed intié product? Answering this
requires creating either all products or a representatitaset of all products. For instance, what
are the set of all products that contain all valid pairwigeraction between features? Creating
these products will help us reveal invalid products. Malyualeating products that satisfy all
FD constraints is very tedious. Therefore, we dsky do we automate product generation in a

software product line for various objectives?

1.4 Problem Context and Challenges

We are motivated by the need for automatic generation ottfe models in a modelling do-
main. The problem context for automatic model discovenhms in Figurd L. The context

identifes the following inputs:

e Specification of a Modelling Domain: The modelling domain specifies a set of models
M. Examples of modelling domain specifications are metamiodehodelling languages

and feature diagrams for SPLs.
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e Heterogenous Sources of Knowledgedeterogeneous sources of knowledge
Sourceg, Source,...Sourcg possibly in different modelling languages specify subséts
the modelling domaity, Mo, .., M. The intersection of these subsets
M1, Mo, ..., My is the effective modelling domain represented by a set efcéffe models
Mettective We can see the heterogeneous sources of knowledge as aceasthints in

different languages that limit the set of modMgo a subseMej fective

Given these inputs we ask: What is the automatic discovergharésm that can create
models in the seéMestective? This is the global question that intrigues us.

This question gives rise to a number of challenges per@gitdrautomatic model discovery.
We describe the most important challenges below:

Challenge 1 Discovery mechanism: Generative vs. Constraibatisfaction? Our research
began with the exploration of existing mechanisms to autertiee generation/discovery of mod-
els in a modelling domain. We classify existing approaclsesithergenerativeor those based
on constraint satisfactionThe question was which approach is promising?

A generative approach attempts to incrementally createetaad a modelling domain by
object instantiation. For instance, [n]29], the authoespnt an imperative algorithm and a tool
to generate models that conform only to there specification of a metamodel. The approach
does not ensure the satisfaction of constraints from hgémeous sources of knowledge such
as well-formedness rules. Similarly, in Ehrig et &l 1[52je tauthors propose a graph grammar
based approach to generate models that conform to a clagmmligorEcore model). These
models do not conform to arQCL constraints on the meta-model.

Constraint satisfaction based approaches attempts &fdrama modelling domain to a set
of variables and constraints on them. The set of constr&érgelved using a constraint solver
[91]]. One or more low-level solutions are transformed as el®df the modelling domain. This
approach has been used in domain-specific settings suclfit@arsotesting. The Korat (Chan-
dra et al.) [Z8] system is able to generate data structurptemented in the Java Collections

Framework that satisfy predicates. Similarly, Sarfraz #shid in his Ph.D. thesi$ [83] presents
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the TestEra tool for generating Java data structures suthkasl lists, tree maps, hash sets,
heap arrays, and binary trees for testing. Both approaateebnsited to standard data struc-
tures and not to the more generic notion of models. The mugguing approach was the tool
UML2AIlloy [9Z]. The tool attempts to transform ML class diagram models, that largely resem-
ble metamodels, to the formal specification languagedy [72]. One may then use A0y
to analyze WiL models by generating examples and counterexamples. Ajthtine tool is not
directly related to model discovery it aims to transformssldiagram constructs to a constraint
satisfaction problem in ALoy. However, UML2Alloy does not transform complex metamodel
constructs such as multiple inheritance and multiple ¢omtants. UMLZ2Alloy fails to solicit
the use of ALoY when the size of the ML model is large making the approach unscalable.

Generative approaches create models incrementally antbaatisfy constraints simul-
taneously. Therefore, a number of models may need to betedjes they may not satisfy
constraints. Therefore, constraint satisfaction basedoaghes seem more promising.
Challenge 2. Transforming the specification of a modelling dmain to a constraint satisfac-
tion problem The specification of a modelling domain contains a set of eptscand relation-
ships between them. These relationships might encode eansphstraints that are not easily
transformed to a constraint satisfaction problem. Fuytadarge number of concepts and rela-
tionships may lead to a very large constraint satisfactialpm that becomes computationally
intractable.

For instance, the transformation of a metamodel specificéid a constraint satisfaction

problem requires a constraints model for constructs such as

e Multiple Inheritance

e Multiple containers for a class

e Opposite properties

e Identity properties
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e Composite properties

The large size of a metamodel such as theLUwith about 246 classes hampers the direct

transformation to a tractable constraint satisfactiorblam.

Challenge 3. Transforming heterogeneous sources of knovdge to constraintsHeteroge-
neous sources of knowledge are specified in different modehnguages. However, for con-
straint satisfaction they all need to be transformed to traimgs in a common language. For
instance, the task of generating test models for a modedfsemation must satisfy constraints
specified in a textual constraint language suclobjgct Constraint Language, test objectives,
and the pre-condition of the model transformation expigas¢he language of the transforma-

tion.

Challenge 4. Generation of models must be within tractable rad finite bounds The discov-
ery of models in a modelling domain requires generation ofl@mof finite size. What are the
heuristics to determine the appropriate size of a modelishatifficient to satisfy knowledge

from heterogenous sources of knowledge?

Challenge 5. Detection of Inconsistent Sources of Knowledgknowledge from various
sources may be inconsistent with respect to the modellimgaito specification. How can we

detect such inconsistent sources of knowledge and elimiham?

Challenge 6. Validating the Effectiveness of Model3here is a need to condudgorous ex-
perimentghat qualify models generated by constraint satisfacfidre qualification guarantees
whether models are effective or useful for given objectivEsese experiments must consider
the effect of various influencing factors on the quality of tpenerated models. For instance,
one may ask what is the influence of generating multiple nsodsing a particular constraint
solver on their effectiveness as test models? Do differardmpeters to the constraint solvers

drastically affect the quality of the solutions?
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1.5 Thesis

In this thesis we propose that it is possible to automagicdiécovery effective models in a
modelling domain. Categorically, we address the problereffeictive model discovery in two
modelling domains: (a) Metamodels (b) Feature Diagrams.efamodel is a very general spec-
ification of a modelling language’s domain. A metamodel carused to specify the domain of
any domain-specific modelling language. However, legadiyvsoe systems and components
cannot always be modelled or remodeled in a modelling laggdeom scratch. Ideally, time
tested components must be reused in their legacy form fobo@tion with other components
to build a software system. If we see these legacy comporanfeatures then the possible
combinations of features is best modelled using the featiagram language giving rise to a
Software Product Line. The coarse-grained componentiassd with features may be com-
bined in different configurations which are part of the featdiagram modelling domain. This
distinction between pure models in the domain of a modellmguage and configurations of
coarse-grained legacy components in a product line readdel-driven software construction
at different levels .Therefore, we consider both speciboatof modelling domains in this the-
sis.

Consequently, we propose two frameworks for model disgogpecializing the general

framework shown in FigurgZl.6:

1. The framework for automatic effective model discoverthia modelling domain specified

by a metamodel. This framework is embodied in the toaRGIER.

2. The framework for automatic effective product discovierthe modelling domain speci-

fied by a feature diagram. This framework is embodied in toeAYISHKAR.

1.5.1 A Framework for Automatic Effective Model Discovery
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The FigureLl7 presents the overall view of the frameworkaisiomatic effective model
discovery. The framework is embodied in the toglRI1ER. The name @RTIER comes from
the famous French discoverer from St. Malo who discoverath@ian in-lands in Quebec. The
primary input to the framework is the specification of the mlbdg domain given by amput
metamodel The input metamodel MIy specifies a set of modeld. The input metamodel
consists of a set of types (class with properties, enuneergprimitive) to instantiate models of
a modelling language. Concretely, the input metamodeloiedtas an instance of thecBRE
metamodel which is part of the industry standgetlpse Modeling Framework (EMF) [58]. The
models themselves are stored as XMl [10] files representisigices of thEcore metamodel.

Heterogenous sources of knowledgeonstrain the modelling domain specified by a meta-

model:

e Required types Treq and properties Preq in the input metamodel. The set of required
types and properties helps extract a subset of the inputnoekal called theeffective
metamodel The effective metamodel specifies the subset of madegls: M. There can

be many possible sources for the set of required types ampefiies:

— Static analysis of a model transformation gives a set ofsygel properties in the

input metamodel actually manipulated by the transfornmatio

— A set of models conforming to the input metamodel is anotloerce of required
types and properties. Visiting the models in the set gives st of types and prop-
erties used in the metamodel. A typical real-world exampléhs could be in a
classroom setting for object-oriented design usingLU The professor can point
out to students the required types and properties he useeédtedML by visiting

every object of a set of models automatically.

e Metamodel ConstraintsC are expressed on an input metamodel using a textual caristrai
language such aSbject Constraint Language (OCL) [L14]. These constraints encode

restrictions that cannot be specified using a diagramngatiee model. We illustrate this
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as the seM, C M.

e Domain-specific sources of knowledgmay also help define the effective modelling do-

main. We present some of them below:

— Partial Model m, is a partially specified model using the input metamodel. For
instance, a graphical model editor allows an user to creatdefa in a modelling
language such asNL state machines. Anincomplete model in the editor is a partia
model in the WL state machine language. The partial model may not respect al
metamodel constraints ofML. Therefore, a partial model is often expressed as an
instance of aelaxed version of the input metamod&he partial model defines the

subsetM3 C M.

— Coverage StrategyS help define and generateodel fragment$b5] that cover a
wide range of structural aspects in the input metamodel. ifigiance, an input
domain partition based strategy helps generate a set ofInfragenentsMF that
cover partitions on all types and properties of the inputametdel. These model
fragments help define an effective modelling domaindoverage-based testingf
a model transformation. All test models that satisfy a cagerstrategy contain the
model fragments generated from the strategy. Model fra¢ggrnem expressed in a
modelling language that permits specification of ranges ropgaties of an input

metamodel. A coverage strategy defines the suldget M.

— Transformation Pre-condition pre(MT) is a set of invariants on the metamodel that
is specific to a model transformatidhT. A model transformation often may not be
designed to transform all models specified by its input metdeh For instance, the
transformation from class diagram models to entity refesiop diagram model5[22]
require that all classes in the input class diagram haveaat tme primary attribute.
The OCL [I14] is often used to express pre-conditions. A pre-camdiefines the

subsetMs C M.
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The intersection of all the sources of knowledge definegtteetive modelling domairhe
effective modelling domain is the set of models definedvy fective«— M N M1 N M2 N M3 N
M4 N Ms.

The methodology for model discovery uses the sources of latge presented above to
automatically generate models in the effective modelliomdin. We enlist the steps below:
Step 1. Effective Metamodel Identification : We prune the input metamodglM;, to obtain
the effective metamod@llMe+ fectiveUSiNg @ metamodel pruning algorithin[141]. The effective
metamodel contains the set of required tyfiggand propertie®q provided as input and all its
obligatory dependencies computed by the metamodel praigagithm. All unnecessary types
and properties are remove Mg rectiveiS Super type oMM, from a type theoretic point of
view and a subset &fl M, from a set-theoretic point of view. The size of the effectivetamodel
MMeft feciivelS Often considerably smaller than the size of the input metieIlMM;,.

Step 2. Transformation of Effective Modelling Domain Spedication to ALLOY : The effec-
tive modelling domain specification is defined by a numbentfezts. It is initially defined by
the effective metamodéliMe+ tective@nd constrained by knowledge from one or more sources:
(b) Metamodel constraints (b) Partial modemm, (c) Model fragment$1F from coverage strat-
egy S, and (d) Pre-conditiorpre(MT) of a model transformatioMT. We transform these
artifacts expressed in possibly different languages dorestraint satisfaction problem (CSP)
in the unique formal specification language &y [[71] [[7Z]. The theoretical formalism for
expressing the CSP fgst-order relational logic .

Step 3. Generation of Models in Effective Modelling Domain We solve the CSP in ALOY
to generate models in the effective modelling domainRQER achieves this by invoking Kod-
Kod [53] in ALLOY to transform the CSP as relational model to Boolean Consm®ormal
Form (CNF) . We invoke a satisfiability (SAT) solver such asn8AT [112], ZChaff [159] to
solve the Boolean CNF. Finally, we transform low-level $iolns of the CNF to models con-
forming to the input metamod®l M;,.

The generation of models in a modelling domain is often dae¢owards an objective. We
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need to ensure that the objective is consistently achievedidering all influencing factors.
A typical question maybe what is the effect of a SAT solver lwa quality of the solution? To
answer this question we need to perform experiments thargenseveral solutions for the same
constraint satisfaction problem. There are many otherenfiing factors for which we conduct
rigorous experiments to validate discovery effectivenésshis thesis, we perform experiments

in the following application domains:
1. Test model generation for model transformation testing

2. Partial model completion in domain-specific model editor

1.5.2 A Framework for Automatic Effective Product Discovely

The Figure LB presents the overall view of the effectivedpod discovery framework. The
framework is embodied in the tooMASHKAR. AVISHKAR in Hindi meandnventionwhich sig-
nifies the character of the tool to discover products in a Sik.primary input to the framework
is the specification of the modelling domain given bfeature diagranor feature model The
feature diagram F Dspecifies a set of producks Feature DiagramgFD) introduced by Kang
et al. [78] compactly represent all the products (or confiians) of a SPL in terms of features
which can be composed. Feature diagrams have been forch&diperform SPL analysis [1B6].
In [L38], Schobbens et al. propose an generic formal defimitif FD which subsumes many

existing FD dialects. We define a FD as follows:

e A FD consists ok featuresfy, fo, ..., fx

A feature f; may be associated with a software asset.

Features are organized in a parent-child relationship ieealt. A feature with no further

children is called a leaf.

A parent-child relationship between featurfgsand f. are categorized as follows:
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— Mandatory- child featuref is required iff, is selected.
— Optional- child featuref, maybe selected iff, is selected.
— OR- at least one of the child-featurdg, fc,..,fc3 of fp must be selected.

— Alternative (XOR} one of the child-feature&, fco,..,fek Of f must be selected.

o Cross tree relationships between two featukieand f; in the treeT are categorized as

follows:

— fi requiresf; - The selection off in a product implies the selection 6f.

— fi excludesf; - f; and f; cannot be part of the same product andratgually exclu-

sive

Using the FD we create products/configurations of featuvés.can compose software assets.
associated with these features to derive the final product.
Heterogenous sources of knowledgeonstrain the modelling domain specified by a feature

diagram:

e Textual Constraints C are expressed on a set of features. Constraints are exptezte
ally when they cannot be directly encoded in Fi2. These constraints specify the subset

P]_CP

e Partial Product pis a set of features chosen in product. The set of featuresregayre
the selection of other features to derive a complete prodiw partial product specifies

the subseP, Cc P

e T-wise StrategySis a product generation strategy to detect faults in soéyeanduct lines
[B0] [L20]. The large number of products specified by a featliagram can be sampled
using a strategy such a8s— wise The objective is to generate a minimum number of
products that satisfy all —wiseinteractions between features. For instance,Rawith

25 optional features (see Figurell.5) specifies at leRgpdducts. A 2- wisestrategy



68 CHAPTER 1. INTRODUCTION

whereT = 2 will lead to generation of only # »5C, = 300 products that cover all pairwise
interactions between features. The- wisestrategy for a particular value @f specifies

the subseP; C P.

The intersection of all the sources of knowledge definegtteetive modelling domairhe
effective modelling domain is the set of products definedPhyectivec— PNPL NP N Ps.

The product discovery methodology uses the sources of latmel presented above to au-
tomatically generate products in the effective modellimgndin of aFD. We enlist the steps
below:

Step 1. Transformation of Feature Diagram to ALLOY : We transform a feature diagram to
constraint satisfaction problem in the formal specificatenguage ALoy [[72] [IZ1]].

Optional Step. Transformation of Partial Product to ALLoy and their Completion : We
can transform a partial produptto ALLOY. It generates an ALOY predicate that represents the
partial information about selected features in the paptiatuct. It can then solve theLAoy
model to generate one or more complete products.

Step 2. Generation of T — wise Tuples and Detection of Valid Tuples using ALOY : In
this thesis we focus on generating products that salisfywiseinteraction between features.
We first generate ALOY predicate represents — wise tuples and detects those that are not
consistent with the constraints in thé®.

Step 3. Scalable Generation of Product®Ve proposelivide-and-composstrategies to gener-
ate a set of products that cover all valid tuples that caverwiseinteractions between features.
The approach splits the satisfaction problem for all tuptesolving subsets of tuples. We solve
multiple ALLOY models with these subsets to obtain sets of products. Thekptoducts are
merged into a final set of products.

Do products discovered using the framework consistentlyiratheir objectives? For in-
stance we may ask what is the effect of divide-and-compasgegies on the redundancy of
products generated? To answer this question we need tcegepeoducts considering all impor-

tant influencing factors. In this thesis, we validate ounfesvork using rigourous experiments
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in the following application domains:

1. Test product generation that satisfy theise interaction criteria

2. In ongoing/future work, we show that our framework caretizely sample the space of

Quiality of Service (QoS) of a dynamic web service who's Mty is modelled as &D.

1.6 Contributions

Both the frameworks for model and product discovery haveddtie scientific contributions in
this thesis. We explain these contributions in the follayaub-sections. Some of the contribu-
tions are extracted and pin-pointed from the methodologgaaly described in Sectienl.5. We

cite the relevant publications in peer-reviewed confeesrand journals.

1.6.1 Contributions in Automatic Effective Model Discovely

Contribution 1.1 We present a comprehensive framework for generation oéfsided effective
models in any modelling language and constrained by hedeesmmus sources of knowledge. The
framework is embodied in the toolARTIER. We use the formal specification languageLAy

for its ability represent constraints on graphs of objeat$ @onsequently to represent he entire
metamodel as a constraint satisfaction problem. This ikion summarizes the answer to all
challenges presented in Section] 1.4 for a modelling dongenied by a metamodel. The tool
CARTIER, saw its origins in our papers [130[, [138].

Contribution 1.2. The framework transforms all metamodel constructs te@y for constraint
satisfaction. It also deals with metamodel with multipl@entance by flattening it to single
inheritance in ALoy. Further, the framework presents transformation ta.@y facts from
constraints imposed by multiple containers, opposite entigs, identify properties, and com-
posite properties. This contribution addresses chall@wfeSectior”LK. The transformation to

ALLOY has been briefly described in two of our contributidns [138] fL40].
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Contribution 1.3. The framework is built using Kermeta modelling and modehsfarmation
language to simultaneously process models of knowledgéfaereht languages. Each source
of knowledge is expressed as a model in a modelling languageinstance, model fragments
are expressed as models of a model fragment language. Kecaretoad, save, and manipulate
models conforming to different metamodels at the same tifieerefore, @QRTIER, written

in Kermeta, transforms knowledge from various models ttsfacthe target languagelAoy.
This contribution addresses challenge 3 of Sefioh 1.4sapdhlished in our papers [I38]1103].
Contribution 1.4. In the framework we present a metamodel pruning algorifdi[that uses
a set of required types and properties to generate an gauetamodel from large input meta-
model. The effective metamodel is often very small and caeds#ly transformed to ALOY

as a tractable constraint satisfaction problem. This dmriton addresses part of challenge 2 of
Sectio_¥ and presented in the paper[141].

Contribution 1.5. The framework contains facilities to assign finite bounddh&number of ob-
jects for each type in the model. It also transforms the gwistfrom the SAT solver in ALOY
called ALLoOY instanceshack to high-level model conforming to a metamodel. The it

of models conforming to heterogeneous sources of knowleé{es determine inconsistencies
between them if any. A selection of inconsistent sourcesofedge is made and either mod-
ified or eliminated from the specification of the effectivearing domain. This contribution
addresses challenges 4 and 5 of Sedfioh 1.4 and is publistzetidles [138] and [140].
Contribution 1.6. We validate models generated for their effectiveness usi@agramework by

performing the following experiments:

e Test model generation for model transformation testing : We generate thousands of
models for a representative transformation. We use muatatialysis [107] to demon-
strate that test models generated ugpagtitioning strategycan detect 93% of the bugs
compared to arbitrary generation 70%. We show that thetjpaitig strategy is not af-
fected by various biases such as dependence on the solverimvA The experimental

study is published if[139] and journal version of the pafi&#d] has been submitted.
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e Partial model completion in domain-specific model editors\We use our framework to
generate recommendations to complete partial models imtiael editor AToM [67].
We illustrate that our framework can automatically comgplpértial models in a model
editor. The experiments show that this can be done for srrathples within reasonable

time limits. This work is published in[131],T140].

This contribution addresses challenge 6 of Sedfioh 1.4.

1.6.2 Contributions in Automatic Effective Product Discowery

Contribution 2.1. We present a comprehensive framework for generation oft@féeproducts
in a Software Product Line specified by a feature diagram. fidraework is embodied in the
tool AvISHKAR. The framework contains the transformation of a featurgrdia to a constraint
satisfaction problem in ALoy. The framework invokes a solver on the 20y model to auto-
matically generate products conforming to the featurerdiag This contribution summarizes
the answer to all challenges in Sectiod 1.4 for a modellingaia specified by a feature diagram.
Contribution 2.2. Given a set of feature selections (available/not avai)ahle framework uses
ALLOY to detect if a product can be created such that these featleetions satisfy feature
diagram constraints. A constraint for instance statesféatiresf; exists in the product, while
f, should not exist. Iff; is a mandatory feature then/sSHKAR uses ALOY to detect that the
constraint is invalid. This contribution addresses cimajée5 of Sectiof 114.

Contribution 2.3. Scalable generation of test products fron a feature diagram Feature dia-
grams have been transformed to constraint satisfactidolgore for testing a software product
line. For instance, Cohen et. ALJ42] have applied combgltinteraction testing to systemat-
ically select configurations/products from a feature diagr They consider various algorithms
in order to compute configurations that satisfy pair-wise tawise criterial[4ll]. The constraints
imposed due to feature relationships in a feature modelaved by calling SAT solvers such
as ZChaff [15D]. However, their approach is not very scalatdthen we consider large feature

diagrams. Our framework contaimtvide-and-composstrategies to split the problem of test
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product generation satisfyinj — wiseinto sub-problems. The tooNASHKAR solves the sub-
problems and merges the results into a small set of produateontain all valid tuples required
by theT — wisecriteria. This mechanism renders our methodology to be lalsleaapproach to
generate products in a software product line. This cortiohuaddresses challenge 4 of Section
3.
Contribution 2.4. Validation of Effectiveness of Test Prodicts. There is a need to perform
experiments that qualify the products generated usingraomdwork. We perform experiments
to generate products for a transaction processing feafagrain AspectOPTIMA. We show
that redundancyin T — wisetuples is introduced in the products due to divide-and-cusep
strategies. In on-going work we perform experiments to geedifferent configurations of a
dynamic web-service orchestration. We demonstrate tlea@tS of a web-service varies with
different configurations of the web-service. These vaed@bS analysis experiments help us
define an effective methodology to set robust contractusdeagents for dynamic web service.
The above contributions have resulted in various articlébe basic transformation for
AVISHKAR and its validation is published in_[1I20]. The paperl[14] omiaility modeling
and QoS analysis of web service orchestrations has beeptadceThe papef[80] has been
submitted to apply the product discovery tooli8HKAR to analysis of varying QoS in large

web service orchestration.

1.7 Thesis Organization

The thesis contains 6 chapters including the introductidme next 5 chapters are organized as

follows:

e ChaptefR, we introduce the context of MDE and the state oathim automatic effective

model discovery in a modelling domain.

e Chapte B, we present automatic effective model discovethe domain specified by a

metamodel.
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e Chaptefl4, presents empirical validation of the frameworknfiodel discovery. In partic-
ular, we focus on two application domains for validation) tést model generation for a

model transformation (b) partial model completion in thed@ceditor AToM

e Chaptefb, we describe the framework for automatic testumodiscovery in a software
product line. We empirically validate the framework for tleglundancy in the generated

products.

e Chapter b, we summarize our work and present perspectivefutiore research. We

briefly describe ongoing work on analysis of variable QoS dymamic web service.
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Chapter 2

Context and State of the Art

This chapter describes the context and state of art for aitordiscovery of effective models
in a modelling domain. In Sectidn 2.1, we descrMedel Driven EngineerindMDE) which
provides the philosophy and tools to specify modelling dmsiand transformations between
them. We describe the creation or specification of two modgtlomains (aMetamodeldor
modelling languages in SectibnP.2 f@ature diagram$or products in a Software Product Line
in SectioZZB. Models in a modelling domain are transforms&idg the model transformation
language Kermeta to the formal specification languagedX. In Section[ZHK, we present
Kermeta and its important features such as extensibilitpguaspectsand model typing In
SectioZb, we describe the formal specification languageok.

After describing the context and technological foundatioreded for this thesis we present
the state of the art in the proposed scientific contributidnsSectiolZb, we present the state
of the art in various aspects of automatic discovery for tteelelling domain specified by a
metamodel. In Sectioh 2.6.1, we present related work ontifgigrg an effective modelling
domain. In this thesis we perform mode discovery experisi@ntest model generation and
partial model completion in model editors. We present theed work for test model generation
in SectiofZ.61B and partial model completion in model edito Sectiol Z.614.

In Section[ZV, we present the state of the art in test prodiscbvery in the modelling
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domain specified by a feature diagram for SPLs. We perforrduymriodiscovery experiments in

analyzing the variability in QoS of dynamic web services.

2.1 Model-driven Engineering

MDE [110] is a philosophy and a set of tools to help simplifydatcelerate complex software
development. The simplification in development is achidwedxalting the creation of software
from the level of programs to first class artifacts calteddels Models are graphs of inter-
connected objects in modelling domain Different models in a domain are created using a
common set of domain-specific/problem-specific conceptisralationships. For instance, the
well-known general purpose modelling languag®lJ[L16] is used to create various high-
level models of software design using concepts mLUclass diagrams. TheseMu models
contain only objects of ML concepts/types. ML models are at a higher level of abstraction
with respect to code in a general-purpose programming kEgegysuch as Java where use of the
language pervades all aspects of software development. pBEeribes that a domain expert
should find it easier to reason in his problem domain usingetsoeistead of directly writing
code. Are models simply data structures or can they be tvemsi, evolved, or executed? The
MDE answer to this question israodel transformationModel transformations help transform
high-level or domain-specific models to other models or etedale code in a language such
as Java. The automation offered by model transformatiools as a code generator ultimately
helps accelerate software development.

We set ourselves the specific goal of automatic discoveryanfets in a modelling domain.

This goal solicits answers to two important questions in MDE

1. How to specify a modelling domain and create models in it?

2. How do we transform models from one modelling domain talzer®

Thefirst question is addressed in this paragraph. The specification of a mingelbmain
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consists of a set of concepts, relationships between cts)amd some invariants on the struc-
tural relationship between objects. For instanceetiamodes$pecifies the modelling domain of
all models in a modelling language. For instance, theLUnetamodel specifies infinite ML
models. Metamodels can be created in the EEtIereformat to specify the modelling domain
of a modelling language. Similarly, the modelling domaimlbproducts in a SPL is specified by
afeature diagram Models in a modelling domain can be instantiated by (a) tGrgabjects of
concepts specified in a modelling domain specification (lsigksng properties to these objects
to build relationships. The models must also satisfy a sé@twafriants on their structure. The
Object Constraint Language (OCL) is often used to specify structural invariants on modela in
modelling domain. The EMF provides the set of software téolspecify modelling domains,
create models within these domains, and validate theselmadainst invariants. Detailed de-
scription of the modelling domain for metamodels is giversectiol 2P while in Sectidn 2.3

we present the specification for feature diagrams.

The second questioris addressed in this paragraph. Once, we create the spgaificd a
modelling domain and models within them we see the need msfwam these models. Models
can be transformed within the same modelling domain or betweodelling domains. Model
transformation[[142] languages such as the imperative K&xii82] [108], rule-based ATIL]76]
[75] [3], graph grammar based AToME7], Viatra [156] transform models. Model transfor-
mation languages are expected to conform to the Query-Vi@amsformation (QVT) standard
[75]. Different types of model transformations can be adatsing these languages as classified
in [44]. Model transformations may transform models witltie same language (endogenous
transformations), between different languages (exogetransformations) and even realize the
classical view of generating executable code from a higbtmodel. In this thesis, we use the

Kermeta model transformation language which we descrit@eatioTZH.
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Set of metamodels Set of models conforming to MM

Meta-meta model

Figure 2.1: Set-theoretic View of a Modelling Domain spedfby a Metamodel

2.2 Metamodel Specification of a Modelling Domain

In FigurelZ1, we present a set-theoretic view of the maukgliomain specified by a metamodel.
The metamodeMM specifies a possibly infinite set of models irmadelling language The
metamodelMM itself is a model in the set of all metamodels. The sealbimetamodelss
specified by aneta-meta modelling languagd he meta-meta modelling language allows the
specification of concepts and relationships between theistotitally, the Entity-Relationship
diagram (ER Diagram][36] has been one of the most populaameta level languages used
to specifydatabase schemdsr databases in various domains. In MDE, the Class Diagram
and its dialects[]9] are widely used to specify a metamodeé EMF standardized thed®RE
modelling language to specify metamodels. A natural goess how can one specify the meta-
meta modelling language? The answer is that meta-meta hmgdkElnguages are expressive
enough to specify themselves. For instance, in Fifiule 2.gresent the metamodel folcBRE

in EcorEitself. This property of a meta-metamodelling languagenisvkn asboot strapping
The metamodel for EOREis a model in the set of all metamodels. We do not go into thaildet
of describing the EOREmetamodel which is given detail in]68]. We illustrate thesification

of a metamodel using ®REin the following section.
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Figure 2.2: EOREMetamodel
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2.2.1 Specification of a Metamodel

The Ecore metamodel in FigurEZ2.2 presents the various concepts enaseato specify meta-
models. Most notably, instances of clasB€dass, EReference, EAttribute, EEnum, EOperation
andEParameterare used to specify metamodels. For convenience, we rerhevyare¢fixE and
use the familiar names class, property (for reference abaté), enumeration, operation, and
parameter in the text. We describe the specification of alsifapguage to represeHterarchi-

cal Finite State Machine (HFSM) using ECORE The metamodel foHFSM is shown in Figure

Z3. One possible sequence of steps to specify a metamddelfisllowing:

1. Specification of Class and Enumeration TypesClasses and enumerations in a meta-
model are created. For instance, we create the classes HR&M&ition, AbstractState,
and State. One may do this concretely using either therE tree editor available in

EMF or using an EoRrREdiagram editor available with tools such as TopCASED [54].

2. Specification of Class Hierarchy Some classes inherit references and attributes from
other classes. For instance, we create the inheritancartligrfor classes State and Com-
posite that inherit from the class AbstractStatecORE allows specification of multiple

and multilevel inheritance where a class can inherit refegdrom several classes.

3. Specification of Properties Properties which include references and attributes are in
serted into classes. For instance, the event property imsifi@n is a primitive attribute of
String type. Similarly, the property incomingTransitiohatass AbstractState is a refer-
ence of type Transition. An @REeditor can be used to insert attributes into a class and

create references from a class to other classes.

4. Specializing Properties There are several ways to add more meaning to a propertye Som

of the important characteristics of a property are:

e Composite Property: A composite property of type Class B owned by a Class A

implies that A is a possible container for objects of class$f Bn object of class B
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Figure 2.3: Hierarchical Finite State Machine Metamodel

is contained in Class A then it cannot be contained by otressels. For instance,
the composite property HFSM.states indicated by the bléakond implies that all

objects of type AbstractState are contained in exactly drRSM object.

e Opposite or Bi-directional Property: The opposite or bi-directional property bind
two objects using the same relationship. For instance sitian.target and Abstract-
State.incomingTransition are opposite properties. Argatof type Transition that
refers to a target State object will enforce that the targeiebject has an incoming

Transition object.

e Multiplicity of a Property: A property can have variable multiplicity or cardinality
indicating the size of an attribute or the number of refeesncFor instance, the

property Composite.ownedState has the multiplicity 0..*.

5. Specification of Operations Operations are included in a class to specify the opera-
tional or denotational semantics for a model or a part of wr iRstance, the operation
HFSM.run() executes theéFSM. An operation may be code in a general purpose language

such as Java a high-level state chart model, or a model of ui@tngn.
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2.2.2 Object Constraint Language to Specify Metamodel Constraints

The specification of a metamodel is a starting point to desaroncepts and their relationships
in a modelling language. It also includes some implicit ¢@sts such as inheritance, spe-
cialization of properties. However, a metamodel is stillited in its use to specify constraints
on the content and structure of models in a modelling langu8gme constraints are better ex-
pressed in a textual constraint language, We specify @inttron a metamodel using tbéject
Constraint Language (OCL) [I14]. TheOCL is anObject Management Group(OMG) standard
to specify side-effect free constraints on models confogiib a metamodel. The enti@CL
specification is available in[114].

We may specify constraints on the'SM modelling language i@CL. For instance, the con-

straint thathere must be only one initial staile a HFSM model is expressed BCL as:-

context State inv

StateallInstance$) — selects|s.isInitial = True) — sizg) =1

Dissecting thedCL constraint we observe that a constraint is specified witldordgext In
this constraint the context is the class State. The consdrarst creates a temporary subset, say
I, of the set of of all objects/instances of the State class. Stibset contains State object with
the property isInitial set td rue Further, the constraint states that the size of the subsst be
equal to one. Overall, the constraint checks if the modelaina exactly one initial State object.
This constraint iside effect freg@vhich means it does not enforce any property on the model.

In general OCL language statements are constructed in four parts:
1. A contextthat defines the limited situation in which the statementigiv

2. Apropertythat represents some characteristics of the context ffelge,context is a class,

a property might be an attribute)
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3. Anoperation(e.g., arithmetic, set-oriented) that manipulates orifjaala property, and

4. Keywords(e.g., if, then, else, and, or, not, implies) that are usesptcify conditional

expressions.

OCL is also used a navigation language for models that conforamtetamodel.

2.2.3 Models in the Modelling Domain

The metamodel specification of a modelling domain allow tis¢antiation or creation of models
in it. Using ECOREONe may create instances of classes in a metamodel.

Some examples of valid models in tRESM modelling language are shown in Figlirel2.4.
The models are shown in their concrete syntax. All modelsi@a&ted using objects of th#=SM
metamodel and satisyCL constraints on theFSM metamodel. For instance, all models satisfy
the constraint that there must a path from any state to a fiatd, sall models have exactly one

initial state and at least one final state.

2.3 Feature Diagram Specification of a Modelling Domain

In Figure[Z®, we present the set-theoretic view of the nlimdetiomain specified by feature
diagram A feature diagrantD specifies a set gbroductsin a Software Product Line. For
instance, software on different Nokia phones are diffenestances of the same product line of
mobile software adapted to different hardware configunatio

The feature diagram itself is a model in the set of all possfbhture diagrams. The set
of all feature diagrams is specified using feature diagram modelling languagd he feature
diagram modelling language allows creation of a featurgrdia containing various product
line features and their inter-dependencies. The featagraim modelling language is specified
using a metamodel. We describe this metamodel in SeEfiadl.2\8%e describe the creation
of a feature diagram as an instance of this metamodel in@dEIB2. In SectioiZ3.3, we

demonstrate how products are instantiated from the fediaggam.
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Figure 2.5: The Modelling Domain of a Feature Diagram
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2.3.1 The Feature Diagram Modelling Language

Variability being at the heart of the software product lirgpeoch, the community came up
with several ways fo documenting SPL variability eitherhie form of UML profiles [162]63]
or domain specific languageés154] 77]. In particular, FreaDiagramH are widespread due to
their simplicity and conciseness. However, since theginal definition, a plethora of feature
modeling notations have been proposéd]([43,[61, 78] to nafew)a Indeed, feature models
can be considered as a product line of notations sharing coalities and exposing differences
which are not always explicitly defined.

In such a context, there is a risk of being dependent of aquéati feature modeling no-
tation both raising the issue of its selection and unneciégsastricts the applicability of our
approach. Fortunately, Schobbens et[al. [136] 134] peddranformal analysis of the existing
feature modeling notations. To do so, they developed a @ilistract syntax called Free Fea-
ture Diagrams (FFDs) used to map any feature modeling aaridivund in existing notations
in order to reason formally on the syntax and semantics aktinetations. The universal nature
of FFDs makes it suitable for various applications; we uséd ieason on variability [62] and
to support product derivation in a model-driven way [[1191.otder to process feature models,
we derived in[[I1B] an EMF metamodel from FFD’s abstract ayniVe recall this formaliza-
tion here since it will serve as the main foundation to speaifr coverage strategies as well as
quality metrics of the generated configurations.

FFDs are defined in terms of a parametric structure whosenadeas serve to characterize
each FD notation variantGT (Graph Type) is a boolean parameter indicating whether the
considered notation is a Direct Acyclic Graph (DAG) or a tré¢T (Node Type) is the set
of boolean operators available for this FD notation. Thgserators are of the forrapg with
k € N denoting the number of children nodes on which they applyCnsidered operators are
and; (mandatory nodeskori (alternative nodes)ry (true if any of its child nodes is selected),

opk (optional nodes). Finallyp(i..j)x (i € N and j € NUx) is true if at leasi and at most

lwe also use the term "Feature Models" interchangeably Wiéature Diagrams"
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j of its k nodes are selected. Existing other boolean operai@mn usually be expressed with
vp. The union ofvp(i.. )k is calledcard. GCT (Graphical Constraint Type) is the set of binary
boolean functions that can be expressed graphically. A&ypixample is the “requires” between
two features. FinallyT CL (Textual Constraint Language) tells if and how boolean taigs

defined over the set of FD nodes can be defined. With the helpesétsets, a generic abstract

syntax for FDs is given. A FD is then composed of the followatgments:

e A setof nodedN, which is further decomposed into a set of primitive noBé#/hich have
a direct interest for the product). Other nodes are useddoomposition purposes. A

special root node, represents the top of the decomposition,
e AfunctionA : N — NT that labels each node with a boolean operator,

e AsetDE € N x N of decomposition edges. As FDs are directed, mdda2 € N, (n1,n2) €

DE will be notednl — n2 where nl is th@parentand n2 thechild,
e AsetCE e N x GCT x N of constraint edges,
e Asetpe TCL

A FD has also some well-formedness rules to be valid: only (gohas no parent; a FD is
acyclic; if GT = true the graph is a tree; the arity of boole@emtors must be respected.

These constructs were used to build anoRE based metamodel depicted in Figlitel 2.6.
The metamodel is proposed in the paper[119] . Its congiitutvas driven by simplicity and
pragmatism. FeatureDiagramis the root class of the metamodel. This class has an a#ribut
graphTypeTreeorresponding to the booleddT (Graph Type) presented previously. It also
contains a list of features (class Feature) correspondirtiget set of nodes N . The special root
noder is identified by the reference root frofeatureDiagranto Feature The authors of[119]
keep all base operators (because they are simple and wisketly tather than using exclusively
card like operators. In the metamodel, these operatorsiatgpe of the abstract class Operator,

and each feature (class Feature) contains O or 1 operatirddinresponds to the function?).
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Figure 2.6: The Feature Diagram Metamodel

The class Feature also contains a list of edges (class Etig@jrg the construction of the set
DE of decomposition edges. The $BE of constraint edges is represented in the metamodel
by the classConstraintEdgeand they are contained by the class FeatureDiagram. Eanh
straintEdgecontains either &equireconstraint or dMutexconstraint. Primary feature nodes
are related to UML models (see below) defining the core assetdved in the realization of
these features. In the metamodel, a primary feature isetat UML models by the composite
association between the class Feature and the class MadallyFwell-formedness rules (Fea-
ture Modeling Constraints) have been implemented in terit®ostraints boolean constraints

on theFD.

2.3.2 Specification of a Feature Diagram

The feature modelling language described in the previocisosecan be used to create BiD
representing a Software Product Line. For instance, weeptethe AspectOPTIMAFD in
Figure[Z¥. The D for AspectOPTIMA contains 19 features allowing maximum &t @onfig-

urations wherkD constraints are neglected.
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2.3.3 Products in the Modelling Domain of a Feature Diagram

A feature diagram models the domain of a finite number of petsluA Productcorresponds to
a selection of features in tHeD such that it satisfies all restrictions in th®. For instance, we

present three different products in Figlirel 2.8 for the ABPETIMA FD in Figure[ZY.

2.4 Modelling and Model Transformation Language: Kermeta

In this thesis, we use Kermeta as the common language to bpthsent modelling domains
and to express transformations between them. This sedtieffyldescribes Kermeta and some
of the its important features used in the implementation ®RGER and A/ISHKAR.

Kermeta is a language for specifying metamodels, modetsnaodel transformations that
are compliant to the Meta Object Facility (MOF) standdrd5[l1The object-oriented meta-
language MOF supports the definition of metamodels in terfnsbgect-oriented structures
(packages, classes, properties, and operations). It als@dps model-specific constructions
such as containments and associations between classesetidarxtends the MOF with an im-
perative action language for specifying constraints angfatpnal semantics for metamodels
[108]. Kermeta is built on top of EMF within the@& IPSE development environment. The ac-
tion language of Kermeta provides mechanisms for dynanmdibg, reflection, and exception

handling. It also includes classical control structureshsas blocks, conditionals, and loops.

2.4.1 Aspect-weaving in Kermeta

The first key feature of Kermeta is its ability to extend arsérg metamodel with constraints,
new structural elements (meta-classes, classes, pegeatid operations), and functionalities
defined with other languages using tagpectkeyword. This keyword permits the composi-
tion of corresponding code within the underlying metamagtelf it were a native element of
the metamodel. This feature offers more flexibility to depelrs by enabling them to easily

manipulate and reuse existing metamodels.
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The static composition operatorequire' allows defining various aspects in separate units
and integrating them automatically into the metamodel. ddraposition is performed statically
and the composed metamodel is type-checked to ensure ténsadration of all units. This

mechanism can be compared to tpen class paradigrfBg].

Open classes in Kermeta are used to organize “cross-cuttimgerns separately from their
metamodel, a key feature of aspect-oriented programniAy [Ehanks to this composition
operator, Kermeta remains a kernel platform and safelygiates all concerns around a meta-

model.

Kermeta offers expressions very similar to Object Constrlaanguage (OCL) expressions
[L14]. In particular, Kermeta includes lexical closuresigir to OCL iterators on collections

such as each, collect, select, or detect.

Moreover, Kermeta also allows the direct importation andluation of OCL constraints.

Pre-conditions and post-conditions can be defined for dpesaand invariants on classes.

Kermeta and its framework remain dedicated to model praegdsit provide an easy inte-
gration with other languages. Kermeta also allows impgrfiava classes to use services such as
file input/output or network communications, which are natikable in the Kermeta framework.

It is also very useful, for instance, to make models commateigvith existing Java applications.

In this thesis, we have made considerable use of aspecifget weave properties and
operations into metamodels with the goal of creating ma@gisformations between modelling
domains. For instance, we weave a reference to an input md&irelement into the output
metamodel. Consequently, we weave an operation into tipuboietamodel that helps create
an output model element using information from this refeeenThis direct referencing due to
aspect-weaving eliminates the need to create intermedidtestructures such as dynamic hash

tables commonly used in compilers.
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2.4.2 Model Typing with Kermeta

In Kermeta metamodels are also model types from a type-¢kiegroint of view. In this thesis,
we solicit the use of model typing to check type conformanesvben metamodels before and
after a transformation.

Model typing corresponds to a simple extension to objeienbed typing in a model-oriented
context [146]. A model typing is a strategy for typing modasscollections of interconnected
objects. Model typing permits the detection of type err@sdyein the design process of model
transformation. Moreover, it allows more flexible reuse aidel transformations across various
metamodels, while preserving type saféfy [146]. Type gaseguaranteed by type conformance,
used as a criterion of substitutability.

The notion of model type conformance (or substitutabilligs been adapted and extended
to model types based on Bruce’s notion of type groups and gypep matching[l30]. The
matching relation, denoted#, between two metamodels defines a function of the set cfedas

they contain according to the following definition:

MetamodeM’ matches another metamodél(denotedV” <# M) iff for each class
Cin M, there is one and only one corresponding cl@ssn M’ such that every
propertyp and operatiorop in M.C matches irM’.C’ respectively with a property

p’ and an operatioop’ with parameters of the same type aMrC.

This definition is adapted fromh [146] and improved here bguxiglg the constraint related to
the name-dependent conformance on properties and operatio

Let’s illustrate model typing with two metamodeé¥s andM’ given in Figure§2]9 arld2110.
These two metamodels have properties and references teadliff@rent names. The metamodel

M’ has additional elements compared to the metamigdel

C1 <# COnebecause for each proper§One.pof type D (namely, COne.name
andCOne.aCTwy there is a matching propergl.qof typeD’ (namely,Cl.idand
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Cl.aC3, such thaD’ <#D.

Thus,C1 <# COnerequiresD’ <# D:

e COne.namandCl.id are both of typeString

e COne.aCTwads of type CTwoand C1.aC2is of type C2, soCl <# COne

requiresC2 <# CTwa And, C2 <# CTwois true becaus€Two.elemenand

C2.elemare both of typeString

Thus, matching between classes may depend on the matchithgiofrelated dependent
classes. As a consequence, the dependencies involved waleiatang model type matching

are heavily cyclical[[145]. The interested reader can firddétails of matching rules used for

model types in[[145].

Hco
0..1| aC2
Type [ [ GClass | 9TYPe
e Siex;
gRetumType = elem : Elnt
0.1 myC1
0.2 /gOperation 0..% \ gAttribute
H GOperation B o
= gVisil g { tring
Eca 0.* H c
st olean [} .
own id : EString
0., gParameter
0..1| parent

= isAParameter : EBoolean
N: EString

= gName : EStrin

Figure 2.9: Metamode¥1. Figure 2.10: Metamodé¥l’.

2.5 Formal Specification Language: ALOY

In this thesis, we transform the specification a modellinmdim and heterogeneous sources of

knowledge toconstraint satisfaction problenhe constraint satisfaction problem is expressed

in the formal specification language:LLoy [[72] [[71].
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ALLOY is a structural modelling language basedfiost-order relational logic. ALLOY
was originally conceived by Daniel Jackson and developethbySoftware Design Group at
MIT. ALLOY is conceived to specify and analyze the conceptual desigm afbject-oriented
software system. Analysis includes generation of instaurufea design to detect for example
abnormal and generating counterexamples for assertioteaesign. The analysis helps detect
design flaws.

In this thesis, we use IA0Y as a target language to specify a modelling domain and hetero
geneous sources of knowledge asoastraint satisfaction probledCSP). An ALLOY instance
or solutionis a model that satisfies the CSP. We obtain these instanceshbgg the A.LOY
model in afinite scopeThe scope of an instance is the limit on its size. Generationstance
of models in A.LOY is based on the hypothesis that finite and small models afal isenost
real-world applications.

A CSP in ALLoy model consists of the following importaparagraphs

module HFSM

open util/boolean as Bool

/1 Alloy Signatures

one sig HFSM

{
states set AbstractState ,
currentState :lone AbstractState ,

transitions: set Transition

abstract sig AbstractState

{
label: Int,
outgoingTransition:set Transition,
incomingTransition: set Transition,
container: lone Composite,
hfsmCurrentState :one HFSM,
hfsmStates :one HFSM

sig Transition
{
event: Int,
target: one AbstractState ,
source: one AbstractState ,

hfsmTransitionsone HFSM




CHAPTER 2. CONTEXT AND STATE OF THE ART

sig State extends AbstractState
{

isFinal: one Bool,

islnitial: one Bool

sig Composite extends AbstractState

{

ownedStates :set AbstractState

Listing 2.1: Signatures faiFSM metamodel

/I Example Alloy Facts

//The HFSM must contain exactly one initial state
fact exactlyOnelnitialState
{
one s:State|s.islnitial == True
}
//The HFSM must contain at least one final state
fact atleastOneFinalState
{
some s: State | s.isFinal == True
}
/I There is exactly one HFSM object
fact exactlyOneHFSM
{
one HFSM
}
/I All AbstractStates have unique labels
fact AbstractState_label_unique
{
all sl:AbstractState ,s2:AbstractState | sl!=s2=>sl.labelsRk.label

/I A Composite State Cannot Contain Itself
fact compositeCannotContainltself

{

all cl:Composite, c2:Composite | c1 = c2 => c2 not cl.ownedStatesand cl1 not in c2.ownedStates

Listing 2.2: Facts foHFSM metamodel

/I'All Composite States in the Model must contain at least 2ned States
pred ExamplePredicate

{

all c:Composite | #c.ownedStates > 2
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Listing 2.3: An Example Predicate

// Example 1

run ExamplePredicatefor 10

!/ Example 2

run ExamplePredicatefor exactly 3 State, exactly 1 Composite, 1 HFSM, 5 Transition

Listing 2.4: Example Run Commands

e Signatures and Fields: A signatureis used to model a concept or a class of objects in
ALLOY. A signature containfieldsthat represent properties of concepts. For instance,
we may model the classes in tHESM metamodel (see Figufe®.3) asl oY signatures
with fields as shown in Listing-2.1. A signature can be an abstsignature such as
AbstracState. Only objects or instances of signaturesrasept a solution to anlAoy
model. A field in a signature can have a multiplicity one, I¢f@eor 1), or it can be a
set. It also has a type which refers to a primitive signatwrehsas Integer or another
signature in the ALoYy model. For instance, the field incomingTransition in thenaigre
AbstractState is a set of signature type Transition. The i&&linal of signature State has a
multiplicity one and is of type Bool. The signature Bool foo@ean is defined in another

module imported using an open declaration.

Facts: Facts are constraints on signatures and fields in the deetaraLLoy model.
A fact must always hold true. For instance, we may expressedacts on theHFSM
metamodel as shown in the ListilgR.2. A fact often contakmessions that specify a
constraint on sets of objects using quantifiers suclg¥), some(d), one andnone For
instance, the fact Abstract_label_unique states thatrfprtao states s1 and s2, if sl is

not s2 then their labels are different hence enforcing thguenlabel constraint.

Predicates: Predicates in ALOY are constraints that need not always hold true like facts.

They may be satisfied by selection by the modeller with theatigres and the facts.
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Predicates may be used to model knowledge from various e®w@s constraints in the
ALLoy model. For instance, the predicate in Listingl 2.3 stateisathaomposite states in
the HFSM must contain at least 2 states. The predicate is not a facirthst be true for

all HFSM models but a constraint that represents a specific objeativequirement.

e Run Command: We may try to satisfy a predicate in ar.f0oy model by attempting to
generate instances in a finite scope. The®y run command is used describe the finite
scope of the solution size. For instance, the first examplésimg[Z:4, attempts to obtain
anHFSM instance up to a scope of 10. This implies that every there lmeay maximum
of 10 instances for each signature. The second example tindi8.4 presents qualifiers
for the scope of each signature. For instance, the quadikactly3 State enforces all

instances to contain exactly 3 States.

An ALLoy model is transformed to a relational model in the relationatlel finder KodKod
[53]. At relational level of abstraction the model struetus comprised of primitive entities
calledatomsandrelationsthat define the relationship between atoms. All signatuepsesent
the set of atoms. All fields, facts, and predicates reprasdaiions between atoms.

An atom is a primitive entity that is:

e Indivisible It can’'t be broken down into smaller parts

e Immutable Its properties don’'t change over time; and

e Uninterpreted It doesn’t have any built-in properties, the way numbers$addnstance.

A relation is a set of tuples where each tuple is a sequenceofsa ALLOY is based on
first-order logic and hence relations cannot contain otel&tions. The number of atoms in
a relation is itsarity. A relation can be unary, binary, ternary or can contain natoms. A
relation with three or more atoms is callednailti-relation For instance, the ternary relation

State ={Stat®), (State), (State3)} represents 3 State atoms.



98 CHAPTER 2. CONTEXT AND STATE OF THE ART

In ALLOY logic the basic entity is elation. Even an atom is represented as a singleton set in
relation tuple.

Relations represent the structure of graphs of objects irEMEbr instance, the isinitial
property in theHFSM metamodel (see FiguEe2.3) may be modelled as a relation

isInitial={ (Stat®, False), (Statel, True), (State, False)}.

Restrictions or constraints on structure in®y is expressed as disallowed relations be-
tween atoms. ALOY provides several operators to express constraints onoredaincluding
set operators, logical operators, and most notably relatioperators such as the dot operator
(for navigating structure), quantification operators (teafy constraints on a set of atoms), and
multiplicity constraints.

To obtain a solution to the relational model the®y specification is transformed using
KodKod [53] to a Boolean Conjunctive Normal Form (CNF) forauT he resulting satisfaction

problem is solved using a Boolean Satisfiability (SAT) solsech as MiniSATI[112] or ZChaff
[159].

2.6 State of the Art in Model Discovery in a Modelling Language

Automatic model discovery in a modelling domain has many ponents. Previous work has
proposed problems and solutions to one or more of these awng® In this section we present

related work for the following components of automatic matiscovery:
e Effective Modelling Domain Identification
e Generation of Models in a Modelling Domain

Further, we present the state of the art in validating autommaodel discovery for two

application domains:

e Experiments in Test Model Generation
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e Experiments in Partial Model Completion in a Model Editor

2.6.1 Related Work for Effective Modelling Domain Identification

There has always been a need to define the effective moddlin@in for a given objective in
MDE. This is true especially in the case of using large Gdrfreugpose Modelling Languages
(GPMLs) such as ML. In this section we present related work that deal with ttebjem of
obtaining and using the effective modelling domain.

Consider a fundamental task in MDE: Creating a model in a iined#or such as in the
Eclipse [58] environment. A popular editor forMl models is TOPCASED[54]. The tool
can be used to createMd models such as class diagrams, state machines, activijyadis,
and use-case diagrams. If a modeller chooses to createditagams the tool presents the
user with modelling elements for class diagrams such asedasnd associations but notU
state machine modelling elements such as states and ivassiTherefore, the tool inherently
prevents the modeller from using an unnecessary part of the tdeta-model. Théard-coded
user interface in TOPCASED in fact presents the modelldn aiit effective modelling domain.

Model transformations on GPMLs such asiU are built for specific tasks and can pro-
cess only a sub-domain of its huge input domain. To filter tipeli to a model transformation
pre-conditions[147] are specified in a constraint language sucbgsct Constraint Language
(OCL) [I14] [@3]. Graph transformation based model transforomatanguages specify pre-
conditions to apply a graph rewriting rule on a left-hancesidodel patterri[147].

In the paperi[144] Solberg et al. present the issue of namigéte meta-muddle notably the
UML meta-model. They propose the development of Query/Extra¢bols that allow devel-
opers to query the metamodel and to extract specified vieas the metamodel. These tools
should be capable of extracting simple derived relatigrshietween concepts and more com-
plex views that consist of derived relationships among nm@mcepts. They mention the need
to extract such views for different applications such assiiné the domain of a model transfor-

mation and extracting a smaller metamodel from the conaeggd in a model. Meta-modelling
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tools such as those developed by Xactilini [96] and Adaptifevace [1] possess some of these
abilities. The authors of [144] propose the useaspectso extract such views. However, the
authors do not elaborate on the objectives behind gengrsitich views.

In this thesis, we present a technique called metamodein (i8] [141] that extracts the ef-
fective metamodel from an input metamodel. The effectivéamedel contains on the required

classes and properties and their obligatory dependencies.

2.6.2 Related Work for Generation of Models in a Modelling Danain

We classify generation of models in a modelling domain asS@)eration by construction (b)
Generation by solving constraints.

Approaches for generation by construction aim to createecbmodels by incrementally
constructing them. We review two such approaches. In Byodti. al. [29], the authors attempt
to incrementally generate models conforming to a metamagle model fragments. However,
a number of the models are rejected as they do not satisfyraorts on the metamodel. A very
similar approach in[[52] makes use of graph grammar rulesd@mentally construct models.
This approach for generating instances also suffers frenséime problem of not being able to
satisfy metamodel constraints.

Approaches for generation by constraint satisfaction aigenerate whole models that sat-
isfy constraintsall at once In [I30], the authors present a transformation for a pamtiadel to
a constraint satisfaction problem in PROLOG. The metamosied! to express the partial model
is also transformed to a set of PROLOG constraints. The autise PROLOG to automatically
complete the partial model. However, PROLOG does not alkpvession of constraints on sets
of objects. Therefore, there is always a need for a partiaehtinat defines the exact number
of objects in the model. The metamodel constraints arefsemed to low-level PROLOG con-
straints on the variables in the model. [n][70], transformLUmodels that are very similar to
metamodels to PROLOG for verification. Both approaches &L G which lacks the ability

to specify constraints on set of objects.
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In this thesis, we presetARTIER that transforms a metamodel toLLoY. Transforma-
tion of a meta-model specification fromMl to ALLOY has previously been explored in the
tool UML2ALLOY [26] [02] [25]. UML2ALLOY supports transformation from meta-model
concepts to ALoy model concepts such as class to signature, property totgrgnizeld, oper-
ation to function, enumeration/enumeration literal tceexts signature, and constraints to pred-
icates. In our approach to transforming a meta-model to amo& model we keep the same
transformation format such we transform classes to sigestand properties to class fields. In
UML2ALLOY composition and aggregation are transformed firsd@. constraints and then
to ALLoY. In our tool we transform composition and aggregation in @aarmeodel directly to
ALLOY facts. Our, approach to transforming single inheritandbésame as in UML2ALOY.
Inheritance is transformed to anLBOY signature that extends an otherl&y signature. We
use QARTIER to also transform metamodels with multiple inheritance ta. @y which is not
addressed by UML2ALOY. There is no clear specification in UML2A0Y related articles
[26] [©2] [25] about transforming multiplicities to A 0Y. In our case we transform multiplic-
ity constraints to ALoOy signature fields in case of occurrence of 010or Q.x multiplicities.

If the multiplicity is variable such aa..b we synthesize an A oY fact constraining the size
of a set of relations. The constraints in meta-model isic#st to a small subset @CL as
UML2ALLOY transforms only this subset @fCL to ALLOY. However, in QRTIER we pro-
pose the user to directly enten. 20y predicates and facts in theLAOY model giving the user
the flexibility of expressing a wider range of constraintsofie that have not been implemented
in UML2A LLOY) such constraints with transitive closure which cannottgessed directly in
OCL. We also present a method to synthesiaa @y predicates from a partial model. This use
of partial knowledge to synthesize complete models greatiyices model development time.
The tool UML2ALLOY, does not support the use of partial model knowledge to hetegte

models.
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2.6.3 Related Work for Test Model Generation

The first application of automatic model discovery is testlgigeneration for model transfor-
mation. We explore three main areas of related work : testr@j automatic test generation,
and qualification of strategies.

The first area we explore is work on test criteria in the cantéxmodel transformations
in MDE. Random generation and input domain partitioningebaest criteria are two widely
studied and compared strategies in software engineerorgNiDE) [153] [158] [64]. To extend
such test criteria to MDE we have presented(in [55] input darpartitioning of input meta-
models in the form of model fragments. However, there existexperimental or theoretical
study to qualify the approach proposed[inl[55].

Experimental qualification of the test strategies requchiniques for automatic model gen-
eration. Model generation is more general and complex teaermting integers, floats, strings,
lists, or other standard data structures such as dealt withe Korat tool of Chandra et al.
[28]. Korat is faster than ALOY in generating data structures such as binary trees, lists, a
heap arrays from the Java Collections Framework but it doésansider the general case of
models which are arbitrarily constrained graphs of objedtise constraints on models makes
model generation a different problem than generating tettssfor context-free grammar-based
software [98] which do not contain domain-specific constsai

Test models are complex graphs that must conform to an inptd-model specification, a
transformation pre-condition and additional knowledgehsas model fragments to help detect
bugs. As cited earlier, in [29] the authors present an autetngeneration technique for models
that conform only to the class diagram of a meta-model spatiéin. A similar methodology
using graph transformation rules is presente@in [52]. @Gead models in both these approaches
do not satisfy the constraints on the meta-model. [ In][13@,present a method to generate
models given partial models by transforming the meta-madel partial model to &onstraint
Logic Programming (CLP). We solve the resultingLP to give model(s) that conform to the

input domain. However, the approach does not add new ol@¢te model. We assume that
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the number and types of models in the partial model is suffid@ obtaining complete models.
The constraints in this system are limited to first-ordemhdause logic.

The qualification of a set of test models can be based on $eviteaia such as code and rule
coverage for white box testing, satisfaction of post-ctiadior mutation analysis for black/grey
box testing. In this thesis, we are interested in obtainhmy relative adequacy of a test set
using mutation analysi$ [49]. In previous wofkT107] we extenutation analysis to MDE by
developing mutation operators for model transformatiomglages.

In this thesis, we use ARTIER for automatic test model generation ARTIER transforms
the input metamodel, pre-condition of a model transforamatind test strategies to a constraint
satisfaction problem in ALOY. We solve the ALOY model to generate test cases or models for
the transformation. We use the mutation analysis techrfiquaodel transformations proposed

in [L07] to validate the effectiveness of the test cases ghdrtection.

2.6.4 Related Work for Completion in Editors

The second application of automatic model discovery idgdartodel completion in a model ed-
itor. We explore existing language-directed editors tiratta use the specification of a language
domain or modelling domain to complete partial code or madel

Language-directed editors have been around for since the ¥#80s. Some of the well-
cited research on language-directed editors are Mentdr [B@rlisp [149], Program Synthe-
sizer [148], Rational[16], PECANT125], and Gandalf[65]obt of the existing language-based
editors such as iAclipse are based oattribute grammarf§9). These systems have been widely
adopted and integrated in many editors for tasks such assgiighlighting and syntax-directed
editing. TheopenArchitectureWarg7] framework , based on thEcore [68] meta-modelling
framework, supports automatic sentence completion ajréaglemented in Eclipse to help
make recommendations to sentences in textual domainfispetddelling languages. These
suggestions for sentence completion are based on thelteyntax of the modelling language

and do not consider the complete consistency of the modbklresipect to the meta-model and
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constraints of the language.

In Model Driven EngineeringdMDE), models built in domain-specific model editors pose a
new challenge. The challenge is to complete a partial mguisiSed in the model editor. This
involves the editor to use domain-specific modelling lamgueonstraints to direct the comple-
tion of the partial model. Simply put, this involves consitaolving using knowledge described
in the partial model to synthesize a model that conforms ¢oditmain-specific modelling lan-
guage. Constraint solving for model synthesis has beenstiglied in the literature such as
model design space exploratidn [132], partial model cotipieusing Prolog[[130] and con-
straint logic programming[89]. IH[131], the authors pmsa model completion system in
a domain-specific editor by combining knowledge from theasrabdel and the partial model
specified in the model editor to SWI-Prolog. Tielog program is solved using a backtracking
based solver to return results to the domain-specific emviemt which was originally syn-
thesized byaToM® using the meta-model. The methodology is valid for any dorspiecific
modelling language in the limits of first-order Horn clausgit of SWI-Prolog. However, their
primary limitation is that the number of objects in the coatplmodel is equal to the number of
objects in the partial model. No new objects are suggestatieéognodel completion system and
the user is limited to specifying only the correct number lgjeots in the partial model. This is
primarily due to the fact that constraints are specified @bthject property level in SWI-Prolog

and not at the meta-level such as on sets of objects.

We identify the need to develop a model completion systermnddia automatically suggest
complete models especially f@/SML meta-models containing constraints both on sets of ob-
jects and their properties. This typically involves majppiia meta-model and constraints based
DSML specification to a mathematical formalism with tool supploat solves constraints to give
correct instances of theSML. Notably, such instances should contain the network ofatbje
(original object identities need not be preserved) spetifiethe partial model and additional
objects (if required) with appropriate property valueststitat the complete model conforms to

its DSML. We would also like to control the maximum size or scope ofdbmplete model for
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practical time considerations. Transformation of metadei® expressed in UML/OCIC[I14] to
various formal systems is not new [47T[18] 701199 T1L[A82]. In [A7] the authors present

a transformation from UML Class Diagrams to Description icsg Their approach is theoret-
ically rigourous where a knowledge base in descriptiondagi its variants is obtained for a
UML Class diagram and theorem provers suchr&sT [69] andRACER [I57] are used to ob-
tain instances by inferring from the knowledge base. Theyethat the time for inference using
a description logic representation of an UML Class diagraBXPTIME-complete. However,
their approach does not support transformation of metal-tnstraints such as those expressed
in Object Constraint Language (OCL) [I14] to description logic. An extension of this work
for obtaining instances in finite domain is presented_in [9e transformation of meta-level
constraints such a3CL along with UML class diagrams to formal higher-order logic language
called Isabelle has been explored in tools such as HOL-O{]. Rimilarly, we have seen the
transformation to constraint programming language ECERS[70]. Both, these approaches
are used primarily for verification of a UML Class Diagramtarsce against theMLCD meta-
model specification. A constraint MCL can be verified against an instanceUfiLCD but we
need the instance itself. In our pursuit to find complete rfsodle need to automatically synthe-
size instances of a meta-model rather than verifying artrariiconstraint against an existing

instance.

In this thesis, we use ARTIER to transform an input metamodel, metamodel constraints
and partial model to a constraint satisfaction problem in@y [71]. We solve the ALoy
model to generate one or more recommendations to completedtiial model such that it
contains all elements of the partial model and conforms ¢ontletamodel and its constraints.

The recommendations are brought back as high-level madéfeimodel editor.
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2.7 State of the Art in Product Discovery

In this thesis, we develop product discovery in a SPL for geien of test products. We present

the related work below.

2.7.1 Related Work in SPL Test Generation

Our work deals with software-engineering specific dimemsiof SPL testing: (1) scalability of
test cases generation, (2) reduction of the resulting ésstcset (both in terms of size of the test

suite and redundancies) and (3) usability for the testers.

Concerning test generation for PL (1), McGredor100] anebiiéinna [I50] propose a well-
structured overview of the main challenges for testing pobdines. A major one is obviously
the exponential growth of possible products. The idea afiguisombinatorial testing for PL
test selection is not new and has been initially proposed diye@ et. al. [[42-41]. Combina-
torial interaction testing (CIT)[39].[190] led to the defiioin of pairwise testing, and then its
generalization to t-wise testing. Cohen et. al. have agpli€T to systematically select con-
figurations/products[42] that should be tested. They clamsvarious algorithms in order to
compute configurations that satisfy pair-wise and t-wiseGa [41]. The constraints imposed
due to feature relationships in a feature model are solvezhliyng SAT solvers such as ZChaff
[I59]. However this approach is mainly theoretical and nanQ@ur work goes along the same
lines but deals with scalability of the test generation imgpthat CIT+SAT approaches do not
scale directly with real-case feature diagrams, such a8spectOPTIMA PL example.

Concerning test minimization for PL (2), to limit repeatesting efforts, a possible solu-
tion is to produce template system test cases, common to lib&wproduct line and that can
be adapted to each product. Nebut etlal.[109] proposed alrhaded approach to derive test
objectives for the whole system. In133], Scheidemann ddfim method minimizing the set
of configurations to verify the whole software product lifidie author exploits the commonali-

ties in order to minimize the verification effort required fequirements that pertain to several
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configurations. However, this approach does not take intowat constraints between features
which limits the applicability of the approach (séel[41]n the same vein[T160] propose a
method to generate test plans covering user-specifiedopertf the huge number of possible
configurations of a component-based software system.

Concerning the last point (3), we choose a model driven igaento automatically map
a feature diagram into an Alloy input format. The user of tperaach can thus manipulate
directly feature digram and transform them directly in Allé formalization for feature models
in Alloy can be found in[[124], but is not dedicated to testamyl feature diagrams have to be
written by hand. Uzuncoava et al. _[152] use Alloy to genegatest suite incrementally from
the specification of a product, directly modeled as alloyriolas. The interesting point in this
work is that tests are reused from one product to another umaulative way. Our work focuses
on testing the SPL as whole rather than individual produktdeed, these techniques of SPL
testing are complementary, our method focusing on autahsskection of products, which can
then be individually tested.

Usability is also a question of analysis algorithms and ¢asks to manipulate and reason
about feature model§ [P0, 702]. Benavides et al. have deedl#AMA [21] a generic open-
source framework supporting various kinds of analyses.ilwlihtest-set computation is not part
of them but our EMF/Eclipse based T-wise toolset can be iated easily to it. Furthermore,
our variability metamodel is generic and has been sucdéssioplied/reused for product line

derivation [119] and variability weaving [1D5].
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Chapter 3

Automatic Effective Model Discovery

In the context of Model-driven Engineering (MDE), we usetfolass software artifacts called
modelsto build complex software systems. A model is a graph of inteamected objects con-
structed using a modelling language. For instance, thekmelvn Unified Modelling Language
(UmL) [I18] is used to create models of various aspects of olpjgetted software systems.
The models include requirements specification usimg.UWise case diagrams, software struc-
ture using UWiL class diagrams and behavior usingnlU activity and/or WML state machine
diagrams. The set of all models specified by a modelling laggus themodelling domairof
the modelling language.

A modelling language can be very expressive and often altbscreation of an infinite
number of models. The ML is one such example of a very large and expressive modelling
language. The ML consists of 246 concepts with a number of properties. lefipdssible
objects of these concepts can be inter-connected in a Nyrtofinite number of ways in models
of the UmL. This implies that the modelling domain oMl is an infinite set of models. Are all
the models in a modelling domain usefulaifectivefor a given set of objectives? The answer is
no. Not all models one can construct in a modelling languageuseful oreffectivegiven a set
of objectives. There is a need for knowledge from heterogemsources to ensure the creation

of an award-winning oeffective model
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Heterogenous sources of knowledge that can restrict tla¢i@neof models to effective mod-
els can come from different domain experts, expressedferdiit languages and possibly devel-
oped at different times. For example, a source based on corserse knowledge about a mod-
elling domain is a set of well-formedness rules for model$exaual constraint language such as
the Object Constraint Language (OCL) [L14] is often used to specify such well-formedness rules.
An OCL invariant on the WL state machine models enforces that a state machine coatains
least one final stateThis invariant satisfies one of the requirements for coterenination of a
state machine’s execution. Other sources of knowledge neyde partially specified models,
test criteria for creation of a model for testing, a pre-agbod of a model transformation that
executes the model as its input and many others dependirfiearbjective for creating the ef-
fective model. The restrictions imposed by heterogenouscses of knowledge on a modelling
domain virtually leads to the notion of a subset of models madelling domain called the
effective modelling domairThe effective modelling domain is most likely to contaifeetive

models for a given set of objectives.

The creation of models in the effective modelling domairspres a pitfall. Manually cre-
ating effective models is very tedious or sometimes imfssas the modeller must simulta-
neously satisfy constraints from a number of sources. Thgnihale of the problem becomes
even more evident when we need to manually create thousénusdels with an objective such
as testing a model transformation. Can we partially or falljomate the process génerating

or discoveringeffective models? This is the question that intrigues us.

We present a framework and methodologydatomatic effective model discovenya mod-
elling domain. The framework is embodied in a model-driveal tCARTIER [L38] [6]. The
methodology is based on the general idea that an effectiekehiveg domain can be transformed
to aconstraint satisfaction probledCSP). Solving the constraints satisfaction problem gises
models in the effective modelling domain. However, thisegahidea entails a number of chal-

lenges. The three most important challenges are:

Challenge 1:Representing the modelling domainwary large modellindanguages such as the
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UML as a CSP may result in a very large CSP that cannot be solverkasanable amount of
time.

Challenge 2: Knowledge from heterogenous sources are often specifiedffénesht languages.

It is therefore a challenge wmutomatically transfornthem to constraints in a common CSP lan-
guage where modelling domain constructs may be expressgdiverently.

Challenge 3:The solutions of a CSP may not be in the form of models of th@lnnodelling
language. There is a needdatomatically transform CSP solutions back to modelhe mod-

elling language.

Our methodology addresses these challenges in the folipprincipal steps:

1. We automatically prune an input modelling language taiobts effective subset

2. We transform heterogenous sources of knowledge inajuttie pruned modelling lan-

guage to a common CSP in the formal specification language [[71]]

3. We solve the ALoy model within finite bounds and automatically transform tbieisons

(if they exist) back as models of the input modelling languag

We describe the methodology in more detail along the chaysieg the running case study
of generating models for theNt. modelling language.

We organize the chapter as follows. In Secfiod 3.1 we presenoverall framework and
methodology. In Sectidn 3.2, we present the software emferli CARTIER of our framework.
We present the running case study of1ilJin Section[3B. The first step of effective mod-
elling domain identification via metamodel pruning is prease in Sectiol3]4. We describe
the transformation of a basic metamodel with single inhade to ALoy in Section(3b. A
more complicated transformation metamodels with multipheritance to ALoy is described
in Sectior3B. In Sectidn 3.7, present how we handle tramsftion of metamodel invariants to
ALLOY. We discuss automatic model generation by solving the finalok model in Section

B3. We summarize the contents of the chapter in SeEfioh 3.12
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Figure 3.1: A Framework for Automatic Effective Model Dis@oy

3.1 Automatic Effective Model Discovery Framework

The framework for automatic effective model discovery iswh in Figure[3Il. The inputs

to the framework include knowledge from heterogeneouscssuto help specify theffective

modelling domain We can divide the sources of knowledgepigmary sourcesand domain-

specific sourcesThe general methodology followed in the framework is pnése in Section

BI13.
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3.1.1 Primary Sources of Knowledge

The primary sources of knowledge are:

¢ Input metamodel is the specification of an input modelling language. It sfiegia mod-
elling domain which is the set @il modelsin a modelling language. The input metamodel
consists of a set of types (class with properties, enunegratirimitive) to instantiate ob-
jects. The industry standard framework for specifying goutrmetamodel is thE&clipse

Modeling Framework (EMF) [58]. The input metamodel itself is stored as an instaof

the ECORE metamodel.

e Metamodel Invariants/Constraints are expressed on an input metamodel using a textual
constraint language such @sject Constraint Language (OCL) [L14]. These constraints

encode restrictions that cannot be specified using a diagedin ECORE model.

3.1.2 Domain-specific Sources of Knowledge

A number of domain-specific sources of knowledge may also thefine the effective modelling

domain. We present some of them below:

e Required types and propertiesin the input metamodel. The set of required types and
properties help extract a subset of the input metamodel ffecteve model discovery.

There can be many possible sources for the set of requires gd properties:

— Static analysis of a model transformation gives a set ofgygrel properties in the

input metamodel actually manipulated by the transfornmatio

— A set of models conforming to the input metamodel is anotieirce of required
types and properties. Visiting the models in the set gives set of types and prop-
erties used in the metamodel. A typical real-world exampléhis could be in a

classroom setting for object-oriented design usingLU The professor can point
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out to students the required types and properties he useddtedML by visiting

every object of a set of models automatically.

e Partial Model is a partially specified model using the input metamodel. ifstance, a
graphical model editor allows an user to create models in deflinog language such as
UmL state machines. An incomplete model in the editor is a part@el in the UL
state machine language. The partial model may not resdetietdmodel constraints of
UML. Therefore, a partial model is often expressed as an irstainarelaxed version of

the input metamodel

e Test Coverage Strategiebelp define and generateodel fragmentfb5] that cover a wide
range of structural aspects in the input metamodel. Foauitgt, an input domain partition
based strategy helps generate model fragments that cavitiopa on all types and prop-
erties of the input metamodel. These model fragments hdipedan effective modelling
domain forcoverage-based testimgf a model transformation. All test models that sat-
isfy a coverage strategy contain the model fragments gestefeom the strategy. Model
fragments are expressed in a modelling language that Eespécification of ranges on

properties of an input metamodel.

e Transformation Pre-condition is a set of invariants on the metamodel that is specific to a
model transformation. A model transformation often maybetlesigned to transform all
models specified by its input metamodel. For instance, #restormation from class dia-
gram models to entity relationship diagram models [22] mexfihat all classes in the input
class diagram have at least one primary attribute. @@k [L14] is often used to express
pre-conditions. Generating test models requires the tedefn to satisfy transformation

pre-conditions.
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3.1.3 Methodology

The methodology for automatic effective model discovergsuhe inputs presented above and

can be divided in three principal steps:

1. Effective Metamodel Identification: We identify the effective metamodel from the input
metamodel via a technique known m&tamodel pruning@41]. Briefly, the metamodel
pruning algorithm extracts a subset of the input metamondeWk as the effective meta-
model. The effective metamodel contains the set of requygees and properties provided

as input and all its obligatory dependencies. We preserammzdel pruning in Sectidn3.4.

2. Transformation of Effective Modelling Domain to ALLOY : Knowledge from hetero-
geneous sources including the effective metamodel arsftianed to a constraints model
in the formal specification languageLBoy [[71]]. We briefly describe ALOY in Chapter

B, Sectio ZB. We describe the transformation in Seclidh§35 3.6 317.

3. Model Generation by solving the ALLOY Model: We solve the ALOY model to obtain
solutions that satisfy the constraints in theL®Y model. The solutions are transformed
to models that conform to the input metamodel. In Sedfioh 8&describe the process

of model generation from thelAoy model.

3.2 Software Embodiment: Cartier

We implement our framework for automatic model discoveho(en in Figurd-311 and described

in SectionC31l) in model-driven tool ARTIER. The tool was first presented i [138] and a
prototype is available af][6]. It is named aftircques Cartier a french discovery and explorer

from St. Malo, credited with the earliest exploration of @dman in-lands. The construction

of CARTIER has been motivated by a number of requirements as enlist8dation 3Z11. We

describe technical aspects oARTIER that address its requirements in Secfion3.2.2.



116 CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

3.2.1 Requirements for Q\RTIER

This section presents a number of high-level consideratibat emerge while considering the

implementation of a tool foautomatic model discovesuch as GRTIER.

Conformance to Industry Standards for Modelling

The widely-accepted industry standard for modelling andefing language design is tkelipse
Modeling Framework (EMF) [3Z] initially developed by IBM. The metamodel of a nailihg
language is often available as Bnore model of the EMF. One of the primary objectives for
CARTIER is to discover or generate models that conform to a metana@dhble in theEcore
format. CARTIER must be able to manipulate and transform all or most relexspécts of the

Ecore metamodels.

Sophisticated Model Manipulation and Transformation

The framework for automatic model discovery, proposed inti8e[3.1, requires the imple-
mentation of a wide range of model manipulation algorithorspiruning and transformation to
ALLoy. CARTIER must solicit the use of a model transformation language shpports the

following important operations on models (and metamodels)
1. Scalability in loading, transforming, and saving vemgametamodels and models
2. Navigation of models and creating/removing model eleémen

3. Support model typing to check type conformance betweetamedels. We use model

typing to check type conformance between the original andiagul effective metamodel.

4. Support for invariants to express metamodel invariants model transformation pre-

conditions

5. Inter-operability with the high-level programming laragge Java. This will facilitate exe-

cution of ALLoY models
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6. A model transformation language that can simultaneausigipulate models in heteroge-

nous modelling languages

Metamodel for ALLOY

The tool must transform the effective modelling domain tmastraints model such as anA
Loy model. The transformation can be classified asamy-to-one exogenous transformation
between models in modelling languages for heterogeneausesoto a model in ALOY . There-

fore, there is a need to create an output metamodel repiegdiné ALLOY grammatr.

3.2.2 (CaARTIER Technical Overview

CARTIER thrives within the context of MDE is built upon theclipse Modeling Framework
(EMF) [32]. CARTIER is developed in Kermet&[B2[[1D8] an executable (meta-)iiod) and
model transformation language developed by the TRISKEIldugrin INRIA, Rennes, France.
The first step in GRTIER is to obtain an effective modelling domain or a smaller eifec
metamodel from an input metamodel via metamodel prurind][1Fhe metamodel pruning
algorithm solicits large metamodel loading/saving anchssiftated model transformation oper-
ators provided by Kermeta. The effective metamodel is aefulifghe input metamodel from a
set-theoretic point of view and supertype of the input meideh from a type-theoretic point of
view. We use model typin@ [145] (see Chayfer 2, Sedfionptd.2nsure this type conformance
between the effective metamodel and input metamodel. T ¢pnformance implies thatl
instancesof the effective model are instances of the input metamduekfore preserving back-
ward compatibility. Furtherall operations and transformationsn the effective metamodel are
compatible with the possibly large input metamodel such & UWe take note of the great
advantage of pruning while dealing with large metamodethsas the WL which cannot be
readily handled by a constraint solver such as @y (see next paragraph). The advantage being
the capability of model typing to ensure compatibility wéh industry standard. Model typing

is only supported in Kermeta at the time of writing makinghi¢ tprime choice for the pruning
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transformation.

The core of QRTIER is a transformation from heterogenous sources of knowl@uded-
ing the effective metamodel to the formal specification leage ALOY. This amounts to a
many-to-one exogenounsodel transformation. Kermeta supports the constructiauch model
transformations. The heterogeneous sources of knowleggaa@dels expressed as instances of
different Ecore metamodels that can be efficiently handled by Kermeta. Tigetd&anguage is
ALLOY [I[Z7] which is implemented in Java. To bring everything witlihe context of model
transformation between modelling languages we createdtanmoelel for ALLOY conforming
to theEcore standard. The ALOY Ecore metamodel is available for download &t [2]ARTIER
navigates and extracts knowledge from the sources to ciedgelarative model in the language
ALLOY using a Kermeta model transformation.

CARTIER must solve the ALoYy model to obtain solutions that can serve as a source of
information to create model instances of the input metarnodis calls for inter-operability
with Java as the ALoy APl is in Java. Kermeta allows calling the Java API to solve th
ALLOY model using relevant parameters and a SAT solver of choick as MiniSAT [112],
ZChaff [159]. The ALOY solutions must be transformed back to model instances ahghe
metamodel. We present a transformationLAy 2EMF in Java that transforms theLBoY

solutions back to model instances of 1OY .

3.2.3 C(CARTIER Architecture

In Figure[32, we present the overall architecture ®RCIER. The architecture implements
a number of model transformations as indicated by sevenalenic prefixes. We enlist the

important steps in the architecture below:

1. Metamodel pruning (indicated as transformation 1 in FEéi2) transforms an input meta-
modelMM;, to the effective metamode&MM,;, containing the required types and prop-
erties and their obligatory dependencies. The pruningrigfgo is described in Section

B4.
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2. If the effective metamod@MM;, contains multiple inheritance we apply the transforma-

tion (indicated as transformation 3 in Figlirel3.2) thatdlastthe effective metamodel to a
base A Loy modelA with single inheritance. This transformation is describe8ection
B4. If the effective metamodel contains only single intaerce Q\RTIER executes the ba-
sic transformation (indicated as transformation 2 in Feffi) to obtain the baseLAoY

modelA. This transformation is described in Section 3.5.

. Domain-specific sources such as the partial mpdetodel fragments arautomatically

transformed to ALoy predicates using transformations 4, 5 in Fiduré 3.2.

. Arbitrary textual constraintS or domain-specific knowledge such as the pre-condition of

a model transformation are currentityanuallytransformed to ALOY predicates.

. CARTIER generates a conjunctionLAOY predicate of the set of all Aoy predicates

and a corresponding run command to solve the predicate. dijarction predicate is
combined with the baselAoy modelA to give a final A Loy modelAr. This is per-
formed in transformation 6 as shown in Figlirel 3.2. The detilthis transformation is

presented in Sectidn3.9.

. CARTIER invokes KodKod from the ALoy API to transform the final ALoy model

Ar to a Boolean satisfaction (SAT) problem as shown in trams&dion 7 from Figure
B3. This transformation already exists in theL®y APl and is not implemented in
CARTIER. CARTIER invokes a SAT solver such as ZChdff[159], or MiniSAT[112] to

generate ALOY instances.

. The ALLOY instances are transformed to EMF models conforming to it imetamodel

MMi,. This is depicted in transformation 8 of Figurel3.2. Thisisfarmation described
in Sectio3.91.
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Figure 3.3: Bird’'s Eye View of the ML Metamodel
3.3 Running Case Study : The WL

We use the WL as a running case study to describe automatic model discows present a
bird’s eye view of the WL metamodel in Figure=3.3.
We believe that WiL is a convincing case study to illustrate our approach forehdiscov-

ery. There are a number of reasons to choose Es a running case study:

e Industry Standard Metamodel: The UmL is a widely accepted industry standard for
software structure and behavior design and code gener&tinnmber of model transfor-
mations have been expressed usingLlas the input domain. Automatic model discovery
of models in the domain of ML clearly demonstrates the applicability of our approach to

real-world problems.

e Very Large and Complex Metamodel: The UML metamodel consists of 246 classes and
583 properties and incorporates complex metamodel patgerch as multiple containers
for a class, multiple inheritance between classes, anahgxeuse of opposite properties

in metamodels.

e Provokes use of Sophisticated Model TransformationThe complex structure of faL
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solicits the use of sophisticated model transformationratpes in transformations be-
tween WL to other languages such as tRelational Database Management Systems
(RDBMS) [22]. Automatic generation of test models that discovegsbin such transfor-

mations is of key interest to us.

e lllustrates the benefits of Metamodel Pruning and Model Typng: The large size of
UML helps us demonstrates the benefits of metamodel pruningraxcea subset of ML
and demonstrating type conformance of the pruned metamattethe UvL. The type
conformance demonstrates that instance and operatiorfseassubset of WL preserve

backward-compatibility with L itself.

e Can UmL be saved?A political question that we wish to address with this casslst
is the growing debate about the large size ofilJ Critics state that WL is evolving
to become very and large incomprehensible for software ldgreent. However, they
also mention that the notion of general purpose modellimyuages such asnd is
necessary to maintain backward compatibility and interability for users. We want
to demonstrate with our approach that metamodel pruningnaodkl typing help work
around the problem of the large size by extracting only seéwubsets of the L for
applications such as model discovery. All the while staywognpatible with the WL

standard.

3.4 Effective Modeling Domain ldentification: Metamodel Pruning

We present anetamodel pruning algorithrthat takes as input a large metamodel and a set of
required classes and properties, to generate a taffpstive metamodelThe effective meta-
model contains the required set of classes and properties.tefmpruning refers to removal
of unnecessary classes and properties. From a graph-icgmoat of view, given a large input
graph (large input metamodel) the algorithm removes orgesumnecessary nodes (classes and

properties) to produce a smaller graph (effective metamodée algorithm determines if a
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class or property is unnecessary based on a set of rules @#indpOne such rule is removal
of properties with lower bound multiplicity 0 and wha's tyfgenot a required type. We demon-
strate using the notion of model typing that the generatéstisfe metamodel, a subset of the
large metamodel from a set-theoretic point of view, suger-typefrom a type-theoretic point
of view, of the large input metamodel. This means that algpms written using the effective
metamodel can also be executed for models of the origingé laxetamodel. The pruning pro-
cess preserves the meta-class names and meta-property fnaméhe large input metamodel in
the effective metamodel. This also implies that all insean@gnodels) of the effective metamodel
are also instances of the initial large input metamodel. didels of the effective metamodel
are exchangeable across tools that use the large input wethas a standard. The extracted
effective metamodel is very much like a transient DSML widtessary concepts for a problem

domain at a given time.

3.4.1 Important Definitions

We present some general definitions we use to describe thengralgorithm.

Definition 3: A metamodel MMs a 3-tupleMM := (T, P, Inv), whereT is a finite set of class,
primitive, and enumeration typeB, is a set of propertiednv is a finite set of invariants. We
specify the modelling domain of modelling languagaising a metamodel. We use tBeore
standard to represent a metamodel [32].

Definition 4: A primitive type bis an element in the set of primitiveb:c {String,
IntegerBooleary.

Definition 5: An enumeration type s a 2-tuplee := (nameL ), wherenameis aStringidenti-
fier, L is a finite set of enumerated literals.

Definition 6: A class type ds a 4-tuplec := (nameP., SuperisAbstractcontainerg, where
nameis aStringidentifier, P; is a finite set of properties of classclassc inherits properties of
classes in the finite of class8siper isAbstractis aBooleanthat determines i€ is abstract and

containersis the set of all possible containing classes for the ingsuaéc.
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Type Operations: The operations on types used in this algorithm aret.{@nstanceO {X)
that returns true if is of typeX or inherits fromX. (b)t.allSuperClass€s, if

t.isinstanceO {Class, returns the set of all its super class&uperincluding the super classes
of its super classes and so on (multi-level) (@llContainerg) returns all possible containers
for a class type.

Definition 7: A property pis a 7-tuplep := (nameoC,type lower,upperopposite

isCompositg, wherenameis a String identifier, oC is a reference to the owning class type,
typeis a reference to the property tydewer is a positive integer for the lower bound of the
multiplicity, upperis the a positive integer for the upper bound of the multipljo p positeis

a reference to an opposite property if any, &@om positeletermines if the objects referenced
by p are composite (No other properties can contain these apject

Property Operations: The operation on properties in this algorithnpissConstrained) which
returnstrue if constrained by any invarianmtsuch thatp € i.R. This is checked for all invariants

i € MM.Inv.

Definition 8: An invariant | is a 3-tuplec := (T, P ,Expressiol, whereT, is the set of types
used in the invariant andP, is the set of properties usedlinAn Expressioris a function ofT,
andP that has a boolean value. TR pressioris often specified in a constraint language such
asOCL [114].

Note: Throughout the section, we use theational dot-operatorto identify an element of a
tuple. For example, we want to refer to the set of all typesrimetamodel we use the expression
MM.T,or MM.P to refer to the set of all properties. Also, we do not considser-defined

metamodebperationsor its argument signatures in our approach.

3.4.2 Metamodel Pruning Algorithm

This section describes thmetamodel pruning algorithrto transform an input metamodel to a
pruned target metamodel. We acknowledge the fact there eamlentire family of pruning

algorithms that can be used to prune a large metamodel tovgieus effective metamodels.
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We present @onservativanetamodel pruning algorithm to generate effective metasiso®ur
initial motivation to develop the algorithm was to help scal formal method for test model
generation[[138] in the case of large input metamodels. &fbeg, given a set of required classes
and properties the rationale for designing the algorithns tearemove a maximum number
of classes and properties facilitating us to scale a formethod to solve constraints from a
relatively small input metamodel. The set of required dasand properties are inputs that can
come from either static analysis of a transformation, ammgpta model, an objective function,
or can be manually specified. Given these initial inputs weraatically identify mandatory
dependent classes and properties in the metamodel ande¢hsorest. For instance, we remove
all properties which have a multiplicity 0..* and with a typet in the set of required class
types. However, we also add some flexibility to the prunimgpathm. We provide options
such as those that preserve properties (and their claskitypeequired class even if they have
a multiplicity 0..*. In our opinion, no matter how you choo&edesign a pruning algorithm
the final output effective metamodel should be a supertypgbefarge input metamodel. The
pruning algorithm must also preserve identical meta-cpncames such that all instances of the
effective metamodel are instances of the large input medaind hese final requirements ensure

backward compatibility of the effective metamodel withpest to the large input metamodel.

Algorithm Overview

In Figure[33, we present an overview of the metamodel pguaigorithm. The inputs to the
algorithm are: (1) A source metamodéMs = MM,4rge Which is also a large metamodel such as
the metamodel for ML with about 246 Classes and 583 propertiessgare format) (2) A set
of required classeSreq (3) A set of required propertieReq, and (4) A boolean array consisting
of parameters to make the algorithm flexible for differenirpng options.

The set of required class€q and propertie®,.q can be obtained from various sources as
shown in Figurd=3l4: (a) A static analysis of a model tramsfition can reveal which classes

and properties are used by a transformation (b) The setsealirdctly specified by the user
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Possible Sources
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Figure 3.4: The Meta-model Pruning Algorithm Overview

(c) A test objective such as a set of partitions of the metahfid] is a specified on different
properties which can be source for the Brt. (d) A model itself uses objects of different
classes. These classes and their properties can be thes@onCieq andPreg.

The output of the algorithm is a pruned effective metamdd®l; = MMe+ fecrivethat con-
tains all classes i€q, all properties inPq and their associated dependencies. Some of the
dependencies are mandatory such as all super classes skanlh some are optional such as
properties with multiplicity 0..* and whose class type ig moCeq. A set of parameters allow
us to control the inclusion of these optional propertieslasses in order to give various effec-
tive metamodels for different applications. The outputaneidelM Mg+ tectiveiS @ SUbset and a

super-type oMMs.

The Algorithm

The metamodel pruning algorithm (shown in Algorithm 1) hasrfinputs: (a) A source meta-
modelMM;s (b) Initial set of required type$eq (C) Initial set of required propertiéiq (d) The
top-level container class tyg&,p. (€) Parameterwhich is a Boolean array. Each element in
the array corresponds to an option to add classes or prepéotihe required set of classes and
properties. We consider three such options giving Barametervector of size 3.

The output of the algorithm is the pruned target metambtidl. We briefly go through the
working of the algorithm. The target metamodi#M; is initialized with the source metamodel
MMs. The algorithm is divided into three main phases: (1) Conmguset of all required types

Treq in the metamodel ,(2) Set of all required propertisg, in the metamodel (3) Removing all
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types and properties not that are nofljgy andPreq

The first phase of the algorithm involves the computatiorheféntire set of required types
Treq- The initial sefTeq is passed as a parameter to the algorithm. We add the tolctaviiner
classCiop of MMs to the set of required typ€keq as shown in Step 2. In Step 3, we add the
types of all required propertieR.q to the set of required typ€keq. In Step 4, we add types
of all mandatory properties theq. Types of all properties withower bound greater than zero
are added to the set of required typkes; (Step 4.1). Similarly, if a property is constrained
by an invariant inMM.Inv then its type is included ifieq as shown in Step 4.2. If a property
has an opposite type then we include the type of the opposifgefty toTreq in Step 4.3. The
algorithm provides three options to add types of propenvéh lower multiplicity zero and
are of type Class, PrimitiveType, and Enumeration resypelgti The inclusion of these types is
depicted in Steps 4.4, 4.5, and 4.6. The truth values elenaoétiteParameterarray determine if
these options are used. These options are only exampleskaigrthe algorithm flexible. The
Parameterarray and the options can be extended with general and pseifis requirements
for generating effective metamodels. After obtainifygy we add all its super classes across all

levels to the setieq as shown in Step 5.

The second phase of the algorithm consists of computingeahefsall required properties
Preq- Inclusion of mandatory properties are depicted from Stéptitrough Step 6.5. In Step
6.1, we add all properties whose type ardig to Peq. In Step 6.2 we add all properties whose
owning class are iffieq to Peg. In Step 6.3, we add properties with lower multiplicity gera
than zero tdPeq. If @ property is constrained by a constraintNtM.Inv we add it toPeq as
depicted in Step 6.4. We add the opposite property of a requiroperty tdPeq. Finally, based
on the options specified in tiearameterarray, the algorithm adds propertiesRgq with lower

multiplicity zero and other characteristics.

In the third phase of the algorithm we remove types and ptigsgiromMM;. In Step 7, we
remove all properties that are nothrq (Step 7.1) and all properties who's types are nokig

(Step 7.2). In Step 8, we remove all types noflig,. The result is an effective metamodel in
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Required Properties Required Types
Property : Type Class
memberEnd : Class Association
general : Class Package
ownedEnd : Class Property
classifier : Package PrimitiveType

datatype : Property
attribute : Class
packagedElement : Package

Table 3.1: Required ML Types and Properties in the Transformatitass2rdbms

MM;. In ChapteER, Sectidn2.4.2, we preseridel typingor metamodels to show th&M; is
a super-type oMMs. As a result, any program written witiM; can be executed using models

of MMs.

3.4.3 lllustration on UML Case Study

We prune the thL. metamodel based on a set of required types and properties tha pruning
algorithm. The source for the set of required types and ptiggds the static analysis of a model
transformation between ML class diagrams andelational Database Management Systems
models described ifn]22]. We enlist the set of required typesproperties in Tab[e=3.1.

The pruned WL metamodel contains 26 Classes and 65 Properties which $$icgdéy
smaller than the original 246 Classes and 583 Propertiesal¥deverify using model typing
(see Chapter 2, SectiGnZK.2) that the prunewl Us a supertype of ML. This implies that
any model created as an instance of the pruned i also an instance of the originalMui.

Any operation or model transformation written fomu is also applicable to ML. The pruned
metamodel is an effective metamodel afil that will be used as an example for the subsequent

sections.

3.4.4 Validity and Complexity of the Algorithm

The metamodel pruning algorithm by construction generatesffective metamodel that is a

supertypeof the large input metamodel. Does the algorithm generatpers/pe effective meta-
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Algorithm 1 metamodelPrunindMs, Treq, Preg, Ctop, Parametey
1. Initialize target meta-model MM;
MM; < MMg
2. Add top-level class into the set of required types
Treq — TreqUCtop
3. Add types of required properties to set of required types
Preg-€aCh p|Treq < TreqU P-type}
4. Add types of obligatory properties
MM;.P.eacK p|
4.1 (plower>0) = {Tieq — TreqU P-type}
4.2 (p.isConstrainedMM;.Inv)) = {Treq — TreqU p.type}
4.3 (p.opposité =Void) = {Treq < TreqU p.Oppositety pe}
Option 1: Property of type Class with lower bound O
if Parametef0] == Truethen
4.4 (p.lower == 0and ptypeisinstanceO {Clasg) = {Tieq < TreqU p.type}
end if
Option 2: Property of type PrimitiveType with lower bound O
if Parametefl] == Truethen
4.5 (p.lower== 0and ptypeisinstanceO {PrimitiveTypg) = {Treq < TreqU P-type}
end if
Option 3: Property of type Enumeration with lower bound O
if Parametef2] == Truethen
4.6 (p.lower == 0and ptypeisinstanceO fEnumeration) = {Treq— TreqU p.type} }
end if
5. Add all multi-level super classes of all classes iffeq
MM;.T.eacKt |t.isInstanceO {Clasg = t.allSuperClassesach{s|Treq < TreqUS}}
6. Add all required properties to Peq
MM;.P.eacK p|
6.1(ptypec Treq) = {Preq — PreqU P}
6.2(p.oC € Treq) = {Preq — PreqU P}
6.3 (p.lower > 0) = Preq PeqU P}
6.4 (p.isConstrainedMM;.Inv)) = {Preq < PreqU P}
6.5 (p.opposité =Void) = Preq < PreqU p.Oppositg
Option 1: Property of type Class with lower bound 0
if Parametef0] == Truethen
6.6 (p.lower== 0and ptypeisinstanceO{Clasg) = {Preq« PeqU P}
end if
Option 2: Property of type PrimitiveType with lower bound 0
if Parametefl] == Truethen
6.7 (p.lower == Oand ptypeisinstanceO {PrimitiveTypg) = {Preq « PreqU P}
end if
Option 3: Property of type Enumeration with lower bound 0
if Parametef2] == Truethen
6.8 (p.lower == Oand ptypeisinstanceO fEnumeration) = {Peq « PreqU P}}
end if
7. Remove Properties
MM;.P.eacK p|
7.1p¢ Peq = (tLP—t.P—p)
}
8. Remove Types
MM;.T.eacHt|t ¢ Teqg = MM. T «— MM.. T —t}
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Figure 3.5: Bird’'s Eye View of WL Pruned With 26 Classes and 65 Properties
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To be removed Not Required

H UML
NamedElement [1..* 0..;: ‘\
clientDependency Dependency

name: String client
Type Conformance

@ Removal/Pruning

UML effective
Supertype of UML
(a) (b)

Figure 3.6: Validation of Pruning Operators (a) OperatdRémove a Property with Multiplicity
0..* (b) Model Type Conformance

model for any input metamodel and set of required types aofdepties? We need to answer
to answer this question to ensure that the algorithm ismstarsuper type for all possible input
metamodels.

To answer this question we need to verify that epaiming operatortakes as input a meta-
model and returns supertypemetamodel as output. In our algorithm, each removal or piguni
operator satisfies this requirement. For example in Figuler illustrate the operator to re-
move a property with multiplicity 0..* of a property with a nequired type. Specifically, we
show that in the thL metamodel the propertglientDependencyf NamedElement may be re-
moved when Dependency is not one of the required classegindfB.6 (a). The resulting
effective UML metamodel is supertype of theud metamodel.

Similarly, we verify that all removal/pruning operatorsdar algorithm give a supertype as
output. Therefore, by thiaw of transitivityexecuting the pruning operators in sequence always
gives a supertype as the output.

The metamodel pruning algorithm hésear time complexity The algorithm traverses the
metamodel three times. The metamodel is usually a graptsttatdure but acore metamodel
enforces a containment relationship for all types. Thismsehat a metamodel may be traversed
like a tree. If a metamodel hd? properties (leaf elements) then a depth-first traversal has

complexity O(P). The second traversal requires identification of dependéptoperties and
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types. Finally, the third traversal removes or prunes the@rties and types that are not required.
Therefore, in general the time complexity of the algoritteg®{3P). However, if the metamodel
containsE enumerations then the complexity becor®8P + E).

Thespace complexitgf the metamodel pruning algorithm corresponds to the felogigest
pathfrom the root of a metamodel to its root. This correspond$iégaath from the root class to
the property node in the last class of the containment luikyaof a metamodel. The depth-first

algorithm stores this path in memory each time it traverdesach in the metamodel.

3.5 Transformation Metamodel with Single Inheritance to ALLOY

In the previous section we obtain a concise and effectivametielM Mg+ fectivefrom the input
metamodeMM;,. We now describe the transformation of the effective metdah®l Me+ fective
to ALLOY. For convenience, we denote the effective metamodel amjeistmodeMM.

A metamodel MMs a 3-tupleMM := (T, P,Inv), whereT is a finite set of class, primitive,
and enumeration type® is a set of propertiesinv is a finite set of invariants. We use an
example-driven approach to explain the transformatioracheof these metamodel elements in
the following paragraphs. In this section, we consider impkest form of transformation where

the metamodel contains ondyngle inheritanceand not multiple inheritance.

3.5.1 Transformation of a Primitive Type to ALLOY

Primitive Type Rule 1 (PTR1): We transform a primitive type such &®olean, Integer, and
String by loading in-built ALLoY modules containing specifications Bdolean andinteger. At
the time of implementing the transformation we created and% model ofString. The com-
plete ALLOY string specification may be downloaded at the §ite [5]. H@&reyenerating strings
using ALLOY is computationally expensive. Our focus is model genemaiitth emphasis on fa-
cilitating generation of complex structural aspects ofrtiwdel. Therefore, we make the choice

of replacing allString properties withinteger values.
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Metamodel Element Alloy Paragraph

<PrimitiveType>

» open <location>/<PrimitiveType> as <PrimitiveType>

(An existing definition of a primitive type is loaded.

<PrimitiveType> can be String, Boolean or Integer. Alloy supports in-built notions of String,
Integer, and Boolean. In this thesis, we use the in-built versions for Integer and Boolean. We
use Integer for all occurrences of String for performance reasons in this thesis.

.

Figure 3.7: Transformation of Primitive Types

3.5.2 Transformation of an Enumeration Type to ALLOY

Enumeration Type Rule 2 (ETR2): An enumeration type such & umerationA in Figure[3.8

is very simply and directly transformed to anlfOy enumeration.

3.5.3 Transformation of a Class Type to ALOY

There are four specific cases in transforming a class typeLt@A as seen in Figue3.9. We

describe them below:

Concrete Class Type With No Inheritance Rule 3 (CCNI3): A concrete clas€lassA that

does not inherit from any other class is transformed to ancX signature. See Figufe 8.9 (a).

Abstract Class Type With No Inheritance Rule 4 (ACNI4): A abstract clas€lassA that does

not inherit from any other class is transformed to an abs#acoy signature. See Figufe_B.9

(b).

Concrete Class Type With Single Inheritance Rule 5 (CCSI5)A concrete clas€lassA that

inherits from exactly one super claSsperClass is transformed to an ALOY signature that ex-
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Metamodel Element Alloy Paragraph

EnumerationA enum EnumerationA
EnumLiteral {
EnumLiteral2 EnumliteralT,

Enumliteral2,

EnumerationN EnumlLiteralN,
T —

U ,

Figure 3.8: Transformation of Enumeration Type

tends the signature representing the super dagsrClass. See Figur€3]9 (c).

Abstract Class Type With Single Inheritance Rule 6 (ACSI6):An abstract clas€lassA that
inherits from exactly one super claSsperClass is transformed to an ALOY signature that ex-

tends the signature representing the super dagsrClass. See Figur€319 (d).

3.5.4 Transformation of a Property to ALLOY

A propertyin a metamodel is either aattribute pointing to primitive type a or aeferenceto
object(s) of an other class. There are six specific casearsform properties in a metamodel

tofieldsin ALLOY signhatures:

Primitive Attribute with One Multiplicity Rule 7 (PAOM7):  Primitive attributes such es-
tributel, attribute2, attribute3 with both lower and upper bound multiplicity 1 as shown inuFig
B10 (a) are transformed toLAoY fields with the same name. Note that the usage of primitive

types had already led to the inclusion of in-built i 20y modules implementing the definition
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Metamodel Element Alloy Paragraph

-

ClassA
1 sig ClassA { ... }
ClassA -
<abstract>
2 abstract sig ClassA { ... }

SuperClass

3. L‘l » sig ClassA extends SuperClass { ... }

ClassA

SuperClass
<abstract>

» abstract sig ClassA extends SuperClass { ... }
4. %S

ClassA

Figure 3.9: Transformation of Class Type
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of the primitive types. The attributattribute3 of the String type is transformed to an Aoy

Integer in this thesis to avoid extra computational cost due to geiwar of strings.

Primitive Attribute with At Least One Multiplicity Rule 8 (P ALOMS) : A primitive attribute
attributel with lower bound multiplicity O and upper bound multipligid is transformed to an

ALLoy field in its owning signature with thiene specialization as shown in Figure-3.10 (b).

Primitive Attribute with Variable Multiplicity Rule 9 (PAV M9) . A primitive attribute at-
tribute1 with lower bound multiplicityaand upper bound multipliciti, wherea>0,b >a,b# 1
is transformed to an ALOY field in its owning signature with thgetspecialization as shown in

Figure[3.ID (c).

Reference with One Multiplicity Rule 10 (ROM10) : A referencereferencel with lower and
upper bound multiplicities 1 is transformed to andY field in its owning signature with the

onespecialization as shown in Figure3.10 (d).

Reference with At Least One Multiplicity Rule 11 (RLOM11) : A referenceeferencel with
lower bound multiplicity 0 and upper bound multiplicity ltimnsformed to an ALoY field in

its owning signature with thione specialization as shown in Figure=3.10 (e).

Reference with Variable Multiplicity Rule 12 (RVOM12) : A referenceaeferencel with lower
bound multiplicitya and upper bound multiplicitys, wherea > 0,b > a,b # 1 , is transformed

to an ALLOY field in its owning signature with theetspecialization as shown in Figure=3.10 (f).
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(@)

(b)

()

Metamodel Element

ClassA
attribute1: Boolean
attribute2: Integer

attribute3: String

ClassA

attribute1: <PrimitiveType>[0..1]

ClassA

attribute1: <PrimitiveType>[a..b]

Alloy Paragraph

=

=
>

1.1
O} ()

0..1
(e) ClassA }————"=" ClassB | -

a.b »
®

( sig ClassA
{
attribute1: one Boolean,
attribute2: one Int,
attribute3: one String,
(or, attribute3: one Int)

}

N\

( sig ClassA
{

}

N\

attribute 1: lone <PrimitiveType>

(sig ClassA
{

}

N\

attribute 1: set <PrimitiveType>

rsig ClassA
{

referencel: one ClassB

}

.

( sig ClassA
{

}

referencel: lone ClassB

.

( sig ClassA
{

}

referencel: set ClassB

\

Figure 3.10: Transformation of Properties taloy
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3.5.5 Transformation of Implicit Metamodel Constraints to ALLOY Facts

There are a number of constraints encoded in the input mekaim@hese include constraints
due to multiplicity, opposite properties, identity profes, composite properties, and contain-
ment. These implicit constraints are automatically trarmekd to A.Loy facts. We describe

the transformation of each fact below:

Primitive Attribute Multiplicity Constraint Rule 13 (PAMC 13): A primitive attribute at-
tributel in a ClassA with a lower bound multiplicitya and an upper bound multiplicity, where
a>0,b> ab+# 1results in the generation of an.foy fact as shown in Figule=31L1 (a). The
ALLOY fact states that for all objects of ty@assA the size of (denoted by #)lassA.attributel

must be> attributel.lower and < attributel.upper.

Reference Multiplicity Constraint Rule 14 (RMC14) : A referencereferencel in a ClassA
with a lower bound multiplicitya and an upper bound multiplicity, wherea> 0,b >ab# 1
results in the generation of anLAoY fact as shown in Figudle=31l1 (b). The oy fact states
that for all objects of typ€lassA the size of (denoted by #)lassA.referencel must be> refer-

encel.lower and< referencel.upper

Opposite Property Constraint Rule 15 (OPC15) :Bi-directional references in a metamodel
are modelled using the notion opposite propertiesFor instance, in FiguieZ3111 (c}lassA.propertyB
andClassB.propertyA are opposite properties that lead to the generation oflaroA fact. The

fact states that for each objedttjectl of ClassA and each objeaibject2 of ClassB, if object2

is in the setClassA.propertyB thenobjectl is in the seiClassB.propertyA. This fact ensures the
opposite property relationship between all opposite pigein instance models of the meta-

model.

Identity Attribute Constraint Rule 16 (IAC16) : An identity attributeidAttributel of primitive
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Metamodel Implicit Constraint

(a) Attribute Multiplicity

ClassA |
[ attribute1: <PrimitiveType> [lower..upper] |

(b) Reference Multiplicity

lower..upper
ClassA
[Classa |—— "= 2" Classs |

Condition

reference.lower > 0 and
reference.upper >= reference.lower

-~

=

(c) Opposite Property
@ propertyA propertyB @

Condition

propertyA.opposite = propertyB
propertyB.opposite = propertyA

(d) Identity Attribute

[ ClassA |
[ idAttribute: <PrimitiveType> |

Condition
idAttribute1.isID = 1

(e) Identity Reference

idReference1

Condition
idReferencel.isID = 1

=

>

Generated Alloy Paragraph

fact ClassA_attribute 1_multiplicity

all object : ClassA |

#object.attribute1 >= attribute 1.lower
and
ttobject.attribute1 <= attribute 1.upper

all object : ClassA |

»

fact ClassA_reference 1_multiplicity

#object.reference >= referencel.lower
and
ttobject.reference1 <= referencel.upper

fact ClassA_propertyB_ClassB_propertyA_opposite

{

all object1 : ClassA, object2 : ClassB |

object2 in object1.propertyB
implies
object1 in object2.propertyA

fact ClassA_idAttribute1_id

all object : ClassA, object2 : ClassA |
(object1.idAttribute1 ==
object2.idAttribute 1) implies
objectl = object2

fact ClassA_idReference1_id

all object1 : ClassA, object2 : ClassA |
(object1.idReferencel ==
object2.idReference1) implies
object1 = object2

Figure 3.11: Transformation of Implicit Constraints in Metodel to ALoy Part 1
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type in aClassA as shown in FigurEZ311 (d), is transformed to an @y fact. The fact states
that for each objeaibjectl, object2 both ofClassA, if objectl.idAttributel = object2.idAttributel

, then the objectsbjectl andobject2 must be the same objects. There cannot exist two or more
instances of these objeaibjectl andobject2. The identity attribute is useful in creating objects

with one or more unique identifier attributes.

Identity Reference Constraint Rule 17 (IRC17) : An identity referencdsReferencel in a
ClassA referring toClassB as shown in FigurEZ311 (e), is transformed to an @y fact. The
fact states that for each objeatijectl, object2 both of ClassA, if objectl.isReferencel = ob-
ject2.isReferencel , then the objectsbjectl andobject2 must be the same objects. There cannot

exist two or more instances of these objedijectl andobject2.

Composite Property Constraint Rule 18 (CPC18) :The composite propertglassA.compProp
in a clasClassA containing objects oflassB is transformed to an ALOY fact as shown in Fig-
ure[3I2 (f). The fact states that for all objeots 02 of ClassA and for each referenge and
p2 in ClassA.ol.compProp, if p2 andp2 are the same then objeats ando2 are the same. The

fact simply states that an object ©fassB is contained in exactly one object OfassA.

Class Containers Constraint Rule 19 (CCC19) :Objects of a class can have many possible
containers. For instance, in Figlre3.12(g) @iessA has 3 possible containe@@ass1, Class2,
andClass3. The multiplicity 0..1 for referenc€lassA.containerl indicates thaClass1 may or
may not be a container fatlassA objects. Similarly, the multiplicities o€lassA.container2
andClassA.container3 indicate thatClass2 andClass3 are other possible containers foiassA
objects. In a model of the metamodel a givelassA object can be contained only in one of
the three classea8lassl, Class2, andClass3. This case can be extendedNgossible container
classes. We generate anlfyY fact to enforce this containment relationship betweenatbjef

classes. The fact states that for all objextts, ob2, andob3 of type Class1, Class2, andClass3
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Metamodel Implicit Gonstraint Generated Alloy Paragraph

(f) Composite Property Gonstraint

ab fact ClassA_compProp_composite

l
compProp all o1 : ClassA, 02 : ClassA |

all p1:o1.compProp, p2 : 02.compProp |
p1=p2 implies 01=02

Condition

compProp.isComposite = true

(g) Class Containers Constraint

fact ClassA_containers

{
all o1: Class1, 02: Class2, 03:Class3 |
prop3 » disj[o1.prop1,02.prop2,03.prop3] and
all o:ClassA |
(#0.container1+#o.container2+#o.container3=1)

ClassA

container1 prop2

0..1
container2

}

container3

Figure 3.12: Transformation of Implicit Constraints in Metodel to ALoy Part 2

respectively, the reference @assA is disjoint or obl, ob2, andob3 always refer to different ob-
jects ofClassA. The fact also states in conjunction that all object€iaksA must be contained

in eitherClass1, Class2 or Class3 but never in more than one class.

3.6 Transforming Metamodel with Multiple Inheritance to A LLOY

The basic transformation, discussed in the previous SeBilh, of a metamodel to IAOY is

suitable for small metamodels with single inheritance. Ewesv, it is not appropriate for large
and complex metamodels containing several hundreds slassigproperties along with complex
structure such as multiple inheritance. TheUis a notorious example of a metamodel with
several instances of multiple inheritance and a large nuraobelasses (246) and properties

(583). The basic transformation does not handle multipleiitance and may result in the
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generation of an intractableLAoy model when the number of classes and properties is very
high.

In this section, we consider a very general case of trangfigriamy metamodel with multiple
inheritance to ALoY for the purpose of model synthesis. Our transformation getan the

following important observations:

e Given a metamodel, a modeller creates an instance model lgycoating objects of

concrete classem the metamodel.

o All properties have either primitive values such as integeolean, string or refer to ob-

jects of other concrete classes.

e Even properties referring to abstract classes ultimateiytpo objects of concrete classes

that inherit from these abstract classes.
e A model is always an interconnected graptcofcrete class objects

e Abstract class objects are never created! All we need areretinclass objects and build

relationships between them.

The transformation from a large and complex metamodel witktipie inheritance to A-
LOY is based on the observations made above. In the subsequ@ahsgwe present the trans-
formation of a metamodel to a tractable and smalL&y model. The ALoy model uniquely
contains signatures for concrete classes in the metamAdeimber of ALLOY facts are gener-

ated to emulate multiple inheritance and its effects orselagnd properties intAoy.

3.6.1 Flattening the Class Hierarchy

Before the flattening step, all primitive types detectechiminetamodel are transformed ta-A
LOY open statements that load modules for primitive types sa¢htager, Boolean, and String.

This process is exactly the same as described in Sécilbordfansformation of primitive types.
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LHS: Metamodel RHS: Generated Alloy Paragraph(s)

Multiple Inheritance Class Hierarchy to Alloy Signatures

sig ConcreteClass1

SuperClassi1 SuperClass12

<abstract> <abstract> SuperClass1M

<abstract>

e
sig ConcreteClass2

{
;

SuperClassN1 SuperClassN2

SuperClassNM
<abstract> <abstract>

sig ConcreteClassM
<abstract>

{

» }

Graphical Representation of the Alloy Model

ConcreteClass1 ConcreteClass2 ConcreteClassM ConcreteClass1 ConcreteClass2 ConcreteClassM
<signature> <signature> <signature>

Figure 3.13: Step 1: Flattening the Multiple Inheritancendrchy

The first step in the transformation involves flattening thess hierarchy in a metamodel
with multiple inheritance to a flat A .oy model. Consider a general metamodel as shown on the
left hand side of Figure=3113 containing several abstrastsels and concrete classes. As seen on
the right hand side Figufe=3]13, we transformcalhcrete classes the metamodel to signatures
in ALLOY. We also see the graphical signature hierarchy repregantaitthe ALLOY model.

In the figure the concrete classes ConcreteClassl, CoGtass?,..., ConcreteClassM are trans-
formed to ALLOY signaturesNone of the abstract superclasses SuperClassl1l...Super®assN
are transformed to ALOY signatures. We neglect super classes based on the obsertrait

we will never need to instantiate objects of these abstigmtisclasses.

3.6.2 Transforming Properties to ALLOY Fields and ALLOY Facts

The second step involves the transformation all propedfesach concrete class toLAOY.
These properties include those what were originally owned boncrete class and those inher-
ited from all abstract classes. Therefore, we transforrh pagpertyp (owned or inherited from

abstract classes) in each concrete dags ALLOY. We need to deal with the following cases:
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LHS: Metamodel Pattern RHS: Generated Alloy Paragraph(s)

abstract sig GlobalSuperClass {}

2. Insert Alloy. Field in ConcreteClassA of type GlobalSuperClass

sig C

{
p : GlobalSuperClass
1

[ A 3. Insert Subclass C1..CM of A extends GlobalSuperClass
<abstract>

sig C1 extends GlobalSuperClass

p wai
{
. .../ /Existing fields
}

c1 cm 4. New Alloy Fact to Assign a Concrete Type to a Reference
fact Invariant_C_p_subclasses

{

CpinCl
or

CpinCM

}

GlobalSuperClass
<abstract signature>

T =

Graphical Representation of Alloy
Signature Hierarchy

Figure 3.14: Transforming Property of Abstract Type toLAY fact
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1. Owned Property pis of Primitive Type in a Concrete ClassC:

Owned propertyp is transformed to an ALoY field f, in the ALLOY signaturesige. This
is possible because all concrete class types and primyjpesthave a signature definition

in the ALLOY model after the flattening step in Sectlon36.1.

2. Inherited Property pis of Primitive Type in a Concrete ClassC:

Propertyp is transformed to an Aoy field in the ALLOY signature folC. This is possi-
ble because all concrete class types and primitive types aaignature definition in the

ALLOY model after the flattening step in Sect[on3.6.1.

3. Owned Property p of Concrete Class TypeCT in a Concrete ClassC:

Owned propertyp of a concrete class typ@T is transformed into an ALoy field in
the signature representi@ The process is identical to the transformation described i

SectioT3.54.

4. Inherited Property p of Concrete Class TypeCT in a Concrete ClassC: Inherited
propertyp of a concrete class tygeT is transformed into an A oy field in the signature

representingC. The process is identical to the transformation describegectior3.514.

5. Owned Property p of Abstract Class TypeA in a Concrete Clas<C:

Properties of abstract type cannot be simply transformeah tdLLOY field in a signature
for C. This is becausd is not transformed to a signature or an abstract signatutfeein
ALLoY model and hence does not have a type. Therefore, we deal with the transforma-

tion in the following steps as shown in Figure 3.14.

(&) If not already existing we create an abstract signatalled GlobalSuperClass and
insert it into the ALoy model. The abstract signature acts aslaceholderfor
abstract classes in the input metamodel.

(b) We insert the field fop into the ALLOY signature foiC with the type GlobalSuper-

Class.
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(c) All concrete classes1..CM that inherit fromA now inherit from GlobalSuperClass.
The inheritance is illustrated on the RHS of Figlire B.14. &ete classes that do
not inherit from an abstract class in the metamodel do notialserit from Global-

SuperClass.

(d) We generate an IA0OY fact that states that the properpyof C is in one of the
concrete subclasses AfnamelyC1 ,C2,..orCM. The fact enforces the property to

always refer to concrete subclass object€ of

6. Inherited Property p of Abstract Class TypeAin a Concrete Clas<C: Inherited prop-
erty p of a abstract class typ&is exactly equivalent to transforming an owned property
of abstract class type discussed above and illustratedguwr €3 I%. However, we may

choose to optimize this transformation.

All inherited properties may be flattened to into a concréasssignature. However, we
may alsoselect propertiegattributes and references) that will be transformed ta @y
fields. An objective for us is to minimize the number of prdjger we flatten from the ab-
stract super classes to concrete classes. We use two lesui@iven an ALOY signature

representing a concrete class,

(a) We create ALoY fields only for all inherited properties that caontain objects.
There properties can contain objects of any of the conctagses in the metamodel.
We perform the transformation to ensure that all object®eeontainer property
(except the top-level container class). This transforomatitems from the fact that
It is mandatory that objects of all classes have a contam&core. Hence, the

non-root ALLOY signatures must have a container.

(b) We create ALoY fields for all inheritedrequired propertiegor a given application
for model generation. For instance, we preserve all prigsedsed by a model
transformation for which we intend to generate models. Btep helps minimize

the size of the constraint satisfaction problem for modekgation.
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LHS: Metamodel Pattern RHS: Generated Alloy Paragraph

(a) Super Class Composite Properties to Alloy Fields

SuperClass1

Alloy Fields for Primitive Attributes of an Abstract Type Super Class
L. 1 sig ConcreteClass1 extends GlobalSuperClass
VA
contains]1 : set ConcreteClass2
contains1 contains2 contains2 : set GlobalSuperClass
[ ConcreteClass |
ConcreteClass2 SuperClass2 }

ConcreteClass3 ConcreteClass4

(b) Super Class Required Properties to Alloy Fields Alloy, Fields for Primitive Attributes of an Abstract Type Super Class

sig ConcreteClass1 extends GlobalSuperClass

SuperClass {
requiredProperty1 : <PrimitiveType> [1..1 . s
re:uiredPro:;egz :<PrimitiveT¥Se> {0..1} requ{redProperryl : one <P"T'"Y'YeTYPe>
requiredProperty3: <PrimitiveType> [a..b] requiredProperty2 : lone <PrimitiveType>
notRequiredProperty4 : <PrimitiveType> [a..b requiredProperty3 : set <PrimitiveType>

requiredProperty5: set ConcreteClass2
requiredPropertyé: set GlobalSuperClass

ConcreteClass1 requiredProperty6

SuperClass2
L ]

requiredProperty5

[ C lass3 | [C lass4 |
. ] L

Figure 3.15: Flattening Properties in the Multiple Inhenite Hierarchy

We illustrate the flattening of composite properties that@antain concrete class objects
in Figure[3Ib (a). There are two possibilities while flaiibgnsuch properties. If a com-
posite property such aontainlcan hold concrete classes we transform the property as
an ALLoy field as shown on the RHS of Figute—3.15 (a). A composite pigpaich
ascontain2may refer to an abstract class that is inherited by severatrete classes.

In such a case, we transform the property as andX field of type GlobalSuperClass.
While model generation, the GlobalSuperClass is replagedbects of concrete sub-
classes of SuperClass2. This implies that the field CorCla$¢s1.contains2 can refer to

both objects of type ConcreteClass3 and ConcreteClass4.

The flattening of required properties is very similar to tlatéining of composite proper-
ties with the exception that properties that are not reguare not transformed asLAOY

fields. For instance, in Figute_3115 (b) the primitive typepmrty notRequiredProperty4
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is not transformed to an 1A oy field.

3.6.3 Transforming Implicit Constraints to ALLOY Facts

In the third step, we transform implicit constraints in a ambdel with multiple inheritance to

ALLOY. We present the transformations as follows:

Transforming Opposite Properties to ALLOY Facts

First, we consider the transformation of opposite propsrto ALLOY facts. We recall that an
opposite property represents a bi-directional relatignsbtween two classes. After the property
flattening process, an opposite property in a concrete atgsrefer to an abstract class or a
concrete class. An opposite property between two conclat$ses can be transformed using the
rule already presented in Sectlon315.5. However, an ofgppedperty between a concrete class
and an abstract class leads to the generation of a differedyAfact since all abstract classes
are not included in the ALoY model. We illustrate this transformation in Figlire3.16.

The transformation states that if any property propertyBafcrete class ConcreteClassA

has an opposite property propertyA in the abstract supss SaperClassB then,

1. If ConcreteClassA.propertyB refers to any object olZjeuft ConcreteClassl1 then Con-

creteClassl.propertyA refers to ConcreteClassA.

2. If ConcreteClassA.propertyB refers to any object olgjesit ConcreteClass2 then Con-

creteClass2.propertyA refers to ConcreteClassA.

4. If ConcreteClassA.propertyB refers to any object oljaaft ConcreteClassN then Con-

creteClassN.propertyA refers to ConcreteClassA.

We generate facts for opposite properties to all possibtectasses of the abstract super

class SuperClassB.
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LHS: Metamodel Pattern RHS: Generated Alloy Paragraph

Opposite Property Constraint fact ConcreteClassA_propertyB_ConcreteClass1_propertyA_opposite

Ci lassA | SuperClassB {
<abstract> » all object1 : ConcreteClassA, object2 : ConcreteClass1|

propertyA propertyB
object2 in object1.propertyB

multilevel implies
object1 in object2.propertyA

[Cc lass1 | ... [ C lassN | }

Condition fact ConcreteClassA_propertyB_ConcreteClassN_propertyA_opposite
all object1 : ConcreteClassA, object2 : ConcreteClassN |
object2 in object1.propertyB
implies
object1 in object2.propertyA

propertyA.opposite = propertyB
propertyB.opposite = propertyA

Figure 3.16: Transforming Opposite Properties toLdy Facts in Metamodel with Multiple
Inheritance

Transforming Composite Properties to ALLOY Facts

A composite property for each concrete class in the metahisdeansformed to an ALoY
fact. The transformation is identical to the transfornratiee have already seen for composite

properties in a metamodel with single inheritance. See@dBI5.% for more detail.

Transforming Containers of a Class to ALLOY Facts

A concrete class can be contained by another concrete classabstract super class as shown

in Figure[3.1V. Therefore, any object of ConcreteClassAeither be contained by the concrete

class ConcreteClassB or all subclasses of abstract S@s&&lch as ConcreteClassl,...,ConcreteClassN.
The Alloy fact on the RHS of the transformation in Figlire“Bdepicts the containment con-

straint. All objects of ConcreteClassA will be containeddither ConcreteClassB, Concrete-
Classl,..,or ConcreteClassN. The fact also states thdijact@f ConcreteClassA can have only

one containing object.

Transforming Multiplicity Constraints of a Class to A LLOY Facts

Multiplicity constraints on properties for each concreess in the metamodel is transformed to

an ALLoy fact. The transformation is identical to the transformmatiee have already seen for
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LHS: Metamodel Pattern RHS: Generated Alloy Paragraph

Class Containers Constraint

fact ConcreteClassA_containers
{
all o: ConcreteClassA |
( o in ConcreteClassB.prop1 or
o in ConcreteClass1.prop2 or
o in ConcreteClassN.prop2)
and
all o1: ConcreteClassB, 02: ConcreteClass1,
oN:ConcreteClassN |
disj[o1.prop1,02.prop2,0N.prop2]

ConcreteClass1 | |ConcreteCIassN

Figure 3.17: Transforming Containers of a Concrete ClaastALLOY Fact in Metamodel with
Multiple Inheritance

multiple properties in a metamodel with single inheritar8ee Sectioh-3.3.5 for more detail.

Transforming Identity Properties of a Class to ALLOY Facts

Identity properties on properties for each concrete claghe metamodel is transformed to an
ALLoy fact. The transformation is identical to the transformative have already seen for

identity properties in a metamodel with single inheritan8ee Sectiof-3.3.5 for more detail.

3.7 Handling the Transformation of Metamodel Invariants to AL -

LOY Facts

Metamodel invariants are textual constraints on a metamodé&e express some constraints
textually due to limitations of class diagrarBstre model in describing constraints on the mod-
elling domain. Textual constraints are often specifiedgiire industry standard languaQ€L.

An OCL constraint is specified on a pattern of a model in a modellamgliage. For instance,
the constraint thato cyclic inheritancecan exist in an WL class diagram can be represented

in OCL as shown in Listin@=3]1.
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context Class

inv noCycliclnheritance

not self.allGenerals (}>includes (self)

Listing 3.1: An ExampledDCL Constraint

Automating the transformation of allCL constraints to ALOY facts is not within the scope
of this thesis. We manually transform @CL constraints in this thesis tolAoy facts. Devel-
opers experienced in bothCL and ALLOY can extract the meaning of @CL constraint and
express it as an Aoy fact.

For example, we transform the constraint in Lisfing 3.1 ®AuLov fact in Listing[3:2.

fact noCycliclnheritance

{

no c: Class cin c.~general

}

Listing 3.2: ALLOY fact representing No Cyclic Inheritance

The ALLOY fact usedransitive closureo enforce the constraint that no Classxists such
that it is contained in eithez.general or c.general.general or c.general.generalegah... and
so on. This implies that no multi-level super classes of asctan contain it thereby eliminating
the cyclic inheritance in all ML class diagram models. During the course of the thesis a numbe

of OCL constraints have been manually transformed to@Y .

3.8 lllustration of Transformation to A LLOY

We transform the effective metamodel oMU with 26 classes and 65 properties, shown in
Figure[35 to an ALoy model. The resulting ALoy model contains signatures only for the
concrete classeis the metamodel.

The generated signatures are shown in Lidfiny 3.3.

module EffectiveUML

open util/boolean as Boolean
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sig GlobalSuperClass { }

one sig Package extends GlobalSuperClass

{

packagedElementset GlobalSuperClass,//PackageableElement

nameone Int
}
sig Association extends GlobalSuperClass

{
ownedEndset Property,
memberEndset Property,
attribute :set Property,
name one Int

}
sig Property extends GlobalSuperClass

{
datatype one DataType ,
owningAssociationone Association ,
associationone Association ,
name one Int

}

sig Class extends GlobalSuperClass

{

nestedClassifierset GlobalSuperClass,// Classifier
ownedAttribute :set Property,

attribute :set Property,

name one Int

}
sig DataType extends GlobalSuperClass

{

ownedAttribute set Property,
attribute :set Property,
name one Int

}

sig PrimitiveType extends GlobalSuperClass
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ownedAttribute set Property,

attribute :set Property,

name one Int

}

Listing 3.3: Generated A Oy Signatures in Effective ML

Signatures for concrete classes (those that initiallyribffiem abstract superclasses) now
extend the abstract signature GlobalSuperClass in theoA model. For instance, Associa-
tion inherits from PackageableElement imU. Therefore, the signature Association extends
GlobalSuperClass.

Each property (owned/inherited/primitive) of a concrdeessC is transformed to an ALOY
field in the signature representify For instance, in Listinf3l3, the primitive propertgmein
Association is an inherited property from NamedElement ighdirectly transformed to a field
in the Association signature. Similarly, the propeotynedEndof Association is of a concrete
class type Property. The property is directly transforneedrt ALLOY field in the Association
signature. A property may have an abstract class type in #tamodel. For instance, the
property nestedClassifieof Class is of abstract class type Classifier. There is noasige
for Classifier in the ALoy model. Therefore, the property is transformed to and@y field
of type GlobalSuperClass in theLAoy model. We generate IAOY facts for fields of type
GlobalSuperClass. TheseLPoY facts state that the type of the field is one or more of the
signatures already in theLAoy model. In fact these signatures represent the exact cencret
subclasses of the abstract class type. For instance, indi3# we present two such generated
facts. The second fact states that all objects of type ClastedClassifier must be of type Class
or DataType, or PrimitiveType. Class, DataType, and Piillype are concrete classes that

inherit from Classifier in the ML metamodel.

fact Invariant_Package_packagedElement_subclasses

{

Package . packagedElement Packageor Package.packagedElementh Association or Package.packagedElemerin Class or
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Package . packagedElemernth DataType or Package.packagedElemernn PrimitiveType
}

fact Invariant_Class_nestedClassifier_subclasses

{

Class.nestedClassifiein Associationor Class.nestedClassifiein Class or Class.nestedClassifiein DataType or
Class.nestedClassifiein PrimitiveType

}

Listing 3.4: Generated ALOY Facts for Subclasses in Effectivevid

We generate ALOY facts for opposite properties, composite properties, amiainers in
the effective UL metamodels. We present examples of these facts in LiSihhg 3.

The first fact in Listind=316 enforces thapposite property constrairietween two proper-
ties Association.ownedEnd and Property.owningAssamiatiThe fact states that if any Prop-
erty object is in the set o.ownedEnd (where o is an Assodiatigiect) then o is in the set
ol.owningAssociation (where 01 is a Property object).

The second fact enforces tbemposite property constraifar the property Package.packagedElement.
The fact states that for each object 01, 02 of type Packagdparach property plin ol.packagedElement,
p2 in o2.packagedElement, if p1 is equal to p2 then the cainiobjects 01 and 02 are one
and the same. The constraint enforces that if packagedBtamfers to an object of type Pack-
agedElement then the object can have exactly one Packagreon

The third fact enforces theontainers constrainfor the class Association. Association
objects can be contained by two different containers narRelgkage.packagedElement and
Class.nestedClassifier. The fact first states that eachcks®m object o is either contained
by Package.packagedElement or Class.nestedClassifi@on@&ethe fact states that objects
contained by Package.packagedElement cannot be contajreldss.nestedClassifier and vice

versa.

/1'1. An Example of a fact generated for Opposite Property ofsAciation.ownedEnd and Property.owningAssociation

fact Invariant_Association_ownedEnd_Property_owningAskxdton_opposite

{

all o :Association, ol:Property |
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(ol in o.ownedEndimplies o in ol.owningAssociation)

/1'2. An Example of a fact generated for Composite Propertyckdae . packagedElement

fact Invariant_Package_packagedElement_composite

{

all ol :Package, o02:Package |
all pl:ol.packagedElement,p2:02.packagedElement|plapplies 0l=02

/3. An Example of a fact generated for Containers of Assdteam Objects

fact Invariant_Association_containers
{
all o : Association | (oin Package.packagedElemermtr
o in Class.nestedClassifier )

and

all o1 : Package,o02 : Class | disj[ol.packagedElement,02.ad€tassifier]
}

Listing 3.5: Generated ALoY Facts for Implicit Constraints in Effective Nl

The entire solvable ALoy model for the effective metamodel is available for downlaad

this site [4].

3.9 Model Generation by Solving ALoy Model

As a consequence of the transformation steps describee iprévious sections we obtain the
ALLoY model of an effective modelling domain. The oy model contains a set of set signa-
tures representing the concepts and their relationshigglomain. It also contains a set of facts
that encode implicit constraints in a metamodel. In thigisec we demonstrate how we can
generate models in the effective modelling domain specifged constraint satisfaction problem

in ALLOY. The generation of models inLAoy must satisfy an ALoy predicate (which may
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nn

MF1{Classifier(name="") and Classifier(hame=".+")}
MF2{Class(is_persistent = true) and Class(is_persistent = false)}
MF3{Class(parent = 0) and Class(parent = 1)}
MF4{Class(ownedAttribute = 1)and Class(ownedAttribute > 1)}

MF5 { Attribute(is_primary = true) and Attribute(is_primary = false)}
MF6{Attribute(name="") and Attribute (name=".+")}
MF7{Attribute(type=0) and Attribute (type=1)}

MF8{Association (name="") and Association (name=".+")}
MF9{Association(ownedEnd=0) and Association(ownedEnd=1)}
MF10{Association(memberEnd=0) and Association(memberEnd =1)}
MF11{Package(packagedElement=1) and Package(packagedElement>1)}

Figure 3.18: Some Model Fragments from effectivalUmetamodel

subsume other predicates). Objective-specific knowledgle as for test model generation may
help specify such predicates or an empty predicate regiegem new knowledge. In Section
B9, we introduce specification ofLAOY predicates to guide generation of models in an ef-
fective modelling domain. In ALOY solving for a predicate implies generation of models that
satisfy the predicate and alllAoy facts. ALLOY allows generation of models within a certain
scope or within finite-bounds on the number of objects fohdgpe. Therefore, in Sectign 3.9.2

we describe the specification to guide generation of modeddfinite scope.

3.9.1 Specifying ALoY Predicates to Guide Generation
Empty Alloy Predicate

If the goal is to generate models in the modelling domain iipelconly by the metamodel and
the invariants we do not need to guide generation with mdoerimation. Therefore, we generate

an empty A Loy predicate as shown in Listiig"B.6.

pred Unguided
{

}

Listing 3.6: Empty ALovY Predicate
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Objective-specific AL.LOY Predicates

A number of objective-specific sources of knowledge may leadeneration or specification
of ALLoY predicates to guide generation with an objective. We eryilaé generation of such
predicates with the help of two examples.

In the first example, an objective-specific source of knogedhay be thgre-condition
of model transformation. We consider the model transfoionafrom UML class diagrams to
Relational Database Management Systems (RDBMS) models calledlass2rdbms. For instance,
the pre-condition the transformation states that all els$s the input model must have at least
one primary attribute. The condition is necessary for imigxand may be expressed in the

predicate shown in Listing=3.7.

/I All Classes must contain at least one primary attribute

pred atleastOnePrimaryAttribute

{
all c:Class|some a:c.attrs | a.is_primary==True

}

Listing 3.7: A model transformation pre-condition in Loy

The propertyisPrimaryof the class Attribute is not part of the originaMu specification. It
has been added to the effectivetU metamodel as a new property of the cl@&ass Similarly,
we add the propertis_persistentto the class Class to enable serialization of class@P&MS
models.

In the second example we use knowledge based on input doruditigming to guide model
generation. Input domain partitioning[153] is a well-knowource of knowledge to ensure
coverage of the input domain for software testing. Partgiof the modelling domain or the
metamodel are a source of knowledge to generateoX predicates. TheselAoy predicates
ensure that the entire modelling domain is covered. In pressivork, Franck et. all[55] extract
partitions of an input metamodel known m®del fragmentsFor instance, the following model
fragment states that the model to be generated must contaiashone "Classifier" object with

an empty name attribute and a "Classifier" object with noptgmame.
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Classifietcname="") and Classifigmame=".+")

The model fragment can be transformed to an®y predicate as shown in Listiig_B.8.

pred modelFragment

{

some cl: Classifier, c2:Classifier| cl.name=fnd c2.name!=0

}

Listing 3.8: Model Fragment ALOY Predicate

In Figure[3I8, we present some of the important model fragsngenerated from the effec-

tive UML metamodel.

3.9.2 Specifying ALoy Run Commands with Finite Bounds

A run commandells ALLOY to search for an instance of a predicate. We may specify aescop
that bounds the size of the instances of the @&r model. The basic run command in shown in
Listing[39. The command attempts to generate an instartesdhisfies the predicaexample

in the finite scope of 20.

//A Basic Run Command

pred example () {}

run example for 20

Listing 3.9: Basic ALoy Run Command

We can go a step further and control the generation of modétsvariable scope for each
signature. The scope for integer and sequences may be sdexsfivell. For instance, a scope of
5 int implies an instance can contain integers betwe@fand2®. Similarly, 5 segimplies that
an instance can contain sequences up to a size of 5. Thed[B&5fi@ illustrates a run command

with variable scope.

/A Variable Scope Run Command

pred example () {}

run example for 1 Package, 5 Class, 5 Association, 3 PrimitiveDataType5..int, 5 seq
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Listing 3.10: ALLoy Run Command with Variable Scope

If known in advance, we may also specify the exact scope fayreasure as shown in Listing

B13.

/IA Variable Scope Run Command

pred example () {}

run example for 1 Package, exactly 5 Class, 5 Association, exactly 3 PrimeDataType,...5int, 5 seq

Listing 3.11: ALLoy Run Command with Exact Scopes

3.9.3 ALLOY Instances to EMF models

The ALLOY instances generated are in the form of atoms and relatiomeebr atoms. They
need to be transformed back to models that conform to a mekalmd his transformation is
rather straightforward as thelAOY instances have a structure very similar to objects with
properties. @RTIER contains a Java module that traverses thedy instance and instantiates
objects with properties of the inp&core metamodel. The ALOY instance acts as a source of

information to recreate a valid model of the input metamodel

3.10 lllustrative Examples: Generation WML Class Diagram Mod-

els

We generate models from the input domain ofdfaes2rdbms transformation using the different
sources knowledge discussed in Secfion B.9.1. We show linetisa of 4 UvL Class Diagram
(UMLCD) models.

To begin, we use the IA. 0y analyzer to generate a model that conforms only to the aféect
UMLCD meta-model. This is shown in Figuie—319 (a) usiigLCD concrete syntax. The

selected test model was found is@peof 10. The scope is the maximum number of objects for
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\/ association6 o [ Vassociation6
<<persistent>> association? <<persistent>> <<persistent>>
Class7 association Class5 Class6
<primary>> <<primary>> <<primary>>
+attributeM3 : Class7 +attributeM3 : Class7 +attribute1 : PrimitiveDataType0
associations association2 association4 | 5ssociation0 Vssociation4 association2
Class0 association0 <<persistent>>
+attribute7 : PrimitiveDataType4 Class7
associationM1 — <<primary>>
(a) association4 | +attribute1 : PrimitiveDataType0
L A
Class4 associationM6
<<primary>> (b)
+attribute0 : Class7
% <<persistent>>
Class5
Class5 association0 <<pr'imary>> association1
<<primary>> +attribute7 : Class5
+attributeM5 : Class7
association1 \J/associationMs CheeE
<<persistent>> association4: - associationM5
- Class7 association? <<primary>> association3
association6 —m— +attribute7 : Class5 <
<<primary>> —
association0 | +attributeM8 : Class7 association7 | . ,1\ [
? +attributed : Class7 association5 association6
I associationM7lf\ | (¢)
(d)

Figure 3.19: (a) Model conforming to Meta-model (b)Modehfayming to Meta-model + Pre-
condition (c) Model conforming to Meta-model+ Pre-corwliti+ Test Model Objective (d)
Model conforming to Meta-model + Pre-condition + Model Frant

each type (or class) in the meta-model. The model selectiparformed up to the limit proposed
by the scope. We see that the resulting model satisfies adl-metiel constraints. However, an
attribute ofClassO0 is not primary. This implies that it is not a valid inputdiass2rdbms.

The second generated model must con@ass objects with at least one primary attribute
which is a pre-condition for transformingnMu class diagrams to indexabRDBMS models.
The model is shown in Figute_3119 (b). The selected model laases with at least one primary
attribute just as required by the pre-condition. The setibehodel was found in a maximum
scope of 20. We note that the model now has two claS&ss6 andClass7, both of which have
at least one primary attribute.

Third, we generate a model that has some classesivifiersistent= Truewhich is trans-
formation test specific objective. We generate a model inxdman scope of 20. The resulting

model is shown in FigurE=319 (c). We note the classss5 is persistent as per the objective.



CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY 161

Sources of Knowledge Time(sec)
Meta-model Only 0.78
Meta-model + Pre-condition 7.813

Meta-model + Pre-condition + Test Model Objectivg.97
Meta-model + Pre-condition + Model Fragments| 10.477

Table 3.2: Test Model Selection Times

RDBMS models generated from such an input model is

Finally, we introduce model fragment facts along with thetammodel and pre-condition.
The model that covers the meta-model and 5 model fragmestwisn in Figur§-319 (d). The
resulting model covers some of the model fragments factsemergted from th&core model.
The model is selected for a maximum scope of 20. The modeifeads covered ,as described
in Figure[3IB, were MF2, MF3, MF4, MF5. This guarantees thatequivalence classes for
property values are covered at least once by a test modekrrimstof test qualification, this
increases the trust we have in the test models, based ondomain coverage.

In Table[32, we summarize the time taken (on a P4 2.6Ghz algsitith 1Gb RAM) to
generate models. From the table we can generally say tha&t knokvledge we have the longer

it takes to generate models.

3.11 Validity and Complexity of Transformation to ALLOY

We need to validate the transformation from a metamodeltaridviariants to an ALOY model.
Therefore, we ask the questioAre all solutions of thédLLOY model in the modelling domain
specified by the metamodel and constraints from heterogesources? We may answer this
by generating all possible solutions of thelLy model in a finite scope and checking if each
model conforms to the metamodel. However, generating akipte models is computationally
expensive. Therefore, can be generate an effective subakpossible models? In Chapfér 4,
we perform model generation experiments that cover the Hioglelomain using partitioning

strategies. We demonstrate that all effectives modelsrggteconform to the input metamodel.
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The transformation from an effective modelling domain toLAy haslinear time com-
plexity. The transformation involves 2 passes for transformingnieéamodel and 1 pass for
transforming implicit constraints in a metamodel such aspasite properties, opposite proper-
ties, etc. to ALOY facts. Therefore, the time complexity@ 3+ N) whereN is the number of

concepts (total number of classes and properties) in the mptamodel.

3.12 Summary

In this chapter we present three important steps in automatdel discovery. The first step is
the metamodel pruning algorithm which is used to obtain ffeetive metamodel given an input
metamodel. We illustrate pruning onMu, a very large input metamodel, to obtain an effective
metamodel that represents the class diagram subsetiof The second step is the transfor-
mation of heterogeneous sources of knowledge includingtieetive metamodel, metamodel
invariants, partial model and possibly several domaireci$jgesources to a common constraint
model in ALLoY. We demonstrate the transformation of the class diagramesutd UvL and
other sources of knowledge such as a simple partial modetau| fragments for test models
to ALLOY. In the third and the final step we illustrate the generatiomadels that conform to
various sources of knowledge. In particular, we illusttatt model generation and partial model
completion for WML class diagrams. In the next chapter, we present experinlieistsating the

application of automatic model discovery.
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Chapter 4

Experiments in Effective Model

Discovery

In this chapter, we present two domain-specific experimérasapply and validate automatic

effective model discovery already described in Chdgter 3.

1. The first application is to synthesize thousands of maelest a model transformation
using testing specific knowledge knowniaput domain coverage criteria|We qualify

the effectiveness or bug detecting ability of these modielsnutation analysi§T07].

2. The second application is to generate model completioommenendations for partial

model The partial model is specified in a domain-specific moddbedi

The chapter is organized as follows. In Secfiod 4.1, we dss¢he model transformation
testing application. We present model discovery as modapbetion in a model editor in Sec-

tion[42.
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4.1 Automatic Model Synthesis for Model Transformation Tesing

Model transformations are core MDE components that autermaportant steps in software
development such as refinement of an input model, re-fagido improve maintainability or

readability of the input model, aspect weaving, exogenousesndogenous transformations of
models, and generation of code from models. Although thereide spread development of
model transformations in academia and industry the vadidaof transformations remains a
hard problem[[I9]. In this study, we address the challengealidating model transformations
via black-box automatic test data generatiole think that black-box testing is an effective
approach to validating transformations due to the divemsittransformation languages based
on graph rewriting[T17] (AToM [67]), imperative execution (Kermeta [108]), and rule4zhs

transformation (ATLI[[7/5]) that render language specifimfat methods and white-box testing

currently impractical.

In black-box testing of model transformations we requést modelghat candetect bugs
in the model transformation. These models are graphs ataotenected objects that must con-
form to a meta-model and satisfy meta-constraints such kdammedness rules, transformation
pre-conditions, and test strategies. Manually specifygegeral hundred test models targeting
various testing objectives is a tedious task and in manysaaggossible since the modeller may

have to simultaneously satisfy numerous possibly intiated constraints.

In this section, we apply our automatic model discovery #amrk CARTIER previously
discussed in Chapt€l 3 tutomatic test model generatiolCARTIER has to address two main
problems for test generation: identify a precise model ef tiansformation’s input domain;
automatically select relevant test models in the input domahe first issue is related to the
fact that the input domain of a transformation is generattgalibed with a general purpose
metamodel (e.g., ML). However, the effective input domain, that captures ohly set of
models that can be transformed, is much smaller than thd settances of the general purpose

metamodel. @RTIER can prune the metamodel in order to explicitly build a sulmdethe
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metamodel that the transformation can manipulateR1TTGER also assists the definition of pre
conditions on the metamodel to make the input domain moreigge Once the input domain
is precisely modelled, ERTIER can generate models in the input domainARCIER either

generates models without guidance or it can use test seateyorder to have models that

cover the input domair[55].

Are the test models generated byRIIER able to detect bugs in a model transformation?
We answer this question by generating and comparing se¢sofitodels using different testing
strategies. Specifically, we consider two testing strateginguidedandinput domain coverage
strategiedb5]. We usemutation analysi§49] [L07] for model transformations to compare these
testing strategies. Mutation analysis serves &shoracleto determine the relatively adequacy

of generated test sets.

We perform experiments to generate test models using elifféesting strategies and qual-
ify them using mutation analysis. We generate test modelthiorepresentative model trans-
formation ofUnified Modelling Language Class Diagram (UMLCD) to Relational Database Man-
agement Systems (RDBMS) models callectlass2rdbms. The mutation scores show that input
domain coverage strategies guide model generation witkiderably higher bug detection abil-
ities (93%) compared to unguided generation (70%). Thesdtseare based on 3200 generated
test models and several hours of computation on a 10 machidefghigh-end servers. The
large difference in mutation scores between coverageegiest and unguided generation can
be attributed to the fact that coverage strategies enfaeeral aspects on test models that un-
guided generation fail to do. For instance, coverage sfiegeenforce injection ahheritance
in the UMLCD test models. Unguided strategies do not enforce such aresgent. Several

mutants are killed due to test models containing inherganc

The scientific contributionin this section addresses three important questions:

e Question 1: How can we scale the approach to generating test modelsriye laput

meta-models such theNu.?
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e Question 2. Does the model transformation pre-condition preciselycs$pdhe input
domain of a model transformation? If not, can automaticgéiyerated test models help

improve the pre-condition by presenting unforeseen ancanted modelling patterns?

e Question 3: Are we consistently able to generate effective test moaela given strategy

using our approach?

The precise contributions of this section addresses gxtdtbse problems. We enlist them

below:

e Contribution 1: We usemeta-model pruningsee Chaptdi 3, SectionB.4, T141]) to prune
a large input meta-model such as theUto a subset called the effective input meta-
model. The effective input meta-model contains only claspeoperties, their dependen-
cies relevant the transformation under test. The oftenlemeaffective input meta-model
is transformed to a small formal representation inLAy. In contrast, transforming a
large input meta-model such as the whole ofilUto ALLOY results in a formal model

that renders SAT solving intractable due to the large nurabsignatures and facts.

e Contribution 2: We show how automatically generated test models can helppove
a model transformation’s pre-condition. For instance téfs models we generate for the
case study transformatiatiass2rdbms helps us discover new pre-condition constraints.
These pre-conditions were not initially envisaged by thegbaf world experts in model-
driven engineering who propose ttiess2rdoms as the benchmark case study at the MTIP
workshop [22]. We show that automatic generation can hetppigly discover structures
that human or even experts cannot preview in advance omeesgveral years of transfor-

mation usage experience.

e Contribution 3: We show that GRTIER consistently generates effective test models for
a given strategy. We illustrate consistency by demonatyatiat generating multiple test

models for the same test strategy does not significantly ggnamutation scores. These
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MM, specifies input MTrecuremens )
! model set i e o develop M Mofn":;g'zset"“tp”t
1} pre(T) [MT(1,0) {postT

Figure 4.1: A Model Transformation

test models correspond to multiple non-isomorphic sohgtiobtained using ALOY’S

symmetry breaking schemie [143].

4.1.1 Problem Description

We present the problem of black-box testimgpdel transformations A model transformation
MT (I,0) is a program applied on a set of input model® produce a set of output models
O as illustrated in FigurE4L.1. The set of all input models iscfied by a meta-modéil M, .
The set of all output models is specified by meta-mdd®l. The pre-condition of the model
transformationpre(MT) further constrains the input domain. A post-conditipost{MT) lim-
its the model transformation to producing a subset of alkjixs output models. The model
transformation is developed based on a set of requirenh@fgquirements

Model generation for black-box testing involves findingigahput models we callest mod-
elsfrom the set of all input models Test models must satisfy constraints that increase tise tru
in the quality of these models as test data and thus shouldase their capabilities to detect
bugs in the model transformatioviT (I, O). Bugs may also exist in the input meta-model and its
invariantsMM, or the transformation pre-conditioore(MT). However, in this study we only

focus on detecting bugs in a transformation.

4.1.2 Transformation Case Study

Our case study is the transformation fronwUClass Diagram models ®DBMS models called
class2rdbms. In this section we briefly descrilitass2rdoms and discuss why it is a representa-

tive transformation to validate test model generationtegjias.
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In black-box testing we need input models that conform toirtpeit meta-modeMM, and
transformation pre-conditiopre(MT). Therefore, we only discuss tiM,; and pre(MT) for
class2rdbms and avoid discussion of the model transformation outputalonin FigurdZR, we
present a subset of theMll input meta-model fotlass2rdbms. The concepts and relationships
in the input meta-model are stored askmre model [58] (FigurdZl2 (a)). The invariants on
the UMLCD Ecore model, expressed i@bject Constraint Language (OCL) [L14], are shown in
Figure[Z2 (b). Thé&core model and the invariants together represent the true inptasmodel
for class2rdbms. The OCL andEcore are industry standards used to develop meta-models and
specify different invariants on thenDCL is not a domain-specific language to specify invari-
ants. However, it is designed to formally encode naturajlage requirements specifications

independent of its domain. IATIE5] the authors present danigtions of OCL.

The input meta-modeéM M, gives an initial specification of the input domain. Howevbe
model transformation itself has a pre-conditipre(MT) that test models need to satisfy to be
correctly processed. Constraints in the pre-conditioncfass2rdbms include: (a) All Class
objects must have at least one prim&rgperty object (b) The type of aRroperty object can
be aClass C, but finally the transitive closure of the type Pfoperty objects ofClass C must
end with typePrimitiveDataType. In our case we approximate this recursive closure constrai
by stating thaProperty object can be of typ€lass up to a depth of 3 and the 4th time it should
have a typePrimitiveDataType. This is a finitization operation to avoid navigation in afinite
loop. (c) AClass object cannot have afissociation and anProperty object of the same name
(d) There are no cycles between non-persis@ass objects. These initial pre-conditions are

transformed to ALoy and are presented in AppendixJ6.5.

We chooselass2rdbms as our representative case study to validate input sefestiiategies.
It serves as a sufficient case study for several reasonsrditsfdrmation is the benchmark pro-
posed in the MTIP workshop at the MoDELS 2005 conferenck f@2kperiment and validate
model transformation language features. The input doma&ita+smodel of WL class diagram

model covers all major meta-modelling concepts such agitahnee, composition, finite and
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Class diagram subset of Samples of OCL Invariants
UML Meta-model
Property datatype |  Classifier context Class
is_primary: Boolean 1 name: String inv noCyclicInheritance:
name: String - not self.allGenerals()->includes(self)
classifier |«
1. | attribute inv uniqueAttributesName:
self.attribute->forAll(att1, att2 |

gene ) att] .name=att2.name implies attl=att2)

0.1 Class ‘ Model

context Model

is_persistent: Boolean

E inv uniqueClassifierNames:
ownedEnd self.classifier->forAll(cl, c2 |

PrimitiveDataType ﬂ cl.name=c2.name implies c1=c2)

inv uniqueClassAssociationSourceName :
Association self.packagedElement->forAll(ass1, ass2 |
. assl.name=ass2.name implies
(assl=ass2 or assl.src != ass2.src))

(a) (b)

memberEnd| 1

-

name: String packagedElement

Figure 4.2: (a) Class Diagram Subset oilJ Ecore Meta-model (b)OCL constraints on the
Ecore meta-model

infinite multiplicities. The entire WL input meta-model serves as a large input meta-model
to demonstrate meta-model pruning to an effective inpuarmebdel containing only class dia-
gram concepts.The constraints on thelUmeta-model contain both first-order and higher-order
constraints. There also exists a constraint to test tia@sitosure properties on the input model
such as there must be no cyclic inheritance. dlags2rdbms exercises most major model trans-
formation operators such as navigation, creation, andifij§described in more detail iR [1I07])
enabling us to test essential model transformation festukenong the limitations th&MLCD
meta-model does not contaimteger andFloat attributes. The number of classes in thaLCD
meta-model is not very high when compared to the standard R.0 specification. There are
also no inter meta-model references and arbitrary contitsrin the simple meta-model. How-
ever, this not really limitation in our approach as we clairattspecifying a test model requires
only a small subset of the entire meta-model and extrachirsgsubset via meta-model pruning

is part of our methodology.

Model generation is relatively fast but performing mutatanalysis is extremely time con-

suming. Therefore, we perform mutation analysislass2rdbms to qualify transformation and
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Heterogenous Sources of Knowledge
Input meta-model (in Ecore) Model transformation

c U o Search Strategy S
Finite Scope Parameters MM, (contains invariants) pre-coprnrcél(trlol% Eq.: Test Coverage Criteria
E.! Cartiergh 2 ®en B
acommen [ PSIar | et synenets| reeon e |\ e

\
Model Transformation

All Models , (MT)
invokes/uses .-

Mutation| Mutation
Analysis | “Scores

Figure 4.3: QRTIER Methodology for Automatic Test Generation and Mutation ke based
Qualification

meta-model independent strategies for model synthesithe#fe strategies prove to be useful
in the case otlass2rdbms then we recommend the use of these strategies to guide moadel s
thesis in the input domain of other model transformationaramitial test generation step. For
instance, in our experiments, we see that generation of 8a$5WMLCD models takes about

20 seconds and mutation analysis of a set of 20 such models &lout 3 hours on a multi-core
high-end server. Generating thousands of models for difteiransformations takes about 10%

of the time while performing mutation analysis takes mogheftime.

4.1.3 Automatic Test Model Generation and Qualification Mehodology

We outline the methodology for test generation usirgRQER and qualification of the gen-
erated test models via mutation analysis in Fiduré 4.3. {Sehg the test model generation

methodology follows the steps:

1. CARTIER performs static analysis on the model transformatbh to obtain the initial

set of used types and properties.
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2. CARTIER performs metamodel pruning &M, using these used types and properties to

obtain the effective input metamodeM, (details in Chaptdi3, Secti@nB.4)

3. CARTIER transformseMM,, its invariantsC, the transformation pre-conditiopre(MT)

and test strategy to anLAoy model (details in Chaptél 3, SectidnslE5] 3.7).

4. CARTIER generates models to detect inconsistencies in test strateglicates. These
test strategy predicates inLAOY are automatically generated in the previous step and
are included in the ALoy model. For instance, a predicate contains a model fragment
that is desirable in a test model (see Sedfiah 3.9 for mocermtion on fragments). We
attempt to synthesize a model that satisfies the conjuncfidhe predicate, the ALOY
model representation of the metamod® M, its invariantsC, and pre(MT). If we fail
to generate a model in a maximum finite scope then we elimitmegredicate as it is

inconsistent witreMM,, its invariantsC, andpre(MT) (introduced in Sectiof3.9)

5. Finally, CARTIER generates sets of test models that satisfy all consistedtqates repre-
senting test strategies in a finite scope using run commamna@sEh predicate (introduced
in Chaptel[B, Section3.9). It can also generate multipleisomorphic test models by
soliciting ALLOY’s symmetry breaking scheme [143] currently applicabléneNliniSAT
[B1]] SAT solver.

The generated models may lead to raising of general excepsioch as memory leaks, di-
vide by zero, infinite loops in the model transformatMdiT as its initial pre-condition definition
may not have been well defined. In the following Seckion 4 weshow how automatically gen-
erated models resulted in discovery of patterns that weréoneseen by experts who original
designed the transformati@ass2rdbms.

After discovering pre-conditions that no longer lead toegation of models that are raise
exceptions we regenerate sets of test models. We qualifgetseof generated test models via

mutation analysis (see Section411.4).
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::Class ownedEnd memberEnd --Class attribute | Attribute
—— _— | -
name: B ::Association name: C is_primary: true
is_persistent : false name: assol is_persistent : false name: att1 datatype
general ::PrimitiveTygel
name: String
uClass ownedEnd membernd ::Class attribute | Attribute /:Iatatype
— | -
name: A s:Association name: D is_primary: true
is_persistent : true name: assol is_persistent : false name: att1
::Table
name: A
o o
::Column ::Column

name: assol_att1 name: asso1_att1
type : String type : String

Figure 4.4: Model Excerpt for Pre-condition Improvement

Pre-condition Improvement

The execution of a transformation helps us discover newtraings for the pre-conditiopre(MT)
of the transformatioMT. In this sub-section we illustrate how some of the constsaiim the
pre-condition of the transformatiatiass2rdbms are discovered.

The discovery of a pre-condition starts with the detectibabmormal behaviour during the
execution of automatically generated models. These mdydacexceptions such as memory
leaks, infinite loops, or divide by zero errors. Models naviously considered by the model
transformation specification often result in such exceystiolr he exception handling mechanism
in Kermeta allows us to detect and catch these exceptionst, e prevent the lock of the
execution when a transformation runs into infinite loop. iRstance, this situation occurs when
input models are navigated through a series of associatasan create loop structure in the
transformatiorclass2rdbms. These loops structures can navigate through diverse ptssech

as inheritance trees, associations, and type of attribuié®e Kermeta interpreter throws an
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StackOverflowError exception when it detects such a problem.

Second, we detect other inconsistencies when output mpdelsced from an automatically
generated input model are not in the output domain. The tukpmain specified by an output
metamodeMMg, set of invariants on i€o, and a post-conditiopostMT). In our case study,
the transformatiorlass2rdoms can produce ill-formed®DBMS models outside the valid output
domain. A typical example is when a table contains sevetahwos with same name. We detect
these inconsistencies by checking if output models confarrihe output metamodeE¢ore
model of the metamodel with invariants) and satisfy postditions of the model transformation.
The Figurd W illustrates this detection. It representaerpt (bottom part) of an output model

produced by the original transformation of a generated in@deerpt on the top part).

Our tool isolates inconsistent output models and corredipgninput models. We then use
a traceability mechanism and tool such as[inl [60] to restifananalysis of these models on
excerpts such as the one illustrated in Fiduré 4.4. Clasedans transformed into one table
because itis persistent. It redefined an association oflémsB. Two associations with the same
nameassolpoint to classes with the same attribute/propeaittyt. Respecting the specification,
the original transformations produces a table with two ©ola nameessol_attl This does not
conform to theRDBMS metamodel and it is detected by our tool. Construction ohsuodels
can be prevented by generating objects with different nariés solve this inconsistency by
creating a new pre-condition constraint that protects thesformation from executing such
models. We also regenerate new models that satisfy the nexggmdition constraints. For
instance, the faulty model excerpt in Figlirel4.4 can helprodyce a new pre-condition that
states:

In the classes of an inheritance tree, two associations thighsame name can'’t point to
classes that have (or their parent) attributes with same emm

Several new pre-conditions were discovered fordhes2rdbms case study. We enlist nine
newly discovered ALoy facts in Appendi&l6 apart from the initial set of pre-cdimai con-

straints as shown in Appendix_6.5. TheseLAY facts can be easily expressedCL to
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improve the pre-condition specification @éss2rdbms. The conditions may even be applicable

to commercial implementations ofass2rdbms.

4.1.4 Qualifying Models: Mutation Analysis for Model Transformation Testing

We generate sets of test models using different strategiésyaalify these sets via mutation
analysis[[49]. Mutation analysis involves creating a sefaafty versions omutantsof a pro-
gram. A test set must distinguish the program output frontredl output of its mutants. In
practice, faults are modelled as a set of mutation operatbese each operator represents a
class of faults. A mutation operator is applied to the progtander test to create each mutant.
A mutant is killed when at least one test model detects thenpeeted fault. It is detected when
program output and mutant output are different. A test setletively adequate if it kills all
mutants of the original program. A mutation score is assedi&o the test set to measure its
effectiveness in terms of percentage of the killed/revceat@tants.

We use the mutation analysis operators for model transtwmsapresented in our previous
work [104]. These mutation operators are based on threeaabsiperations linked to the basic
treatments in a model transformation: the navigation ofrttoglels through the relations be-
tween the classes, the filtering of collections of obje¢ts,dreation and the modification of the
elements of the output model. Using this basis we define akrertation operators that inject
faults in model transformations:

Relation to the same class change (RSCCThe navigation of one association toward a
class is replaced with the navigation of another assoaiatidghe same class.

Relation to another class change (ROCC)The navigation of an association toward a class
is replaced with the navigation of another association aitear class.

Relation sequence modification with deletion (RSMD)This operator removes the last
step off from a navigation which successively navigategisdvelations.

Relation sequence modification with addition (RSMA):This operator does the opposite

of RSMD, adding the navigation of a relation to an existingigation.
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Table 4.1: Repartition of thelass2rdoms mutants depending on the mutation operator applied

Mutation Operator CFCA CFCD CFCP CACD CKCK RSMA RSMD ROCC RSCC Total
Number of Mutants 19 18 38 11 72 12 12 9 200

Collection filtering change with perturbation (CFCP): The filtering criterion, which could
be on a property or the type of the classes filtered, is disturb

Collection filtering change with deletion (CFCD): This operator deletes a filter on a col-
lection; the mutant operation returns the collection it wagposed to filter.

Collection filtering change with addition (CFCA): This operator does the opposite of
CFCD. It uses a collection and processes an additionalirfidfem it.

Class compatible creation replacement (CCCR)The creation of an object is replaced by
the creation of an instance of another class of the sameitahee tree.

Classes association creation deletion (CACD)Fhis operator deletes the creation of an
association between two instances.

Classes association creation addition (CACA)This operator adds a useless creation of a
relation between two instances.

Using these operators, we produced two hundred mutantstfrecrass2rdbms model trans-
formation with the repartition indicated in Talfle}.1.

In general, not all mutants injected become faults as sontkeoh are equivalent and can
never be detected. The controlled experiments presentadsiempirical study uses mutants
presented in our previous work[107]. We have clearly idattifaults and equivalent mutants

to study the effect of our generated test models.

4.1.5 Test Strategies

Good strategies to guide automatic model generation angiregfjto obtain test models that
detect bugs in a model transformation. We define a strategy@scess that generates A
LoY predicateswhich are constraints added to the 1y model synthesized by ARTIER as

described in Sectidn4.1.3. This combinedL&y model is solved and the solutions are trans-
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formed to model instances of the input meta-model thatfgatie predicate. We present the

following strategies to guide model generation:

e Random/Unguided Strategy: The basic form of model generation is unguided where
only the ALLoy model obtained from the meta-model and transformationes o gen-
erate models. No extra knowledge is supplied to the solverder to generate models.

The strategy yields an emptyLAoY predicate as shown in Listiig4.1.

pred random { }

Listing 4.1: Empty ALovY Predicate

e Input-domain Partition based Strategies: We guide generation of models using test
criteria to combinepartitions on domains of all properties of a meta-model (cardinality
of references or domain of primitive types for attribute&)partition of a set of elements
is a collection ofn rangesAy,..., A, such thatds, ..., A, do not overlap and the union of
all subsets forms the initial set. These subsets are cedieges We use partitions of
the input domain since the number of models in the domainrdngitely many. Using
partitions of the properties of a meta-model we define twbdsteria that are based on
different strategies for combining partitions of propesti Each criterion defines a set
of model fragmentso cover an input meta-model. These fragments are transfbiim
predicates on meta-model properties byRTIER. For a set of test models to cover the
input domain at least one model in the set must cover eaclesétmodel fragments. We
generate model fragment predicates using the followingctéeria to combine partitions

(cartesian product of partitions):
— AllIRanges Criteria: AllRanges specifies that each range in the partition of each
property must be covered by at least one test model.

— AllPartitions Criteria: AllPartitions specifies that the whole partition of each prop-

erty must be covered by at least one test model.
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The notion of test criteria to generate model fragments wigislly proposed in the paper
[B5]. The accompanying tool called Meta-model Coverageckéie(MMCC) [55] generates
model fragments using different test criteria taking anytanmaodel as input. Then, the tool
automatically computes the coverage of a set of test modetsr@ing to the generated model
fragments. If some fragments are not covered, the set aftedels should be improved in order
to reach a better coverage.

In this study, we use the model fragments generated by MMC@&UMLCD Ecore model
(Figure[Z2). We use the criterflRanges andAllPartitions. For example, in Table4. 2nfAll-
RangeslandmfAllRangesare model fragments generated byrG@1ER using MMCC [55] for
thenameproperty of a classifier object. TiefAllRangesktates that there must be at least one
classifier object with an empty name whilgAllRanges&tates that there must be at least one
classifier object with a non-empty name. These values foreram the ranges for the property.
The model fragments chosen usiitRanges mfAllRangeshndmfAllRanges2iefine two parti-
tions partition1 andpartition2. The model fragmenhfAllPartitionslchosen usingiliPartitions
defines botlpartition1 andpartition2.

These model fragments are transformed ta @y predicates by @RTIER. For instance,

model fragmenmfAllIRanges’s transformed to the predicate in Listihgl4.2.

pred mfAllRanges7
{

some ¢ : Class | #c.attribute=1

}

Listing 4.2: ALLoY Predicate fomfAllRanges7

As mentioned in our previous work[B5] if a test set contairedeis where all model frag-
ments are contained in at least one model then we say thanhpl domain is completely
covered. However, these model fragments are generatedledng only the concepts and re-
lationships in theEcore model and they do not take into account the constraints oEd¢hee
model. Therefore, not all model fragments are consistettt thie input meta-model because

the generated models that contain these model fragmentstdsatisfy the constraints on the
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meta-model. @RTIER invokes the ALoY Analyzer [72] to automatically check if a model

containing a model fragment and satisfying the input donsaim be synthesized for a general

scope of number of objects. This allows ugitetect inconsistent model fragmenEor exam-

ple, the following predicatenfAllRanges7ais the ALLOY representation of a model fragment

specifying that somelass object does not have amyoperty object. GARTIER calls the A LOY

API to execute the run statement for the predicatdllRanges7along with the base BALOY

model to create a model that contains up to 30 objects pes/ctagept/signature (see Listing

E23).

pred mfAllRange7a
{

some c:Class | #c.attribute = 0

}

run mfAllRanges7 for 30

Table 4.2: Consistent Model Fragments Generated usiRgnges andAllPartitions Strategies

Model-Fragment

Description

mfAllRangesl
mfAllRanges2
mfAllRanges3
mfAllRanges4
mfAllRanges5
mfAllRanges6
mfAllRanges7
mfAllRanges8
mfAllRanges9
mfAllRanges10
mfAllRanges11
mfAllRanges12
mfAllRanges13
mfAllRanges14
mfAllRanges15
mfAllPartitions1
mfAllPartitions2
mfAllPartitions3
mfAllPartitions4
mfAllPartitions5

AClassifier ¢ | c.name=""

AClassifier ¢ | c.namé =""

AClass c | c.is_persistent= True

AClass c| c.is_persistent= False

AClass c | #c.general=0

AClass c | #c.general=1

AClass c| #c.attribute= 1

AClass c| #c.attribute > 1

ArProperty a | a.is_primary = True

ArProperty a | a.name=""

ArProperty a | a.name =""

ArProperty a | #a.datatype= 1

ArmAssociation as| asname=""

AnmAssociation as| #asmemberEnd= 0

AnAssociation as| #asmemberEnd= 1
Classifiers c1,c2 | cl.name=""and c2.name ="’
Classescl,c2 | cl.is_persistent= Trueandc2.is_persistent= False
Classescl,c? | #cl.general= 0 and #2.general= 1
Propertysal,a2 | al.is_primary = Trueanda2.is_primary = False
Associations asl,as? | asl.name=""and a2.name ="’
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Listing 4.3: ALLOY Predicate and Run Command

The ALLOY analyzer yields ano solutionto the run statement indicating that the model
fragment is not consistent with the input domain specificatiThis is because no model can be
created with this model fragment that also satisfies an idpuatain constraint that states that

everyClass must have at least oroperty object as shown in Listing4.4.

sig Class extends Classifier

..

attribute : some Property

Listing 4.4. Example ALoY Signature

In Listing[£4,someindicates 1..*. However, if a model solution can be foundgsALLOY
we call it aconsistent model fragmenMMCC generates a total of 15 consistent model frag-
ments usinghliRanges and 5 model fragments using th&Partitions strategy, as shown in Table

B2

4.1.6 Experiments
Experimental Setup and Execution

We use the methodology in SectibnZ]1.3 to compare coverageditest generation with un-
guided/random test model generation.

We generate sets of test models based on factorial expaahdasign [1211]. We consider
the exact number of objects for each classhe effective input meta-model as factors for ex-
perimental design. A factor level is the exact number of ciigjef a given class in a test model.
These factors help study the effect of number of differepégyof objects on the mutation score.
For instance, we can ask questions such as whether a largeenoifdssociation objects have

a correlation with the mutation score? The large numbe¥ssbciation objects also indicates a
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highly connected L class diagram test model. We decide these factor levelsipylsiexper-

imentation such as verifying if models can be generateddasaeable amount of time given that
we need to generate thousands of test models in a few houralsé/evant to cover a combina-
tion of a large number of varying factor levels. We have 8aildht factor levels for the different
classes in the ML class diagram effective input meta-model as shown in Talde@ther fac-

tors that may affect but are not considered for test modetigeion are the use different SAT
solvers such as SAT4J, MiniSAT, or ZChaff, maximum time tlvyept-wise interaction between

model fragments.

TheAllRanges criteria on theUMLCD meta-model gives 15 consistent model fragments (see
Table[Z2). We have 150 models in a set, where 10 non-isoriwonpbdels satisfies each differ-
ent model fragment. We generate 10 non-isomorphic modelsrify that mutation scores do
not drastically change within each solution. We synthe8isets of 150 models using different
levels for factors as shown in Talfle 4.3 (see rows 1,2,8,3.he total number of models in

these 8 sets is 1200.

The AllPartitions criteria gives 5 consistent model fragments. We have 50neskels in a
set, where 10 non-isomorphic test models satisfies a diffen@del fragment. We synthesize 8
sets of 50 models using factor levels shown in T@hlé 4.3. €hels for factors forlIRanges
and AllPartitions are the same. Total number of models in the 8 sets is 400. Taetisa of

these factors at the moment is not based on a problem-indepestrategy.

We compare test sets generated ugiiBanges and AllPartitions with unguided test sets.
For each test set of coverage based strategies we geneegeamumber of random/unguided
models as a reference to qualify the efficiency of differdrdategies. Precisely, we have 8 sets
of 150 unguided test models to compare willRanges and 8 sets of 50 unguided test models
to compare withallPartitions. We use the factor levels in Tallle¥.3.

To summarize, we generate a total of 3200 models using aRyore’ M 2 Duo processor
with 4GB of RAM. We perform mutation analysis of these setslitain mutation scores on a

grid of 10 Intel Celeron 440 high-end computers. The contmutaime for generating 3200
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Table 4.3: Factors and their Levels for Test Sets

Factors S1 S2 S3 S4 S5 S6 S7 S8
#ClassModel 1 1 1 1 1 1 1 1
#Class 5 5 15 15 5 15 5 15
#Association 5 15 5 15 5 5 15 15
#Attribute 25 25 25 25 30 30 30 30
#PrimitiveDataType 4 4 4 4 4 4 4 4
Bit-width Integer 5 5 5 5 5 5 5 5
#Models/Set 15 15 15 15 15 15 15 15
AllRanges

#Models/Set 15 15 15 15 15 15 15 15
Unguided

#Models/Set 5 5 5 5 5 5 5
AllPartitions

#Models/Set 5 5 5 5 5 5 5
Unguided

Table 4.4: Mutation Scores in Percentage for All Test ModgkS

Set 1 2 3 4 5 6 7 8
Unguided 150 models/setin 8 sets 68.56 69.9 68.04 70.1 70.1 6855 69 70.1
AllRanges 150 models/set in 8 sets 88.14 92.26 81.44 85 91.23 80.4 91.23 88.14
Unguided 50 models/setin 8 sets 70.1 62.17 68.04 70.1 65.46 68.04 69.94 70.1
AllPartitions 50 models/set in 8 sets 90.72 93.3 84.53 87.62 87.62 82.98 92.78 88.66
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models was about 3 hours and mutation analysis took abouek.w&e discuss the results of

mutation analysis in the following section.

Results and Discussion

Mutation scores foAllRanges test sets are shown in Talilel4.4 (row 2). Mutation scoresefir t
sets obtained usingllPartitions are shown in TablE“4.4 (row 4). We discuss the effects of the

influencing factors on the mutation score:

e The number otlass objects and\ssociation objects are factors that have a strong correla-
tion with the mutation score. This is due to a specific charastic of the transformation.
The transformatiorelass2rdbms principally transforms all persistent classes in amLU
model to tables iRDBMS and all attributes/associations to columns. Therefoeepthb-
ability of finding a fault that process classes and assatiatis high. We notice this
correlation due to an increase in mutation score with thel lefthese factors. This is true
for sets from unguided and model fragments based strate§i@sinstance, the lowest
mutation score usingliRanges is 80.41 %. This corresponds to set 1 where the factor
levels are 1,5,5,25,4,5 (see Column for set 1 in TRble 4. @haghest mutation scores are
91,24 and 92,27% where the factor levels are 1,15,5,25m13 &,15,25,4,5 respectively
(see Columns for set 3 and set 7 in Tdhld 4.3).

e We observe thatllPartitions test sets containing only 50 models/set gives a score of max-
imum 93.3%. TheAllPartitions strategy demonstrates that knowledge from two different
partitions satisfied by one test model greatly improves ketgaing efficiency. This also
opens a new research direction to explore: Finding stregeigicombine model fragments
to guide generation of smaller sets of complex test models batter bug detecting ef-

fectiveness.

We compare unguided test sets with model fragment guidedrst#tebox-whiskerdiagram

shown in Figuré_4l5. The box whisker diagram is useful toalige groups of numerical data
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Figure 4.5: Box-whisker Diagram to Compare Automatic Mo@eheration Strategies

such as mutation scores for test sets. Each box in the diagraimided into lower quartile
(25%), median, upper quartile (75% and above), and lardestrgation and contains statisti-
cally significant values. A box may also indicate which oliagons, if any, might be considered
outliers or whiskers. In the box whisker diagram of Figurg we shown 4 boxes with whiskers
for unguided sets and sets #itRanges andAllPartitions. The X-axis of this plot represents the
strategy used to select sets of test models and the Y-axisses the mutation score for the
sets.

We make the following observations from the box-whiskeigdim:

e Both the boxes oAllRanges andAllPartitions represent mutation scores higher than cor-

responding unguided sets.

e The high median mutation scores for strategi#Ranges 88.14% andhlIPartitions 88.14%

indicate that both these strategies return consistenthy ¢est sets.
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e The small size of the box foallPartitions compared to theéllRanges box indicates its

relative convergence to good sets of test models.

e The small set of 50 models usirdjPartitions gives mutations scores equal or greater than
150 models/set usingliRanges. This implies that it is a more efficient strategy for test
model selection. The main consequence is a reduced effovtite correspondingest

oracles[I07] with 50 models compared to 150 models.

e Despite the generation of multiple solutions (10 solutimorseach model fragment or an
empty fragment for unguided generation) for each strateggee a consistent behaviour
in the mutation scores. There is no large difference in theatiwn scores especially for
unguided generation. The median is 69% and the mutatioescange between 68% and
70%. TheAllRanges andAllPartitions vary a little more in their mutation scores due to a

larger coverage of the effective input meta-model.

The freely and automatically obtained knowledge from theuinmeta-model using the
MMCC algorithm shows thaAllRanges andAllPartitions are successful strategies to guide test
generation. They have higher mutation scores with the sanress of knowledge used to gener-
ate unguided test sets. A manual analysis of the test mogledsls that injection of inheritance
via the parent relation in model fragments results in highetation scores. Most unguided
models do not contain inheritance relationships as it iSmpbsed by the meta-model.

What about the 7% of the mutants that remain alive given tilehtghest mutation score is
93.3%7? We note by an analysis of the live mutants that thetharsame for botAllRanges and
AllPartitions. There remain 19 live mutants in a total of 200 injected mistéwith 6 equivalent
mutants). In the median case bathRanges and AllPartitions strategy give a mutation score
of 88.14%. The live mutants in the median case are mutantkilied due to fewer objects in
models.

To consistently achieve a higher mutation score we need 1@&id speed, memory and

parallelization to efficiently generate larger test moa@eld perform mutation analysis on them.
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This extension of our work has not be been explored by us. ithportant for us to remark
that some live mutants can only be killed with more informatabout the model transformation
such as those derived from its requirements specificatiam.irfStance, one of the remaining
live mutant requires a test model with a class containingrst\primitive type attributes such
that at least one is a primary attribute. A test model thasfsas such a requirement requires the
combination of model fragments imposing the need for séatt@butes in a class A, attributes
of class A must have primitive types, at least one primanybaite in the class A, and at least
one non-primary attribute in the class A. This requirement either be specified by manually
creating a combination of fragments or by developing a bgiaeral test strategy to combine
multiple model fragments. In another situation, we obséhat not all model fragments are
consistent with the input domain and hence they do not reaiser the entire meta-model.
Therefore, we miss killing some mutants. This informationld help improve partitioning and

combination strategies to generate better test sets.

4.1.7 Conclusion for Test Generation

Black-box testing exhibits the challenging problem of depig efficient model generation
strategies. In this empirical study we usergIER to generate models conforming to the input
domain and guided by different test strategies. FiraiRGER helps us precisely specify the in-
put domain of a model transformation via meta-model pruming pre-condition improvement.
Second, we use ARTIER to generate sets of test models that compare coverage anitiedg
strategies for model generation. All test sets using thaag¢egies detect faults given by their
mutation scores. The comparison of coverage strategi@smguided generation taught us that
both strategiesaliPartitions andAllRanges look very promising. Coverage strategies give a max-
imum mutation score of 93% compared to a maximum mutatiomesob70% in the case of
unguided test sets. We observe that mutation scores do notsastically despite the genera-
tion of multiple solutions for the same test strategy. Weobaate from our experiments that the

AllPartitions strategy is a promising strategy to consistently generateall test of test models
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with a good mutation score. However, to improve efficiencyest sets we might require effort
from the test designer to obtain test model knowledge/testeg)y that take the internal model

transformation design requirements into account.

4.2 Towards Model Completion in Domain-specific Model Editos

Documents in the form of computer programs, diagrams, ctemdrmulas, and markup text

can currently be edited in document editors caliedcture editors These structure editors are
cognizant of the document’s underlying structure such aggtammatical syntax or a formal

grammar of the language. Functionally, these structuremsdare syntax or language-directed
to aid the user by presenting recommendations for completi@ode, text, or a diagram based
on correct possibilities prescribed by the underlying &tice. This enables faster document
development with fewer errors. However, structure editesseparately constructed for each
domain-specific language and are built mainly for gramnzeseld textual languages. We are
interested in the subject of extending structure editassfhigh-level models built using the

principles ofModel Driven EngineerindMDE) [67] where domain-specific model editors are

automatically synthesized for a variety of modelling laages.

In MDE, given a meta-model specification of a domain-spedifadelling language, soft-
ware tools can automatically generaemain-specific model editors-or example, generative
modelling tools such asToM3 (A Tool for Multi-formalism Meta-modelling) [48[[67ME
(Generic Modelling EnvironmenE)[1.2EMF (Eclipse Graphical Modelling Framework)[79] can
synthesize a domain-specific visual model editor from aatative specification of a domain-
specific modelling language. A declarative specificationstsis of a meta-model and a visu-
al/textual syntax that describes how language elemenjedtsband relationships) manifest in
the model editor. The designer of a model uses this modebrettitconstruct a model on a
drawing canvas. This is analogous to using an integratedlojlement environment (IDE) to

enter a program or a word processor to enter sentences. ldguis such a&clipse present
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recommendations for completing a program statement whssilgle based on its grammar and
existing libraries[[15]. SimilarlyMicrosoft Word presents grammatical correction recommenda-
tions if a sentence does not conform to a natural languagargea. Therefore, we ask: Can
we extrapolate similar technology or develop new technokog partial models constructed in

a model editor for a domain-specific modelling languag8niL)?

Extrapolating code completion techniques for model cotigaigs not feasible in the general
case. The first reason is the difference between the undgrstructure of code and models.
Code completion techniques use the Backus-Naur Form (BMd&jigar of a programming
language while models are specified by a meta-model andraoriston it. Second, model
completion must consider completing the entire model astcaints can span entire models
unlike code completion which presents solutions at a pragstatement level. Third, in terms of
reduction in effort model completion must help reduce tlieredf a modeller by automatically
satisfying all relevant language constraints since in gerieey may be too hard for a modeller
to resolve manually. The output of model completion must e or many valid models that
conform to their language. This notion of reduction in dffsr different from that in code
completion. Code completion presents local suggestiom®nplete navigational expressions
or concept names but it does not perform constraint satisfato output a valid program. In the
general case, model completion may take more time than aantence completion which are
almost instantaneous. Therefore, there is a need to derelopechniques for model completion

with different goals such as relaxing the exigence towards to complete.

The major difficulty for providing completion capabilities model editors is to integrate
heterogeneous sources of knowledge in the computationegbdlsible solutions for comple-
tion. The completion algorithm must take into account thecepts defined in the meta-model,
constraints on the concepts and the partial model built bynaaih expert/user. The difficulty is
that these three sources of knowledge are obviously ref{tiied refer to the same concepts) but
are expressed in different languages, sometimes in difféites, and in most cases by different

people and at different moments in the development cycleeysdre separable concerns.
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In this section, we propose present a transformation fromragb model to an ALoy [[71]]
[72] predicate. The generated Loy predicate is included in thelAoy model generated from
the metamodel of ®SML. The transformation of a metamodel has been discussed ipt&ha
B. The predicate is solved to obtain recommendations forptetng the partial model in a
model editor. Our transformation from the heterogeneousces to A LOY is integrated in the
software toolaToM3.

Thescientific contributionin this section addresses two important questions:
e Question 1: How can we generate a complete model(s) from a partial mpeéelfication?

e Question 2: How can we integrate a model completion mechanism in a doseific

model editor?

The precise contributions of this section addresses gxtdetse problems. We enlist them

below:

e Contribution 1: First, theDSML metamodel and its invariants in transformed to a base
ALLoY [I[77] model using techniques already described in Chdftetr3this section
present a transformation from a partial model to arnéy predicate and concatenate
it to the base ALoy model. The predicate representing the partial model isesoix
the resulting ALoy model to generate complete models that conform to the metaimo

specification.

e Contribution 2: We integrate this model completion mechanism into the metksing
environmentAToM® such that anypSML generated usingToM® by construction comes
with model completion. Users can create partial modelsisiL generated usingTom3
and automatically obtain recommendations to complete theolicking on a button. The

complete models are shown in the concrete visual syntaxeddSvL.

An overview of our methodology is presented in Seclion4.2te of the key parts of our

methodology is the automatic synthesis of domain-specifideheditors from their specification
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comprising of the meta-model and visual syntax. This predéeslescribed in SectidnZ.P.2.
The component that will add model completion ability to tlymthesized model editor is a
transformation from a partial model to anLkoy predicate. We present this transformation
in Section[Z.2J6. Once we include this transformation i@ $ynthesis of a domain-specific
model editor we are able to synthesize domain-specific medigbrs with automatic model
completion. We describe the model completion process ii@#€2Z8. We present examples of

model completion recommendations generated for partialaisan Sectiol’4.219. We conclude

in SectioTZ210.

4.2.1 Methodology for Model Completion

The development and use of a domain-specific model editdér avtomatic model completion

can be divided into the following phases and sub-phases:
1. Specification of a domain-specific modelling languages{sm®3)

(a) Specification of a metamodel

i. Specification of a class diagraradore model)

ii. Specification of facts on the concepts in the class diagfALLOY facts in our

case)
(b) Specification of a visual syntax in an icon editor (avalgain ATom?) for concepts
in the metamodel

2. Transformation of metamodel and visual syntax to a maodigbe

(&) Synthesis of an editor with buttons, menus and icons
(b) Synthesis of a drawing canvas with features such as atitotayout
(c) Synthesis of a clickable widget for model completion

(d) Synthesis of a dialog box for specifying model complefi@rameters
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3. User interaction

(a) Drawing a partial model on the canvas
(b) Editing model completion parameters

(c) Click on a button to generate complete model(s)
4. Model Completion (hidden from user)

(a) Transformation to a baseLAoY model from theEcore model
(b) Augmenting metamodel facts with basel®y model

(c) Synthesis of an ALoY predicate from partial model and augmentation to base A

LOY model

(d) Synthesis of run commands from the model completionmatars and augmenta-

tion to current ALOY model

(e) Solving final A Loy model and returning complete models as recommendations to

the model editor

The specification of a domain-specific language is usualhediy alanguage designewho
interacts with domain experts to identify the conceptsijrtheoperties and relationships in a
domain of knowledge, science or engineering. The languageyder also develops a repos-
itory of constraints among the concepts and its properfidse assembly of the concepts and
relationships is expressed asEeore model by the language designer. The constraints on the
Ecore model or class diagranC) are expressed in a formal constraint language. Preferably
constraint language that has a finite number of solutionssaddcidable. In our methodology
we usefactsexpressed in the language Loy to represent such constraints. T¢ie and the set
of constraints on it results in theetamodebf a Domain-specific Modelling Language (DSML)

A visual syntax designepecifies a concrete visual syntax for the concepts andomethips

in the modelling language. In our methodology we useAfuwv® icon editor to specify a visual
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Step 2: Specify Alloy Facts on the
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fact exactlyOnelnitialState {
one s:State|s.isInitial == True

//Atleast one final state
fact atleastOneFinalState {
some s:State | s.isFinal == True

Step 3: Specify visual syntax in
AToM3 icon editor

wiase am-

<<Bool>>

“<|Initial ?
- |Final

<<Bool>>

[[11 B |

Step 8: Parse XML and return

recommendation(s)

solution(s) as a model completion

Step 7: Call Alloy AP to solve Boolean CNF
using a SAT solver and save solution(s) as

XML file(s)

incomingTransition /[Exactly one FSM Wz, =
fact exactlyOneFSM{ - = =
one FSM =
Sl Y
Generate Model Editor
Y
Step 4: Specify a partial model
> miynthes 'Ef!fl editor Step 5: Model transformation
Initial ?89 from partial model, meta-model,
Initial ? Final 75 and constraints.
Final ¢ R Input: Meta-model, constraints,
- T and partial model
7 Final 2o 0 Output: Alloy Model

Step 6: Call Alloy API to
Transform Alloy Model to Boolean CNF

Figure 4.6: Methodology Overview
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syntax. In Sectiol 4222 we discuss in detail the specifinatif the modelling language for

Finite State Machines (FSM) along with a visual syntax.

Once we have all the elements (metamodel and visual syntocgssary for a domain-
specific modelling languageraodel transformation engineelevelops a transformation to syn-
thesize a visual domain-specific model editor from thesmefdgs. The model editor consists
of buttons, menus, and a canvas. A user can select and dregi®lojn a drawing canvas and
connect them using relationships. The objects are maeifest icons as specified in the icon
editor for the concrete visual syntax by the visual syntasigieer. The relationships are links
between these icons. In the model editor by clicking on tbe ibe user can edit or specify the

values of properties.

In our work, we extend this model transformation by transiioig the metamodel to an
ALLOY model (see Chaptéd 3). The transformation also synthesizastton widget in the
domain-specific model editor. Aomain experobr usercan click on this button resulting in the
solving of the ALoy model augmented with AOY predicates synthesized from the partial
model drawn on the canvas. Recommendations as one or mopetermodels (if found) are
returned to the model drawing canvas. In Seclion #.2.6 wseptethe transformation from a
partial model to ALoy. Anillustrative outline of the model completion methodgjas shown

in Figure[Z.®.

4.2.2 Specifying a DSML

4.2.3 Metamodel

The first step in specifying a DSML is creating a metamodehforodelling language. The meta-
model for theFSM modelling language is presented in Figlird 4.7. The classtee imetamodel

areFSM, State andTransition. The metamodel is specified using theore industry standard.
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1 fsmCurrentState FSM
1 fsmStates 1 fsmTransitions
0..1 currentstate 0.* states 0. transitions
State Transition
isFinal : Boolean event : String
islnitial: Boolean
label : Int 0. 0.x*
1 target 1source outgoingTransition incomingTransition

Figure 4.7: The Finite State Machine Metamodel

4.2.4 Constraints on Metamodel

The second step comprises of specifying constraints on #tamodel. We directly specify
ALLOY facts on theFSM metamodel. These IAoY facts were manually transformed from
original OCL constraints o SM. In Tabld4.}, we present the constraints onrB®I metamodel
in natural language and as Loy facts.

In the appendix we present the completeLAy model for theFSM modelling language.
This ALLoY model can be loaded into theLAoY Analyzer [72] for directly obtaining valid

FSM models.

4.2.5 Visual Syntax

The final step (in specifying BSML for synthesizing a model editor) we take is to specify the
concrete visual syntax of the class of objects in the metainddhe visual syntax specifies what
an object looks like on a 2D canvas. An icon editoriiom?® is used to specify the visual syntax
of the classes in the metamodel.

An icon editor is used to specify the visual syntax of metaehadncepts such as classes and
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Table 4.5: Constraints in natural language and aso¥ facts

Constraint Name and Definition

Alloy Fact

exactlyOneFSM There must be ex-
actly oneFSM object in aFSM model

atleastOneFinalState: There must be
at least one final state inkRSM model

exactlyOnelnitialState : There must
be exactly one initial state in thesm
model

sameSourceDiffTarget: All transi-

tions with the same source must have

different target

setTargetAndSource: The target of
an incoming transition to 8tate itself
and the source of all its outgoing tran-
sitions is the sam8tate

noUnreachableStates There can be
no unreachable states in tA68M from

an initial state. Since, its a ternary con-
straint we approximate it by stating that
a non-initial state can be reached from
an initial state up to a maximum depth
of N (N=3 is the given example).

uniqueStateLabels: All State objects
have unique labels

fact exactlyOneFSM

{
one FSM

}

fact at |eastOneFinal State

{

sone s: State|s.isFinal ==True

}

fact exactlyOnelnitial State

{

one s:State|s.islnitial==True

}

fact sameSourceDiff Target

{

all t1:Transition,t2:Transition|
(t1'=t2 and t1.source==t2.source)
tl.target!=t2.target

}

fact setTarget AndSource
{

all s:State |

s.incomngTransition.target = s and

S.out goi ngTransi ti on. source=s

}

fact noUnreachabl eSt at es

{
all s:State| (s.islnitial==False)
#s.incomngTransition >=1 and
(s.islnitial==True and #State > 1)
#s.out goi ngTransition >=1 and
s.outgoi ngTransition. target!=s

}

fact uniqueStatelabel s

{

#State>1 => all sl:State,s2:State |

sll=s2=>s1.label != s2.|abel

=

I
\YJ

I
\YJ
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relationships. The icon fastate is a circle annotated with three of its attributés-inal, isInitial,
and label). The connectors in the diagram are points of connectiowdsstState objects and
Transition objects.

The visual syntax can also by dynamically changed basedeprtperties of the model.
In an iconic visual modelling language suchr&M, the first step taken in specifying a visual
syntax is drawing an icon that represents a class of objéfcteeded it is annotated with text
and its properties. Connectors are added to the visualtodgetbat it can be connected to other

objects if they are related.

4.2.6 Transformation of a Partial Model

We define a partial model as a graph of objects such that: (&)coljects are instances of
classes in the modelling language metamodel (2) The pantale! either does not conform to
the language metamodel or its invariants expressed in @atestnstraint language. A complete
model on the other hand contains all the objects of the pantialel and additional objects or
property value assignments in new/existing objects suahiticonforms both to the metamodel
and its invariants.

A partial model, such as in FiguEe.8 (a)astomaticallytransformed to a set of Aoy
predicates by navigating it object by object in the canva® navigate all objects of a certain
type and put them together as anldy predicate. We want to keep the already specified
properties for each object in the partial model but alsovaflor extensibility. For instance, for
all the State objects in the partial model of Figufe’h.8 (a) we create amd@dy predicate as
shown in the first predicate of Figufe¥.8 (b). Thel®y predicate states that there exists at
least oneState object s1, at least ongtate object s2, at least on&tate object s3, at least one
State object s4 (representing the fo8tate objects in the partial model), at least ohensition
object t1, and at least oreansition object t2 such that s1,s2,s3,s4 are not equal and t1,t2 are
not equal. The predicate also states thafTthesition objects t1 and t2 are in the set of outgoing

transitions forState object s1.Transition object t1 is in the set of incoming transitions of s1. The
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Transition object t2 is in the set of incoming transitions of s2. Thesg aee open for inclusion of
new Transition objects. These predicates preserve all knowledge comamg tine partial model
while allowing the extension to relations to more objects.

We present a procedure to describe the transformation frenpartial model to a set of
ALLOY predicates below:

The following represents the procedure to synthesize an ALLOY predicate from a partial model
1. We start by synthesizing the header of a partial model:
pred partial Mdel {

2. For all objects ob;j of typeClasg in a partial model we synthesize ami£oy expression:

someg; : Class, ... |

3. For all objects objj of type Clasg and all objectsy; of typeClasg in a partial model
we synthesize an A OY expression:

0ij! = okj, each expression separatedangd

4. For all defined attributesx of ojj we synthesize the expression:

0ij.ajk = v, wherev is the specified value separated by commas

5. For all defined referencegy of oj; we synthesize the expression:

vin 0jj.rij, wherev is the object in the set of referred objects separated by @snm

6. We finish the predicate by closing the brace.

4.2.7 Transforming ALLOY Model Completion Parameters

The user is provided with a dialog box to inserbdel completion parametersiodel completion
parameters include finite scopes such as the upper boune owithber of objects of any class,

or the upper-bound on the number of objects for each clastheoexact number of objects
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~ |Synthesized Predicate
-0 | pred partialModel

{
Initial ? . inal ? some s1: State, 52 : State, 53 : State, s4 : State,
t1: Transition, t2 : Transition |
sl!=s2ands2!=s3ands3!=s4and sl !=s3and
sl!=sdands2!=sdand tl!=t2 and

Initia

Initial ? © t1 in s2.incomingTransition and t2 in s3.incomingTransition
_ @ Final ? and t1 in s1.outgoingTransition and t2 in s1.outgoingTransition and
Final 7.2 P s2.islnitial = True and sd.isFinal = True
§ Caw  Dp e X@ : ‘0\113“* a::a/ar. }
(a) (b)

Figure 4.8: (a) Partial Model (b) Synthesized PredicatefPartial Model

for each class, or a mixture of upper bounds and exact nunflmdsjects for different classes.
The default scope is number of objects in the partial model.other parameter is the number
of solutions requireds. This information is used to synthesize an®y run commandhat

is finally inserted in the ALoy model. For example, if the partial model predicate is called
partialModelland the user states that he wants exactly one object of clagg # 10 objects

of class B, and a scope of 5 for integers then the followingstatements is synthesized:
run partial Model 1 for exactly 1 A 10 B, 5 Int

If the number of objects in the partial model is N, then thead&frun command the editor

generates is:

run partial Model 1 for N

4.2.8 Model Completion Process

The model completion process integrated in the domaindépecodel editor takes as input the
Ecore model, augmented A oY facts, and a partial model drawn in the model editor synthe-

sized from the class diagram of a modelling language, andfggirameters to define the scope
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of the complete models to be synthesized. The process ikedwwhen a user draws a partial
model in the modelling canvas and clicks on @enerate Completion Recommendatibagon.

The following steps are executed during the completiongssc

1. An ALLoy model (ALS) file is synthesized containing the signaturerdidins of the

classes in th&€core model as described in Chaplér 3.

2. The modelling language facts are augmented to theoX model. These facts are speci-

fied as described in Sectibn 412.4.

3. The partial model drawn in the model editor canvas is foarmsed to a predicate as de-

scribed in Sectioh’42.6 and augmented to the curremtoA model

4. The model completion parameters are transformed to acmamand (See Sectién 4.P.7)
and augmented to theLAoy model giving us an adequate description for model comple-

tion.

5. The model editor invokes a solver to generate completeehtedommendations for the

partial model.

It is important to note that the partial model is specified aoarce of knowledge about
what objects and properties that the user wants to absplséd in the complete model. In
the complete model we can see the intact contents of theapartidel. However, the object
identifiers of the partial model are not preserved in the detepnodel. We also do not perform
pattern matching to identify the original partial model lretcomplete model, although such a
mechanism can be incorporated if needed. In the defaultwaskénd the nearest-consistent
complete model(s) to a given partial model.

If a solution is not found the ALOY solver returns ao solution found exceptioio ATom3
(the invoker). We show this result in a dialog box in #keM? environment. In our work we do

not debug a partial model to find the exact source of incogrsist This incurs a computational
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cost and time as we need to check every partial model predeqiression against the meta-
model constraints to see which characteristics of theglantddel leads to an inconsistency. We
leave it to the user and depend on his/her expertise d@nil to identify the inconsistent part

of the partial model and correct it.

4.2.9 Examples in Completion

In this section, we consider four examples of partial modeldhe FSM modelling language.
The examples are shown in Figlirel4.9 [a)] 4.9[(0), 4.9[(c) (d).eespectively. The synthesized
predicates for these models are shown in Figiirds 4 B {#(f)408d4.9 (g) [ZP (h). The example
in Figure[4® (a) contains only orgate object with none of the properties having been set. The
example in Figur€4]9 (b) contains tv@wate objects and dransition object not connected. In
Figure[Z® (c) we consider a more complex model with sev&raé andTransition objects with
some properties set and some not. Finally, in Fifurk 4.9 @pmesent a model containing at
least twoState objects withisInitial set to True.

We perform the model completion of these models using twdoast of setting parameters

for completion:

e Scope Here we specify a scope as a model completion parameterscpe is a unique
number that defines the maximum number of objects for all gptscin the metamodel.
We choose the default scope to be 10. The corresponding@run statement generated
is:

pred partial Model {}

run partial Model for 10

The partialModel predicate is empty and is simply used to obtain a completeeiriad

stance. We solve for up to a scope of 10 objects for each coircdpe metamodel.

e Exact Number and/or ScopeAnother mechanism to complete a model is to specify the

exact number of objects and/or scope for objects we expéebeinomplete model.
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Initial ? ©

Final ?@
(o]

(a)
Initial ? ©
Initial ? ©. Final ?
O, °
Final ?
o

(b)

Initial ? L
'Y

o Initial ? ©
Initial ?

Final ?
Final ? o
1

(c)

Initial ? ©

Final ?

Initial ? L
Initial ? © \
Final ?
Final ? o
o

(d)

Synthesized Predicates

fact partialModel_Factl
{

some State

}

(e)

Synthesized Predicates
pred partialModel2_Fact

{

some sl : State, 52 : State, t1 : Transition | 51 != 52 and
t1in s1.outgoingTransition and t1 in s2.incomingTransition

}

()

Synthesized Predicates
pred partialModel3 Fact

{
some s1: State, s2: State, s3 : State, 54 : State, t1 : Transition, t2 : Transition |
sll=s2ands2!=s3ands3!'=sdand sl !'=s3and s !=sd and s2 = 54 and
t1 =12 and t1 in s2.incomingTransition and t2 in s3.incomingTransition and
t1in sL.outgoingTransition and t2 in s1.outgoingTransition and

s2.isInitial = True and s4.isFinal = True

}

(9)

Synthesized Predicates
pred partialModel4 Fact

{
some s1: State, s2: State, 3 : State, s4 : State, t1 : Transition, t2 : Transition |
sli=s2and s2!=s3and 3 !=s4 and sl !=s3and s1!=sd and 52 = 54
and t1 !=1t2 and t1 in s2.incomingTransition and t2 in s3.incomingTransition
and tLin sL.outgoingTransition and t1 in sL.outgoingTransition and
s2.isInitial = True and s3.isitial = True

}

(h)

Figure 4.9: (a) Partial model 1, (b) Partial model 2, (c) Rhrnodel 3, (d) Partial model 4,

(e) Predicate synthesized for Partial model 1 (f) Predisgtghesized for Partial model 2, (g)

Predicate synthesized for Partial model 3, (f) Predicatth®sized for Partial model 4
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event: 7
Initial 7

Final ?
1
(a)
Initial ? L
event : 7 @
Initial ?

Final ?

Initial ?

Final ?

Initial ? ©

X
Final ? &
1 >

(c)

Figure 4.10: (a) Complete Model for Partial Model 1 (b) CoetplModel for Partial Model 2
(c) Complete Model for Partial Model 3
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pred partial Model {}
run partial Mdel for exactly 1 FSM exactly 5 State,

exactly 10 Transition, 5 int

Here we find a solution for a partial model containing exadtlySM object, exactly 5
State objects, exactly 1Qransition objects. Finally we set a bit-width for integers which

is 5. This means that all integers range betwe@n to 2°.

All the above parameters were initially set in the synthesizrom® modelling environment.
The user is only exposed to the graphical syntax of the casadaphe metamodel and with
a text-box to specify the exact number of objects or a scopee mModel completions were
performed on a Macbook Pro laptop with an Intel Core 2 Duo gseor running at 2.6 GHz
clock speed and with 2 GB of RAM. We use the 1y analyzer API to invoke the SAT solver
Minisat [111] [I12] from Chalmers University to solve the @ean CNF synthesized from the
ALLoY model. The time to obtain the solutions for the four parti@dels for the completion
parameters is presented in Talbld 4.6.

We show the complete models themselves in Figurd 4.10 witbesof 10. Normally, there
is more than one solution to a model completion. We show omlesgpossible solutions. We do
not show that the complete models synthesized for the exexbar of objects due to large size
of the models. However, it is interesting to note in Tdhld tha& the time taken to synthesize
models with the exact number of objects specified for eacdsdkaa lot faster even though the
models are larger. This is because the additional knowlafiget the number of objects makes
the search space of the models much smaller, thereforeiajavg to obtain a solution faster.

The complete model in FiguEe4110 (a) satisfies all the metkinconstraints such that the
single State label has a unique value 7. There is at least one final statexaully one initial
state. In addition, the complete model contairgaasition object of theState to itself with an
event 7. This new object added to the complete model doesiolater any of the knowledge

already present in the partial model.
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Table 4.6: Model Completion Times

Partial Model Description Timescope(S) TiM&xact TiMEcopescaled TIMExactScaled
(I=Inconsistent)
Fig.[Z9 (a) Only onestate ob- 1.283 0.447 118.045 32.002

ject with no proper-
ties specified

Fig. 23 (b) Two State objects ~ 1.289 0.496 115.994 31.488
and one Transition
object

Fig.[Z9 (c) SeveralState and 1.315 0.575 11.4301 32.517

Transition objects
with some proper-
ties specified and
some not

Fig.[£3 (d) SeveralState and  1.291 (I) 0.402 () 111.352 (1) 31.734 (1)
Transition objects
with two initial
State objects

The second complete model in Figlire4.10 (b) originally wparéial model with twdstate
objects and &ransition object. The complete model now contains two figalte objects and
exactly one initialState object. There is also an inclusion offansition object in the complete

model. The synthesized model conforms to all metamodelt@ints.

The third complete model In”Z110 (c) contains a complex ghntiodel with additional ob-
jects that preserve the knowledge in the partial model. Wiescale up to a model with several
hundred atoms using Aoy to obtain results in a reasonable amount of time (for onliser u
interaction with the modelling environment). An atom caitsiof any non-divisible entity in the

ALLoY model. This includes objects and their properties condedgerelations.

The fourth partial model i 419 (d) consisted of two initgthte objects which is not permit-
ted by the metamodel constraint which states that-hi@ metamodel must contain only one
initial State object. Therefore, the SAT solver was unable to find a corapteedel that could

take into account the partial model.
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4.2.10 Conclusion of Model Completion

We present a methodology to synthesize domain-specific hedders with metamodel directed
model completion for domain-specific modelling languagesr goal has been to provide model
editors with completion capabilities similar to text or eodditors in IDEs such as Eclipse or
word processors such as Microsoft Word. A potential futyspliaation of our approach is
generation of test models from partial knowledge. DAML user draws a partial test model
for testing a model transformation and subsequently setfehumpletion parameters. Then
he/she clicks on a button to generate complete test modeisath valid test cases for model
transformations. Moreover, the model completions ardalysul in the concrete visual syntax of
the modelling language while evading all the details in the=CXML files, or other intermediate
low-level representations. This aspect of our tool helplsice the time to develop models in the
modelling environment as the user only works in his domanglege. The user does not need
to manually transform his models to a different constraangluage, solve his models and return
the results to the editor anymore since the underlying mealglpletion process is hidden from
the user. After all, the goal of MDE is to leverage modelliogthe highest possible level of
abstraction.

Our approach uses a modelling language metamodel , thexsyam@ itsstatic semanticén
the form of metamodel constraints to perform model commtetHowever, since the presented
approach is modelling language independent we do not cardythamic semanticsften real-
ized in a simulator for model completion. Nevertheless, voggut several implications to simu-
lation as it goes hand in hand with modelling. Model simuletsuch as MATLAB/Simulink for
causal block diagrams, often contdiard-coded declarative constraints or program statements
that check and report on the validity of input models durimguation. For example, a causal
block diagram simulator analyzes input models to detedesyand warns the modeller. These
statements that are integrated in simulator code come feterdgenous sources of knowledge
such as domain experience, static/dynamic analysis, atidde This gradual inclusion of model

validity knowledge directly into simulator code makes thieumtky and slow to execute. This ap-
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proach also obscures the user from potentially using thisviedge to build correct models.
Extracting knowledge from simulators and developing miiatgllanguage invariants to guide
modellers to create invariant-validated models leveragesrect by constructiomphilosophy.
Further, using these invariants for automatic model cotigrief partial models makes the mod-
elling and simulation process less error-prone as modelfrat checked and then completed to
satisfy invariants before simulation.

Our lightweight approach is effective for small yet usefubdelling languages. Time to
complete models by the state of the art SAT solvers for abOubljects in the model is not
more than a few minutes fa*fSM. The completion time greatlgepends on the complexity
the DSML. The time taken to obtain complete models also gives ushhsigout how restricted
aDSML is and how it can be relaxed.

As future work we intend to run thorough performance expents on a specific industry
strengthDSML. Such aDSML will have a larger metamodel with a several complex constsai
We will limit ourselves to the confines of first-order relat#d logic in ALLOY as the language to
express constraints. We also wish to enlist the set of eéetadquirements to synthesi&ML
modelling environments with completion. For example, aaristing factor is user interaction
time. If a complete model is not returned within a given tirnert the user can no longer make
developments quickly. Other aspects of model completiclude completion of models when
two or more metamodels are involved, expression of part@lets as invariants or constraints,

and aiding the user by helping him/her set parameters foetrcmmpletion.
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Chapter 5

Automatic Effective Product Discovery

In previous chapter§l 3 arid 4, we have seen how models can dmvelied in any modelling
domain specified by a metamodel. The generic approach ofaémg models can be applied
to any metamodel. However, not all software systems candgoacically modelled and conse-
quently discovered in a modelling language due to existeficeliable software assets. Often,
such time-tested legacy software assets are economidabjevonly in their original form in-
stead of being represented as a model instance in a new imgdalhguage. For instance, the
redevelopment / remodeling of the Linux kernel 2.6.25 isnestied to cost of a whopping 1.3
billion dollars! Therefore, we ask how do we discover usenbinations existing software
assets to create software ? To answer this question we pras@matic discovery in a mod-
elling domain representing the variability in combiningstxg software assets. The variability
in combining different software assets in a software sysgares rise to a family of software
products called a Software Product Line (SPL). Témture diagram(FD) or feature model is a
widely used language to specify the modelling domain of a.&ments in the domain of the
SPL are callegoroductswhich are obtained by composing configurations of variodsisoe
assets. In this chapter, we present a methodology and tosHKAR for automatic discovery

of test productsn the modelling domain of a Software Product Line.

The remainder of the chapter is structured as follows: 8efi]l we introduce automatic
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effective product discovery. In this thesis, we focus ongecific case of test product discovery
in a SPL. The context and the problem for test product disgogeresented in Sectidn®.2. In
Sectior 5.8, we describe metrics to assess SPL test gemédicovery strategies. Sectionl5.4
gives an overview of the test product generation methogoéogl tool A/ISHKAR. In Section
we present two “divide-and-compose” strategies thit $eale product generation to large
SPLs. In Sectiof’5l6 we present experiments to qualify aategies on transaction processing

SPL case study: AspectOPTIMA. Sectfonl5.7 draws some csiocis and outlines future work.

5.1 Introduction

The idea of automatic effective product discovery in a SPUllustrated in Figurd 5ll. As
illustrated in the figure, a feature diagrdf specifies the modelling domain for a SPL. The
modelling domain consists of a set of productdeterogenous sources of knowledgmay

further constrain the modelling domain specified by a featliagram:

e Textual Constraints C are expressed on a set of features. Boolean dependencyadoisst
are expressed textually when they cannot be directly emtiodéeF D. These constraints

specify the subsd® C P

e Partial Product pis a set of features chosen in product. The set of featuresrecgyre
the selection of other features to derive a complete prodiw partial product specifies

the subseP, C P

e T-wise StrategySis a product generation strategy to detect faults in softyanduct lines
[©Q] [L20]. The large number of products specified by a faatliagram can be sampled
using a strategy such 8s— wise The objective is to generate a minimum number of
products that satisfy all — wiseinteractions between features. The- wisestrategy for

a particular value of specifies the subs& C P.
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> Hetereogeneous Sources of Knowledge  Domain-specific Sources
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Feature Diagram
FD

P effective

Finite Bounds |4S€S | Avishkar Product Discovery Framework
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Figure 5.1: Automatic Effective Product Discovery
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The intersection of all the sources of knowledge definegtteetive modelling domairhe
effective modelling domain is the set of products definedPbyfective«— PNPLNP,NP3. Can
we automatically generate or discover models in the effeatiodelling domain of products?

This is thegeneral questiothat intrigues us.

In this thesis, we address this question for the specificlpnolof test generation for soft-
ware product lines. Our solution is embodied in the toolvAsHKAR as shown in the Figure

B1.

Product line testing consists in deriving a set of produats ia testing each product. This
raises two major issues: 1) the explosion in the number plesproducts; 2) the generation
of test suites for products. The first issue rises from thelsoatorial growth in the number
of products with the number of features in a feature diagramrealistic cases, the number
of possible products is too large for exhaustive testingeréfore, the challenge is to select a
relevant subset of products for testing. The second isfogsnerate test inputs for testing each
of the selected product. This can been seen as applying miiowal testing techniques while
exploiting the commonalities between products to reduedssting effortl[T52, 150, 100]. Here,
we focus on the first issuddow can we efficiently select a subset of products for protinet

testing?

Previous work[[3B["90] has identified combinatorial intéi@t testing (CIT) as a relevant
approach to reduce the number of products for testing. CdBistematic approach for sampling
large domains of test data. It is based on the observatidnibat of the faults are triggered
by interactions between a small numbers of variables. Tésddéd to the definition of pairwise
(or 2-wise) testing. This technique selects the set of afilmoations so that all possible pairs
of variable values are included in the set of test data. Rsgrtesting has been generalized to
T-wise testing which samples the input domain to cover allise combinations. In the context
of SPL testing, this consists of selecting the minimal sedrofiucts in which alll -wise feature

interactions occur at least once.
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Current algorithms for automatic generationTefvise test data sets have a limited support
in the presence of dependencies/constraints betweerblemiaThis prevents the application
of these algorithms in the context of software product lisiese feature diagrams define com-
plex dependencies between variables that cannot be igdaredy product derivation. Previous
work [42,[47] propose the use of constraint solvers in ordetdal with this issue. However,
they still leave two open problemscalability and the need for formalismto express feature
diagrams. The former is related to the limitations of caistrsolvers when the number of vari-
ables and clauses increases. Above a certain limit, sobaemsot find a solution, which makes
the approach infeasible in practice. The latter problenelated to the engineering of SPLs.
Designers build feature diagrams using editors for a dégticlormalism. On the other hand,
constraint solvers manipulate clauses, usually in Booléanjunctive Normal Form (CNF).
Both formalisms are radically different in their expregsiess and modeling intention. This is a

major barrier for the generation @fwise configurations from feature diagrams.

We propose an approach for automatic discovery/generatidast products that contain
all valid t-wise interactions between features. The general apprigachtransform the input
feature diagram andwise interactions to a constraint satisfaction probletiofeed by solving
it. The result is a test products that satisfy the FD &ndse criteria. However, for large feature
diagrams with several dependencies the generatiannvige products is highly limited by the
solver. Current constraint solvers have a limit in the nundéelauses ,emerging from FD and
t-wise criteria constraints, they can solve at once. It issary to divide the set of clauses into
solvable subsets. We compose the solutions in the subseldam a global set. In this work,
we investigate two “divide-and-compose” strategies taddivthe problem off -wise generation
for a feature diagram into several sub problems that can lvedautomatically. The solution
to each sub-problem is a set of products that cover sbmase interactions. The union of
these sets cover all interactions, thus satisfying Theise criterion on the feature diagram.
However “divide-and-compose” strategies may yield a highenber of products to be tested

and redundancy amongst them which is the price for scalabiVe define metrics to compare
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the quality of these strategies and apply them on a concaste study.

Our T-wise testing toolset,\ASHKAR, first transforms a given feature diagram and its inter-
actions into a set of constraints into Alldy |72 71], a fotmmodeling language, based on first-
order logic, and suited fautomatic instance generatioithen it complements the Alloy model
with the definition of theT -wise criteria and applies one of the chosen strategiesdduge a
suite of products forming test cases. Finally, metrics areuted giving important information
on the quality of the test suite. We extensively applied oofset on AspectOPTIMA86, 87]

a concrete aspect-oriented SPL devoted to transactionzgeanent.

5.2 Context and Problem

In this chapter, we focus on generating a small set of testyats for a feature diagram. A
product is a valid configuration of the feature diagram tlaat loe used as a relevant test case for
the SPL. We give a brief definition and an example of featuegmims before describing test

case generation for them.

Feature Diagram

Feature DiagramgFD) introduced by Kang et al "7 7] compactly represent UFef5.2) all the
products of an SPL in terms of featu&which can be composed. Feature diagrams have been
formalized to perform SPL analysis 118,185, 1187, 45].[In91837], Schobbens et al. propose
an generic formal definition of FD which subsumes many exgskD dialects. FDs are defined

in terms of a parametric structure whose parameters sereha@cterize each FD notation
variant. GT (Graph Type) is a boolean parameter indicates whether th&dsred notation is a
Direct Acyclic Graph (DAG) or atreeNT (Node Type) is the set of boolean operators available
for this FD notation. These operators are of the farm with k € N denoting the number of

children nodes on which they apply to. Considered operai@and, (mandatory nodesxory

1Defined by Pamela Zave as “An increment in functionality”. eSe
http: /7 ww. resear ch. att. conf ~panel a/ fag. htm


http://www.research.att.com/~pamela/faq.html
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Transaction

Nested [ConcurrencyControlStrategﬂ

O

[ 2-PhaseLocking ] [OptimisticValidationJ

Recovering

PhysicalLogging
Checkpointing

OutcomeAware
Checkpointable

Copyable

Shared

Context [AccessClassiﬁed] [Lockable]
[SemanticClassiﬁedJ
Composition Rule: Composition Rule: Key: O Optional feature
‘2-PhaseLocking’ excludes ‘OptimisticValidation’ requires
‘Recovering.Deferring’ ‘Recovering.Deferring’ < XOR feature

Composition Rule:
‘Deferring. Traceable’ requires
‘Traceable.SemanticClassified’

Figure 5.2: Feature Diagram of AspectOMA
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(alternative node)ri (true if any of its child nodes is selected)pt; (optional nodes). Finally
vp(i..j)k (e Nandj € NUx) is true if at least and at mosj of its k nodes are selected. Existing
other boolean operators can usually be expressedwgitiGCT (Graphical Constraint Type) is
the set of binary boolean functions that can be expresseuhigedly. A typical example is the
“requires” between two features. FinallyCL (Textual Constraint Language) tells if and how

we can specify boolean constraints amongst nodes. A FD isedkés follows:

e A setof nodedN, which is further decomposed into a set of primitive noBé#hich have
a direct interest for the product). Other nodes are useddoomposition purposes. A

special root node, represents the top of the decomposition,

A function A : N — NT that labels each node with a boolean operator,

A setDE € N x N of decomposition edges. As FDs are directed, mdda2 € N, (n1,n2) €

DE will be notednl — n2 where nl is th@parentand n2 thechild,

A setCE € N x GCT x N of constraint edges,

Asetpe TCL

A FD has also some well-formedness rules to be valid: only (gohas no parent; a FD

is acyclic; if GT = true the graph is a tree; the arity of boolemperators must be respected.
We build upon this formalization to create feature modekmgironments supporting product
derivation [119] where we encode the Aspeet@A SPL feature diagram (see figrel5.2). We
implement Aspect®TIMA SPL as an aspect-oriented framework providing run-timesrtigor
different transaction models. Aspect@MA has been proposed in]d7.186] as an independent
case study to evaluate aspect-oriented software devetdpaperoaches, in particular aspect-
oriented modeling techniques. Once we defined the FD, we reatecproducts (i.e a selection
of features in the FD). To bealid, a product follows these rules: 1) The root feature has to be
in the selection, 2) The selection should evaluate to tru@lfcperators referencing them, 3)

All contraints (graphical and textual) must be satisfied @) &y feature that is not the root,
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its parent(s) have to be in the selection. We enforce thditsalbf a product according to well-
formedness rules defined on our generic metamadel [119]wdre automatically translated to
Alloy by our FeatureDiagram2Alloy transofrmation (see tRed5.4).

Once we introduce the notion of feature diagram and forreatiwe can form our notion of

SPL testing on such an entity.

SPL Test Case

A SPL test cases one valid product (i.e. a ) of the product line. Once th&t tese is generated

from a feature diagram, its behaviour has to be tested.

SPL Test Suite

A SPL Test Suites a set of SPL test cases.

Example

Figure[R.2 presents 3 test cases, three products which cdertved from the feature model.

These three test cases form a test suite.

Valid/Invalid T-tuple

A T-tuple ( wereT is a natural integer giving the number of features presethte'ff—tupleH) of
features is said to bealid (respectivelyinvalid), if it is possible (respectively impossible) to de-

rive a product that contains the pair-(uple) while satisfying the feature diagram’s constraint

Example

In the AspectOptima product line we have a total of 19 featurdll these 19 features can

take the value true or false. Thus, we can generate 681 pairaff pariwise combinations of

2In general we will use the term “tuple” to mentionTatuple whent does not matter. In the special case of
pairwise, i.e. when = 2, we denote a 2-tuple by the term “pair”.
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Product 1: Product 2:

Transaction

Transaction

Recovering [ConcurrencyControlStrateg}a [ConcurrencyControlStrateg}a

Recovering

[PhysicalLogging] [Z-PhaseLocking] [OptimisticValidation]

PhysicalLogging

OutcomeAware

[Checkpointing]

[Checkpointable]

Copyable

Context

Tracing]

AccessClassified

Product 3:

Transaction

[ConcurrencyControlStrategy]

[Lockable]

OutcomeAware Lockable

AccessClassified
SemanticClassified

Recovering

[PhysicalLogging] [Z-PhaseLocking]

OutcomeAware

[Checkpointing]

[Checkpointable]

Copyable

Context

[Lockable]
AccessClassified

Figure 5.3: Three Test Cases
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feature values. However, not all of these pairs can be parpobduct derivable from the feature
model. For example, the paif not Transaction), Recovering> is invalid with respect to

the AspectOptima feature diagram which specifies that thteifeTr ansact i on is mandatory.

SPL test adequacy criterion

(all-T-tuples): To determine whether a test suite is able to chwefdature model of the SPL
, we need to express test adequacy conditions. In partiauéaconsider the “t-wise'T[90,"42]
adequacy criteria were each validtuple of features is required to appear in at least one test

case.

Example

The test suite presented in figlrel5.2 does not satisfy ouquadg criterion since the pair (2-

tuple)<semantic classified, |ockabl e>does notappear in any of the three test cases.

Test generation

In our context of SPL testing, test generation consists alyaing a feature diagram in order to
generate a test suite that satisfies pairwise coverage.

Pairwise (and more generally t-wise) is a set of constrainés a range of variables (math-
ematically defined asovering arrayqL22]). Thus it is possible to use SAT-solving technology
[53,[159/[11P] to compute such arrays. In our case, variareshe features of a given given
feature diagram. It is therefore mandatory to encode arfeatiagram in first order logic so
SAT-solvers can analyze them. Thanks to feature diagramdization, this is possibl&€ 1B, 145]

and have been done for various purposes[[20, 101].

5.2.1 Problem

The work in this chapter builds upon this idea: model the gesteration problem as a set of

constraints and ask a constraint solver for solutions. ik dbntext we tackle two issues: (1)
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modelling the SPL test generation problem in order to usenatcaint solver and (2) dealing
with the scalability limitations of SAT solvers. Our cottwition on the first issue is an automatic

transformation from a feature diagram to an Ally![71] model

Scalability is a major issue with SAT solvers. It is knownttisalving a SAT formulae
on more than 2 variables in an NP-complete problem. It is kiswn that depending on the
number of variables and the number of clauses, satisfiabitiunsatisfiability is more or less
computiationally complex[104]. However, we currently ddmow how to predict the com-
putation complexity of a given problem. An empirical apmiodhus consists in trying to solve
the set of “constraints all-at-once”. Three things can leapphe solver returns a solution, the
solver returns an unsatisfiability verdict, the solver bemsbecause the problem is too complex.
In the latter case, one way to generate a test suite thatcbwase interactions, is to decompose
the problem into simpler problems, solve them indepengeanid merge the solutions. In the

following, we refer to this approach as “divide-and-congioapproach.

One pragmatic approach, and a naive one, consists of ruttmengplver once for each-
tuple that as to be covered. This iterative process is thplesh“divide-and-compose” approach
and it generates one test case for each viltdple in the FD. For the Aspect@1IMA SPL, we
obtain 421 test cases that satisfy pairwise and that camelspto 421 products to be tested. The
all-pairs criterion is satisfied but with a large number abqurcts. It also has to be noted that
only 128 different products can be instantiated from thee&$prTIMA SPL. This indicates that
the application of “divide-and-compose”, although it ntiglefine problems that can be solved,
also introduces a large number of redundant test cases iesh#ing test suite. Indeed, if it
generates 421 test cases, but there can be only 128 diffesintases, there is an important

redundancy rate.

In general, a solution for generating a test suite with a SélVes consists in finding a
strategy to decompose the SAT problem in smaller problemiscéin be automatically solved.
Also, the strategy should decompose the problem in such ahetywhen the solutions to all

sub-problems are composed, the amount of redundancy iwiteeslimited
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Test generation strategies

In this chapter we calitrategieghe way we “divide-and-compose”. Depending on the strategi
and its parameters we will derive more or less test casesr®eklving into the two different

strategies we will introduce in the next section metricsval@ate them.

5.3 Metrics for Strategy Evaluation

We need efficiency and quality attributes in order to evaluhé generated SPL test cases and
compare the automatic generation strategies. The firstegitig attribute relates to the size of

the generated SPL test suite:

SPL Test suite size

The size of a test suite is defined by thenber of SPL test cas#fsat a given generation strategy
computes. In the best case, we want a strategy to generatarnireal number of test cases to
satisfy the SPL test adequacy criterion. As this optimal neims generally not known a priori,
we use the SPL test suite size as a relative measure to cotepageneration strategies.

A second efficiency attribute relates to the cost of test iggiua in itself. WWe measure this

cost as the time taken for generation.

SPL strategy time taken

We characterize the cost of a given strategy by the time k toalecompose the problem into
solvable sub-problems and the time it took to merge theglayéinerated solutions to a SPL test
suite.

We also evaluate the quality of the generated test casest, wie want to appreciate the
coverage of the generated test cases with respect to thedehhgram. We measure coverage

by looking at the rate of similarity between the test casatdhe generated. The intuition is that,
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the more test cases are similar, the less they cover thayafiproducts that can be generated

from the feature diagram.

Test Case Redundancy

We definetest case redundandyetween two valid products as the ratio rdn-compulsory
features they have in common. Bpmpulsory we mean that it comprises mandatory features
and features that are explicitly required by them. Put ireotlerms, for any set of features
F C N representing &alid product according to the aforementioned rules for consir@d-Ds

in sectiof &R, we form the s€fF C F:

CF={{fi} eN|V{fi} eNAfj >,
vk e N,A(fj) =andu

{fi} € N|requireg fi, fi) =true

Given a set of featurd; in all set of featureN in a product, the seTF is the union of the
subset of feature$; in N such that a featurg; is a parent off;, or f; is in a binary AND relation
with f;, and the subset of featurdssuch thatf; is required by anyfi. In which requiresis a
binary boolean function (belonging @CT) such that it returns true if there is a constraint edge

labeled as “requires” between theses two features.

Hence the redundancy ratio between two test prodpicisid p; is:

card((Fp —CFp) N (Fp, —CFy))
PP = Gard((Ry ~CRa) 0 P, ~CF)

The setsCF, andCF,, represent the compulsory sets of features for prodpctnd p;
while Fp, andFp, are the sets of all features in produgtsand p;. This ratio equals to 1 if the

two products are the same and 0 if they have no non-compuleatyre in common.
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Example

Products 1 and 3 (Figufe™.2) have test case redundancyofdi®88 since they differ only by
one feature out of 9 non-compulsory.

At the test suite level, we compute test case redundancy tmpgting the average of test
case redundancy ratio for any two (cartesian product) ssstscof the suite.

As a second quality attribute, we want to assess the qudlityeogenerated SPL test cases
with respect tol -wise interactions coverage. If we know that, by constargtieach tuple ap-
pears at least once in the test suite, we also know that therateon process might lead to the
repetition of tuples an arbitrary number of times. For thé &RBters, such repetitions imply that

they will test the same interaction of features severaldime

T-tuple Occurrence

This metric is the number of occurrences of a validt(gple) in a test suite. LeI She a test
suite comprised ofy valid cases andr, C N be their associated features. ltea T-tuple

(t ={fi € N}). Tuple occurrence redundancy is then:

to=card(t e Tt C Fp)

5.4 Test Generation Methodology & AVISHKAR Toolset

In this section, we describe the automatic generation dopreslucts from a feature diagram that
satisfy theT -wise SPL test adequacy criteria. Our toslI8HKAR has been designed to support
any value ofT. The methodology consists of five key steps shown in Figidle 5.

The generation is based onLkoyY as the underlying formalism to formally capture all
dependencies between features in a feature diagram assiied the interactions that should be

covered by the test cases.
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Software Product Line
Feature Diagram Valueof T

Y

1. Transformation 2. Generation of
FeatureDiag ram2AIon initial T-wise tuples 1

Alloy ‘
Feature Diagram 3. Detection of
AF Valid tuples
4. Creating and Solving Serof v 1.(; Tool
Conjunctions of Tuples etot Va IV uples
: : Incremental
BinarySplit Growth [Min,Max] Scope
[Min,Max] Duration
T Selection Strategy
Set of Test Cases (Products) -
covering all Valid Tuples >(__ 9. Analysis
P

Figure 5.4: Product Line Test Generation Methodology
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5.4.1 Step 1: Transforming Feature Diagrams to ALOY

In order to generate valid test products directly from audsatiagram, we need to transform
the diagram in a model that captures constraints betwedmrésa(defined in Sectidn®.2). The
FeatureDiagram2Alloytransformation automatically generates anL@dy model Az from any
feature diagrankD expressed in our generic feature diagram formallsmi[119].

The Ar model captures all features as 1Y signaturesand a set of ALOY signatures
that capture all constraints and relationships betweeturiess This model also declares two
signatures that are specific to test generatmonfigurationthat corresponds to a test case and
that encapsulates a set of features (lisiing 52@uductConfiguration(listing [5:3) which will

encapsulate a set of test cases.

Example

The AspectOptima feature diagram, shown in Fidure 5.2, we k8 featured;, fo, ..., f19. The
transformatiorFeatureDiagram2Alloygenerates 19 signatures to represent these features shown
in listing[5. The root featur&ransactionis always mandatory indicated by the predine for

the fieldf as shown in listing 5]2. Optional features are indicatedHeyrefixlone such as

featureNestedor f2 in listing[22.

sig Transaction {}

sig Nested {}
sig Recovering {}

sig ConncurrencyControlStrategy {}

sig PhysicalLogging {}
sig TwoPhaseLocking {}
sig OptimisticValidation {}
sig Checkpointing {}
sig Deferring {}

sig OutcomeAware {}
sig Checkpointable {}
sig Tracing {}

sig Context {}

sig Copyable {}

sig Traceable {}

sig Shared {}

sig SemanticClassified {}

sig AccessClassified {}
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sig Lockable {}

Listing 5.1: Generated Signatures for Features in Aspeatap

sig Configuration

{
fl1: one Transaction , //Mandatory

f2: lone Nested, //Optional

f19: one Lockable // Mandatory
}

Listing 5.2: Generated Signature for Configuration of Fesgtin AspectOptima

one sig ProductConfigurations

{

configurations : set Configuration

}

Listing 5.3: Generated Signature for Set of Configurations

The FeatureDiagram2Alloytransformation generatesLAOY factsin Ag.

Example

In listing [£4, we present two A OY facts generated to show the mutually exclusive (XOR)
selection of featuress (TwoPhaselLockingand f; (OptimisticValidation given we select the

featuref, (ConcurrencyControlStrategy The fact must be true for all configurations.

//Two Phase Locking XOR Optimistic Constraint 1
pred TwoPhaselLocking_constraint
{
all c: Configuration |

#c.f6==1 implies (#c.f4=1 and #c.f7=0)
}

//Two Phase Locking XOR Optimistic Constraint 2
pred OptimisticValidation_constraint
{
all c: Configuration |

#c.f7==1 implies (#c.f4=1 and #c.f6=0)
}

Listing 5.4: Generated Fact for XOR



CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY 225

The FeatureDiagram2Alloytransformation has been implemented as a model transforma-
tion in the Kermeta metamodeling environment [108]. Sinae feature diagram formalism
is generic [[11B,"106] various kinds of feature diagrams aamaudttomatically transformed. We
summarize the transformation rules in Figlird 5.5. The im&gation of these rules is straightfor-
ward. The generated facts inLAoy state boolean constraints on relevant features in therieatu

diagram.

5.4.2 Step 2: Generation of Tuples

In Step 2, we automatically compute the kef all possible tuples of features from feature dia-
gramAF and the numbeF. The tuples enumerate dllwise interactions between all selections

of features inAF.

Example

The 3-tuplet =< #f; = 0,#f, = 1, #f3 = 1 > for the valueT = 3 contains 3 features and their
valuations. In the tuple we state that the set of test preduettst contain at least one test case
that has feature$, and f3 and does not have f1.

The initial set of tuples is the set of tuples that cover all combinationsTofeatures taken
at a time. For example, if there aM features then the size dfis onCr minus all tuples
with repetitions of the same selected feature. Each tupiel also has an ALOY predicate

representation. An ALOY predicate representation of a tuplis t. predicate

The tuplet =< #f; = 0,#f, = 1,#f3 = 1 > is shown in listind 5.b.

pred t

{
some c: Configuration | #c.fl=0and #c.f2=1 and #c.f3=1

}

Listing 5.5: Example Tuple Predicate
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Feature Model Pattern Generated Alloy Fact

Optional

fact fB_Optional_constraint

{
all c: Configuration | #c.fB =1 implies #c.fA=1

}

fact fA_AND_constraint

{
all c: Configuration | #c.fA =1 implies (#c.f1=1 and

#c.f2=1and ... #c.fN=1)
}

fact fA_OR constraint
{
all c: Configuration | #c.fA =1 implies
(#c.f1=1 or #c.f2=1 or ...#c.fN=1 and
(#c.fl+#c.f2+...+#c.fN)>=a and
(#c.fl+#c.f2+...+#c.fN)<=b)

}

XOR

fact fX_XOR_constraint

{

all c: Configuration | (#c.fX ==1 implies
(#c.fA=1 and #c.f1=0 and ...and
#c.fN=0)) and

(#c.fA==1 implies (#c.fl+#.cf2+..
+#c.fN=1))

}

Requires (unidirectional)

requires

fact fA_Requires_constraint

{
all c: Configuration | #c.fA =1 implies #c.f1=1

}

Mutex /excludes

fact f1_f2_Mutex_constraint

{
all c: Configuration |
(#c.f1=0 and #c.f2=0 implies #c.f1=1 and #c.f2=1) and
mutex (#c.f1=0 and #c.f2=1 implies #c.fl1=1 and #c.f2=1) and
(#c.fl=1 and #c.f2=0 implies #c.f1=1 and #c.f2=1) and
(#c.fl=1 and #c.f2=1 implies #c.f1=0 and #c.f2=0)
}
One/Multiple Parent fact f1_Parent _constraint
{

all ¢: Configuration |
#c.fl =1 implies (#c.fA=1 ...or #c.fB=1 or #c.fN=1)
}

Figure 5.5: Feature Diagram toLAOY Transformation
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5.4.3 Step 3: Detection of Valid Tuples

In this third step, we use the predicates derived from easlsiple tuple in order to select the
valid ones according to the feature diagram. We say thatla tsipalid if it can be present in a

valid instance of the feature diagrem

Example

Consider AspectOptima (in Figureb.2) featufgIransaction fo:Nested, and4:ConcurrencyControlStrategy,
The 3-tuplet =< #f, = 0,#f, = 1#f4, = 1 > is not a valid tuple as the featufg required the ex-
istence of featurd; and hence we neglect it. On the other hand, the 3-tuple #f; = 1, #f, =
0,#f4, = 1 > is valid since all feature selections hold true for We determine the validity of
each such tupleby solvingAr Ut.predicatefor a scope of exactly 1. This translates to solving
the ALLOY model to obtairexactly one produdbor which the tuple holds true.
For the AspectOptima case study we generate 681 tuplesifewis (T = 2) interactions

in the initial setl. We select 421 valid tuples in the &ét

5.4.4 Step 4: Creating and Solving Conjunctions of MultipleTuples

Once we have a set of valid tuples, we can start generatingt auge according to thé-wise
SPL adequacy criteria. Intuitively, this consists in conitg all valid tuples fronV with respect

to As in order to generate test products that cover all t-wisgactens.

Example

For pair-wise testing in the case of AspectOptima this anstmsolving a conjunction of 421
tuple predicates; . predicatent,. predicaten ... Nt4o1. predicatefor a certain scope. The major
issue we tackle in this work is that in general, constraihtess cannot generate the conjunction
of all valid tuples at once.

Using the “all-at-once” strategy on aspectOPTIMA, with 4Ziid tuples, the generation
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process crashes without giving any solution after seveialites using MiniSAT[[112] solver.
Hence we derived two “divide-and-compose” strategies éabidown the problem of solv-
ing a conjunction of tuples to smaller subsets of conjumctibtuples. The strategies we present
areBinary Splitandincremental GrowthEach strategy is by parameterized by intervals of val-
ues defining the scope of research for each (sub)-conjuncfidquples, the duration in which
ALLOY is authorized to solve the conjunction as well as a strategyidg how features are
picked in a tuple. We describe these strategies in morel detection’5.b. The combination of

solutions is a test suit€ Sthat covers all tuples.

5.4.5 Step 5: Analysis

In order to assess the suitability of our “divide-and-cosgicstrategies and compare their ability
to generate test suites, we need to compute the metrics défirsectio 513. We compute for
each generated test suite the number of products or tes tesecase and tuple redundancy. We
performed extensive experimentation on AspectOPTIMA hyegating test suite with different

scope and time values. We present consolidated resultesé #xperiments in sectibnb.6.

5.5 Two strategies forT-wise SPL Test Suite Generation

As mentioned previously, to be scalable we divide the probt# solving tuples into sub-
problems, i.e. we are creating conjunctions of subsets glesu We solve the conjunction
of tuples in each of these subsets using the algorithm prexém Sectiofi. 5.5]1. The first strat-
egy to obtain subsets of tupldginary Split is discussed in Secti@n’5.b.2. We present the second

strategylncremental Growthin Sectio 5.513.

5.5.1 Solving a Conjunction of Tuples

We solve a conjunction of tuples using the Algorithin 2. We boma the Alloy modelAr with

a predicateCT(S).predicaterepresenting the conjunction of tuples in the Set tj,tp,.... 1, .
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We solve the resulting Alloy modeh usingincremental scopingWe create aun commandc
starting for a scope between the minimum scop&scand the max scopexScopeWe insert
the command into m. A SAT solver such as MiniSAT[112] or ZChaff[159] is used &
m. We determine the duratiathur = startTime— endTimefor each scope value. tfur exceeds
maximum duratiormxDurwe stop incrementing the scope. T¢wvemethod returns theesult

of the SAT solving and the correspondisglutionif a solution exists.

Algorithm 2 solveCTAg, S mnScmxS¢cmxDur) : BooleanAdSolution

Let current modem = Ag UCT(S).predicate
scope— mnSc
result«— False
dur«—0
while scope< mxSc\ dur < mxDurdo
Letc=“run” CT(S).namefor < scope>
m+«— muc
startTime= currentTime
solution= SAT solvém)
if solutionisEmpty then
result < False
scope— scopet1
Remove command from m
end if
if IsolutionisEmpty then
result«< True
Break While Loop
end if
endTime— currentTime
dur — endTime-startTime
end while
Return{result, solution}

5.5.2 Binary Split

Thebinary splitalgorithm shown in Algorithrild3 is based on splitting the dadlbvalid tuplesV
into subsets (halves) until all subsets of tuples are stdvalie first order the set of valid tuples
based on the stratedytr. The strategy can bendomor based ordistancemeasure. In this
chapter, we consider a random ordering. Poel is set of sets of tuples. Initiallypool contains
the entire set of valid tupleg. If each set of tuple®ool[i],0 < i < Pool.sizein Pool is not

solvable in the given range of scopemScand mxScor within the maximum duratiomxDur
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thenresult is Falsefor Pool[i]. A single value ofresult = FalserendersAllResult= False

In such a case, we select tlegest sein Pool[i] and split it into halvefH1} and{H2}. We
insert the halvegH1} and{H2} into Pool[i]. The process is repeated until all sets of tuples in
Pool can be solved given the time limits aAdlResult= True In the worst case, binary split

convergences with one tuple a set makifapl.size= V.sizeas all tuples irV are solvable.

Algorithm 3 binSplit(As,V,mnScmxScmxDut Str)
AllResult«— True
V « order(V, Str)
Pool — {{V}}
repeat
result — False
i<—0
repeat
{result Poolfi].solution}
«— solvd Ag, Pool[i],mnScmxScmxDur)
l—i+1
AllIResult«— AllIResultA result
until i == Pool.size
if AllResult== Falsethen
{L} = maxPool)
{{H1}.{H2}} =split({L},2)
Pool.add({H1})
Pool.add({H2})
end if
until AllResult= false
ReturnPool

5.5.3 Incremental Growth

Theincremental growths shown in Algorithn{}. In the algorithm we incrementallyildua set
of tuples in the conjunctio@T and add it to thd?ool. Theselectfunction based on a strategy
Str selects a tuple iV and inserts it intdCT. The strategystr can berandomor based on a
distancemeasure between tuples. In this paper, we consider onlydanastrategy for selection.
We select and remove a tuple foivnand add it toCT until the conjunction cannot be solved
anymore ,i.e.result= False We remove the last tuple and put it back ito We includeCT
into Pool. In every iteration, we initialize a new conjunction of tapluntil we obtain sets of

tuples inPool that contain all tuples initially iv or whenV is empty.
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Algorithm 4 incGrow@Ag,V, mnScpmxScpmxDut Str)

Pool — {}
repeat
CT—{}
repeat
tuple«< V.selec{Str)
CT.add(tuple)
{result,CT.solution}
«— solvgAg,CT,mnScmxScmxDur)
if result== Falsethen
CT.removétuple)
V.add(tuple)
end if
until result== False
Pool.add(CT)
until V.isEmpty
ReturnPool

5.6 Experiments

The objective for our experiments is: To demonstrate thsilbday of “divide-and-compose”
strategies (Binary Split and Incremental Growth) and camgigeir efficiency with respect to test
case generation. All experiments are performed on a reafdature model: AspectOPTIMA.

In this section we report and discuss the automatic geoerafit-wise test suites for this model.

5.6.1 Experimental Setting

We automatically generate test suites with the two “divaehe-compose” strategies and compare
them according to: (a) the number of generated test caseiglmumber of tuple occurrences
in the test suites; (c) the similarity of the products in tkeegrated test suites. For both strategies
we have to set the values for two parameters that specifyehiels space: the scope and the
time limit. We vary scope over 5 values: 3, 4, 5, 6, 7; the maxmdurationmxDur to find

a solution for a given conjunction of constraints is fixed @0ams. We generate 100 sets of
products for each scope giving us a total of 200 sets of products for a strategy. The reason
we generate 100 solutions is to study the variability in thiet®ons given that we useniform
random orderingin binary split andrandom tuple selectioim incremental growth. Therefore,

for two strategies we havex25 x 100 sets of products or test cases. We perform our expersment
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on a MacBook Pro 2007 laptop with the Intel Core 2 Duo proaeasd 2GB of RAM.

Before studying the results of our experiments we note tiexrgoting “solving-all-constraints-
as-once” does not yield any solutions for the AspectOPTIMALSThis is true even for simple
feature models such as AspectOPTIMA that does not lead teatien of billions of products
(like industrial product lines). On the other hand, all axeans of both “divide-and-compose”
strategies generate t-wise test suites. This first obsenvatdicates that these strategies enable
the usage of SAT solvers for the automatic generation okewiteractions test suites for both

simple and potentially complex feature models. This is tfe fmain result of our study.

5.6.2 Number of Products Vs. Scope

In Figure[2®, we present the number of products generatedifferent scopes, which corre-
sponds to the number of test cases in a suite. Each box antigkexs correspond to 100 solu-
tions generated using a strategy for a given scope. On th&sxw& have scope for two strategies
: Binary Split represented Hyin_scopeand Incremental Growth representediby_scope

For the binary split strategy, the number of products is liggta scope of 3 (average of 50
products), decreases towards a scope of 5 (average 18 spdud increases again towards a
scope of 7 (average of 35 products). In our experiments thgesoearest to the minimal number
of test cases is 5. For a scope of 7 we ask the solver to creatdidqts per subset of tuples
(or pairs) while only 5 products suffice for the same set ofesipeading tanore products that
satisfy the same set of tuplékhis is true for highly constrained SPLs such as AspectOA |
where the total number of products generated does not exceedple of hundred. Therefore,
fewer products are sufficient to capture all t-wise intaoas. For a scope too small such as 3,
binary split gives a large number of products. This comesftbe coarse-grain splitting (into
halves) of the set of tuples leading to the non-optimal usg pfoducts to cover a maximum
number of tuples.

For the incremental growth, the general trend that is thie hignber of products for a scope

of 3 (average 25 products), decrease towards a scope of agavé7 products), and increase
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again towards a scope of 7 (average 27 products). The regsfamithis general trend is similar
to binary splitting except that incremental growth attesrtptoptimize the number of tuples that
can be squeezed into a product.

When comparing binary split and incremental growth, thera notable difference in the
variability in the solutions. Binary split results in a laryariability (minimum 18 products
at scope 5 to a maximum of 115 products at scope 3) in the nuail@oducts compared to
incremental growth (minimum 16 products to a maximum of 3@dpicts). This is reasonable
as binary split applies a coarse-grain strategy of halvetg while incremental growth applies
a selective strategy to 'squeeze in’ a maximum number okgipito a test suite. However, in
terms of performance binary split for the AspectOPTIMA casaly is far superior compared
to incremental growth. Binary split takes an average of 64ltarobtain a set of products for a
scope of 3 while incremental growth takes about 14000 mss iBhprimarily due to the fewer
steps (average 20) to divide in binary split compared toelamgmber of steps (average 420) for
incremental growth. Therefore, we have a trade-off betwibersize of the test suite and the
time to generate the suite. Both strategies are able to atiwatly find asmall number of test

casessatisfyingall valid pair of feature interactions

5.6.3 Tuple Occurrence Vs. Scope

In Figure[5.Y, we present a box plot showing the total ocouweeof tuples for different scopes.
We know that a possible limitation divide-and-composstrategies is that they can generate test
cases that cover the same tuple multiple times. This is adtmon for the testing effort, since

a redundant tuple means that the same interaction of fesahae to be tested several times.
The total number of valid tuples is 421 for AspectOPTIMA arehte ideally we would like

to have a minimum number of products with exactly one ocoweeof a tuple. However, the
existence of mandatory features force to have multiple weoges of some tuples in the suite.
An effective strategy for test generation is thus a stratbgy limits the occurence of the same

tuple in the test suite.
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For binary split, the total tuple occurrence for a scope of about 3000 on an average,
decreases to about 1400 for a scope of 5 and increases agaiddor a scope of 7. Therefore,
a scope of 3 generates products with about 7 times the tqikd ticcurrence compared to the
ideal unique occurrence, scope of 5 about 3 times. We agaerebthat the near-optimal scope

of 5 has the least total tuple repetition.
For incremental growth, the total tuple occurrences aretmempared to binary split.

Binary split and scope 3 gives products with 1.6 times moiences compared to in-
cremental growth. In general, incremental growth conweiigea better set of products: less

products with less occurences of tuples.

The strategy and the scope help us choose the ideal set oatest.

5.6.4 Test Case Redundancy

Results for test case redundancy are presented in HiglreOme& first observation is that the
values are similar (except for scope 3) for BinarySplit anckémentalGrowth strategies. This
can be because both strategies are based on random ordetiptes. Hence the coverage of the
feature diagram by SPL test cases is quite similar and iticpiar structure does not influence

test case redundancy between the two strategies.

We also observe that test case redundancy increases whaumtieer of products decreases
for both strategies, the minimum being obtained with scop&bis can be explained by the
fact that when the number of products decreases, the genenaist “fill” each product with
more non-compulsory features in order to cover each tupleast once. When we give more
“freedom” to the strategies (by increasing the number oflpots), they have more options to
fill products with non-compulsory features and generats fest case redundancy on average.
High redundancy in a small test suite can be beneficial forcases reusé[152]. However, high
redundancy also means similar test cases in a suite andassisdverage of the SPL, which

might not be a good caracteristic of a test suite. ults, whielans it has to be tuned for
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5.6.5 Threats to Validity

This work mainly focused on the definition of tvdivide-and-composstrategies and the exper-
iment was performed on only one real-world feature diagrdins a realistic FD, in size and

complexity of the constraints between feature. Howevegesiwe evaluate our strategies only
on this one, there is an important threatetdernal validity We cannot know how the trends

we observed for both strategies can be generalized to &dtagrams with more features or a
different topology. We are currently running similar expggnts on larger feature models (and
less constrained) to assess the impact of topology on thet®fness of our strategies and im-
plementation. We also have another threata@astruct validity we have developed the tools
to measure the different metrics on the test suites. Comgethe metrics themselves, they are
usual metrics to evaluate test suites (number of test cesesrage) that we believe are relevant

for the evaluation of the proposed strategies.

5.7 Conclusion

In this chapter, we propose an approach and platform supgdhte automated generation of test
cases for software product lines. Our work is motivated lyceons of scalability and usability.
With respect to the first concern, we combined combinatartakaction testing, as a systematic
way to sample a small set of test cases, with two “divide-eomipose” strategies. These strate-
gies address the scalability limitations of SAT solversdugegenerate test cases that satisfy all
constraints captured in a feature model. Using these giestewve are able to automatically gen-
erate sets of test cases for a medium-sized realistic SFLasu8specdPTIMA which could not
be processed in an “all-constraints-at-once” fashion . ¥¢essed our strategies by computing
metrics and discussed the factors that influence test caseajon. We addressed usability via
model driven engineering techniquési[81] to automaticiiypsform generic feature diagrams
into alloy models amenable to t-wise test generation inyAllo

We would like to extend our work along two main dimensionse Tinst one concerns test
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generation strategies. We are currently experimenting teiblset on a crisis management sys-
tem which is characterized by a large number of optional dtedrative features inducing more
than one hundred billions of possible test cases for exivausbvering. Using the incremental
strategy we were able to reduce this number to a few hundreglwld also like to exploit
the feature model structure to reduce the number of tuplesrnsider and fine-tune t-wise gen-
eration. Generated products testability is the secondrmbiog for future work. We would like
to extend our test case generation platform with automakdd d&rivation techniques such as
[L19] acting as oracles. This will then form a complete SRit rmethodology starting from

considering the SPL “as a whole” to individual product tegti
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Chapter 6

Conclusion and Perspectives

Model-driven engineering is leveraging the use of modekslliseveral aspects of software de-
velopment. Research into the theories, techniques, atal ftmathe various parts that make up
a model driven system -models and transformations- iseetid is seeing uptake in industrial
contexts. However, as MDE is advancing it is facing chaléntipat characterize software engi-
neering such as managing scalability, reliability and afipalar interest in this thessutomatic
discovery of effective models to facilitate test-basediatibn and model construction

In order to address the challengesaimomatic model discoveryve must develop mecha-
nisms to explore and discover models in a modelling domauinthier, the models must conform
to constraints heterogenous sources of knowledge suchtasnoéel constraints, search strate-
gies, and partial models. How can we discover models in a Hinglelomain?

We address this question in the thesis by presenting a gemethodology that transforms
a modelling domain and heterogeneous sources of knowledgeadnstraint satisfaction prob-
lem in the formal specification language.foy. We solve the constraint satisfaction problem
to discover models of interest. We specialize the generithoa®logy to first consider discov-
ery in a modelling domain specified by a metamodel and canstieby heterogeneous sources
of knowledge. This approach is concretely embodied in tlok @ARTIER. We validate our

approach and ERTIER by performing experiments in test model generation andgbamiodel
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completion. Second, we specialize our generic methodadlogdiscovery in a modelling do-
main specified by a feature diagram of a Software Product lAneSPL allows modelling vari-
ability in software systems using legacy software assdiis firoves to be better than modelling
everything from scratch in a modelling language specifie@ loyetamodel. The methodology
is embodied in the tool WSHKAR. We validate AISHKAR using experiments to generate
test products for a transaction processing SPL AspectOFRAT I¥sing both methodologies and
tools CARTIER and AV/ISHKAR we demonstrate the feasibility of automatic model discpver
different modelling domains.

The rest of the chapter is organized as follows. In Sedfidh We present a summary of
the different chapters in this thesis. In Sectionl 6.2, wesgmé ongoing work on the use of
AVISHKAR to analyze variation in QoS of web service orchestratiorisally, in Sectioil 6B,

we present perspectives for future work.

6.1 Summary and Conclusion

ChaptefR, presents the general context of MDE and the oreatimodelling domains in MDE.
In particular, we discuss (a) The modelling domain specifigd metamodel and its constraints
in OCL and (b) The modelling domain specified by a feature diagrahe mModelling domain
specification are transformed to constraint satisfactroblem (CSP) in the formal specification
language ALoy which we describe in this chapter. The model transformakémgyuage to
perform the transformation from modelling domain tol®y is Kermeta. We describe Kermeta,
aspect-weaving in Kermeta, and model typing in Kermetaimehapter. The chapter presents
the state of the art in automatic model discovery with emishas test model generation and
partial model completion. It also presents the state of thmautomatic product discovery.

In Chaptei B, we present a framework for automatic modebdity in the modelling do-
main specified by an input metamodel. The framework is endubiti the tool @QRTIER. First,

we present a metamodel pruning algorithm to extract an feeenetamodel from the input
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metamodel. The effective metamodel is a supertype of tha mptamodel from a type-theoretic
point of view and a subset of the input metamodel from a sstritic point of view. Second, we
present a transformation of any metamodel or the effectemmodel to a CSP inlAoy. The
transformation takes into account all non-trivial arttfaim a metamodel such as multiple inheri-
tance, multiplicity, containers, composite propertigg@site properties, and identity properties.
A discussion on the validity and complexity of the transfation is presented. Third, we dis-
cuss how heterogeneous sources of knowledge suctitagonstraints may be transformed to
ALLoY. Finally, we demonstrate the generation of models for thgel@ase study of the NaL

metamodel.

In Chapteilll, we present experiments to validate automatidetndiscovery presented in
ChapteB. We present experiments in test model generatidpartial model completion in a
model editor. First we consider test model generation whereise input domain partitioning
strategies to generate test models usim®RGER. These models detect 93% of the bugs in a
representative model transformation compared to only 7@%tiriguided generation. The rep-
resentative transformation fromml class diagrams tRDBMS models exercises most model
transformation operators. The input metamodeiLUcontains almost all complex metamodel
constructs and is a widely used industrial metamodel. Insgmnd experiment we perform
partial model completion in a model editor. Given a panialbecified model in a model editor
we use @QRTIER to generate recommendations to complete partial model. rég&ept an algo-
rithm to transform a partial model to anLAoOY predicate. We solve the predicate to generate
one or more model completions for models in thierarchical Finite State Machine modelling

language. We present the different times taken for conguiedf partial models of various size.

Chaptefb, we present a framework for automatic producbdey in the modelling domain
specified by the feature diagram (FD) of a Software Produnt l(SPL). The framework is
embodied in the tool YWSHKAR. We first transform a FD to a CSP inLAoy. We solve
the resulting ALoy model to generate products. The focus of this chapter isstoder test

products that satisfy thE-wise coverage criteria between features in the FD. Geperaf test
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products for large FDs usinglAOY is not tractable. We scale the use afil®y using divide-
and-compose strategies that can generate a close to misghalf test products that satisfy
T-wise coverage. A side-effect of using divide-and-compsisategies is the introduction of
redundancies of pairs in products. We presents metrics asune these redundancies. Using
pairwise coverage we show thaV SHKAR generates test products with acceptable redundancy

for a transaction processing FD AspectOPTIMA.

6.2 \Variability Modeling and QoS Analysis of Web Services (@go-
ing)

In ongoing work we model the variability in a composite webvaes orchestration using FDs.
We apply AVISHKAR to generate different possible orchestrations of a conpegtb service.
We analyze the consequent variation in Quality of ServiceSJof these orchestrations using
probabilistic models of QoS. This work is described below.

Inherent choice in an ever-growing world of services is mglarchestration variability
a significant aspect of a composite web service. The diffenerys of orchestrating atomic
services can be seen as either multiple variants of a cotepssivice created offline or an
online composite service that reconfigures dynamicallyeither case, we expect to observe
variation in Quality of Service (Qo0S) across different @stnations. This variation in QoS must
not only take into account service variability but also theertainty/probabilistic nature of QoS
itself.

It is important to consider orchestration variability arsl implications on composite ser-
vice behavior. For instance, not considering variabiktgds to misrepresentation of contractual
agreements on Qo& [151]. Contractual agreements such\aseskvel agreements (SLAS)
[L17] is the industry standard to ensure QoS compliance dmtvservice providers and cus-
tomers. Usual deviations from SLAs are a result of non-ipocation of QoS variability and in

particular QoS outliers in its specification. Therefore,veed systematic analysis of variability
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in order to improve robustness of contractual SLAS.

Modeling variability in web service orchestrations andlgriag the consequent variation
in QoS is the principal subject of this work. We present a moétiiogy to model orchestration
variability usingfeature diagramg¢FDs). Feature diagramS[77] provide a graphical condsain
based framework to specify a product-line of orchestratidbach orchestration in the product-
line is represented as an authorized configuration of irdilbkgected atomic services. In most
cases the FD specifies a very large set of configurations makinaustive sampling infeasible.
Instead, we sample the set of all possible configurationg/stesatically analyzing configura-
tions covering all valid pairwise service interactiohs][4Binally, we use probabilistic models
of QoS [129] to analyze variants of orchestrations derivechfall valid configurations.

We use our methodology to investigate merits of systembtisampling the set of all con-
figurations of web service orchestrations. Random sampfngpnfigurations, generally em-
ployed, is both ineffective and expensive because it cdmmeystematic and requires computing
QoS values for a large number of configurations. Moreovedoen sampling is not easy when
FD constraints like mutual exclusion/requirement needetsdtisfied. This work focuses on the
adaptation of combinatorial interaction testing (CIT)][39 select a sample of configurations
that covers all pairwise interactions of services whilés$gng all FD constraints. We use the
recently proposed scalable approach’in[120] for geneaydkiase configurations. CIT is based
on the observation that most of the faults are triggered tarédictions between a small number
of variables[[9D]. For example, consider the output qualftprinting web pages depending on

a hypothetical combination of parameters representedhtel&l].

Parameters Options
Operating System Windows, Linux, Macintosh
Browser IE, Firefox, Chrome, Opera
Printer Model HP, Canon, Xerox, Epson
Printer Type Ink-Jet, Laser
Orientation Portrait, Landscape
Size A3, A4, A5, A6
Color B/W, Multicolor

Table 6.1: Examples of printing parameters requiring camspa.

An exhaustive generation of combinations of these paranogiions would entail 1536
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cases with many redundancies. Pairwise coverage of optonzbinations would require just
17 tests, resulting in a reduction of close to 99%. The nurmbexhaustive tests will increase
exponentially with addition of more parameters/optionguigng an employment of efficient
sampling strategies.

Pairwise coverage test generation has been used to deitbstifiesoftware systems in prior
work [48], [39]. However, the application of these coverdigesed techniques to sample config-
urations in service orchestrations is yet to be examineds Wbrk performs such an examina-
tion through a series of experiments that aim at investigaseveral facets of the question: is
pairwise service interaction sampling of orchestrationfigurations effective for overall QoS
analysis and the consequent definition of a global SLA?

Our experiments are based oorisis management systd@MS) case study described com-

prehensively in[[85]. This work reports on the following gtiens:

e Is it possible to automatically sample the orchestratianfigorations space to select con-

figurations that cover all pairwise service interactions?
e What global QoS metrics can we infer from a pairwise sample?

e How stable is the SLA computed from a pairwise sample? Thestjon is related to the
fact that the automatic generation of pairwise configuratis not deterministic and thus

the global contract might vary depending on the genersaedple

e Is pairwise sampling more effective and efficient compaceexhaustive sampling of the

configuration space?

From our experimentation, we have seen that analysis of dyfarhconfigurations (and
their corresponding QoS values) can be accurately repezséy a small set of configurations
satisfying pairwise interactions. Consistency of varigeserated pairwise solutions are also
demonstrated through simulations. This comprehensiviysiaaf variability helps the orches-

trator understand the global QoS extremities of the congasirvice before negotiating a SLA
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agreement. Deterioration in service quality or non-coamgle of SLA standards during on-
line deployment of the service is thus prevented. Improvema the orchestration model to
eliminate some deviant configurations (causing excessteridration of end-to-end QoS) or
grouping a family of configurations with similar QoS behanéoe other extensions of this tech-
nique.

Accurate offline analysis of a composite web service beftareléployment is essential to
ensure non-repudiation of a SLA contract. This is necesganyaintain optimal QoS behavior
of mission-critical services such as crisis managemenbrder to do this, the service provider
must keep in mind the probabilistic aspect of QoS parametedsthe variable configurations
in a composite service. In this work, we study an analysiméwork to test the QoS of an
orchestration before deployment. Further, the notion sfesyatic pairwise sampling procedure
has also been demonstrated, which provides a more effigemilasg of the configuration space
than exhaustive trails while still maintaining sufficiemtverage. Larger FD and orchestration
models can be analyzed using the divide-and-compose ap@®H®L20] to handle this scalabil-
ity issue. This should provide a simple, systematic andnstsiically correct methodology for
pre-deployment QoS analysis of a composite service.

While this work concentrates on a particular compositioffixad atomic services, a future
area of interest would be optimal compositions. The use ofigorations and scenarios mod-
eled by a FD leads to a family of composite services. Theseyrin may be used to generate
many versions of the orchestrations. Further implemeortaif these techniques to study larger
composite orchestrations is useful for both obtainingiséalQoS bounds and product genera-

tion of families of services.

6.2.1 Related Work

The combinatorial testing framework described by Coheh B8] has been applied extensively
to efficient testing for fault detection. In the work of Cohetral. [40], this technique is extended

to software product lines with highly configurable systei®deling variability in SPLs using
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feature models is the work of Jaring and Boscheél [74] wheeg #how that the robustness of
a SPL architecture is related to the type of variability. Tisw@e that constraints in the FD are
incorporated in the efficient sampling of t-wise tests, thigexr proposed by Perrouin et &l. [120]

is used. In[[95] Larsen et al. define modal I/O automata, agnsibn of interface automata with

modality. These allow models of varying configurations tadegeloped from a single produce

line while disallowing trivial implementations. Such a oot when extended to a composite
service can provide interesting configurations and vessaircomposite products as described
in [95].

Pre-deployment testing of SLAs has been studied by Di Pertha H18], where they make
use of genetic algorithms to generate test data causing $blatiens. Analysis of white and
black box approaches are provided in the paper[_Th [31], Betnal. make use of regression
testing to ensure that an evolving service maintains thetimmal and QoS assumptions. The
service consistency verification due to evolution is donexsgcuting test suites contained in a

XML encoded facet attached to the service.

The use of probabilistic QoS and soft contracts was intreduzry Rosario et. al[129] and
Bistarelli et al. [2B]. Instead of using fixed hard bound esldor parameters such as response
time, the authors proposed a soft contract monitoring amgirdo model the QoS measurement.
The composite service QoS was modeled using probabilisticegses by Hwang et all_]68]

where the authors combine orchestration constructs teedglobal probability distributions.

In our work, we extend these two notions to analyze the QoSaninaposite orchestration
under various configurations. The hard contract notionsnofte-end QoS are replaced by
the probability quantile based approach. This providesstgice provider the technique for
estimating composite service QoS distributions and esitmgahe global soft contract SLA.
Though formal analysis of end-to-end QoS has been studi€aiidoso et al[[35], there are no
practical testing tools available for the service providdre pairwise testing procedure has been
shown to outperform other testing techniqueslinl [39]. Weedtthis testing tool to develop

a generic testing methodology to query end-to-end QoS oflaseevice. The efficacy of this



6. CONCLUSION AND PERSPECTIVES 249

scheme is provided though experimental verification.

Related empirical studies of optimal QoS compositions meeeof genetic programming in
Canfora et al.[[34] and linear programming in Zeng et[al._J18hese are dynamic techniques
to choose the best possible atomic services and configasdieeping QoS in mind. This differs
from our work due to the assumption that the atomic servindgtaeir composition have already
been defined. The goal is to analyze the variable configumstizat may result due to invocation
or non-invocation of particular web services. This is of cheghen atomic SLAs and their
interactions in an orchestration have already been eshedali Such efficient, systematic and
stochastically correct analysis provides an accuratenagti of the global QoS distributions of

composite services.

6.3 Perspectives

The ideas presented in this thesis represents a first stepdswutomating discovery of models

in a modelling domain. The work evokes a number of future aesrof research.

6.3.1 A Family of Metamodel Pruning Algorithms

In Chaptel B, we present the metamodel pruning algorithnxtiaet an effective metamodel
from an input metamodel. We show that the effective metamisda supertype of the input
metamodel from a type-theoretic point of view. It is also bs®t of the input metamodel from
a set-theoretic point of view. The supertype property ofdfiective metamodel makeshack-
ward compatiblewith the input metamodel. By backward compatibility we medinmodel
transformations or operations for the effective metameaudelvalid for the input metamodel.
Similarly, all models of the effective metamodel are alslidvimstances of the input metamodel.
This property has practical implications to the usage @fdandustry standard metamodels such
as the UiL. Experts may extract a small and relevant subset of thie tb create models or

transformations while preserving type conformance with Utself. Therefore, the type confor-
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mance property between an effective metamodel and theitgggemetamodel leverages several
applications of the metamodel pruning algorithm. In futwerk, we would like to investigate
the possibility of creating a family of metamodel pruningaithms.

The notion of a family metamodel pruning algorithms is basedhe possibility of develop-
ing combinations of atomic pruning operators that satigietconformance. An atomic pruning
operator has an input metamodel and gives an effective noelelnas output. The effective
metamodel shows type conformance with the input metamoflgliven sequence of pruning
operators on an input metamodel should give an effectivamedel as output such that it shows
type conformance with the original input metamodel. Thiglug to a transitivity property of
pruning operators in a sequence. What are the differenilpessequences of pruning opera-
tors? Which pruning operators are commutative? Which pgieiperators in sequence show

transitivity? These are some of the questions that needatns.

6.3.2 Transforming OCL Subset to ALLOY

In ChapteZB, we present a complete transformation of a netahio ALLOY implemented in
the CaRTIER framework. However, not all constraints may be expressetidrmetamodel. A
textual constraint language such as @igect Constraint Language (OCL) is the industrial stan-
dard to expressed additional metamodel constrai@. is a side-effect language that queries a
model of a modelling language and check structural progedn the model. There are several
similarities betweer®CL and ALLOY in the way constraints are expressed. In future work, we
would like to focus on transforming a subset@fL to ALLOY facts or predicates. IA.OY also
has some features not yet exploitedd@L which may help concurrently improv@CL itself. In

[155], the authors presents some shortcoming3@if with respect to ALoOY.

6.3.3 Product Discovery Strategies based on Feature Diagrastructure

In Chapteib, we present thev/ SHKAR framework to generate products that satisfyTallvise

feature interactions in a FD. We believe that the qualityha test products and the number
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of effective test products may be improved if we considerdtractural semantics of the FD
in developing new strategies. New strategies will essint@mprise of analyzing the tree
structure of the FD to obtain knowledge to generate testymtsd The idea is to generate test
products using knowledge that explore the FD’s productepédle respecting FD constraints.
This is in contrast, td@ -wise generation where a lot of feature interactions aregeead that do
not satisfy the FD constraints. Only a subset of TA@ise interactions are valid and are used to

generate test products.

6.3.4 Scaling Constraint Solving using ALOY

In most of the thesis we have used 1y to generate models or products. Generation using
ALLOY is based on the hypothesis that small models are often igfed¥/e demonstrate this us-
ing experiments in test model generation. However, for pcodeneration we make advances in
scaling ALLOY to generate products for a large FD. The idea is based onmtvide constraint
satisfaction problem and composing the results into a fieabsproducts. This approximate
approach can handle large FDs but introduces some tupladeaday in the generated products.
What are other ways to scale the size and number of modelsahdie generated using 2Oy

? This is a question that intrigues us. We would like to rede#nis question in two axes: (a)
Develop divide and compose strategies to first create snualeis and then weave them together
into larger models (b) Leverage SAT solving using parall&T Solvers such as ManySAT [66]

in order to generate instances from a large and highly-canstd ALLOY model.
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6.4 ALLOY Model of UMLCD Synthesized by Q\RTIER

module tmp/UMLCD

open util/boolean as Bool

sig Model
{

classifier : set Classifier ,

associationset Association

abstract sig Classifier

{

name : Int

sig PrimitiveDataType extends Classifier

{1

sig Class extends Classifier
{
is_persistent:one Bool,
general :lone Class,

attribute : some Property

sig Association

name: Int,
memberEnd: one Class ,

ownedEnd: one Class
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sig Property

{
name: Int,
is_primary : Bool,

datatype:one Classifier

/I Meta-model constraints

I/« There must be No Cyclic Inheritance in an UMLED

fact noCycliclnheritance

{

no c: Class cin c.~general

I« All the attributes in a Class must have unique attribute namé

fact uniquePropertyNames

{

all c:Class | all al: c.attribute, a2: c.attribute | al.name = a2.nameplies al=a2

I/« An attribute object can be contained by only one clas$é

fact attributeContainment

{

all cl:Class, c2:Class |all al: cl.attribute , a2 : c2.attribute | al = aplies cl=c2

I/« There is exactly one Model object/

fact oneModel

{

#Model=1

/«All Classifier objects are contained in a Modél

fact classifierContainment

{

all c:Classifier | cin Model.classifier

/«All Association objects are contained in a Model/

fact associationContainment

{

all a:Association| ain Model. association

}
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/«A Classifier must have a unique name in the Class Diagtam

fact uniqueClassifierName

{

all cl:Classifier, c2:Classifier |cl.name = c2.nameplies cl=c2

/«An associations have the same name either they are the sanmsocaation or they have different sources

fact unigeNameAssocSrc
{
all al:Association, a2:Association |

al.name = a2.namemplies (al = a2 or al.src != a2.src)

Listing 6.1: ALLOY Model for UmL Class Diagram

6.5 Initial Set of Pre-conditions

/«Initial Model Transformation Preconditionssx/

fact atleastOnePrimaryProperty

{

all c:Class |one a:c.attribute | a.is_primary =True

fact nod4CyclicClassProperty

{
all a:Property | a.datatypeén Class implies all al:a.datatype.attribute | al.datatype
Class implies all a2:a.datatype. attribute | a2.datatyge Class implies all a3:a.datatype.attribute |a3.datatype
in Class implies all a4:a.datatype.attribute | a4.datatypge PrimitiveDataType
}

fact noPropertyAndAssociationHaveSameName

{
all c:Class , assoc :Association |

all a:c.attribute | (assoc.src = c)mplies a.name != assoc.name

fact nolCycleNonPersistent

{

all a: Association | (a.memberEnd = a.ownedEndhplies a.ownedEnd.is_persistent = True

}

fact no2CycleNonPersistent

{
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all al: Association, a2:Association |
(al.memberEnd = a2.ownedEnand a2.memberEnd = al.src)jmplies

al.ownedEnd.is_persistent = Truer a2.ownedEnd.is_persistent=True

Listing 6.2: Initial pre-conditions as A0y facts

6.6 Discovered Set of Pre-conditions

/I Discovered Model Transformation preondition constraints

I/« 1. At a depth of 4 the type of an attribute has to be primitive dasannot be a class typ#

fact no4CyclicClassProperty{
all a:Property | a.datatypeén Class =>all al:a.datatype. attribute |al.datatype Class =>all a2:a.datatype.
attribute |a2.datatypein Class =>all a3:a.datatype.attribute |a3.datatype Class =>all a4:a.datatype.
attribute |a4.datatypein PrimitiveDataType

I/« 2. A Class cannot have an association and an attribute of thmesnamesx/

fact noAttribAndAssocSameName {

all c:Class, assoc:Association &ll a : c.attribute | (assoc.ownedEnd == c) => a.name != assomena

I/« 3. No cycles between noenpersistent classes«/

fact nolCycleNonPersistent

{

all a: Association | (a.memberEnd == a.ownedEnd) => a.memberEs_persistent= True

fact no2CycleNonPersistent

{
all al: Association, a2:Association | (al.memberEnd == a2 .edfind and a2.memberEnd==al.ownedEnd) => al.

ownedEnd.is_persistent= Truer a2.ownedEnd.is_persistent=True

/I« 4. A persistent class can’t have an association to one of itenagral =/

fact assocPersistentClass

{
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all a:Association | a.ownedEnd.is_persistent=Trumplies a.memberEnd notin a.ownedEnd.”general

I+« 5. Unique association names in a class hierarchy

fact uniqueAssocNamesininHeritanceTree

{

all c:Class |

all al:Association, a2:Association |

(al.ownedEndin ¢ and a2.ownedEndin c.”generaland al!=a2) implies (al.name!=a2.name)
}
/« 6. A class can’'t be the datatype of one of its attributes (anguall its attributes x/

fact classCantTypeOfAllofitsProperty
{

all c:Class | all a: (c.attribute+c.~general.attribute) | a.datatype !=c

I/« 7. A Class A which inherits from a persistent class B can’'t khamn outgoing association with the same name

that one association of that persistent classxB

fact classinheritsOutgoingNotSameNameAssoc

{

all A:Class | all B:A.~general | B.is_persistent == Truémplies (no al: Association, a2:Association
(al.ownedEnd = Aand a2.ownedEnd=Band al.name=a2.name))

}

/« 8. A class A which inherits from a persistent class B can’t hamn attribute with the same name

that one attribute of that persistent class B

fact classlnheritsOutgoingNotSameNameAttrib

{

all A:Class | all B:A.~general | B.is_persistent == Truéemplies (no al: A.attribute , a2:B.attribute |
(al.name=a2.name))

}

/+ 9. No association between two classes of an inheritance trde

fact noAssocBetweenClassinHierarchy

{

all a : Association |all c¢c: Class | (a.ownedEnd =é¢mplies a.memberEnd notin c.~general)and (a.memberEnd =c

implies a.ownedEnd notin c.”general)
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Listing 6.3: Discovered pre-conditions as 10y facts

6.7 FSM ALLOY Model with Facts and Partial Model Predicates

module metamodelFSM

open util/boolean as Bool

sig FSM

{

states set State ,
currentState :lone State ,
transitions: set Transition

}

sig State
{

label: Int,

outgoingTransition:set Transition,

incomingTransition: set Transition ,

fsmCurrentState:one FSM,
fsmStates:one FSM,
isFinal :one Bool,

islnitial :one Bool

sig Transition

{

event: Int,

target: one State ,
source: one State ,
fsmTransitions one FSM

}

/I Meta—model constraints//

// Exactly one initial state
fact exactlyOnelnitialState
{
one s:State|s.islnitial == True

}

// Atleast one final state
fact at leastOneFinalState

{
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some s:State | s.isFinal == True

/I Exactly one HFSM
fact exactlyOneFSM

{
one FSM

fact sameSourceDiffTarget

{

all tl:Transition ,t2:Transition| (tl!=t2and tl.source==t2.source) =>

tl.target!=t2.target
}

fact setTargetAndSource

{

all s:State| s.incomingTransition.target =and
s.outgoingTransition .source=s

}

fact noUnreachableStates
{
all s: State | (s. islnitial == False) =>

all incl : s.incomingTransition |

incl.source.islnitial = Trueor

all inc2 : incl.source.incomingTransition
| inc2.source.islnitial = Trueor

all inc3 : inc2.source.incomingTransition
| inc3.source.islnitial = True

fact uniqueStateLabels

{

#State >1 =>all sl:State,s2:State | sll=s2=>sl.label != s2.label

fact containmentState

{
State in FSM. states

fact containmentTransition

{

Transition in FSM. transitions

/I Partial Model Facts

/I Partial Model 1
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pred partialModell_Fact
{
some State

}

// Partial Model 2

pred partialModel2_Fact

{

some sl:State ,s2:State ,tl:Transition |sl!=s2d
tl in sl.outgoingTransitionand t1 in
s2.incomingTransition

}

// Partial Model 3

pred partialModel3_Fact

{

some sl:State ,s2:State ,s3:State ,s4:State ,
tl:Transition, t2:Transition|

sl!=s2 and s2!=s3 and s3!=s4 and sl!=s3 and

sl!=s4 and s2!=s4 and tl1!=t2 and

tl in s2.incomingTransitionand t2 in
s3.incomingTransitionand t1 in sl.outgoingTransition
and t2 in sl.outgoingTransitionand

s2.islnitial = Trueand s4.isFinal = True

// Partial Model 4

pred partialModel4_Fact

{

some sl:State ,s2:State ,s3:State ,s4:State ,
tl:Transition ,t2:Transition |

sl!=s2 and s2!=s3 and s3!=s4 and sl1!=s3 and

sl!=s4 and s2!=s4 and t1!=t2 and

tl in s2.incomingTransitionand t2 in
s3.incomingTransitionand t1 in sl.outgoingTransition
and tl in sl.outgoingTransitionand

s2.islnitial=True and s3.islnitial=True

run partialModell_Factfor 10

run partialModel2_Factfor 10

run partialModel3_Factfor 10

run partialModel4_Factfor 10

run partialModell_Factfor exactly 1 FSM, exactly 5 State,
exactly 5 Transition, 5int

run partialModel2_Factfor exactly 1 FSM, exactly 5 State,
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exactly 5 Transition, 5int
run partialModel3_Factfor exactly 1 FSM, exactly 5 State,

exactly 5 Transition, 7int
run partialModel4_Factfor exactly 1 FSM, exactly 5 State,

exactly 5 Transition, 5int

Listing 6.4: ALLoY model forFSM
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