N°d’ordre : 4030 ANNEE 2010
UNIVERSITE DE

< 7~ N\
RENNES u\e/h

THESE / UNIVERSITE DE RENNES 1

sous le sceau de I'Université Européenne de Bretagne

pour le grade de

DOCTEUR DE LUNIVERSITE DE RENNES 1

Mention : Informatique
Ecole doctorale Matisse

présentée par
Sagar Sen

préparée a I'lRISA
Institut de Recherche en Informatique et Systémes Aléatoires
Composante Universitaire : IFSIC

Automatic ;I'h;ezs:ej spu;gqge a Rennes
] e uin
Effective Model

devant le jury composé de :
Discovery Claude JARD

Professeur a ENS Cachan / Président

Sabine MOISAN

Chargé de Recherche a INRIA Sophia-Antipolis /

Rapporteur

Pierre KELSEN

Professeur a I'Université de Luxembourg /

Rapporteur

Jean-Marc JEZEQUEL

Professeur a I'Université de Rennes 1/

Examinateur

Hans VANGHELUWE

Professeur a I'Université du Antwerpen /

Examinateur

Benoit BAUDRY

Chargé de Recherche a I'INRIA / Examinateur

Acknowledgement

«The discovery of nuclear reactions need not bring abou¢s&ruction of mankind any more
than the discovery of matches.»
Albert Einestein

Abstract

Scientific discovery often culminates into representingditire in nature asetworks (graphs)
of objects For instance, certain biological reaction networks aimejaresent living processes
such as burning fat or switching genes on/off. Knowledgenfrexperiments, data analysis
and mental tacit lead to the discovery of swgffectivestructures in nature. Can this process of
scientific discovery using various sources of knowledgeuteraated? In this thesis, we address
the same question in the contemporary context of modeeédrangineering (MDE) of complex
software systems.

MDE aims to grease the wheels of complex software creatimyigst class artifacts called
models Very much like the process of effective structure discgverscience a modeler creates
effective models, representing useful software artifaicte modelling domain In this thesis,
we consideitwo such modelling domains: metamodieis modelling languages arfdature di-
agramsfor Software Product Lines (SPLs). Can watomate effective model discoveryn
a modelling domain? The central challenge in discovery ésatlitomatic generation of mod-
els Models are graphs of inter-connected objects with comggran their structure and the
data contained in them. These constraints are enforced bydallimg domain and heteroge-
neous sources of knowledge including several well-forneedrrules. How can we automati-
cally generate models that simultaneously satisfy themstints? In this thesis, we present a
model-driven framework to answer this question.

The framework for automatic model discovery uses hetereges sources of knowledge to
first setup a concise and relevant subset of a modelling dospecification called theffective
modelling domainNext, ittransforms the effective modelling domain defined in pbssdiffer-
ent language$o a constraint satisfaction problerim the unique formal specification language
Alloy. Finally, the framework invokes a solver on the Alloy modelgenerate one or more ef-
fective models. We embody the framework in two tooGartier for model discovery in any
modelling language anAvishkarfor product discovery in a SPL. We validate our framework
throughrigorous experiments in test model generation, partial el@dmpletion, product gen-
eration in SPLsandgeneration of web-service orchestrations The results qualify that our
framework consistently generates effective findings in ellotdy domains from commensurate
case studies.

Abstrait

Les découvertes scientifiques aboutissent souvent a kEseqation de structures dans I'environnement
sous forme dgraphes d’objetsPar exemple, certains réseaux de réactions biologigsestéa
représenter les processus vitaux tels que la consommatignag ou |'activation/désactivation

des génes. Lextraction de connaissances a partir d’erpétations, I'analyse des données et
I'inférence conduisent a la découverte steuctures effectivedans la nature. Ce processus de
découverte scientifiques peut-il étre automatisé au mogelivgrses sources de connaissances?
Dans cette thése, nous abordons la méme question dansdgteortintemporain de I'ingénierie

dirigée par les modéles (IDM) de systémes logiciels congdex

L'IDM vise a accélérer la création de logiciels complexesutitisant de artefacts de base
appelésmodeles Tout comme le processus de découverte de structuresiedfeen science
un modeleur crée dans wiomaine de modélisatiodes modeéles effectifs, qui représente des
artefacts logiciels utiles. Dans cette thése, nous corwidédeux domaines de modélisation:
métamodelepour la modélisation des langages et fisgure diagramgpour les lignes de pro-
duits (LPL) logiciels. Pouvons-nowsutomatiser la découverte de modéles effectifdans un
domaine de modélisation? Le principal défi dans la décoenest lagénération automatique
de modeles Les modéles sont dagaphes d’'objets interconnectévec des contraintes sur
leur structure et les données gu’ils contiennent. Ces aimiés sont imposées par un domaine
de modélisation et des sources hétérogenes de connaissiactigant plusieurs régles de bonne
formation. Comment pouvons-nous générer automatiquedesninodéles qui satisfont ces con-
traintes? Dans cette thése, nous présentons un framewiy& gdar les modéles pour répondre
a cette question.

Le framework pour la découverte automatique de modeélesaitiles sources hétérogénes
de connaissances pour construire, dans un premier tempsgussensemble concis et perti-
nent d’'une spécification du domaine de modélisation apmiléeaine de modélisation effectif
Ensuite, iltransforme le domaine de modélisation effectif défini dans ifférent langages
vers unprobléme de satisfaction de contrainteslans le langage de spécification formAdby.
Enfin, le framework invoque un solveur sur le modéle Alloy pgénérer un ou plusieurs mod-
eles effectifs. Nous incorporons le framework dans deuksoutartier pour la découverte de
modéles a partir de n'importe quel langage de modélisatigkvishkarpour la découverte de
produits dans une LPL. Nous validons notre framework paredpgrimentations rigoureuses
pour la génération de test, la complétion de modeles partigla génération de produits etla
génération d’orchestrations web service Les résultats montrent que notre framework génére
systématiqguement des solutions effectives dans des demdi modélisation a partir de cas

10

d’étude significatifs.

11

Contents

11

IRésumé en francais(French Summarl/) 15

CONTENTS

55

.1 Model-driven Engineerihg 55
.2__Metamodel Specification of a Modelling Domain 57
o o7

[2.2.1 _Specification of a Metamolel
[2.2.2 _Object Constraint | anguage to Specify Metamodel Constraints
i 60

B Automatic Fffective Madel Discovery
3.1 Automatic Fffective Model Discovery Framework

B.1.1 _Primary Sources of Knowledige

59

61
62
63
64
64
64
76
69
72
72
73
74
75
76
76

79

81
81

82

CONTENTS 13

3.9 Maodel Generation by Solving_LAQ_Y_M_Q_d_el 115

B.9.1 Specifying Al ov Predicates to Guide Generafion 116
B.9.2 SDECIfVIng_A.LO_Y_RUD_C.Qmm.aﬂ.d.SJMlh_EIDJL&B.QuﬂdS 117

B_Q_s_ALLox_msxanges_Lo_EMEmadbls 118
[3.10 Illustratlve Examoles Generatio Diagram Models 118
iontalAoYl. 120
Y225 120
4 Experiments in Effective Madel Discoverly 123
4.1 Automatic Model Synthesis for Model Transformationtifess 123
K11 Problem Descriptibn 251
12 Transformation Case Sthdy 126
.13 Automatic Test Madel Generatlon and Ouallflcatlonlmnl_o,gi/ ... 127
k14 Qualifying Models: ,) s ati ing 130
415 TestStrategles e 113
416 Exnerlmerits 134
4.1.7 Conclusion for TestGeneralion 138
42 Towards Model Completion in Domain-specific Model Edito 139
K4.2.1 Methodology for Model Completion 141
W22 SpecifyingaDSML 142
23 Metamodbl 142
K424 Consfraints on Metamodel 144
U258 ViSUalSYNtAX o oo 144
K4.2.6 Transformation of a Partial Madel 146
i s 147
128 Model Completion Procéss v v v v ovove 147
U29 FExamplesinCompletion 481

K4.2.10 Conclusion of Model Completlon 152

Bl Introduchioh 155
B2 Contextand Problém, 158
521 Problein 162
5.3 Metrics for Strategy Evaluation 163
i | 165
5.4.1 Step 1: Transforming Feature Diagramsta @ 165
5.42 Step2: Generationof Tugles o o oo 168

14 CONTENTS

I5.4.4 _Step 4: Creating and Solving Conjunctions of Multiflmlek 170
5.45 Step5:AnalysisS 170
l5.5__Two strategies fof -wise SPI Test Suite Generafion 170

552 Binary Split. 171
[5.53 Incremental Growlth 117
b6 Experiments T3
5.6.1 Experimental Settihng 173
l5.6.2 Number of Products Vs. Scbpe 173
I5.6.3 Tuple Qccurrence VS. SCOpe o oo oo 175
b.6.4 TestCaseRedundancy 7 17
.65 ThreatstoValidity 781
BZ Conclusidn 817
IConclusion and Perspectivés 179
6 Conclusion and Perspectivés 179
6.1 SummaryandConcluslon 180
16.2__Variability Modelin ' ' ing) 181
K o e 183
6.3 Perspectives 184
[6.3.1 A Family of Metamaodel Prunin i S e 184
in@Cl Subsetto Altovl 185
16.3.3 _Product Discovery Strategias_b_as_ed_o_n_Eealu_Le_miagmﬁu_[h ... 185
16.3.4 Scaling Constraint Solvingusing oyl 185
Epnendig 187
6.4 _ALLoy Model ofUMLCD Synthesized by &RTIER 187
iti - itiohs e 188
- NS . . o s e e e e 189
6.7 __ESM Arioy Model with Facts and Partial Model Predicdtes 190
[List of Figured 193
[List of Tabled 195

Listingd 197
[Bibliographyl 199

15

Résume en francais
(French Summary)

L'ingénierie dirigée par les modéles (IDM) est une appropber spécifier, construire, va-
lider et maintenir des systémes logiciels complexes eisamt des artefacts primitifs appelés
modelesIDM est issu d’un certain nombre de domaines dans le dépetopnt de logiciels tels
gue I'analyse de langages de conception orientes objetsnéthodologies orientées objetl[24]
[73] [LZ4], et Computer-Aided Software Engineering (CA®HBbores dans les années 80 et 90
afin d’automatiser plusieurs étapes dans le génie logiCi][[24].

Les modéles sont degraphes d'objets interconnectetans undomaine de modélisation
Un domaine de modélisation définit emsemble des modélea chaque modéle est construit
en utilisant un ensemble commun de concepts, et des redaftar exemple, dans cette these,
nous considérons la spécification de deux domaines de raatiéfi : (a) lesnétamodélegui
spécifient un ensemble de modéles dans un langage de modeliga feature diagrams qui
spécifient un ensemble des produits donnant lieu a une ligr@ratiuits logiciels (LPL). Trés
souvent, la création demodeles effectifdlans un domaine de modélisation exige la satisfac-
tion de contraintes a partir de sources hétérogénes. Panpéxela création d’'un modéle de
workflow en utilisant le diagramme d’activitémified Modelling Language (UML) exige que le
modéle satisfasse les régles de forme, logique métiernaintes économiques, les qualités de
service, et les restrictions de sécurité. Les modeleuentggrogressivement avec I'expérience
les modéles en vigueur en veillant tacitement a ce que legl@®doientorrects par construc-
tion et satisfassent les contraintes provenant de source®@étés. Malgré tout, ce processus
est extrémement difficile et parfois impossible s’il y a ursdia de créer des milliers de mo-
deéles.Peut-on automatiser la création de modeéles effectifs comptenu de I'hétérogénéité
des sources de la connaissanceC?est la question qui hous intrigue et le sujet de cette these

L'introduction est organisée comme suit. La notion de deede des modeles effectifs se
situe dans le contexte global de découverte des structfieesivees dans les sciences et I'ingé-
nierie. Nous décrivons brievement ce contexte global dasedtio Ol1. Cette thése aborde le
probléeme de la découverte automatique dans le contextergitest et spécifiques de la IDM
gue nous décrivons dans la sectiof 0.2. Un certain nombreé&f@asos dans IDM nécessitent
la génération de modéles effectifs. Notre motivation vmes scénarios que nous décrivons
dans la sectiof_0.3. Dans la sect[on] 0.4, nous présentarentexte général du problemet
ses défis. Nous présentons notre these et décrivons nottedeéle découverte automatique de
modelés et de produits effectifs dans la sediioh 0.5. Nausngons les contributions de notre

Résumé en francais
16 (French Summary)

Target genes

Mdm2 p21 Noxa
Cop1 Ptprv Bax
Pirh2 Puma

S

Cell cycle arrest Apoptosis

Soil Food Web P53 Tumor Supressor Pathway
(a) (b)

FIG. 1 — Des structures effectives en découverte scientifigagR¢seau alimentaire du sol (b)
\oie suppresseur de tumeur

thése dans la secti@nD.6. Enfin, nous présentons I'orgamsde la thése dans la sect{onl0.7.

0.1 Deécouverte de structures effective en sciences et génie

Les découvertes scientifiqualsoutissent souvent en représentant la structure dantule@ na
comme urréseaux d’entitésu graphes d'objetsPar exemple,
— Les réseaux trophiquessont des représentations des relations prédateur-proie lea
especes dans un écosystéeme ou d’habitat. Un exemple cestdrtéseau alimentaire
du solillustré a la figurdll. La chaine alimentaire du sol est soutrenvé dans un jardin
bio-compost.
— Les réseaux réaction biochimiqueou des voies métaboliques représentent des échanges
moléculaires dans les étres vivants. \l@ie suppresseur de tumelargement étudié de
la figure[l (b) illustre le réle crucial de la protéine p53 démsnort cellulaire. La mort
cellulaire est importante pour réguler I'évolution carmése.
Les connaissances a partir de I'expérience, I'analyse a@s&ts et de tacite mentale mene a
la découverte de tellegtructures utiledans la nature. L'existence de structures effective n'ast p
limitée a la virtuosité de la nature. Nous, les humains sosuioeés de la capacité de représenter
et de créer des structures utiles tels que les batimenmes, les robots et logiciels complexes.
La conception en ingénieriaboutissent souvent en représentant effectif structutés a
cielles comme des graphes d’'objets. Par exemple,
— Diagrammes de circuits électroniqueseprésentent un réseau de composants électriques
qui permettent d’atteindre un but donné. tiecuit de récepteur FMde la figurd R, par
exemple, est utilisé dans des millions d’appareils radio.

Résumé en francais
(French Summary) 17

I POCKET FM RECEIVER

®
5V Subject
absaerver Obzerver
*Attach(in Observer)
+Detachiin Obsaver) [FUpdate()
sgonF [+Notify()
;
} .
259C o] BT foreach oin abservers
Lecoc]—@ o.Update()
T 1+—
[I]] - o i subject [EonETEteObsCrVer
@ [+GetStatal) FOpdate}
L1=10turn /0.5 mm SWG25 d = 3mm 1 |
L2 =12 turn /0.5mm SWG25 d = 5mm
5" 3w 1.2 W18 d -5 I P
retumn subjectState sublect GeiSiate()
FM Receiver Circuit Observer Pattern in Software Design

(a) (b)

FiG. 2 — Des structures effectives en ingénierie : (a) Circuitapteur FM (b) Le patron de
conception observateur

— Les patrons de conceptiorreprésentent en général des solutions réutilisables anx pr
blémes fréquemment rencontrés dans la conception dedtsyitis sont souvent repré-
sentés commies diagrammes de classks patron observateur de logiciels orientés ob-
jet dans Figur&€l2 (b) est un modéle commun dans les logiaetseessitant la gestion
des événements distribues. Le célébre logiciel d'éditiootp Adobe Photoshop est un
exemple.

Comme la découverte scientifique, la conception en ingénest dirigée par la connais-
sance d’un certain nombre de sources associée a la c&ativit ingénieur. Puis ce proces-
sus de découverte scientifique ou de conception en ingéraerutilisant diverses sources de
connaissances peut-il éteeitomatisé? Cette question a fait I'objet d’études depuis plusieurs
décennies avec l'arrivée de l'informatique moderne.

Des programmes informatiques ont été utilisés pour déadastructure dans la nature. Par
exemple, inspiré par le logique de découverte scientifiquéarl Popperl[123], Pat Langley,
Herbert Simon, G. Bradshaw, et Zytkow ont mit au point plusgeprogrammes informatiques
tels que Bacon, Glauber, Dalton, and Stahl décrit dans iener [94]. Ces programmes ont été
dirigée par des heuristiques pour réussir a re-décousitale anciennes de la chimie.

Approches de computations évolutionnaire a été développe gutomatiser la conception
tels que la production de circuits électroniquEsl| [88]. Unaowirs lors de la conférence an-
nuelle GECCO, le "Humies award", récompense des progranmmémentent une approche
évolutive. L'attribution d’'un prix de 10,000$ est accordg&é solution la plus proche des rai-
sonnement humaine. Dans la communauté du génie logicgetatgerences récentes, telles que
le conférence Automated Software Engineering(ASE) fawas lieus de compétition pour la
présentation des approches de génération des structuiagdels.

Dans cette thése, nous abordons la question de la décoawtot@atique dans le contexte
contemporain de l'ingénierie dirigée par les modéles desyss logiciels complexes.

Résumé en francais
18 (French Summary)

0.2 Contexte : Lingénierie dirigee par les modelés

IDM [L10] vise a accélérer la création de logiciels comptega utilisant des objets de base
appelémodélesLa philosophie IDM utilise des modéles pour représentsradigets importants
dans un systéme, comme d’exigences, les dessins de haaw nies structures de données, les
vues, les interfaces, les transformations de modélescé&meos de test, et le code source. Un
modele est construit dans wlomaine de modélisatioqui capture un ensemble de concepts
communs et des relations. La construction d’'un modéle dammaine de modélisation peut-
étre encore réduite en utilisant des regles de bonne famatides contraintes de hétérogene
sources.

La notion générale d’'un domaine de modélisation peut gbpecialiséesa de nombreux
égards. Une description précise de concepts et de relaté&imsssant un ensemble de modéles
appelé un domaine de modélisation. Par exemplenétamodelspécifie le domaine d’un lan-
gage de modélisation. Le célébre langage de modélisatiofied Modelling Language (UML)
[L186], a son propre métamodeéle qui spécifie 'ensemble daielas WML. Un autre exemple,
d’'un domaine de modélisation est f@ature diagranoufeature modegui spécifie un ensemble
de produits appelé un ligne des produits logiciels (LPL)d&les peuvent étre chargé stockeé,
manipulé et transformer a d’autres modéles ou code sounaerpsoudre les probléemes logi-
ciels.

IDM fournit un certain nombre de processus logiciels et dbrtelogies permettant la mo-
délisation des domaines et la transformation de ses modé&eblodel-Driven Architecture
(MDA) est une marque commercialisée par 'Object Managér®oup (OMG), qui propose
une approche pilotée par modeles pour développer un sysgjveel. L'approche MDA com-
mence par le développement d’'un domaine de modélisationlesplatform independent mo-
dels (PIM), ces modeles sont progressivement transforméafiinés dans des platform specific
models (PSM). Les PSM sont réifiés au code exécutable. Geittraction automatique de sys-
temes a partir de modéles de haut niveau permet de captexpeftise en génie logiciel sous la
forme detransformations de modéles réutilisablésctuellement, le framework largement ac-
cepté pour la spécification de domaines de modélisatioboiste Modeling Framework (EMF)
[58]. Par exemple, les métamodeles sont créés dans le fe@MEtEcorepour spécifier le do-
maine d’'un langage de modélisation. Langages de transfiormaes modeles142] telles que
le langage impératif Kermeta [BA][108], les fondé sur deges: ATL [76] [75] [3], AToM3
[67], Viatra [156] base sur une grammaire de graphes peentdt transformation des modéles.
Langages de transformation de modele sont tenus de se c@ifau standard Query-View-
Transformation (QVT)[/5]. Différents types de transfotimas de modeles peuvent étre créées
en utilisant ces langages, comme classés dahslle [44]. arsfarmations de modeéles peuvent
transformer des modeles dans le méme domaine de modéligaaasformations endogéenes),
entre les différents domaines de modélisation (transfooms exogenes) et méme réaliser du
code exécutable a partir d'un modéle de haut niveau.

Notre objectif dans cette these est la découverte autougatig assistée, de modeles dans
un domaine de modélisation.

Résumé en francais

(French Summary) 19
specifies input
M Ml rT?Odel wl p M:TRecéuireanentls M MOspeciﬁes OUtpUt
; Used to develop model set

@ e [MT(1,0) i % 2%

FIG. 3 — Une transformation

0.3 Motivation : Pourquoi le besoin de découverte automatige mo-
dele?

Notre motivation pour la découverte automatique dans léestsm général de tiges d'ingé-
nierie dirigée par les modéles existants de la découverwaldel efforts dans des domaines
hétérogenes. Ces domaines vont des systédmed[33] [1263na1 dps systemes physiquiesl [97]
[132] [58], [88]. Nous voyons la découverte automatique delétes efficaces dans un domaine
de la modélisation en tant que cadre général subsumant peechyes existantes a la décou-
verte de structure effective dans des domaines hétérogenascience et I'ingénierie. IDM des
systemes a logiciel ne fait pas exception. Dans cette timéses, étudions trois scénarios IDM
comme décrit ci-dessous :

0.3.1 Sceénario 1 : La génération de tests pour les transfornians de modeles

Les transformations de modéles sont des entite logicietmde en IDM. Un modéle simple
de transformatiotM T prend les modéles d’entrée conforme a un métamdddlie d’entrée et
de sortie produit des modéles conformes au méta-modelertie BMo comme le montre la
figure FigurdB. Pas tous les modeles spécifiés par le métatend@ntrée peutétre executer par
la transformation du modele. Par conséquent, nous compatmpost-conditionpostMT).
Les transformations du modele lui-méme est construit disarti des connaissances a partir
d’'un ensemble d’exigenced Trequirements

Test d’'une transformation de modeéles nécessite model¢rééequi permet de détecter des
bogues dans la transformatidhT. Création manuelle des modéles de test est fastidieuse car
il doitétre un graphe d’objets qui doiventétre conformeg BIM,, pre(MT), et d'utiliser les
connaissances adTrequirements Création manuelle devient impossible lorsque nous avens b
soin de créer des milliers de modéles de ces essais qui qool@nobjectifs de test différentes.
Par conséquent, il est clairement nécessaire de automkigénération de modéles d’'essai
qui satisfont les connaissances provenant de diversesesotglles queMM,;, pre(MT), et
MTrequirements L@ génération automatique de modeles d’entrée exaltevaaunide la décou-
verte automatique si nous validons qu'ils peuvent détdeteibugs dans une transformation.
On peut qualifier I'efficacité des modeles d’essai par deamigoes telles queanalyse de mu-
tation pour les transformations modele [107]. Basé sur une demgrigle ce scénario, nous
demandonsComment pouvons-nous générer des modéles de tester etlifieqglear efficacité
pour la détection des bugs

Résumé en francais

20 (French Summary)
00 Java - SagarThesis2010/ Chapterl /figures/testModel.umldi ~ Eclipse SDK - /Users sagarsen/Documents/ResearchPapers =
| ES|Q 3 0% |86 | BE S |v |G |# |2 i 0o D | @0 |4 hd Tkt § B0]] €D ST |0v E §lma 2
— [*testModel.umidi 53 =8)—
= /SagarThesis2010/Chapterl Idi 8
g |y Seect =
ks i) Marguiee :

plice Tael B
(= Objects @ bt
@ State.

(3 Composite State

(3 Submachine State

) ConnectionPointReference

® FinalState
(= Pseudostates @

o il ©

@ Deep History

@ shallowHistory

I toin

® ExitPoint

X Terminate

(= Connections o

> Transition

(= Comment @
= Comment
. Comment Link
& Constraint

4 Constraint Link

I I Jez el BE)

FIG. 4 — Modeéle partiel dans I'éditeur de modéles UML : TopCaseD

0.3.2 Scénario 2 : Achévement d’'un modéle partiel dans un éeur de modéles

Les modélisateurs ont souvent recours a des éditeurs ddenadéeonstruire des modéles
progressivement. Par exemple, le éditeur TopCaseD [54¢peuwitilisé a construire des modeles
UML comme dans la figuld 4. Le modele présenté est une machiré idiéompléte en ML.
Par exemple, le modéle ne contient pas un état initial quumetrégle de bonne formation.
Il ya une infinité des moyens possible pour compléter le meot&l qu’il devient une valable
modele WML de la machine d’état et répond a toutes les régles de bonmation. Ce qui est
probablement plus intéressant est la modeéle plus proctestiabmpatible a ML et qui contient
tous les éléments du modéle partiel. Il peut y avoir un aemaimbre de possibilités de mener
a bien les modéles partiellement spécifié. On peut rappiatdrévement mode automatique au
probléme de complétion de code automatique dans les eneneents de programmatidn [15].
Ce scénario souléve la question suivan@mment pouvons-nous des modeéles de découverte
automatique complete ou recommandations pour complé&entaléles partielle ?

0.3.3 Scénario 3 : La génération de produits dans une ligne dgroduits logiciels

Un ligne des produits logiciel (LPL) se réfere a un ensemlglepbduits partageant en-
semble commune de caractéristiques/features qui répbadribesoins spécifiques d’'une mis-
sion particuliere[[37]. Urfeature Diagram(FD) ou unfeature modeprécise un domaine de
la modélisation d’'un LPL. Feature diagrams introduite pan et al.[[/I7][[/B] compacte re-

Résumé en francais
(French Summary) 21

‘ Crisis Management .
- System
T

Q >
Ser External

Service Used
—

Communication

CrisisType
_Sudden Crisis

Witness

Major Accident

_Cal Crash

External
Company
s
Services Truck
1

O
(e |

Remove Obstacle IT—aian

o
Database
System

A

PoliceMan

Observe O)
[obsene [F— D Fopaton
Transport
@/ Legend Survance
Mandatory System Private
‘ Investigation : —(optional [Public Hospital | Company
\

< XOR

-
Service
Asset

(Gurse e weunees 15
‘ Sort the wounded |)

Hospital Worker
(‘Doctor > Ambulance

Fic. 5 — Un feature diagram pour le systéeme de gestion de crigegooident des voitures

présentent tous les produits d'un LPL en termes de carsiitgres qui peuventétre composés.
Un FD se compose defeaturesfy, f, ..., fx et les contraintes de dépendance entre les features.
Par exemple, la sélection de certaines features dans unippadit obligatoirement imposer la
sélection d’autres features. En outre, certaines desrésapeutétre associé a un actif de logi-
ciels tels que service web. Considérons le FD pour un systingestion des crises accident
de voiture dans la figudld 5. Le FD contient 47 éléments dont’@dtié eux sont optionnels.
Certaines des features sont associées a des services atifddsgiciels. Le FD décrit 33, 554,
432 configurations différentes de features. Puis toutesolefigurations se composer en des pro-
duits valide ? Pour répondre a cette question, il faut ci@es kes produits ou un sous-ensemble
représentatif de tous les produits. Par exemple, ce sorgdiable des produits qui répondent a
I'interaction entre les paires de features. La créationegeproduits nous aidera a dévoiler des
produits non valide. Manuellement créer des produits disfeat toutes les contraintes FD est
trés fastidieux. Par conséquent, nous demanddosyment peut-on automatiser la génération
de produits dans une ligne des produits logiciels pour difiés objectifs ?

0.4 Contexte du probleme et défis

Nous sommes motivés par la nécessité de génération aujoimale modeéles effectifs dans
un domaine de modélisation. Le contexte du probleme de gédeuautomatique de modéle est
illustré dans la figuid6. Le contexte identifie les pointyanis :

— Spécification d’'un domaine de modélisation :le domaine de la modélisation spécifie
un ensemble de modélés. Les exemples de spécifications pour les domaines de modé-
lisation sont des métamodeles pour la langage de modetisatfeature diagramsgour
LPLs.

Résumé en francais
22 (French Summary)

Hetereogeneous Sources of Knowledge

[sourcel |[Source2 | _ _ _ [Source k|

Modelling Domain
Defines set of all models M

IV'effective

Automatic Generation of Effective Model(s)

m Effective Modelling Domain
& © | defines set of effective models Meffective

FiG. 6 — Contexte du probléme pour la découverte automatiquenddsle

— Sources hétérogénes de connaissancesconnaissances provenant de sources hétéro-
géenes
Source, Source, ...Sourcg éventuellement dans différents langages de modélisatién s
cifient des sous-ensembles du domaine de modélisitigoM,, .., M. L'intersection de
ces sous-ensembles
M1, Mo, ..., My est le domaine de modélisation effectif représenté par sarehle de mo-
deles effectifMettective NOUS pouvons voir les sources hétérogenes de la connegssan
comme un ensemble de contraintes dans les différentesgesggui limitent I'ensemble
des modeled a un sous-ensembMe+ fective

Compte tenu de ces apports, nous demandons : quel est leismeate découverte auto-
matique qui peut créer des modéles dans I'enseiviblgcctive? Telle est la question globale qui
nous intrigue.

Cette question donne lieu a un certain nombre de défis ayéird ta découverte automatique
de modéle. Nous décrivons les défis les plus importantsssedes :

Défi 1. Mécanisme de découverte : générative ou satisfactiate contraintes ? Notre re-
cherche a commencé avec I'exploration des mécanismesigsigiour automatiser la généra-
tion / découverte de modéles dans un domaine de modélis&tmus classons les approches
existantes que so@énérativeou ceux basés sur gatisfaction de contrainted a question était
de savoir lequel est le plus prometteur ?

Une approche générative tente a incrémentalment créer ddéles dans un domaine de
la modélisation par instanciation de I'objet. Par exemgbns [29], les auteurs présentent un
algorithme impératif et un outil pour générer des modeélésigsont conformes qu’aux spécifi-
cation,Ecore d’'un métamodéle. L'approche ne garantit pas la satisfacteocontraintes a partir
de sources hétérogénes de connaissances telles que s dedbonne formation. De méme,

Résumé en francais
(French Summary) 23

dans Ehrig et al[T82], les auteurs proposent une approckéelsur les grammaires de graphe
pour générer des modeles conformes a un diagramme de dlessere un model&core). Ces
modéles ne sont pas conforme a toute contrai@tes sur le métamodéle.

Les approches fondées sur la satisfaction de contraindegees de transformer un domaine
de modélisation & un ensemble de variables et de contraldessemble des contraintes est
résolu en utilisant un solveur de contraintes [91]. Une asipurs solutions de bas niveau sont
transformés comme des modeles du domaine de modélisattie. @pproche a éteé utilisée dans
des contextes spécifiqgues a un domaine comme les tests delladie systéeme Korat (Chandra
et al.) [28] est capable de générer des structures de doimpisnentées dans le framework
de Java Collections Framework qui satisfont des prédi€asméme, Sarfraz Khurshid dans
son these doctordl [83] présente I'outil TestEra tool patméger des structures de données Java
telles que les listes chainées, tree maps, jeux de hacleagapleaux tas, et les arbres binaires
pour les tests. Les deux approches sont limitées a deswstaate données standard et non pas
a la notion plus génériqgue de modeles. L'approche la plésdssant est I'outil UML2AIlloy
[92]. L'outil tente de transformer les diagrammes de cldd$se , qui ressemblent largement a
de métamodeles, a le langage de spécification formalleoi [[7Z]. On peut alors utiliser A-

LoY pour analyser modélesNd. en générant des exemples et des contre-exemples. Bien que
I'outil ne soit pas directement lié a la découverte du madélgse a transformer les éléments
d’'un diagramme de classe a un probleme de satisfaction deagtas dans ALOY. Toutefois,
UMLZ2Alloy ne transforme pas les éléments complexes d’uramédéle tels que I'héritage mul-
tiple et lesmultiple containersUML2AIlloy ne parvient pas a solliciter I'utilisation delAoy
lorsque la taille de le modéleNw. est grand, rendent cette qui rendre I'approche non scalable

Les approches génératives créent des modeéles progressivetme peuvent pas satisfaire
les contraintes simultanément. Par conséquent, un certairbre de modeles doit étre rejeté
parce qu’ils ne peuvent pas satisfaire les contraintescéteéquent, les approches fondées sur
le satisfaction de contraintes semblent plus prometteuses
Défi 2. Transformer la spécification d'un domaine de la modégation a un probleme de
satisfaction de contrainted_a spécification d’'un domaine de modélisation contient gearble
de concepts et de relations entre eux. Ces relations pentradder des contraintes complexes
qui ne sont pas facilement transformées en un probléme idéastibn de contraintes. En outre,
un grand nombre de concepts et de relations peut conduirepgobleme de satisfaction de
contraintes trés grand qui devient incalculable.

Par exemple, la transformation d'un spécification des métiéte a un probléme de satis-
faction de contraintes requiert un modele de contraintes ges constructions telles que :
Héritage multiple
Plusieurs conteneurs pour une classe
Propriétés opposées
Propriétés d’identité
Propriétés composite
La grande taille d'un métamodeéle tels que IsUavec environ 246 classes empéche la trans-
formation directe en un probléme de satisfaction de cortgaitraitable.

Défi 3. Transformer les connaissances provenant de sourceétRrogenes a des contraintes
Les connaissances provenant de sources hétérogeneséufiésp dans les différents langages

Résumé en francais
24 (French Summary)

de modélisation. Toutefois, pour la satisfaction de camtea, ils doivent tous étre transformés
a des contraintes dans une langage commun. Par exemplehéadé génération des modeles
de tests pour une transformation de modéles doit satidfesreontraintes spécifiées dans un
langage de contraintes textuelles, telles Qbgct Constraint Language, objectifs de test, et la
pré-condition de la transformation de modéles exprimés tlatangage de la transformation.
Défi 4. La génération de modeles doivent étre dans des limitesaniable et finis La dé-
couverte de modéles dans un domaine de modélisation r&cksgiénération de modeéles de
taille finie. Quels sont les heuristiques pour déterminéailee appropriée d’'un modéle qui soit
suffisant pour satisfaire a la connaissance a partir de esinétérogeénes de la connaissance ?
Défi 5. Détection des sources incohérentes de la connaissaha connaissance provenant de
diverses sources peut étre incompatible avec le spédificdti domaine de modélisation. Com-
ment pouvons-nous détecter de telles sources de conra@ssacompatibles et les éliminer ?
Défi 6. Validation de I'efficacite des modeledl est nécessaire de procéder a degériences ri-
goureusegjui qualifient les modéles générés par satisfaction deaates. La qualification ga-
rantit que les modeles sont effectifs ou utiles pour desotifgedonnés. Ces expériences doivent
tenir compte de 'effet de divers facteurs qui influent suglelité des modéles générés. Par
exemple, on peut se demander quelle est l'influence de laa@me de modeles multiples en
utilisant la méme solveur de contraintes sur leur efficamitéant que modeéles de test ? Les dif-
férents paramétres de solveur de contrainte ont ils undence considérable sur la qualité des
solutions ?

0.5 These

Dans cette thése, nous montrons qu'il est possible de déc@awomatiquement des mo-
deles effectifs dans un domaine de modélisation. Nous aheri@ probleme de la découverte de
modeéle effectif dans deux domaines de modélisation : (apMételes (b) Feature Diagrams.

Un métamodele est une spécification générale du domaindatigage de modélisation. Un
métamodeéle peut étre utilisé pour spécifier le domaine dingdge spécifique au domaine de la
modélisation. Cependant, les systémes logiciels exsttries composants ne peuvent pas tou-
jours étre modélisé ou transformé dans un langage de maitigfisa partir de zéro. Idéalement,
des composants fiables dans le temps doivent étre réutilasgs leur forme mature pour étre
combines avec d’'autres composants a fin de construire ubnsgdogiciel. Si nous voyons ces
composants matures comme des features alors les cominig@isssibles de features sont mieux
modélise avec le langage feature diagram aboutissant dgmeede produits logiciels (LPLS).
Les macro composants associés aux features peuvent étbinées dans des configurations
différentes faisant partie du domaine de modélisation dtufe diagram. Cette distinction entre
les modéles purs dans le domaine d 'un langage de modétigttia configuration des compo-
sants matures dans une ligne de produits logiciels perngenistruction dirigée par les modéles
a différents niveaux. Par conséquent, nous considérorasrdérme maniére les spécifications de
domaines de modélisation dans cette these.

Par conséquent, nous proposons deux frameworks pour lakrte de modéles qui spéci-
fient le framework général de la figutk 6 :

1. Le framework pour la découverte automatique de modékctdffdans le domaine de

Résumé en francais
(French Summary) 25

Possible Sources

1. Static Analysis of a
Model Transformation

2. Set of Existing Models

Hetereogeneous Sources of Knowledge

Domain-specific Sources
Required Types Treq Partial Model Transformation

Required Properties Preq || model Mp Pre-condition pre(MT) || Coverage Strategy S

Jussansnnnfunnnnnunnn

Metamodel
Constraints C

deﬁ,, s

Input Metamodel
Min

©Oemf

IVleffective

Finite Bounds | 4S€S | Cartier Model Discovery Framework A
Solver Parameters E! (\)
@emf v K@"mﬂ@fb&/

m Effective Modelling Domain
& 2 o7 defines set of effective models Meffective

FIG. 7 —Un framework pour la découverte automatique de modéiestiés

la modélisation spécifiee par un métamodeéle. Ce framewdrinesrporé dans I'outil
CARTIER.

2. Le framework pour la découverte automatique des proétfiestifs dans le domaine de
la modélisation spécifiée par un feature diagram. Ce frameesi incorporé dans I'outil
AVISHKAR.

0.5.1 Un framework pour la découverte automatique de modékeeffectifs

La figure[présente la vue d’ensemble du framework pour lawégte automatique de
modele effectif. Le framework est incorporé dans I'outh®X1ER. Le nom CARTIER vient
du célébre découvreur francais originaire de Saint-Malocagdécouvert les terres du Québec
au Canada. L'entrée principale du framework est la spétiitalu domaine de la modélisa-
tion donnée par umétamodéle d’entréd_e input métamodéle MM spécifie un ensemble de

Résumé en francais
(French Summary)

modélesM. Le métamodéle d’entrée se compose d’'un ensemble de tylpes€@vec des pro-
priétés, des enumerations, primitive) pour former des esdd'un langage de modélisation.
Concrétement, le métamodéle d’entrée est stocké commenstasmce du métamodélecBRE
qui fait partie de la norme de I'industrigclipse Modeling Framework (EMF) [58]. Les modéles
eux-mémes sont stockées sous forme de fichiers KMI [10] fishaprésentant des instances du
métamodelécore.

Les sources hétérogénes de connaissantiestent le domaine de la modélisation spécifié

par un métamodele :

— TypesTieq et propriétés Peq requisesdans le méetamodele d’entrée. L'ensemble des types
et propriétés requis aide a extraire un sous-ensemble cammodele d’entrée appetdé-
tamodele effectifLe métamodéle effectif précise le sous-ensemble de moblgle M. II
peut y avoir plusieurs sources possibles pour I'ensemldayges et propriétés requises :
— L'analyse statique d’'une transformation modele donnensemble de types et de pro-
priétés dans le métamodeéle d’entrée effectivement mahjma la transformation.

— Un ensemble de modéles conformes au métamodéle d’entréaesautre source de
types et propriétés requises. Visiter les modeles dansdiable nous donne un en-
semble de types et propriétés utilisées dans le métamadiexemple typique de cette
initialisation dans le monde réel pourrait étre dans unle sk classe pour la concep-
tion orientée objet en utilisant L. Le professeur peut faire remarquer aux éléves les
types et propriétés requises, utilisé a créerLlJen visitant automatiquement tous les
objets d’'un ensemble de modéles.

Contraintes sur métamodeéleC sont exprimeés sur un métamodéle d’entrée en utilisant un

langage de contraintes textuelles, telles@jpject Constraint Language (OCL) [I14]. Ces

contraintes encodent des restrictions qui ne peuvent @éefges en utilisant un modéle

Ecore. Nous illustrons ce dans I'ensemie C M.

Les sources spécifiques a un domaine de connaissanpeavent également aider a défi-

nir le domaine de la modélisation effectif. Nous en présenuelques-unes ci-dessous :

— Le modele partiel m, est un modeéle partiellement spécifié qui utilise les métarteod
d’entrée. Par exemple, un éditeur de modele graphique péroreutilisateur de créer
des modéles dans un langage de modélisation telles que &snas d’'état WiL. Un
modéle incomplet dans I'éditeur est un modele partiel dangdge machine d’état de
UML. Le modéle partiel peut ne pas respecter toutes les comsaitu métamodéle
UmL. Par conséquent, un modele partiel est souvent exprimé eammiinstance d’'un
version relaxée du métamodeéle d’'entrée modele partiel définit le sous-ensemble
M3 C M.

— La stratégie de couvertureSaider a définir et générer démgments de modeldS5]
qui couvrent un large éventail d'aspects structurels damadtamodeéle d’entrée. Par
exemple, la stratégie d’'une partition de domaine d’entréenpt de générer un en-
semble de fragments modélb&- qui couvrent les partitions sur tous les types et
les propriétés du métamodeéle d’entrée. Ces fragments deélesodider a définir un
domaine de modélisation effectif pour woverage-based testindune transforma-
tion de modeles. Tous les modeéles de test qui répondent dnamégée de couverture
contiennent le modéle de fragments générés par la stratégidragments de modeéles

Résumé en francais
(French Summary) 27

sont exprimé dans un langage de modélisation qui permetétéspr des rangs sur
les propriétés d’'un métamodéle d’entrée. Une stratégieodeecture définit le sous-
ensembleéMy C M.

— La pré-condition d’'une transformation pre(MT) est un ensemble d’invariants sur
le métamodéle qui est spécifique a une transformation de lesldd . Une transfor-
mation de modeles ne peu souvent pas étre congue pour traesfmus les modéles
spécifiés par son métamodéle d’entrée. Par exemple, |ddraresion des modeéles de
diagramme de classe vers des modeles entité relation diaggd22] exige que toutes
les classes dans le modéle d’entrée aient au moins un atpringipal. LeOCL [114]
est souvent utilisé pour exprimer des pré-conditions. #agandition définit le sous-
ensembléMs C M.

L'intersection de toutes les sources de connaissancestdéfidtomaine de la modélisa-
tion effectif Le domaine de la modélisation effectif est I'ensemble deslétes définis par
Mef fectives— MM M1 N M2N M3z Mg Ms.

La méthodologie pour la découverte de modéles utilise lesces de connaissances pré-
sentées ci-dessus pour générer automatiguement des medfeletifs dans le domaine de la
modélisation. Nous suivons les étapes ci-dessous :

Etape 1. Identification métamodéle effectif :Nous élaguons les métamodeéle d’enthél;,
pour obtenir le métamodéle effedifMef fectiveutilisant un algorithme d’élagage de métamodele[141].
Le métamodele effectifs contient 'ensemble des tyfeget propriétés requiseeq fournies

en entrée et toutes ses dépendances obligatoires calculélgarithme de I'élagage métamo-
déle. Tous les types de biens inutiles et sont élimiiv8¥ef tective €St UN super type delMi,
d’'un point de vue théorie de typage et un sous-ensembléMg d’un point de vue théorie des
ensembles. La taille du métamodéle effebtife+ rective€St SOUVENt beaucoup plus petite que la
taille du métamodéle d’entrédM;p,.

Etape 2. Transformation de la spécification de domaine efféi¢ & A LLOY : La spécification
de domaine effectif de la modélisation est définie par uraserombre d'artefacts. Elle est
d’abord définie par le métamodeéle effed#Me1 tective €t CONtrainte par la connaissance d'une
ou plusieurs sources : (b) Contraintes sur metamadi¢ly Modele partieim, (c) Modeéle frag-
mentsMF de la stratégie de couvertug et (d) Pré-conditiorpre(MT) d’une transformation
de modéleMT. Nous transformons ces artefacts exprimés dans des landdfgzentes, éven-
tuellement a urconstraint satisfaction problem (CSP) dans la langage pour la spécification
formelle ALLoY [[71] [[Z2]. Le formalisme théorique pour exprimer le CSP edbgique rela-
tionnelle de premier ordre.

Etape 3. Génération de modéles dans un domaine de modélisati effectif : Nous résol-
vons le CSP enALoy pour générer des modéles effectifs dans le domaine de lalisetd.
CARTIER atteint cet objectif en invoquant KodKod[53] enLoy de transformer le CSP a
Boolean Conjunctive Normal Form (CNF) . Nous invoquons wileeir de satisfiabilité (SAT)
comme MiniSAT [112], ZChaff[[159] pour résoudre le BooleaNF Enfin, nous transformons
des solutions a faible niveau de la CNF vers des modéles mnagau métamodéle d’entrée
MMin.

La génération de modeles dans un domaine de modélisatisow@stnt orientée vers un ob-
jectif. Nous devons nous assurer que I'objectif est aténaniére cohérente en tenant compte

Résumé en francais
28 (French Summary)

uses eeresr
H

Hetereogeneous Sources of Knowledge ED omain-specific Sources

Textual Partial ! | T-wise Strategy S \

Constraints C Product P | i H

Feature Diagram
FD

P effective

Finite Bounds |4S€S | Avishkar Prqduct Discovery Framework

Solver Parameters (\)" E!
N f)
O oo Effective Modelling Domain

& X & |defines set of effective products P effective

FiG. 8 — Un framework pour la découverte automatique de proédfiestifs

de tous les facteurs déterminants. Une question typiquegteiquel est I'effet d’'un solveur
SAT sur la qualité de la solution ? Pour répondre a cette mueabus avons besoin de réali-
ser des expériences qui génerent plusieurs solutions paunéie probléme de satisfaction de
contraintes. Il existe de nombreux autres facteurs pogukds nous effectuons des expériences
rigoureuses pour valider I'efficacité de la découverte. Dartte thése, nous réalisons des expé-
riences dans les domaines d’application suivants :

1. Génération de modéles de teste pour les transformatiomodéles
2. Complétion du modele partiel dans les éditeurs de modetihaine spécifique

0.5.2 Un framework pour la découverte automatique de produs effectifs

La figure[® présente la vision globale du framework pour ladgerte de produits effectifs.
Le framework est incorporé dans I'outiVASHKAR. AVISHKAR en hindi signifieinventionet
représente capacité de I'outil a découvrir les produitssdame LPL. L'entrée principale du
framework est la spécification d’'un domaine de modélisadimmée par ufeature diagranou
feature modelLefeature diagram Fpécifie un ensemble de produitd_esFeature Diagrams

Résumé en francais
(French Summary) 29

(FD) introduits par Kang et al]T78] représentent tous lexlpits (ou configurations) d’un LPL

en termes de features qui peuvent étre composés. Les Fditgrams ont été formalisés pour
effectuer des analyses des LPL[IL36]. Dans [136], Schobbtmas. proposent une définition
générique formelle de FD qui subsume les nombreux dialé&dDesxistants. Nous définissons
un FD comme suit :

— Un FD se compose defeaturesfy, fo, ..., fx

— Un featuref; peut étre associé a un morceau de logiciel.

Les Features sont organisés dans une relation paremitet#ias un arbrd. Un feature

sans enfant est appelé une feuille.

Les relations parent-enfant entre les featuest f; sont classée comme suit :

— Mandatory- enfant featuref; est requis sif, est sélectionné.

— Optional - enfant featuref; peut étre sélectionné $§j est sélectionne.

— OR-au moins un des enfantg,, fe,..,fc3 de fj, doit étre sélectionné.

— Alternative (XOR} I'un des enfantdcy, feo,..,fck de fp doit étre sélectionné.

Relations a travers l'arbre entre deux featufiest f; dans I'arbreT sont classés comme

suit :

— fi requiresf; - La sélection de; dans un produit implique la sélection dle

— fi excludesf; - fj et f; ne peuvent pas faire partie du méme produit et surttellement
exclusives

A partir du FD nous créons des produits / configurations deifes.

Un certain nombre de sources hétérogénes de connaissancestraignent le domaine
spécifié par un FD
— Contraintes textuelsC exprimée sur un ensemble de features. Les contraintes sont e
primées textuellement quand elles ne peuvent pas étraatimeat encodées dansH®.
Ces contraintes précisent le sous-enserRble P
— Produit partiel p est un ensemble de features choisis dans le produit. L'drisetes
features peut nécessiter la sélection d’autres featur@sqgenir un produit complet. Le
produit partiel précise le sous-ensemBje- P
— Stratégie T-wiseS est une stratégie de génération de produits pour détectetédauts
dans les lignes de produits logiciels]90]120]. Le granchbee de produits visés par un
feature diagram peut étre échantillonné en utilisant uraéégfie tels qud — wise L'ob-
jectif est de générer un nombre minimal de produits qui centva toutes les interactions
T — wiseentre les features. Par exemple,RiD avec 25 options (voir la figuid 5) spécifie
au moins 2° produits. Une stratégie-2wiseol T = 2 permettra de sélectionner de seule-
ment 4x »5C, = 300 produits qui couvrent toutes les interactions entreepale features.
La stratégiel — wisepour une valeur particuliére despécifie le sous-ensemidig C P.
L'intersection de toutes les sources de connaissancestdgfidomaine de la modélisation
effectif Le domaine de modélisation effectif est 'ensemble desdlyite définis paPes fectit <
PNnPiNP.NPs.
La méthodologie de découverte utilise les sources de cesaraies présentées ci-dessus
pour générer automatiquement des produits dans le domeilzendodélisation effectifFD. La
génération se fait selon les étapes suivantes :

Résumé en francais
30 (French Summary)

Etape 1. Transformation du feature diagram vers ALLoY : Nous transformons un feature
diagram vers un probleme de satisfaction de contraintesladangage formelle Aoy [[/2]
[!ZI]].

Etape facultative. Transformation des produits partiels vers ALLOY et leur complétion :
Nous pouvons transformer un produit partelers ALLoY. Cela génére un prédicatLAOY

qui représente des informations partielles sur les fesitsétectionnés dans le produit partiel.
On peut alors résoudre le modeélelY pour générer un ou plusieurs produits complet.
Etape 2. Génération de tuplesT — wiseet la détection de tuples valide a l'aide d’ALoOY :
Dans cette thése nous nous concentrons sur la création digitsrqui couvrent les interaction
T —wiseentre features. Nous avons d’abord généres les prédicatsyAreprésentent les tuples
T — wiseet détecte ceux qui ne sont pas compatibles avec les caagaans lé&-D.

Etape 3. Gestion de la taille des produitdNous proposons les stratégigiside-and-compose
pour générer un ensemble de produits qui couvre les tuplésatieres représentant les interac-
tionsT-wise. L'approche divise le probléme de satisfaction poustles tuples. Nous résolvons
de multiples modéles L0y avec ces sous-ensembles pour obtenir des ensembles dégprodu
Les ensembles de produits sont fusionnés en un ensembldématoduits.

Le framework peut-il constamment decouvrir des produifsabées d’'atteindre leurs objec-
tifs ? Par exemple on peut se demander quel est I'effet dedeegie divide-and-compose sur
la redondance des produits générés ? Pour répondre a cettiiogunous avons besoin de gé-
nérer des produits compte tenu de tous les autres factetersrigants. Dans cette thése, nous
validons notre framework a I'aide d’expériences rigouesudans les domaines d’application
suivants :

1. Génération de produits de tests qui satisfont aux csitdednteraction-wise.

2. Avec nos travaux en cours, hous montrons que notre frankgyeait effectivement échan-
tillonner I'espace Qualité de Service (QoS) d’'un service dgnamique. La variabilité du
service web dynamique est modélisée ave€& Dn

0.6 Contributions

La définition des frameworks découverte de modéles et daufisoont conduit aux contri-
butions scientifiques dans cette thése. Nous expliquonsocesbutions dans les sous-sections
suivantes. Nous citons les publications pertinentes defm@nces par des pairs et des revues.

0.6.1 Contributions a la découverte automatique modele efttif

Contribution 1.1 Nous présentons un framework global pour la génération dehas effectifs
de taille finie a partir de tout langage de modélisation etraimts par des sources hétérogenes
de connaissance. Le framework est incorporé dans I'outit1@ER. Nous utilisons le langage de
spécification formelle ALOY pour sa capacité a définir des contraintes sur les graphbgtso
et donc a représenter le métamodéle comme un probléme dfastidin de contraintes. Cette
contribution résume la réponse a tous les défis présentédalaectio 0J4 pour un domaine de
modélisation spécifié par un métamodele. LoutdFT IER, est présente daris [13d],[138].

Résumé en francais
(French Summary) 31

Contribution 1.2. Le framework transforme touts les éléments d’un métamodgie ALLOY
pour la satisfaction de contraintes. Il traite égalemestrdétamodeles avec héritage multiple
en l'aplatissant vers I'héritage simple enlfoY. En outre, le framework présente la transfor-
mation de contraintes imposées par multiple containepsife properties, identify properties,
et composite properties vers des faitsLAY . Cette contribution adresse défi 2 de la sedfigh 0.4.
La transformation vers ALOY a été brievement décrite dans deux de nos contributiond [138
and [140].

Contribution 1.3. Le framework est construit en utilisant Kermeta pour tragienultanément
traiter des modeéles venant de langage différents. Chaqueesde connaissance est exprimée
comme un modeéle dans un langage de modélisation. Par exeda@sldragments de modéle
sont exprimés en tant que modéles d’'un langage de fragmemélendKermeta peut charger,
enregistrer et manipuler simultanément des modéles aoef®a des métamodeles différents.
Par conséquent, ARTIER, écrit en Kermeta, transforme la connaissance des dif8rmadéles
vers des faits dans le langage cibleLAy . Cette contribution adresse le défi 3 de la sedfioh 0.4
et est publié dans nos papiers [IL38]103].

Contribution 1.4. Nous présentons un algorithme pour élaguer un métambd@élefLi utilise

un ensemble de types et propriétés requises pour généreétamadéle effectif a partir d’'un
grand métamodeéle. Le métamodeéle effectif est souvent gtisgh peut facilement étre trans-
formé vers A Loy comme un probléme de satisfaction de contraintes. Cetteilmation porte
sur une partie du défi 2 de la sectlonl0.4 est présentée daapitr [{L41].

Contribution 1.5. Le framework inclut la possibilité de définir des bornes geurombre d’ob-
jets de chaque type dans le modeéle. Il transforme aussi leBoss du solveur SAT en &

Loy vers des modéles de haut niveau conformes a un métamodéjgnisation de modéles
conformes a des sources hétérogénes de connaissance gerddéerminer les incohérences
le cas échéant. Des sources incohérentes de connaissama®isonodifiées ou supprimees a
partir de la spécification du domaine de modélisation effedCette contribution porte sur les
défis 4 et 5 de la sectidn 0.4 et est publiée dans][138] et [140].

Contribution 1.6. Nous validons la pertinence des modeéles générés avec lédenges sui-
vantes :

— Geénération de modeles de test pour des transformations de rdeles :Nous générons
des milliers de modéles pour une transformation représemntdNous utilisons I'analyse
de mutation[[107] pour démontrer que les modeles de teshabigeuvent détecter 93%
des bugs par rapport a une génération aléatoire qui dét@%iel@s bugs. Nous montrons
que la stratégie de partitionnement n’est pas affectée iparsdbiais tels que la dépen-
dance au solveur A 0Y. L'étude expérimentale est publié dans]i139] et la versonrjal
en revue([[128].

— La complétion du modéle partiel dans les éditeurs de modeleeddomaine spécifique :
Nous utilisons notre framework pour produire des recomrafos et compléter les mo-
deéles partiels dans I'éditeur de modele ATO[A7]. Nous montrons que notre framework
peut automatiquement compléter des modéles partiels dadsliteur de modéle. Les
expériences montrent que cela peut étre fait pour les ptsiples dans des délais rai-
sonnables. Ces travaux sont publiés dans|[181]][140].

Cette contribution adresse le défi 6 de la sediioh 0.4.

Résumé en francais
32 (French Summary)

0.6.2 Contributions a la découverte automatique produits ectif

Contribution 2.1. Nous présentons un framework global pour la production dduyits effectifs
dans une ligne de produit logiciel spécifié par un featurgrdia. Le framework est incorporé
dans l'outil AvISHKAR. Le framework contient la transformation d’'un feature dsag vers
un probléme de satisfaction de contraintes en@y . Le framework invoque un solveur sur le
modéle A.LoY pour automatiquement générer des produits conformes audatiagram. Cette
contribution résume la réponse a tous les défis dans la se®gictio O pour un domaine de
modeélisation spécifié par un feature diagram.

Contribution 2.2. Etant donné un ensemble des features sélectionnes (digpdmon dispo-
nible) le framework utilise ALoy pour détecter si un produit peut étre créé a partir de cette
sélection. Une contrainte par exemple dit que la feafyrest présente dans le produit, tandis
que f2 ne devrait pas étre présente.fpist un élément obligatoire alory/ SHKAR utilise AL-

LOY pour détecter que la contrainte n'est pas valide. Cetteibatibn adresse le défi 5 de la
sectiof0H.

Contribution 2.3. Passage a I'échelle de la génération de pduits de test a partir d'un fea-
ture diagram Des travaux précédents ont transforme des FD vers un ensembbntraints. Par
exemple, Cohen et. al. ont appliqué les tests d'interact@mbinatoire pour systématiquement
sélectionner les configuratioris_[42] a partir d’'un featusghm. lls considérent les différents
algorithmes afin de calculer les configurations qui répondettes critéres pair-wise et t-wise
[47]. Les contraintes imposées en raison de relations ®lesefeatures sont résolues en invo-
guant les SAT solveurs tels que ZChaff [L59]. Toutefoisr lpproche n’est pas trés extensible
si 'on considere les feature diagrams de grande taillereNfohmework contient des stratégies
divide-and-composeisant a scinder le probléme de la génération de produitestesatisfai-
santT — wiseen sous-problémes. L'outiNMASHKAR résout les sous-problemes et fusionne les
résultats dans un petit ensemble de produits qui conti¢noes les tuples valides requis par le
criteresT — wise Ce mécanisme rend notre méthodologie évolutive pour gé&s produits
dans une ligne de produits logiciels. Cette contributioressk le défi 4 de la sectibnl0.4.

Contribution 2.4. Validation de I'efficacité des produits de test: Il est nécessaire de réaliser
des expériences qui valide la pertinence des produits ég@adiaide de notre framework. Nous
effectuons des expériences pour générer des produits datnré diagram AspectOPTIMA.
Nous montrons qu’une certaimedondanceest introduite dans les produits en raison de straté-
gies de divide-and-compose. Dans les travaux en cours, efteetuons des expériences pour
générer des configurations différentes d'une orchestrati;mamique de services Web. Nous
démontrons que la qualité de service d’'un service compuwaite en fonction de différentes
configurations du web-service. Ces expériences d'analyss aident a identifier une méthodo-
logie effectif pour la définition d’accords contractuelsuptes services Web dynamiques.

Les contributions ci-dessus sont publiées dansi[120]. ipéepdil4] applique I'outil de dé-
couverte de produits WSHKAR a l'analyse des variables de la QoS dans une orchestration de
services web. L'article [80] a été soumis pour vérifier I'egpghe d’'une maniéere globale avec les
grandes études de cas.

Résumé en francais
(French Summary) 33

0.7 Organisation de la these

La thése comprend 6 chapitres, dont I'introduction. Les&pihes suivants sont organises

comme suit :

— Chapitre P : nous introduisons le contexte de IDM et I'émt’drt dans la découverte
automatique de modeéles effectifs dans un domaine de matiétis

— ChapitrdB : nous présentons la découverte automatiquendeles effectifs dans le do-
maine spécifié par un métamodéle.

— Chapitrd® : nous présentons une validation empiriqueaggptoche présente en Chapitre
B. En particulier, nous nous concentrons sur deux domaitagmplitation pour la vali-
dation : (a) la génération des modéles du test pour une tranafion de modéle (b) la
complétion partielle de modeéle dans I'éditeur de modeleM¥o

— Chapitre[b : nous décrivons I'approche de découverte attque de produits de test
dans une LPL. Nous validons empiriguement le framework f@wuedondance dans les
produits générés.

— Chapitrdb : nous résumons notre travail et ses perspecti@is décrivons brievement
nos travaux en cours sur I'analyse de la variabilité de tudk service dans un service
de web dynamique.

34

Résumé en francais
(French Summary)

35

Chapter 1

Introduction

Model-driven engineering (MDE) is an approach to specifyngtruct, validate and maintain
complex software systems using first class artifacts cafledels MDE has emerged from
a number of areas in software development such as objestted analysis and design lan-
guages, object-oriented methodologies! [2Z4] [73]]1271] &omputer-Aided Software Engi-
neering (CASE) endeavours in the 80s and 90s to automateatsteps in software engineering
[L13] [22].

Models aregraphs of inter-connected objedtsa modelling domain A modelling domain
defines aset of modelsvhere each model is constructed using a common set of canaegtre-
lationships. For instance, in this thesis we consider tleeifipation of two modelling domains:
(a) metamodelghat specify a set of models in a modelling languagefédjure diagramsor
feature modelshat specify a set of product models or simply products in #&me Product
Line (SPL). Very often the creation of useful eifective modelg a modelling domain require
the satisfaction of constraints from heterogeneous seurEer instance, creating a workflow
model for a business process using the well-knawified Modelling Language (UML) activ-
ity diagram requires the model to satisfy well-formedness rules, business logic, economic
constraints, quality of service constraints, and secuesyrictions. Human modellers with expe-
rience incrementally create such effective models byljeeitsuring that the models acerrect
by constructionand satisfy constraints from heterogenous sources. 8tllladl, this process
is extremely tedious and sometimes impossible if there isalrio create thousands of mod-
els. Can we automate the creation of effective models given the te¥ogenous sources of
knowledge?This is the question that intrigues us and the subject ofttlasis.

The introduction is organized as follows. The notion of efifee model discovery situates
itself in the global contextof discovering effective structures in science and enginge We
briefly describe this global context in Sectlonl1.1. Thiste@ddresses the problem of automat-
ing discovery in the contemporary and specific context of Mitiich we describe in Section
[L2. A number of scenarios in MDE necessitate generatiofffeftere models. Our motivation
stems from these scenarios that we describe in Sdciibnri Sedtio LK, we present the gen-
eralproblem contexand its challenges. We present our thesis and describe tivedaotogy for
automatic effective model and product discovery in Sedfidh We enlist the contributions of
our thesis in Sectiofp1l.6. Finally, we present the orgainizaif the thesis in Sectidn].7.

36 CHAPTER 1. INTRODUCTION

Target genes

Mdm2 p21 Noxa
Cop1 Ptprv Bax
Pirh2 Puma

S

Cell cycle arrest Apoptosis

Soil Food Web P53 Tumor Supressor Pathway
(a) (b)

Figure 1.1: Effective Structures in Scienctific Discove(g) Soil Food Web (b) Tumor Suppres-
sion Pathway

1.1 Discovery of Effective Structures in Science and Engimging

Scientific discovergften culminates into representing structure in natuneeworks of entities
or graphs of objectsFor instance,

e Food websare representations of the predator-prey relationshipsdas species within
an ecosystem or habitat. A common example issthié food webshown in Figurd_T]1.
The soil food web is often found in a garden bio-compost.

e Biochemical reaction networksor metabolic pathways represent vital molecular ex-
changes in living beings. The widely studitanor suppressor pathwahown in Figure
L3 (b) illustrates the crucial role of protein p53 in celbte Cell death is important in
order to regulate cancerous growth.

Knowledge from experiments, data analysis and mental feait to the discovery of such
effective structurem nature. The existence of effective structures is nottéohio the virtuosity
of nature. We humans are endowed with the ability to reptemsed create effective structures
such as buildings, bridges, robots, and complex software.

Design in engineeringften results into representing effective man-made sirastas graphs
of objects. For instance,

e Electronic circuits diagrams represent a network of electrical components that achieve
a given purpose. ThEM Receiver Circuitshown in Figurd_1]2, for instance, is used in
millions of radio devices.

CHAPTER 1. INTRODUCTION 37

t;L— POCKET FM RECEIVER
o

®
5.6k 59 Subject
1uF absarver Observer
= 33k |+Attach(in Observer)
[+Detachiin Obsarver)| [FUpdate()
sgonF [+Notify()
} BC550C
Q BC550C 4.7uf
Bcseoc 1 "
T 1+—
[I]] - B subject [EonETEteObsCrVer
© =T TUpamal
=101 /0.5 mim SWG25 d= 3 ' ‘
L2 =12 turn /0.5mm SWG25 d = 5mm
L3=4turn/1.2mm SWG18d = 5Smm observerState = &
subjecl GelState()
FM Receiver Circuit Observer Pattern in Software Design

(a) (b)

Figure 1.2: Effective Structures in Engineering: (a) FM Ra@ircuit (b) Observer Design
Pattern

e Software Design Patternsrepresent general reusable solutions to commonly ocegurrin
problems in software design. They are often representetlags diagramsn object-
oriented software engineering.Thbserver patterin Figure[T2 (b) is a common pattern
in software requiring distributed event handling. The wkelbwn photo editing program
Adobe Photoshop is one such software product.

Very much like discovery in science, design in engineerimguided by knowledge from
a number of sources coupled with the creativity of an engin€an this process of scientific
discovery or design in engineering using various sourcdsnofvledge beautomate@ This
question has been a subject of study for several decadetheiddvent of the modern computer.

Computer programs have been used to discover structureuneng-or instance, inspired
by Karl Popper’s logic of scientific discovery [123], Pat Iggey, Herbert Simon, G. Bradshaw,
and Zytkow developed several computer programs such asnB&lauber, Dalton, and Stahl
described in their book[94]. These programs were guided dayistics to successfully re-
discover historical laws in chemistry.

Evolutionary computing approaches have been develop tmreaie design in engineering
such as generation of electronic circuitsl[88]. Computegmms implementing an evolutionary
approach contest for the "Humies Award" conferred each getitre GECCO conference. The
award of $10,000 is given to the approach with most humanpetitive results. In the soft-
ware engineering community, recent conferences such asutoenated Software Engineering
(ASE) conference provide competitive venues for presgrdipproaches to generating software
structures.

In this thesis, we address the question of automatic disgamethe contemporary context
of Model-driven Engineering of complex software systems.

38 CHAPTER 1. INTRODUCTION

1.2 Context: Model Driven Engineering

MDE [110] aims to grease the wheels of complex software mmeaising first class artifacts
calledmodels The MDE philosophy is using models to represent importéifaats in a system
such as requirements, high-level designs, data structuess, interfaces, model transforma-
tions, test cases, and implementation-level artifacth sgcsource code. A model is constructed
in amodelling domairthat captures a set of common concepts and relationshigscdristruc-
tion of a model in a modelling domain may be further consedinsing well-formedness rules
and constraints from various sources.

The general notion of a modelling domain can dpecializedin many ways. A precise
specification of concepts and relationships that define$ afseodels is a modelling domain.
For instance, anetamodetpecifies the modelling domain of a modelling language. Tak-w
known Unified Modelling Language (UML) modelling language [116] has its own metamodel
that specifies the set of allllL models. Another, example of a modelling domain feature
diagram or feature modelhat specifies a set of products in a Software Product Line(SP
Models in a modelling domain can be loaded/stored, manipdjaand transformed to other
models/implementation artifacts to solve software pnotse

MDE provides a number of software processes and technaslagiallow creation of mod-
elling domains and the transformation of its models. Histily, the Model-driven Architecture
(MDA) trademark marketed by the Object Management Group G)Npresents a model-driven
approach to system development. The MDA approach begirela®went of a modelling do-
main for platform-independent models (PIMs), which areengentally transformed or refined
into lower-level platform specific models (PSMs) in anothesdelling domain. The PSMs are
reified into implementation artifacts such as implemeatattode. This automatic construc-
tion of systems from high-level models allows software aegring expertise to be captured as
reusablanodel transformationgpplied more reliably and efficiently. Currently, the wiglel-
cepted framework for specifying modelling domains is Haépse Modeling Framework (EMF)
[58]. For instance, metamodels are created in the EitBre format to specify the domain
of a modelling language. Model transformation_[142] largegsuch as the imperative Ker-
meta [82] [108], rule-based ATIC[T6[75[]3], graph gramnizsed AToM [67], Viatra [156]
transform models. Model transformation languages area&gdeo conform to the Query-View-
Transformation (QVT) standard[l75]. Different types of mbttansformations can be created
using these languages as classified i [44]. Model transftioms may transform models within
the same modelling domain (endogenous transformatioretyyden different modelling do-
mains (exogenous transformations) and even realize thsic# view of generating executable
code from a high-level model.

Our focus in this thesis is the automatic discovery or compassited discovery of models
in a modelling domain.

1.3 Motivation: Why the Need for Automatic Model Discovery?

Our motivation for automatic discovery in the general cattg model-driven engineering stems
from existing computational discovery endeavors in hgfenous domains. Computational dis-

CHAPTER 1. INTRODUCTION 39

MM | specifies input MTrows MM |
mode set : used fo devélop Ospecifes output

@ e [MT(1,0) i % 2%

Figure 1.3: A Model Transformation

model set

covery approaches in these domains range from systemghif&] [12€], to engineered physi-
cal systemd[97]1132[196]188]. We see automatic discpareffective models in a modelling
domain as general framework subsuming existing approachefective structural discovery
in heterogeneous areas. MDE of software systems is no éanejr this thesis, we investigate
three scenarios in MDE as described below:

1.3.1 Scenario 1: Test Generation for Model Transformatios

Model transformations are core software artifacts in MDESiiple model transformatiol T
takes input models conforming to an input metamaddél, and produces output models con-
forming the output metamodéiMp as shown in Figur€ll.3. Not all models specified by
the input metamodel can be processed by the model trandformarherefore, we compose
pre-conditionspre(MT) that restrict some models from being processed by the moates$-t
formation. The output models must also satisfy a set of cams$ called the post-condition
postMT). The model transformation itself is built using knowledgenfi a set of requirements
I\/rl—Requirement‘s

Testing a model transformation requires input model thatdstect bugs in the transforma-
tion MT. Manually creating such test models is tedious since thestine graphs of objects
that must conform tdM,, pre(MT), and use information frorM Trequirements Manual creation
becomes impossible when we need to create thousands ofesiainddels that encode differ-
ent test objectives. Therefore, there is a clear need taraithe generation of test models
that satisfy knowledge from various sources sucMa4, pre(MT), and use information from
MTrequirements The automatic generation of input models exalts to thel lekautomatic dis-
covery of test models if we validate that they can indeedalddegs in a transformation. We
can qualify the effectiveness of test models via technicue$ agnutation analysisor model
transformations[[107]. Based on a description of this scéenawe askhow do we generate test
models and qualify their bug detecting effectivefless

1.3.2 Scenario 2: Partial Model Completion in a Model Editor

Modellers often use model editors to incrementally builddeds. For instance, the TopCaseD
editor [54] can be used build ML models as shown in FigufeTl.4. The model shown is an
incomplete WL state machine. The model does not have an initial state whidthtes a well-
formedness rule. There are infinite possible ways to complet model such that it becomes a

40 CHAPTER 1. INTRODUCTION

Java - SagarThesis2010/Chapterl/figures/testModel.umldi - Eclipse SDK - /Users /sagarsen/Documents /ResearchPapers

jmaj vjkvcqujg«ﬁ@ngeq‘v] JA‘J J.~ e ~J¢: |8 | BR |t H|E0E] |[¢2LF|we =T

s testModelumidi &5 =) —
/SagarThesis2010/Chapterl
[} Select

=

» {7} Marquee

JNote

= Objects @
(1) Region
@ State

G Composite State

3 Submachine Stare

) ConnectionPointReference ez
@ FinalState .

(= Pseudostates ©

o Iniia ©
@ Deep History
@ shallowHistory

I toin

o Fork

I I Jez el BE)

Figure 1.4: Partial Model in the TopCaseD UML Model Editor

valid UML state machine model and satisfies all the well-formedndss oif a state machine.
What is probably more interesting is the nearest considient state machine that contains all
elements of the partial model. There may be a number of pbsegto complete such partially
specified models. We can relate automatic model completidhet automatic code completion
problem in programming environmen{s [15]. This scenarises the questionHow do we
automatically discovery complete models or recommendatio complete partial models?

1.3.3 Scenario 3: Generation of Products in a Software Prodzi Line

A Software Product Line (SPL) references to a set of prodalesing a common, managed set of
features that satisfy the specific needs of a particulariomg87]. A Feature Diagram(FD) or a
feature modespecifies of a modelling domain for a SPL. Feature diagramnsdnced by Kang
et al. [71] [78] compactly represent all the products of ah 8Rerms of features which can be
composed. A FD consists kfeaturesfy, fo, ..., fx and dependency constraints between features.
For instance, selection of some features in a product mayputsorily link the selection of
other features. Further, some of the features may be atsteiath a software asset such as
web service. Consider the FD for a car crash crisis managesystem in Figuré&Il5. The FD
contains 47 features where 25 of them are optional. Someeofelitures are associated with
services or software assets. The FD describes 335,54, ffi82=di configurations of features.
Can software assets in all configurations be composed intié product? Answering this

CHAPTER 1. INTRODUCTION 41

‘ Crisis Management .
- System
T

Communication

CrisisType

Major Accident

_Cal Crash

FirstAidMaterial vi External

Service Used
—

Remove Obstacle Fire department

Garage Tow
Truck

Medical
Services
A

Private

sere . Mission D

Transport E)l
‘ Investigation .

(Gurse e weunees 15
‘ Sort the wounded |)

Authentication
System
Surveillance
System
Company

\
[Hospital Worker |
& Dostor) Ambulance)

Figure 1.5: A Feature Diagram for Car Crash Crisis Manager8gstem

Legend

Mandatory
—O Optional
< XOR

[
Service
Asset

[Public Hospital |

requires creating either all products or a representatitaset of all products. For instance, what
are the set of all products that contain all valid pairwigeraction between features? Creating
these products will help us reveal invalid products. Malyualeating products that satisfy all
FD constraints is very tedious. Therefore, we dsky do we automate product generation in a
software product line for various objectives?

1.4 Problem Context and Challenges

We are motivated by the need for automatic generation ottfe models in a modelling do-
main. The problem context for automatic model discovenhmm in Figurd_LB. The context
identifes the following inputs:

e Specification of a Modelling Domain: The modelling domain specifies a set of models
M. Examples of modelling domain specifications are metamiodehodelling languages
and feature diagrams for SPLs.

e Heterogenous Sources of Knowledgddeterogeneous sources of knowledge
Sourcg, Source,...Sourcg possibly in different modelling languages specify subséts
the modelling domaitMy, M, .., Mk. The intersection of these subsets
M1, Mo, ..., My is the effective modelling domain represented by a set efcéffe models
Metfective We can see the heterogeneous sources of knowledge as aceasthints in
different languages that limit the set of modMgo a subseMej fective

Given these inputs we ask: What is the automatic discovergharésm that can create
models in the séWetective? This is the global question that intrigues us.

42 CHAPTER 1. INTRODUCTION

Hetereogeneous Sources of Knowledge

[sourcel |[Source2 | _ _ _ [Source k|

Modelling Domain
Defines set of all models M

IV'effective

m Effective Modelling Domain
& © | defines set of effective models Meffective

Figure 1.6: Problem Context for Automatic Model Discovery

This question gives rise to a number of challenges per@gitdrautomatic model discovery.
We describe the most important challenges below:

Challenge 1 Discovery mechanism: Generative vs. Constrditsatisfaction? Our research
began with the exploration of existing mechanisms to autertiee generation/discovery of mod-
els in a modelling domain. We classify existing approaclsesithergenerativeor those based
on constraint satisfactionThe question was which approach is promising?

A generative approach attempts to incrementally createetaad a modelling domain by
object instantiation. For instance, [n]29], the authoesspnt an imperative algorithm and a tool
to generate models that conform only to thmre specification of a metamodel. The approach
does not ensure the satisfaction of constraints from hg¢erous sources of knowledge such
as well-formedness rules. Similarly, in Ehrig et al.1[52J tauthors propose a graph grammar
based approach to generate models that conform to a clagmmligorEcore model). These
models do not conform to ar9CL constraints on the meta-model.

Constraint satisfaction based approaches attempts &fdrama modelling domain to a set
of variables and constraints on them. The set of constrargslved using a constraint solver
[91]. One or more low-level solutions are transformed aset®df the modelling domain. This
approach has been used in domain-specific settings suclitwarsotesting. The Korat (Chan-
dra et al.) [28] system is able to generate data structurpfemented in the Java Collections
Framework that satisfy predicates. Similarly, Sarfraz #shid in his Ph.D. thesi§ [83] presents
the TestEra tool for generating Java data structures suthkasl lists, tree maps, hash sets,
heap arrays, and binary trees for testing. Both approaateebnsited to standard data struc-
tures and not to the more generic notion of models. The mugguing approach was the tool
UML2Alloy [92]. The tool attempts to transform L class diagram models, that largely resem-
ble metamodels, to the formal specification languagedy [[7/Z]. One may then use IAOY

CHAPTER 1. INTRODUCTION 43

to analyze WiL models by generating examples and counterexamples. Ajthtine tool is not
directly related to model discovery it aims to transformssldiagram constructs to a constraint
satisfaction problem in ALoy. However, UML2AIlloy does not transform complex metamodel
constructs such as multiple inheritance and multiple ¢ontants. UML2Alloy fails to solicit
the use of ALoY when the size of the ML model is large making the approach unscalable.

Generative approaches create models incrementally anmbtaatisfy constraints simul-
taneously. Therefore, a number of models may need to betedjes they may not satisfy
constraints. Therefore, constraint satisfaction basedoaghes seem more promising.
Challenge 2. Transforming the specification of a modelling dmain to a constraint satisfac-
tion problem The specification of a modelling domain contains a set of eptscand relation-
ships between them. These relationships might encode eangphstraints that are not easily
transformed to a constraint satisfaction problem. Furtadarge number of concepts and rela-
tionships may lead to a very large constraint satisfactimblpm that becomes computationally
intractable.

For instance, the transformation of a metamodel specificéid a constraint satisfaction
problem requires a constraints model for constructs such as

e Multiple Inheritance

Multiple containers for a class

Opposite properties

Identity properties

Composite properties

The large size of a metamodel such as theLUwith about 246 classes hampers the direct
transformation to a tractable constraint satisfactiorblam.

Challenge 3. Transforming heterogeneous sources of knovadge to constraintsHeteroge-
neous sources of knowledge are specified in different moddhnguages. However, for con-
straint satisfaction they all need to be transformed to traims in a common language. For
instance, the task of generating test models for a modafoemation must satisfy constraints
specified in a textual constraint language suclobjgct Constraint Language, test objectives,
and the pre-condition of the model transformation expigas¢he language of the transforma-
tion.

Challenge 4. Generation of models must be within tractable rad finite bounds The discov-
ery of models in a modelling domain requires generation ofl@of finite size. What are the
heuristics to determine the appropriate size of a modelithatifficient to satisfy knowledge
from heterogenous sources of knowledge?

Challenge 5. Detection of Inconsistent Sources of Knowledgknowledge from various
sources may be inconsistent with respect to the modellimgaito specification. How can we
detect such inconsistent sources of knowledge and elimtham?

Challenge 6. Validating the Effectiveness of Model3here is a need to condudgorous ex-
perimentshat qualify models generated by constraint satisfacfidgre qualification guarantees
whether models are effective or useful for given objectivElese experiments must consider

44 CHAPTER 1. INTRODUCTION

the effect of various influencing factors on the quality of tpenerated models. For instance,
one may ask what is the influence of generating multiple nsodsing a particular constraint
solver on their effectiveness as test models? Do differardpeters to the constraint solvers
drastically affect the quality of the solutions?

1.5 Thesis

In this thesis we propose that it is possible to automaticdi$covery effective models in a
modelling domain. Categorically, we address the probleraffeictive model discovery in two
modelling domains: (a) Metamodels (b) Feature Diagrams.efamodel is a very general spec-
ification of a modelling language’s domain. A metamodel carused to specify the domain of
any domain-specific modelling language. However, legadiyvsoe systems and components
cannot always be modelled or remodeled in a modelling laggudeom scratch. Ideally, time
tested components must be reused in their legacy form fobo@tion with other components
to build a software system. If we see these legacy comporanfeatures then the possible
combinations of features is best modelled using the featiagram language giving rise to a
Software Product Line. The coarse-grained componentgiassd with features may be com-
bined in different configurations which are part of the featdiagram modelling domain. This
distinction between pure models in the domain of a modelamgyuage and configurations of
coarse-grained legacy components in a product line readdel-driven software construction
at different levels .Therefore, we consider both speciboatof modelling domains in this the-
sis.

Consequently, we propose two frameworks for model disgogpecializing the general
framework shown in FigurgZl.6:

1. The framework for automatic effective model discoverthia modelling domain specified
by a metamodel. This framework is embodied in the toaRTIER.

2. The framework for automatic effective product discovierthe modelling domain speci-
fied by a feature diagram. This framework is embodied in toeAYISHKAR.

1.5.1 A Framework for Automatic Effective Model Discovery

The Figure1l7 presents the overall view of the frameworkafatomatic effective model
discovery. The framework is embodied in the todlI1ER. The name GRTIER comes from
the famous French discoverer from St. Malo who discoverath@ian in-lands in Quebec. The
primary input to the framework is the specification of the mlidg domain given by amput
metamodel Theinput metamodel MM specifies a set of model. The input metamodel
consists of a set of types (class with properties, enunegrgtirimitive) to instantiate models of
a modelling language. Concretely, the input metamodeloiedtas an instance of thecBRE
metamodel which is part of the industry standgectlpse Modeling Framework (EMF) [58]. The
models themselves are stored as XMl [10] files representisigices of thEcore metamodel.

CHAPTER 1. INTRODUCTION

45

Possible Sources

1. Static Analysis of a
Model Transformation

2. Set of Existing Models

Hetereogeneous Sources of Knowledge

uses

Metamodel
Constraints C

Domain-specific Sources

Required Types Treq
Required Properties Preg

Partial Model Transformation
Model Mp Pre-condition pre(MT)

T T T T T L LT LT T T T YT LT LT LT IT I LY TTLIILIY

Coverage Strategy S

Input Metamodel
MMm
©emf

Finite Bounds
Solver Parameters

f

Uses | Cartier Model Discovery Framework

!:n! i

deﬁ,, s

IVleffective

m Effective Modelling Domain
& 2 o7 defines set of effective models Meffective

Figure 1.7: A Framework for Automatic Effective Model Diseoy

46 CHAPTER 1. INTRODUCTION

Heterogenous sources of knowledgeonstrain the modelling domain specified by a meta-
model:

e Required types Teq and properties Preq in the input metamodel. The set of required
types and properties helps extract a subset of the inputnnoelal called theeffective
metamodel The effective metamodel specifies the subset of madelss M. There can
be many possible sources for the set of required types ampefiies:

— Static analysis of a model transformation gives a set ofsygr@l properties in the
input metamodel actually manipulated by the transfornmatio

— A set of models conforming to the input metamodel is anotloeirce of required
types and properties. Visiting the models in the set gives st of types and prop-
erties used in the metamodel. A typical real-world exampléhis could be in a
classroom setting for object-oriented design usingLU The professor can point
out to students the required types and properties he useeédtedML by visiting
every object of a set of models automatically.

e Metamodel ConstraintsC are expressed on an input metamodel using a textual contstrai
language such aSbject Constraint Language (OCL) [L14]. These constraints encode
restrictions that cannot be specified using a diagramngatiee model. We illustrate this
as the seM, C M.

e Domain-specific sources of knowledgmay also help define the effective modelling do-
main. We present some of them below:

— Partial Model m,, is a partially specified model using the input metamodel. For
instance, a graphical model editor allows an user to creatgefa in a modelling
language such asNWL state machines. Anincomplete model in the editor is a partia
model in the UL state machine language. The partial model may not resgect al
metamodel constraints ofML. Therefore, a partial model is often expressed as an
instance of aelaxed version of the input metamod@&he partial model defines the
subsetM3 C M.

— Coverage StrategyS help define and generateodel fragment§55] that cover a
wide range of structural aspects in the input metamodel. ifsiance, an input
domain partition based strategy helps generate a set of IfradenentsMF that
cover partitions on all types and properties of the inputameidel. These model
fragments help define an effective modelling domaindoverage-based testingf
a model transformation. All test models that satisfy a cagerstrategy contain the
model fragments generated from the strategy. Model fra¢greme expressed in a
modelling language that permits specification of ranges ropgaties of an input
metamodel. A coverage strategy defines the suget M.

— Transformation Pre-condition pre(MT) is a set of invariants on the metamodel that
is specific to a model transformatidhT. A model transformation often may not be
designed to transform all models specified by its input metdeh For instance, the

CHAPTER 1. INTRODUCTION a7

transformation from class diagram models to entity retegiop diagram model5T22]
require that all classes in the input class diagram haveaat tne primary attribute.
The OCL [114] is often used to express pre-conditions. A pre-camdiefines the
subsetMs C M.

The intersection of all the sources of knowledge definegtteetive modelling domairhe
effective modelling domain is the set of models definedvy fective«— M N M1 N M2 N M3 N
Mz N Ms.

The methodology for model discovery uses the sources of kauge presented above to
automatically generate models in the effective modelliagdin. We enlist the steps below:

Step 1. Effective Metamodel Identification : We prune the input metamodglM;, to obtain
the effective metamodéll M+ tectiveUSing a metamodel pruning algorithin[141]. The effective
metamodel contains the set of required tyfiggand propertie®eq provided as input and all its
obligatory dependencies computed by the metamodel praigayithm. All unnecessary types
and properties are removet Mgt ectiveiS SUper type oMM, from a type theoretic point of
view and a subset &fl M, from a set-theoretic point of view. The size of the effectivetamodel
MMet tectivelS Often considerably smaller than the size of the input metielM M.

Step 2. Transformation of Effective Modelling Domain Spedication to ALLOY : The effec-

tive modelling domain specification is defined by a numbentfeets. It is initially defined by
the effective metamod@lMe¢tective@nd constrained by knowledge from one or more sources:
(b) Metamodel constraints (b) Partial modemm, (c) Model fragment$1F from coverage strat-
egy S, and (d) Pre-conditiorpre(MT) of a model transformatioMT. We transform these
artifacts expressed in possibly different languages ¢orestraint satisfaction problem (CSP)

in the unique formal specification language Y [[71] [[7Z]. The theoretical formalism for
expressing the CSP fgst-order relational logic .

Step 3. Generation of Models in Effective Modelling Domain We solve the CSP in ALOY
to generate models in the effective modelling domainRQER achieves this by invoking Kod-
Kod [63] in ALLOY to transform the CSP as relational model to Boolean Conigmétormal
Form (CNF) . We invoke a satisfiability (SAT) solver such as@AT [112], ZChaff [159] to
solve the Boolean CNF. Finally, we transform low-level $ioins of the CNF to models con-
forming to the input metamod®l Mj,.

The generation of models in a modelling domain is often de@towards an objective. We
need to ensure that the objective is consistently achievedidering all influencing factors.
A typical question maybe what is the effect of a SAT solver loa quality of the solution? To
answer this question we need to perform experiments thargenseveral solutions for the same
constraint satisfaction problem. There are many otherénfting factors for which we conduct
rigorous experiments to validate discovery effectivenésshis thesis, we perform experiments
in the following application domains:

1. Test model generation for model transformation testing

2. Partial model completion in domain-specific model editor

48

CHAPTER 1. INTRODUCTION

uses

Textual
Constraints C

Hetereogeneous Sources of Knowledge

{ Domain-specific Sources

Partial
Product P

Feature Diagram

FD

Finite Bounds
Solver Parameters

P effective

uses

Effective Modelling Domain

defines set of effective products P effective

Figure 1.8: A Framework for Automatic Product Discovery

CHAPTER 1. INTRODUCTION 49

1.5.2 A Framework for Automatic Effective Product Discovely

The Figure LB presents the overall view of the effectivedpod discovery framework. The
framework is embodied in the tooMASHKAR. AVISHKAR in Hindi meandnventionwhich sig-
nifies the character of the tool to discover products in a SBe.primary input to the framework
is the specification of the modelling domain given bfeature diagramor feature model The
feature diagram F Dspecifies a set of producks Feature DiagramgFD) introduced by Kang
et al. [78] compactly represent all the products (or confiians) of a SPL in terms of features
which can be composed. Feature diagrams have been forch&diperform SPL analysis [1B6].
In [L38], Schobbens et al. propose an generic formal defmitf FD which subsumes many
existing FD dialects. We define a FD as follows:

e A FD consists ok featuresfy, fo, ..., fx

A feature f; may be associated with a software asset.

Features are organized in a parent-child relationship lieedlt. A feature with no further
children is called a leaf.

A parent-child relationship between featurfgsand f; are categorized as follows:

— Mandatory- child featuref is required iff, is selected.

— Optional- child featuref, maybe selected iff, is selected.

— OR-at least one of the child-featurdg, fc,..,fc3 of fp must be selected.

— Alternative (XOR} one of the child-feature&, feo,..,fek Of fy must be selected.

Cross tree relationships between two featufieand f; in the treeT are categorized as
follows:

— fi requiresf; - The selection off in a product implies the selection 6f.

— fi excludesf; - f; and f; cannot be part of the same product andratgually exclu-
sive

Using the FD we create products/configurations of featuvés.can compose software assets.
associated with these features to derive the final product.

Heterogenous sources of knowledgeonstrain the modelling domain specified by a feature
diagram:

e Textual Constraints C are expressed on a set of features. Constraints are exptezte
ally when they cannot be directly encoded in Big. These constraints specify the subset
PLCcP

e Partial Product pis a set of features chosen in product. The set of featuresregayre
the selection of other features to derive a complete produw partial product specifies
the subseP, C P

50 CHAPTER 1. INTRODUCTION

e T-wise StrategySis a product generation strategy to detect faults in soéywanduct lines
[90] [120]. The large number of products specified by a featliagram can be sampled
using a strategy such 8s— wise The objective is to generate a minimum number of
products that satisfy all —wiseinteractions between features. For instance,Rawith
25 optional features (see FigUrell.5) specifies at l€&sprdducts. A 2- wise strategy
whereT = 2 will lead to generation of only # »5C, = 300 products that cover all pairwise
interactions between features. The- wisestrategy for a particular value @t specifies
the subseP; C P.

The intersection of all the sources of knowledge definegtieetive modelling domaiihe
effective modelling domain is the set of products definedPhyective— PNPLN P N Ps.

The product discovery methodology uses the sources of laumel presented above to au-
tomatically generate products in the effective modelliogndin of aFD. We enlist the steps
below:

Step 1. Transformation of Feature Diagram to ALLOY : We transform a feature diagram to
constraint satisfaction problem in the formal specificatenguage ALoy [72] [[71]].

Optional Step. Transformation of Partial Product to ALLoy and their Completion : We
can transform a partial produptto ALLOY. It generates an ALOY predicate that represents the
partial information about selected features in the papiabluct. It can then solve theLAoy
model to generate one or more complete products.

Step 2. Generation of T — wise Tuples and Detection of Valid Tuples using ALOY : In
this thesis we focus on generating products that salisfywiseinteraction between features.
We first generate ALOY predicate represenis — wisetuples and detects those that are not
consistent with the constraints in thé®.

Step 3. Scalable Generation of ProductsVe proposelivide-and-composstrategies to gener-
ate a set of products that cover all valid tuples that cGverwiseinteractions between features.
The approach splits the satisfaction problem for all tuptesolving subsets of tuples. We solve
multiple ALLoy models with these subsets to obtain sets of products. Thekptoducts are
merged into a final set of products.

Do products discovered using the framework consistentlgiratheir objectives? For in-
stance we may ask what is the effect of divide-and-compasgegies on the redundancy of
products generated? To answer this question we need tcagepeoducts considering all impor-
tant influencing factors. In this thesis, we validate ounfeavork using rigourous experiments
in the following application domains:

1. Test product generation that satisfy theise interaction criteria

2. In ongoing/future work, we show that our framework caretizely sample the space of
Quiality of Service (QoS) of a dynamic web service who’s Jailiy is modelled as & D.

1.6 Contributions

Both the frameworks for model and product discovery haveddtie scientific contributions in
this thesis. We explain these contributions in the follayvsub-sections. Some of the contribu-

CHAPTER 1. INTRODUCTION 51

tions are extracted and pin-pointed from the methodologgaaly described in Sectienl.5. We
cite the relevant publications in peer-reviewed confegsrand journals.

1.6.1 Contributions in Automatic Effective Model Discovely

Contribution 1.1 We present a comprehensive framework for generation oéfsized effective
models in any modelling language and constrained by hedeesmmus sources of knowledge. The
framework is embodied in the toolARTIER. We use the formal specification languageLAy

for its ability represent constraints on graphs of objeat$ @onsequently to represent he entire
metamodel as a constraint satisfaction problem. This itaiton summarizes the answer to all
challenges presented in Sectionl 1.4 for a modelling doneniied by a metamodel. The tool
CARTIER, saw its origins in our papers[130[, [138].

Contribution 1.2. The framework transforms all metamodel constructs to@y for constraint
satisfaction. It also deals with metamodel with multipl@entance by flattening it to single
inheritance in ALoy. Further, the framework presents transformation ta @y facts from
constraints imposed by multiple containers, opposite ¢ntigs, identify properties, and com-
posite properties. This contribution addresses chall@ngfeSectior LK. The transformation to
ALLOY has been briefly described in two of our contributidns [138&] fL40].

Contribution 1.3. The framework is built using Kermeta modelling and modehsfarmation
language to simultaneously process models of knowledgé&fereht languages. Each source
of knowledge is expressed as a model in a modelling languageinstance, model fragments
are expressed as models of a model fragment language. Kecaretoad, save, and manipulate
models conforming to different metamodels at the same tifieerefore, @QRTIER, written

in Kermeta, transforms knowledge from various models ttsfacthe target languagelAoY .
This contribution addresses challenge 3 of Sefioh 1.4spdhlished in our papers [138]1103].
Contribution 1.4. In the framework we present a metamodel pruning algorifrdi]that uses

a set of required types and properties to generate an g#auitamodel from large input meta-
model. The effective metamodel is often very small and caedsaly transformed to ALOY

as a tractable constraint satisfaction problem. This dmriton addresses part of challenge 2 of
Sectio_¥ and presented in the paper]141].

Contribution 1.5. The framework contains facilities to assign finite boundseonumber of ob-
jects for each type in the model. It also transforms the smiatfrom the SAT solver in ALOY
called ALLoY instanceshack to high-level model conforming to a metamodel. The ggion

of models conforming to heterogeneous sources of knowleees determine inconsistencies
between them if any. A selection of inconsistent sourcesofledge is made and either mod-
ified or eliminated from the specification of the effectivedrtiing domain. This contribution
addresses challenges 4 and 5 of Sedfioh 1.4 and is publiskeetidles [138] and140].
Contribution 1.6. We validate models generated for their effectiveness usiegramework by
performing the following experiments:

e Test model generation for model transformation testing : We generate thousands of
models for a representative transformation. We use mutaialysis [[107] to demon-
strate that test models generated ugiagtitioning strategycan detect 93% of the bugs
compared to arbitrary generation 70%. We show that thetjositig strategy is not af-

52 CHAPTER 1. INTRODUCTION

fected by various biases such as dependence on the solvervA The experimental
study is published if1139] and journal version of the pafi&&] has been submitted.

e Partial model completion in domain-specific model editors:We use our framework to
generate recommendations to complete partial models imtiael editor AToM [67].
We illustrate that our framework can automatically comgplpértial models in a model
editor. The experiments show that this can be done for smaiheles within reasonable
time limits. This work is published i [I31],[140].

This contribution addresses challenge 6 of Sedfioh 1.4.

1.6.2 Contributions in Automatic Effective Product Discowery

Contribution 2.1. We present a comprehensive framework for generation oft@féeproducts
in a Software Product Line specified by a feature diagram. fidraework is embodied in the
tool AvISHKAR. The framework contains the transformation of a featurgrdian to a constraint
satisfaction problem in ALoy. The framework invokes a solver on the 120y model to auto-
matically generate products conforming to the featurerdiag This contribution summarizes
the answer to all challenges in Sectiod 1.4 for a modellingala specified by a feature diagram.
Contribution 2.2. Given a set of feature selections (available/not avai)able framework uses
ALLOY to detect if a product can be created such that these featleetions satisfy feature
diagram constraints. A constraint for instance statesfdatiresf; exists in the product, while
f, should not exist. Iff; is a mandatory feature then/ASHKAR uses ALLOY to detect that the
constraint is invalid. This contribution addresses chmajée5 of Sectiofi 114.

Contribution 2.3. Scalable generation of test products fron a feature diagram Feature dia-
grams have been transformed to constraint satisfactioolgors for testing a software product
line. For instance, Cohen et. AL]42] have applied combitinteraction testing to systemat-
ically select configurations/products from a feature daagr They consider various algorithms
in order to compute configurations that satisfy pair-wise wise criterial[4lL]. The constraints
imposed due to feature relationships in a feature modeladved by calling SAT solvers such
as ZChaff[159]. However, their approach is not very scaatdthen we consider large feature
diagrams. Our framework contaimvide-and-composstrategies to split the problem of test
product generation satisfying — wiseinto sub-problems. The tool\ASHKAR solves the sub-
problems and merges the results into a small set of produateontain all valid tuples required
by theT — wisecriteria. This mechanism renders our methodology to be lalsleaapproach to
generate products in a software product line. This cortiohuaddresses challenge 4 of Section
LA

Contribution 2.4. Validation of Effectiveness of Test Prodicts. There is a need to perform
experiments that qualify the products generated usingraomdwork. We perform experiments
to generate products for a transaction processing feafagrain AspectOPTIMA. We show
that redundancyin T — wisetuples is introduced in the products due to divide-and-cusep
strategies. In on-going work we perform experiments to geredifferent configurations of a
dynamic web-service orchestration. We demonstrate tlea@tS of a web-service varies with
different configurations of the web-service. These vaeaDbS analysis experiments help us
define an effective methodology to set robust contractusdeagents for dynamic web service.

CHAPTER 1. INTRODUCTION 53

The above contributions have resulted in various articl&se basic transformation for
AVISHKAR and its validation is published i [I20]. The papkrl[14] omiaaility modeling
and QoS analysis of web service orchestrations has beeptadceThe papei [80] has been
submitted to apply the product discovery tooll8HKAR to analysis of varying QoS in large
web service orchestration.

1.7 Thesis Organization

The thesis contains 6 chapters including the introductidme next 5 chapters are organized as
follows:

e ChaptefR, we introduce the context of MDE and the state oathim automatic effective
model discovery in a modelling domain.

e Chapte(B, we present automatic effective model discowetieé domain specified by a
metamodel.

e Chaptefl4, presents empirical validation of the frameworknfiodel discovery. In partic-
ular, we focus on two application domains for validation) tést model generation for a
model transformation (b) partial model completion in thedceditor AToM

e Chapteb, we describe the framework for automatic testymodiscovery in a software
product line. We empirically validate the framework for tleglundancy in the generated
products.

e Chapter b, we summarize our work and present perspectivefutiore research. We
briefly describe ongoing work on analysis of variable QoS dymamic web service.

54

CHAPTER 1. INTRODUCTION

55

Chapter 2

Context and State of the Art

This chapter describes the context and state of art for aitordiscovery of effective models
in a modelling domain. In Sectidn 2.1, we descridedel Driven EngineerindMDE) which
provides the philosophy and tools to specify modelling dosi@and transformations between
them. We describe the creation or specification of two modgllomains (aMetamodeldor
modelling languages in SectibnP.2 fature diagramsor products in a Software Product Line
in SectiofZB. Models in a modelling domain are transformsidg the model transformation
language Kermeta to the formal specification languagedX. In Section[ZHK, we present
Kermeta and its important features such as extensibilitpguaspectsand model typing In
SectioZb, we describe the formal specification languageok.

After describing the context and technological foundatioreded for this thesis we present
the state of the art in the proposed scientific contributidnsSectio 2B, we present the state
of the art in various aspects of automatic discovery for tteelelling domain specified by a
metamodel. In SectionZ2.6.1, we present related work ontifgieang an effective modelling
domain. In this thesis we perform mode discovery experisi@ntest model generation and
partial model completion in model editors. We present theed work for test model generation
in SectioZ61B and partial model completion in model edito Sectiol’Z6l4.

In Section[ZV, we present the state of the art in test prodiscbvery in the modelling
domain specified by a feature diagram for SPLs. We perforrduymriodiscovery experiments in
analyzing the variability in QoS of dynamic web services.

2.1 Model-driven Engineering

MDE [L10] is a philosophy and a set of tools to help simplifyfdatcelerate complex software
development. The simplification in development is achidwedxalting the creation of software
from the level of programs to first class artifacts calteddels Models are graphs of inter-
connected objects in modelling domain Different models in a domain are created using a
common set of domain-specific/problem-specific conceptisratationships. For instance, the
well-known general purpose modelling languagelU[L18] is used to create various high-
level models of software design using concepts imLUclass diagrams. TheseMu models
contain only objects of ML concepts/types. ML models are at a higher level of abstraction

56 CHAPTER 2. CONTEXT AND STATE OF THE ART

with respect to code in a general-purpose programming Eggsuch as Java where use of the
language pervades all aspects of software development. pBEeribes that a domain expert
should find it easier to reason in his problem domain usingetsoeistead of directly writing
code. Are models simply data structures or can they be tvemsf, evolved, or executed? The
MDE answer to this question israodel transformationModel transformations help transform
high-level or domain-specific models to other models or etadge code in a language such
as Java. The automation offered by model transformatiocls asl a code generator ultimately
helps accelerate software development.

We set ourselves the specific goal of automatic discoveryanfats in a modelling domain.
This goal solicits answers to two important questions in MDE

1. How to specify a modelling domain and create models in it?

2. How do we transform models from one modelling domain talzer®

Thefirst question is addressed in this paragraph. The specification of a mingelbmain
consists of a set of concepts, relationships between cts)cpd some invariants on the struc-
tural relationship between objects. For instanceetamodespecifies the modelling domain of
all models in a modelling language. For instance, the.Unetamodel specifies infinite ML
models. Metamodels can be created in the EEtIereformat to specify the modelling domain
of amodelling language. Similarly, the modelling domaimtproducts in a SPL is specified by
afeature diagram Models in a modelling domain can be instantiated by (a) tGrgabjects of
concepts specified in a modelling domain specification (Isigksng properties to these objects
to build relationships. The models must also satisfy a sétwafriants on their structure. The
Object Constraint Language (OCL) is often used to specify structural invariants on modela in
modelling domain. The EMF provides the set of software téolspecify modelling domains,
create models within these domains, and validate theselmadainst invariants. Detailed de-
scription of the modelling domain for metamodels is giversictionl’ZZP while in Sectidn 2.3
we present the specification for feature diagrams.

The second questioris addressed in this paragraph. Once, we create the spgaificd a
modelling domain and models within them we see the need nsfoam these models. Models
can be transformed within the same modelling domain or betweodelling domains. Model
transformation[[142] languages such as the imperative Kexj@2] [108], rule-based ATIL]76]
[75] [3], graph grammar based AToME7], Viatra [156] transform models. Model transfor-
mation languages are expected to conform to the Query-Viemsformation (QVT) standard
[I75]. Different types of model transformations can be @datsing these languages as classified
in [44]. Model transformations may transform models witttie same language (endogenous
transformations), between different languages (exogetramsformations) and even realize the
classical view of generating executable code from a higatHmodel. In this thesis, we use the
Kermeta model transformation language which we descrit@eatioTZH.

CHAPTER 2. CONTEXT AND STATE OF THE ART 57

Set of metamodels Set of models conforming to MM

Meta-meta model

Figure 2.1: Set-theoretic View of a Modelling Domain spedfby a Metamodel

2.2 Metamodel Specification of a Modelling Domain

In FiguredZ1, we present a set-theoretic view of the maugliomain specified by a metamodel.
The metamodeMM specifies a possibly infinite set of models imadelling language The
metamodelMM itself is a model in the set of all metamodels. The sealbimetamodelds
specified by aneta-meta modelling languagd he meta-meta modelling language allows the
specification of concepts and relationships between theistotitally, the Entity-Relationship
diagram (ER Diagram)[36] has been one of the most populaaimeta level languages used
to specifydatabase schemdsr databases in various domains. In MDE, the Class Diagram
and its dialects[]9] are widely used to specify a metamodeé EMF standardized thed®RE
modelling language to specify metamodels. A natural goess how can one specify the meta-
meta modelling language? The answer is that meta-meta limgdiElnguages are expressive
enough to specify themselves. For instance, in Fifude 2.gresent the metamodel folcd®RE

in ECOREitself. This property of a meta-metamodelling languagenisvin asboot strapping
The metamodel for EOREIs a model in the set of all metamodels. We do not go into thaildet
of describing the EOREmetamodel which is given detail in[68]. We illustrate thesification

of a metamodel using @REin the following section.

2.2.1 Specification of a Metamodel

The Ecore metamodel in FigurEZ2.2 presents the various concepts anaseato specify meta-
models. Most notably, instances of clasE€dass, EReference, EAttribute, EEnum, EOperation
andEParameterare used to specify metamodels. For convenience, we rerhevyar¢fixE and
use the familiar names class, property (for reference abaté), enumeration, operation, and
parameter in the text. We describe the specification of alsifapguage to represeHterarchi-

cal Finite State Machine (HFSM) using ECORE The metamodel foHFSM is shown in Figure
Z.3. One possible sequence of steps to specify a metamatelfisllowing:

1. Specification of Class and Enumeration TypesClasses and enumerations in a meta-
model are created. For instance, we create the classes HH8N&ition, AbstractState,
and State. One may do this concretely using either theHE tree editor available in
EMF or using an EorEdiagram editor available with tools such as TopCASED [54].

58 CHAPTER 2. CONTEXT AND STATE OF THE ART

EModelElement

+etodelElement

‘getEAnmotatmn(source String) : EAnnatation

0..% | +eAnnotations
‘ | | +eFactorylnstance

EAnnotation EFactary 1

ENamedElement
gsource @ String

giletails : EStringToStringMapEntry GRS BT SrpatefeClass | EClass) : EObject

‘createmeStnng(eDataType EDataType, literalvalue : String) : EdavaObject

Z} ‘cnnvenTnSmng(eDalaType : EDataType, instance¥alue : ElavaObject) : String
| +ePackage | 1
ETypedElerment EClaasifior EPackage
ordered © boolean = true instanceClassName : String onsURI - String
gunigue : boolean = true +eType | @instanceClass : ElavaClass onsPrefix ; String
&lowerBound © int gdefaultvalue : EdavaCbject
upperBound - int =1 0.1 ytECIassifier{name - String) : EClagsifier
gmany : boolean ’\slnstan:e(object : EJavaObject) : boolean 0.+
grequired : hoolean yetClassifierD(© int 4 1 +eSubpackages | U
B i +ePack
¢ +eExceptions| 0.7 0. +aClassifiers Erackage +eSuperPackage

| |
]

I
t +e0peration 0.x EEls3 EDataType
0 0= @abstract : boolean @serializable : boolean = true
: : +eParameters ginterface : boolean
+eDperations +eContainingClass ‘\sSuperTypeOf(snmeClass EClass) : boolean
‘getEStructuraIFeature(feature\D int) : EStructuralFeature 0* 1 =
+ealOperations SgatEStructuralF eaturalfeaturaMarme | String) © EStructuralF eaturs EEnumLiteral
» o gvalue int
< 1 | +eReferenceTyne ginstance | EEnumerator
+eAllStructuralFestures |0 0 +elontainingClass ¥ +eSuperTynes
EStructuraiFeature +eliterals | 0.7
: u +eStructuralF eatures +eAllContainments +esllSuperTypes

¢changeable : boolean = true 0
guolatile - boolean ERefetence = +eittributeType
ptransient : boolean goontainment - boolean 0*
goefaultvalueliteral @ String ¢container - boalean AR +eEnum
odefaultvalue : ElavaObject gresolveProxies : boolean = trug| TEAIRElerences EErim
gungettable ; boolean o.x

derived : bool - . . .
gderived ; boolean +eDppaosite 0.1 +eReferences getEEnumLiteraliname : String) : EEnumLiteral
VyetFesturslD() - int i +eAllAttHhutes ®getEEnumLiteralvalue : int) : EEnumLiteral
’getContainerCIassO ElavaClass EAttribute o.x +eAttributes

D < [y 0.1 +elDAttribute

Figure 2.2: EOREMetamodel

CHAPTER 2. CONTEXT AND STATE OF THE ART 59

2. Specification of Class Hierarchy Some classes inherit references and attributes from
other classes. For instance, we create the inheritancartiigrfor classes State and Com-
posite that inherit from the class AbstractStatecORE allows specification of multiple
and multilevel inheritance where a class can inherit refegdrom several classes.

3. Specification of Properties Properties which include references and attributes are in
serted into classes. For instance, the event property imsifi@n is a primitive attribute of
String type. Similarly, the property incomingTransitiohabass AbstractState is a refer-
ence of type Transition. An @®REeditor can be used to insert attributes into a class and
create references from a class to other classes.

4. Specializing Properties There are several ways to add more meaning to a propertye Som
of the important characteristics of a property are:

e Composite Property: A composite property of type Class B owned by a Class A
implies that A is a possible container for objects of clas$fBn object of class B
is contained in Class A then it cannot be contained by otlessels. For instance,
the composite property HFSM.states indicated by the blzgkadnd implies that all
objects of type AbstractState are contained in exactly odrRSM object.

e Opposite or Bi-directional Property: The opposite or bi-directional property bind
two objects using the same relationship. For instance sittan.target and Abstract-
State.incomingTransition are opposite properties. Arjgatof type Transition that
refers to a target State object will enforce that the targetiebject has an incoming
Transition object.

e Multiplicity of a Property: A property can have variable multiplicity or cardinality
indicating the size of an attribute or the number of refeesncFor instance, the
property Composite.ownedState has the multiplicity 0..*.

5. Specification of Operations Operations are included in a class to specify the opera-
tional or denotational semantics for a model or a part of ir iRstance, the operation
HFSM.run() executes theéFSM. An operation may be code in a general purpose language
such as Java a high-level state chart model, or a model of ui@tngn.

2.2.2 Object Constraint Language to Specify Metamodel Constraints

The specification of a metamodel is a starting point to desaroncepts and their relationships
in a modelling language. It also includes some implicit ¢ists such as inheritance, spe-
cialization of properties. However, a metamodel is stillited in its use to specify constraints
on the content and structure of models in a modelling langu8gme constraints are better ex-
pressed in a textual constraint language, We specify @inttron a metamodel using tbéject
Constraint Language (OCL) [I14]. TheOCL is anObject Management Group(OMG) standard
to specify side-effect free constraints on models confogrib a metamodel. The enti@CL
specification is available if [T14].

60 CHAPTER 2. CONTEXT AND STATE OF THE ART

HFSM +hfsmCurrentState
+hfsmTran51t10E Treset ()
1 |+run()
+hfsmStates
! +states
*
Frraps tlonsl incomi it AT A bst I tStat Surrentstate
Transition 1—1ncom1ngTran51tlon| T strac ate
+event: String _ N tsource Tlibel- Integer |+ownedState
TFire() :outgomgTransnlon. TS ep()4
State [CompositeH o, .1
+isFinal: Boolean +container
+isInitial: Boolean

Figure 2.3: Hierarchical Finite State Machine Metamodel

We may specify constraints on thi&SM modelling language i®CL. For instance, the con-
straint thathere must be only one initial staile a HFSM model is expressed BCL as:-

context State inv
StateallInstance$) — selects|s.isInitial = True) — sizg) =1

Dissecting theDCL constraint we observe that a constraint is specified withaordaext In
this constraint the context is the class State. The congdréirst creates a temporary subset, say
I, of the set of of all objects/instances of the State class. Stibset contains State object with
the property isinitial set td rue Further, the constraint states that the size of the subsst e
equal to one. Overall, the constraint checks if the modelaina exactly one initial State object.
This constraint iside effect freg@vhich means it does not enforce any property on the model.
In general OCL language statements are constructed in four parts:

1. A contextthat defines the limited situation in which the statementiglv

2. Apropertythat represents some characteristics of the context felge,context is a class,
a property might be an attribute)

3. Anoperation(e.g., arithmetic, set-oriented) that manipulates orifjeala property, and

4. Keywords(e.g., if, then, else, and, or, not, implies) that are usesptrify conditional
expressions.

OCL is also used a navigation language for models that conforamtetamodel.

2.2.3 Models in the Modelling Domain

The metamodel specification of a modelling domain allow tiséeintiation or creation of models
in it. Using ECOREONe may create instances of classes in a metamodel.

CHAPTER 2. CONTEXT AND STATE OF THE ART 61

event: 7
Initial ?
Final ?
1

(a)

Initial ? L

event:7
Initial ?

Final ?
event: 7
(b)

Initial ? L

Final ? e

Initial ?

Initial ? ©

Final ?
1 &

Figure 2.4: Examples ¢iFSM models

Some examples of valid models in tHESM modelling language are shown in Figlirel2.4.
The models are shown in their concrete syntax. All modelsi@a&ted using objects of th#=SM
metamodel and satisfyCL constraints on theFSM metamodel. For instance, all models satisfy
the constraint that there must a path from any state to a fiatd, sall models have exactly one
initial state and at least one final state.

2.3 Feature Diagram Specification of a Modelling Domain

In Figure[Z®, we present the set-theoretic view of the nlimdetiomain specified by feature
diagram A feature diagrantD specifies a set gbroductsin a Software Product Line. For
instance, software on different Nokia phones are diffemestances of the same product line of
mobile software adapted to different hardware configunatio

The feature diagram itself is a model in the set of all possfbhture diagrams. The set
of all feature diagrams is specified using feature diagram modelling languagd he feature
diagram modelling language allows creation of a featurgrdia containing various product
line features and their inter-dependencies. The featagraiin modelling language is specified
using a metamodel. We describe this metamodel in SeEfiafll.2\®e describe the creation

62 CHAPTER 2. CONTEXT AND STATE OF THE ART

Set of feature diagrams Set of products conforming to FD

Feature Diagram
Metamodel

Figure 2.5: The Modelling Domain of a Feature Diagram

of a feature diagram as an instance of this metamodel in@dBIB.2. In Sectioh 2.3.3, we
demonstrate how products are instantiated from the fediagram.

2.3.1 The Feature Diagram Modelling Language

Variability being at the heart of the software product lirmpeaoch, the community came up
with several ways fo documenting SPL variability eitherhie form of UML profiles [162[63]
or domain specific languages154] 77]. In particular, Fr@altliagramﬂ are widespread due to
their simplicity and conciseness. However, since thegioal definition, a plethora of feature
modeling notations have been proposéd]([43[6l, 78] to nafe&)ya Indeed, feature models
can be considered as a product line of notations sharing coalities and exposing differences
which are not always explicitly defined.

In such a context, there is a risk of being dependent of aquéati feature modeling no-
tation both raising the issue of its selection and unnecibssastricts the applicability of our
approach. Fortunately, Schobbens et[al. [136] 134] peddranformal analysis of the existing
feature modeling notations. To do so, they developed a jgilgstract syntax called Free Fea-
ture Diagrams (FFDs) used to map any feature modeling emtdtwund in existing notations
in order to reason formally on the syntax and semantics sitin@tations. The universal nature
of FFDs makes it suitable for various applications; we uséd ieason on variability [62] and
to support product derivation in a model-driven way [[119].otder to process feature models,
we derived in[[11B] an EMF metamodel from FFD’s abstract ayniVe recall this formaliza-
tion here since it will serve as the main foundation to speaifr coverage strategies as well as
quality metrics of the generated configurations.

FFDs are defined in terms of a parametric structure whosengdeas serve to characterize
each FD notation variantGT (Graph Type) is a boolean parameter indicating whether the
considered notation is a Direct Acyclic Graph (DAG) or a tré¢T (Node Type) is the set
of boolean operators available for this FD notation. Thgserators are of the forrapg with
k € N denoting the number of children nodes on which they appl{Cmnsidered operators are
and; (mandatory nodeskori (alternative nodes)r (true if any of its child nodes is selected),
opk (optional nodes). Finallyp(i..j)x (i € N and j € NUx) is true if at leasi and at most
j of its k nodes are selected. Existing other boolean operatan usually be expressed with

lwe also use the term "Feature Models" interchangeably Wigiature Diagrams”

CHAPTER 2. CONTEXT AND STATE OF THE ART 63

vp. The union ofvp(i..)k is calledcard. GCT (Graphical Constraint Type) is the set of binary
boolean functions that can be expressed graphically. A&ypxample is the “requires” between
two features. FinallyT CL (Textual Constraint Language) tells if and how boolean tairgs
defined over the set of FD nodes can be defined. With the helpesétsets, a generic abstract
syntax for FDs is given. A FD is then composed of the followatgments:

e Aset of nodedN, which is further decomposed into a set of primitive noBég/hich have
a direct interest for the product). Other nodes are useddoomposition purposes. A
special root node, represents the top of the decomposition,

e AfunctionA : N — NT that labels each node with a boolean operator,

e AsetDE € N x N of decomposition edges. As FDs are directed, mdda2 € N, (n1,n2) €
DE will be notednl — n2 where nl is thgarentand n2 thechild,

e AsetCE € N x GCT x N of constraint edges,
e Asetpe TCL

A FD has also some well-formedness rules to be valid: only (gohas no parent; a FD is
acyclic; if GT = true the graph is a tree; the arity of boolegemtors must be respected.

These constructs were used to build anoRE based metamodel depicted in Figlitel 2.6.
The metamodel is proposed in the pajper [119] . Its congiitutvas driven by simplicity and
pragmatism. FeatureDiagramis the root class of the metamodel. This class has an atribut
graphTypeTreeorresponding to the booleddT (Graph Type) presented previously. It also
contains a list of features (class Feature) correspondirtiget set of nodes N . The special root
noder is identified by the reference root frofeatureDiagramto Feature The authors of[119]
keep all base operators (because they are simple and wiskedl) tather than using exclusively
card like operators. In the metamodel, these operatorsiatgpe of the abstract class Operator,
and each feature (class Feature) contains O or 1 operatirddinresponds to the function?).
The class Feature also contains a list of edges (class Etig@jrg the construction of the set
DE of decomposition edges. The $€E of constraint edges is represented in the metamodel
by the classConstraintEdgeand they are contained by the class FeatureDiagram. Eanh
straintEdgecontains either &equireconstraint or dMutexconstraint. Primary feature nodes
are related to UML models (see below) defining the core assetdved in the realization of
these features. In the metamodel, a primary feature isecetat UML models by the composite
association between the class Feature and the class MadallyFwvell-formedness rules (Fea-
ture Modeling Constraints) have been implemented in terimt®ostraints boolean constraints
on theFD.

2.3.2 Specification of a Feature Diagram

The feature modelling language described in the previoososecan be used to create BiD
representing a Software Product Line. For instance, weeptethe AspectOPTIMAFD in
Figure[ZY. TheF D for AspectOPTIMA contains 19 features allowing maximum &t @onfig-
urations wherk-D constraints are neglected.

64 CHAPTER 2. CONTEXT AND STATE OF THE ART

<<datatype>> <<datatype>>
[FeatureDiagram] Boolean String Textual
graphTypeTree: Boolean ©
[Asset |

name: String [1..1

features 0.” “assets
« | root

constraintEdges/ 0. .* - 1.1
Feature 0..1| Operator

name: String [0..1] <abstract>
0.1 selected: Boolean [1..1] operator

4

owningCE

parent \ child
1.1 1.1

constraint | 0..1

[Opt | [And | [Or][Xor | [Card]
[] 1] 1 i]]

0.*

0..* .
incomingEdge

outgoi.ﬁgEdg.
Edge

PrimitiveFeature

Figure 2.6: The Feature Diagram Metamodel

2.3.3 Products in the Modelling Domain of a Feature Diagram

A feature diagram models the domain of a finite number of pctsluA Productcorresponds to
a selection of features in theD such that it satisfies all restrictions in tR®. For instance, we
present three different products in Figlirel 2.8 for the ABPETIMA FD in FigurelZY.

2.4 Modelling and Model Transformation Language: Kermeta

In this thesis, we use Kermeta as the common language to bpthsent modelling domains
and to express transformations between them. This sedtieffyldescribes Kermeta and some
of the its important features used in the implementation ®RCER and A/ISHKAR.

Kermeta is a language for specifying metamodels, modets navdel transformations that
are compliant to the Meta Object Facility (MOF) standdrdSJL1The object-oriented meta-
language MOF supports the definition of metamodels in termsbgect-oriented structures
(packages, classes, properties, and operations). It ats@dps model-specific constructions
such as containments and associations between classesetiderxtends the MOF with an im-
perative action language for specifying constraints arefatmnal semantics for metamodels
[108]. Kermeta is built on top of EMF within the@& IPSE development environment. The ac-
tion language of Kermeta provides mechanisms for dynammdibg, reflection, and exception
handling. It also includes classical control structureshsas blocks, conditionals, and loops.

2.4.1 Aspect-weaving in Kermeta

The first key feature of Kermeta is its ability to extend arséry metamodel with constraints,
new structural elements (meta-classes, classes, pegeatid operations), and functionalities

CHAPTER 2. CONTEXT AND STATE OF THE ART

65

Nested

Transaction

[ConcurrencyControlStrategﬂ
ey
[PhysicalLogging]

[2-PhaseLocking] [OptimisticValidation]
Checkpointing

[OutcomeAware]

[Checkpointable]

Shared

Copyable

—

Context [AccessClassiﬁed] [Lockable]
[SemanticClassiﬁed]
Composition Rule: Composition Rule: Key: O Optional feature
2-PhaseLocking’ excludes ‘Optimistic Validation’ requires
‘Recovering.Deferring’ ‘Recovering.Deferring’ << XOR feature

Composition Rule:
‘Deferring.Traceable’ requires
‘Traceable.SemanticClassified’

Figure 2.7: The AspectOptima Feature Diagram

66 CHAPTER 2. CONTEXT AND STATE OF THE ART

Product 1: Product 2:

Transaction Transaction

Recovering [ConcurrencyControlStrateg}a

[ConcurrencyControlStrateg}a

[Optimistic\/alidation]

[PhysicalLoggingJ [Z—PhaseLocking]

OutcomeAware [Checkpointing]

[Checkpointable]

Copyable

Context

Tracing] [Lockable]

AccessClassified

Product 3:

Transaction

[ConcurrencyControlStrategﬂ

OutcomeAware Lockable
AccessClassified

[SemanticClassiﬁed]

Recovering

[PhysicalLogging] [Z-PhaseLocking]

OutcomeAware [Checkpointing]

[Checkpointable]

Copyable

Context

Tracing] [Lockable]

AccessClassified

Figure 2.8: Three Products from the AspectOPTIMA featuegydim

CHAPTER 2. CONTEXT AND STATE OF THE ART 67

defined with other languages using tagpectkeyword. This keyword permits the composi-
tion of corresponding code within the underlying metamagtelf it were a native element of
the metamodel. This feature offers more flexibility to depelrs by enabling them to easily
manipulate and reuse existing metamodels.

The static composition operatorequire' allows defining various aspects in separate units
and integrating them automatically into the metamodel. ddraposition is performed statically
and the composed metamodel is type-checked to ensure ténsadration of all units. This
mechanism can be compared to dpen class paradigriBg].

Open classes in Kermeta are used to organize “cross-cuttomgerns separately from their
metamodel, a key feature of aspect-oriented programnuiAfy [§hanks to this composition
operator, Kermeta remains a kernel platform and safelygiates all concerns around a meta-
model.

Kermeta offers expressions very similar to Object Constrlaanguage (OCL) expressions
[L14]. In particular, Kermeta includes lexical closuresigar to OCL iterators on collections
such as each, collect, select, or detect.

Moreover, Kermeta also allows the direct importation andluation of OCL constraints.
Pre-conditions and post-conditions can be defined for dpesaand invariants on classes.

Kermeta and its framework remain dedicated to model praog$sit provide an easy inte-
gration with other languages. Kermeta also allows impgrdiava classes to use services such as
file input/output or network communications, which are natikable in the Kermeta framework.

It is also very useful, for instance, to make models commateigvith existing Java applications.

In this thesis, we have made considerable use of aspectgetivweave properties and
operations into metamodels with the goal of creating ma@gisformations between modelling
domains. For instance, we weave a reference to an input md&irelement into the output
metamodel. Consequently, we weave an operation into thpuboietamodel that helps create
an output model element using information from this refeeenThis direct referencing due to
aspect-weaving eliminates the need to create intermedi@déestructures such as dynamic hash
tables commonly used in compilers.

2.4.2 Model Typing with Kermeta

In Kermeta metamodels are also model types from a type-¢tiegyoint of view. In this thesis,
we solicit the use of model typing to check type conformanesvben metamodels before and
after a transformation.

Model typing corresponds to a simple extension to objeienbed typing in a model-oriented
context [146]. A model typing is a strategy for typing modasscollections of interconnected
objects. Model typing permits the detection of type err@dyein the design process of model
transformation. Moreover, it allows more flexible reuse afdel transformations across various
metamodels, while preserving type saféty |146]. Type gaseguaranteed by type conformance,
used as a criterion of substitutability.

The notion of model type conformance (or substitutabilltgs been adapted and extended
to model types based on Bruce’s notion of type groups and gypep matching[[30]. The
matching relation, denoted#, between two metamodels defines a function of the set cfedas
they contain according to the following definition:

68 CHAPTER 2. CONTEXT AND STATE OF THE ART

MetamodeM’ matches another metamodél(denotedV’ <# M) iff for each class
Cin M, there is one and only one corresponding cl@ssn M’ such that every
propertyp and operatiorop in M.C matches irM’.C’ respectively with a property
p’ and an operationp’ with parameters of the same type aMrC.

This definition is adapted from [146] and improved here bguxiglg the constraint related to
the name-dependent conformance on properties and opexatio

Let’s illustrate model typing with two metamodé¥s andM’ given in Figure§219 ard 211 0.
These two metamodels have properties and references teadliff@rent names. The metamodel
M’ has additional elements compared to the metamigdel

C1 <# COnebecause for each proper§One.pof type D (namely, COne.name
andCOne.aCTwy there is a matching propergl.qof typeD’ (namely,Cl.idand
Cl.aC3, such thaD’ <#D.

Thus,C1 <# COnerequiresD’ <# D:

e COne.nam@andCl.id are both of typeString

e COne.aCTwas of type CTwoand Cl.aC2is of type C2, so C1l <# COne
requiresC2 <# CTwa And, C2 <# CTwois true becaus€Two.elemenand
C2.elemare both of typeString

Thus, matching between classes may depend on the matchithgipfrelated dependent
classes. As a consequence, the dependencies involved wéleatang model type matching
are heavily cyclicall[T45]. The interested reader can firddbtails of matching rules used for

model types in[[145].

Hc2

0..1] aC2

gType F GCiass | gTpe E C3

0..1] = gName : EString | 0..1

= elem : EInt

gRetumType
0..1| myC1
0..* /gOperation 0. \ gAttribute o

] GOperation [Gattribute

© gVisibility : EString © gVisil EString * E
= gName : EString = isAnAttribute : EBoolean E Cc4 0.. C1
= glsStatic : EBoolean = gName : EString . .
© glsStatic : EBoolean = id : EString
own

0.} gParameter

0..1| parent

Figure 2.9: Metamodé¥l. Figure 2.10: MetamodeW’.

CHAPTER 2. CONTEXT AND STATE OF THE ART 69

2.5 Formal Specification Language: ALOY

In this thesis, we transform the specification a modellinmdim and heterogeneous sources of
knowledge toconstraint satisfaction problemThe constraint satisfaction problem is expressed
in the formal specification language:L2ov [[72] [[71]].

ALLOY is a structural modelling language basedfiost-order relational logic. ALLOY
was originally conceived by Daniel Jackson and developethbySoftware Design Group at
MIT. ALLOY is conceived to specify and analyze the conceptual desigm afbject-oriented
software system. Analysis includes generation of instarmfea design to detect for example
abnormal and generating counterexamples for assertiotiealesign. The analysis helps detect
design flaws.

In this thesis, we use IA0OY as a target language to specify a modelling domain and hetero
geneous sources of knowledge asoastraint satisfaction problefCSP). An ALLOY instance
or solutionis a model that satisfies the CSP. We obtain these instanceshogg the A.LOY
model in afinite scopeThe scope of an instance is the limit on its size. Generationstance
of models in A.LOY is based on the hypothesis that finite and small models afel iseanost
real-world applications.

A CSP in ALLoy model consists of the following importaparagraphs

module HFSM

open util/boolean as Bool
/1 Alloy Signatures

one sig HFSM

{

states set AbstractState ,
currentState :lone AbstractState ,
transitions: set Transition

}
abstract sig AbstractState

label: Int,
outgoingTransition : set Transition ,
incomingTransition: set Transition ,
container: lone Composite,
hfsmCurrentState :one HFSM,
hfsmStates :one HFSM

}

sig Transition
event: Int,
target: one AbstractState ,
source: one AbstractState ,
hfsmTransitionsone HFSM

}

sig State extends AbstractState
isFinal: one Bool,
islnitial: one Bool

sig Composite extends AbstractState

ownedStates :set AbstractState

}

Listing 2.1: Signatures faiFSM metamodel

/I Example Alloy Facts

//The HFSM must contain exactly one initial state
fact exactlyOnelnitialState

one s:State|s.islnitial == True

70 CHAPTER 2. CONTEXT AND STATE OF THE ART

// The HFSM must contain at least one final state
fact atleastOneFinalState

some s:State | s.isFinal == True

}
/I There is exactly one HFSM object
fact exactlyOneHFSM

one HFSM

/I All AbstractStates have unique labels
fact AbstractState_label_unique

all sl:AbstractState ,s2:AbstractState | sl!=s2=>sl.labelsR.label
/I A Composite State Cannot Contain Itself
fact compositeCannotContainltself

all cl:Composite, c2:Composite | ¢1 = c2 => ¢2 not cl.ownedStatesand c1 not in c2.ownedStates

Listing 2.2: Facts foHFSM metamodel

/I All Composite States in the Model must contain at least 2ned States
pred ExamplePredicate

all c:Composite | #c.ownedStates > 2

Listing 2.3: An Example Predicate

// Example 1
run ExamplePredicatefor 10

// Example 2
run ExamplePredicatefor exactly 3 State, exactly 1 Composite, 1 HFSM, 5 Transition

Listing 2.4: Example Run Commands

e Signatures and Fields: A signatureis used to model a concept or a class of objects in
ALLOY. A signature containfieldsthat represent properties of concepts. For instance,
we may model the classes in tHESM metamodel (see Figufe®.3) asl1OY signatures
with fields as shown in Listing—2.1. A signature can be an abstsignature such as
AbstracState. Only objects or instances of signaturesrasept a solution to anlAoy
model. A field in a signature can have a multiplicity one, I¢@eor 1), or it can be a
set. It also has a type which refers to a primitive signatwrehsas Integer or another
signature in the ALoy model. For instance, the field incomingTransition in thenaigre
AbstractState is a set of signature type Transition. The is&linal of signature State has a
multiplicity one and is of type Bool. The signature Bool foodean is defined in another
module imported using an open declaration.

e Facts: Facts are constraints on signatures and fields in the déetaraLLoy model.
A fact must always hold true. For instance, we may expresedacts on theHFSM
metamodel as shown in the Listilg.2. A fact often contakmessions that specify a
constraint on sets of objects using quantifiers suclg¥), some(d), one andnone For
instance, the fact Abstract_label_unique states thatrfprtao states s1 and s2, if sl is
not s2 then their labels are different hence enforcing thguenlabel constraint.

CHAPTER 2. CONTEXT AND STATE OF THE ART 71

e Predicates: Predicates in ALOY are constraints that need not always hold true like facts.
They may be satisfied by selection by the modeller with theatigres and the facts.
Predicates may be used to model knowledge from various e®w@s constraints in the
ALLoy model. For instance, the predicate in Listingl 2.3 stateisathaomposite states in
the HFSM must contain at least 2 states. The predicate is not a facirthst be true for
all HFSM models but a constraint that represents a specific objeativequirement.

e Run Command: We may try to satisfy a predicate in arLfoy model by attempting to
generate instances in a finite scope. Thedy run command is used describe the finite
scope of the solution size. For instance, the first examplésimg[Z4, attempts to obtain
anHFSM instance up to a scope of 10. This implies that every there lmeay maximum
of 10 instances for each signature. The second example iing &2 presents qualifiers
for the scope of each signature. For instance, the quaékactly3 State enforces all
instances to contain exactly 3 States.

An ALLoy model is transformed to a relational model in the relationatlel finder KodKod
[53]. At relational level of abstraction the model struetis comprised of primitive entities
calledatomsandrelationsthat define the relationship between atoms. All signatuepsesent
the set of atoms. All fields, facts, and predicates represdations between atoms.

An atom is a primitive entity that is:

¢ Indivisible It can't be broken down into smaller parts
e Immutable Its properties don’t change over time; and

e Uninterpreted It doesn’t have any built-in properties, the way numbers$alanstance.

A relation is a set of tuples where each tuple is a sequenceofsa ALLOY is based on
first-order logic and hence relations cannot contain oteltions. The number of atoms in
a relation is itsarity. A relation can be unary, binary, ternary or can contain naioens. A
relation with three or more atoms is callednailti-relation For instance, the ternary relation
State ={Stat®), (State), (State3)} represents 3 State atoms.
In ALLOY logic the basic entity is &lation. Even an atom is represented as a singleton set in
relation tuple.

Relations represent the structure of graphs of objects irEMEbr instance, the islnitial
property in theHFSM metamodel (see Figuke2.3) may be modelled as a relation
isInitial={ (Stat®, False), (State, True), (State, False)}.

Restrictions or constraints on structure inldy is expressed as disallowed relations be-
tween atoms. ALOY provides several operators to express constraints onomaincluding
set operators, logical operators, and most notably relatioperators such as the dot operator
(for navigating structure), quantification operators (ieafy constraints on a set of atoms), and
multiplicity constraints.

To obtain a solution to the relational model thel®Y specification is transformed using
KodKod [53] to a Boolean Conjunctive Normal Form (CNF) foraauThe resulting satisfaction
problem is solved using a Boolean Satisfiability (SAT) solech as MiniSAT[[11R] or ZChaff

[159].

72 CHAPTER 2. CONTEXT AND STATE OF THE ART

2.6 State of the Art in Model Discovery in a Modelling Language

Automatic model discovery in a modelling domain has many ponents. Previous work has
proposed problems and solutions to one or more of these awenpm In this section we present
related work for the following components of automatic miatiscovery:

e Effective Modelling Domain Identification
e Generation of Models in a Modelling Domain

Further, we present the state of the art in validating autommaodel discovery for two
application domains:

e Experiments in Test Model Generation

e Experiments in Partial Model Completion in a Model Editor

2.6.1 Related Work for Effective Modelling Domain Identification

There has always been a need to define the effective moddlingin for a given objective in
MDE. This is true especially in the case of using large Gdrfeuapose Modelling Languages
(GPMLs) such as WL. In this section we present related work that deal with thebjam of
obtaining and using the effective modelling domain.

Consider a fundamental task in MDE: Creating a model in a neditor such as in the
Eclipse [58] environment. A popular editor forMl models is TOPCASED [34]. The tool
can be used to createMl models such as class diagrams, state machines, activiyadis,
and use-case diagrams. If a modeller chooses to createditagams the tool presents the
user with modelling elements for class diagrams such asedasnd associations but notU
state machine modelling elements such as states and imassiT herefore, the tool inherently
prevents the modeller from using an unnecessary part of the tdeta-model. Théard-coded
user interface in TOPCASED in fact presents the modellen aiit effective modelling domain.

Model transformations on GPMLs such asiU are built for specific tasks and can pro-
cess only a sub-domain of its huge input domain. To filter tipeli to a model transformation
pre-conditions[147] are specified in a constraint language sucbgsct Constraint Language
(OCL) [114] [93]. Graph transformation based model transforomatanguages specify pre-
conditions to apply a graph rewriting rule on a left-handesitodel patterr [127].

In the paperi[144] Solberg et al. present the issue of naxigéte meta-muddle notably the
UmML meta-model. They propose the development of Query/Extracools that allow devel-
opers to query the metamodel and to extract specified viems the metamodel. These tools
should be capable of extracting simple derived relatigrshietween concepts and more com-
plex views that consist of derived relationships among nm@mcepts. They mention the need
to extract such views for different applications such asgiing the domain of a model transfor-
mation and extracting a smaller metamodel from the conaeged in a model. Meta-modelling
tools such as those developed by Xactilini [96] and Adaptivevace [1] possess some of these
abilities. The authors of[144] propose the useaspectgo extract such views. However, the
authors do not elaborate on the objectives behind gengrsiich views.

CHAPTER 2. CONTEXT AND STATE OF THE ART 73

In this thesis, we present a technique called metamodeiny (8] [141] that extracts the ef-
fective metamodel from an input metamodel. The effectivéamedel contains on the required
classes and properties and their obligatory dependencies.

2.6.2 Related Work for Generation of Models in a Modelling Danain

We classify generation of models in a modelling domain asS@eration by construction (b)
Generation by solving constraints.

Approaches for generation by construction aim to createecbmodels by incrementally
constructing them. We review two such approaches. In Byodti. al. [29], the authors attempt
to incrementally generate models conforming to a metamasiay model fragments. However,
a number of the models are rejected as they do not satisfyraoris on the metamodel. A very
similar approach in[892] makes use of graph grammar rulesdementally construct models.
This approach for generating instances also suffers frenséime problem of not being able to
satisfy metamodel constraints.

Approaches for generation by constraint satisfaction aigenerate whole models that sat-
isfy constraintsall at once In [130], the authors present a transformation for a pamiadel to
a constraint satisfaction problem in PROLOG. The metamosiedl to express the partial model
is also transformed to a set of PROLOG constraints. The esithge PROLOG to automatically
complete the partial model. However, PROLOG does not alkpvession of constraints on sets
of objects. Therefore, there is always a need for a partiaehtihat defines the exact number
of objects in the model. The metamodel constraints arefsemed to low-level PROLOG con-
straints on the variables in the model. [n][70], transformLUmodels that are very similar to
metamodels to PROLOG for verification. Both approaches &LRDG which lacks the ability
to specify constraints on set of objects.

In this thesis, we presetARTIER that transforms a metamodel toLLoY. Transforma-
tion of a meta-model specification fromMl to ALLOY has previously been explored in the
tool UML2ALLoY [26] [B2] [25]. UML2ALLOY supports transformation from meta-model
concepts to ALoy model concepts such as class to signature, property totgrgnizeld, oper-
ation to function, enumeration/enumeration literal tceexts signature, and constraints to pred-
icates. In our approach to transforming a meta-model to amo& model we keep the same
transformation format such we transform classes to sigestand properties to class fields. In
UML2ALLOY composition and aggregation are transformed firsd@y. constraints and then
to ALLoy. In our tool we transform composition and aggregation in ganmeodel directly to
ALLOY facts. Our, approach to transforming single inheritandbésame as in UML2ALOY.
Inheritance is transformed to anLBOY signature that extends an otherl&Y signature. We
use QARTIER to also transform metamodels with multiple inheritance ta. @y which is not
addressed by UML2ALOY. There is no clear specification in UML2A0Y related articles
[26] [©2] [25] about transforming multiplicities to A 0Y. In our case we transform multiplic-
ity constraints to ALoy signature fields in case of occurrence of 010or Q.x multiplicities.

If the multiplicity is variable such aa..b we synthesize an A oY fact constraining the size
of a set of relations. The constraints in meta-model isirtstt to a small subset @CL as
UML2ALLOY transforms only this subset @fCL to ALLOY. However, in Q\RTIER wWe pro-
pose the user to directly enter.foy predicates and facts in theLAOY model giving the user

74 CHAPTER 2. CONTEXT AND STATE OF THE ART

the flexibility of expressing a wider range of constrainto@e that have not been implemented
in UML2ALLOY) such constraints with transitive closure which cannottpressed directly in
OCL. We also present a method to synthesize @y predicates from a partial model. This use
of partial knowledge to synthesize complete models greatiyices model development time.
The tool UML2ALLOY, does not support the use of partial model knowledge to hehgigate
models.

2.6.3 Related Work for Test Model Generation

The first application of automatic model discovery is testdei@eneration for model transfor-
mation. We explore three main areas of related work : testr@j automatic test generation,
and qualification of strategies.

The first area we explore is work on test criteria in the cantéxmodel transformations
in MDE. Random generation and input domain partitioningellatest criteria are two widely
studied and compared strategies in software engineerorgNiDE) [153] [158] [64]. To extend
such test criteria to MDE we have presented[in [55] input darpartitioning of input meta-
models in the form of model fragments. However, there exist&xperimental or theoretical
study to qualify the approach proposed|inl[55].

Experimental qualification of the test strategies requchiniques for automatic model gen-
eration. Model generation is more general and complex teaermting integers, floats, strings,
lists, or other standard data structures such as dealt withe Korat tool of Chandra et al.
[28]. Korat is faster than ALOY in generating data structures such as binary trees, lists, a
heap arrays from the Java Collections Framework but it doésonsider the general case of
models which are arbitrarily constrained graphs of objedise constraints on models makes
model generation a different problem than generating tettsfor context-free grammar-based
software [98] which do not contain domain-specific constsai

Test models are complex graphs that must conform to an inptd-model specification, a
transformation pre-condition and additional knowledgehsas model fragments to help detect
bugs. As cited earlier, i [29] the authors present an autetngeneration technique for models
that conform only to the class diagram of a meta-model spadifin. A similar methodology
using graph transformation rules is presentefih [52]. Ge#ad models in both these approaches
do not satisfy the constraints on the meta-model.[[InJ[13@,present a method to generate
models given partial models by transforming the meta-madel partial model to &onstraint
Logic Programming (CLP). We solve the resultingLP to give model(s) that conform to the
input domain. However, the approach does not add new olj@tte model. We assume that
the number and types of models in the partial model is suffi¢@ obtaining complete models.
The constraints in this system are limited to first-ordemhdause logic.

The qualification of a set of test models can be based on $evitesia such as code and rule
coverage for white box testing, satisfaction of post-ctiadior mutation analysis for black/grey
box testing. In this thesis, we are interested in obtainhmy relative adequacy of a test set
using mutation analysi$ [49]. In previous wofkT107] we extenutation analysis to MDE by
developing mutation operators for model transformatiogleages.

In this thesis, we use ARTIER for automatic test model generation ARTIER transforms
the input metamodel, pre-condition of a model transforamatind test strategies to a constraint

CHAPTER 2. CONTEXT AND STATE OF THE ART 75

satisfaction problem in ALOoy. We solve the ALOY model to generate test cases or models for
the transformation. We use the mutation analysis techrfiquaodel transformations proposed
in [L07] to validate the effectiveness of the test cases qdmtection.

2.6.4 Related Work for Completion in Editors

The second application of automatic model discovery idgdartodel completion in a model ed-
itor. We explore existing language-directed editors tivatta use the specification of a language
domain or modelling domain to complete partial code or madel

Language-directed editors have been around for since the ¥#80s. Some of the well-
cited research on language-directed editors are Mentdr [B@rlisp [149], Program Synthe-
sizer [148], Rational[16], PECANTI25], and Gandalfi[65]obt of the existing language-based
editors such as iAclipse are based oattribute grammarf§9). These systems have been widely
adopted and integrated in many editors for tasks such aaxsiiighlighting and syntax-directed
editing. TheopenArchitectureWar7]] framework , based on thecore [68] meta-modelling
framework, supports automatic sentence completion ajréaglemented in Eclipse to help
make recommendations to sentences in textual domainfispetddelling languages. These
suggestions for sentence completion are based on the lteytitax of the modelling language
and do not consider the complete consistency of the modelredipect to the meta-model and
constraints of the language.

In Model Driven EngineeringMDE), models built in domain-specific model editors pose a
new challenge. The challenge is to complete a partial mqukstiBed in the model editor. This
involves the editor to use domain-specific modelling lamgueonstraints to direct the comple-
tion of the partial model. Simply put, this involves constitaolving using knowledge described
in the partial model to synthesize a model that conforms ¢oditmain-specific modelling lan-
guage. Constraint solving for model synthesis has beensuglied in the literature such as
model design space exploratidn [132], partial model cotiieusing Prolog[[130] and con-
straint logic programming[89]. I [131], the authors prsa model completion system in
a domain-specific editor by combining knowledge from theaymabdel and the partial model
specified in the model editor to SWI-Prolog. Tielog program is solved using a backtracking
based solver to return results to the domain-specific emviemt which was originally syn-
thesized byaTom® using the meta-model. The methodology is valid for any dorspiecific
modelling language in the limits of first-order Horn clausgit of SWI-Prolog. However, their
primary limitation is that the number of objects in the coatplmodel is equal to the number of
objects in the partial model. No new objects are suggestetdognodel completion system and
the user is limited to specifying only the correct number lojeots in the partial model. This is
primarily due to the fact that constraints are specified @tthject property level in SWI-Prolog
and not at the meta-level such as on sets of objects.

We identify the need to develop a model completion systernddua automatically suggest
complete models especially f@SML meta-models containing constraints both on sets of ob-
jects and their properties. This typically involves magpifia meta-model and constraints based
DSML specification to a mathematical formalism with tool supploat solves constraints to give
correct instances of theSML. Notably, such instances should contain the network ofatbje
(original object identities need not be preserved) spetifiethe partial model and additional

76 CHAPTER 2. CONTEXT AND STATE OF THE ART

objects (if required) with appropriate property valuestrstiat the complete model conforms to
its DSML. We would also like to control the maximum size or scope ofdtsaplete model for
practical time considerations. Transformation of metatei® expressed in UML/OCIC[114] to
various formal systems is not nelw [47T 18] [701199]T1L[]A82]. In [&7] the authors present
a transformation from UML Class Diagrams to Description icsg Their approach is theoret-
ically rigourous where a knowledge base in descriptiondami its variants is obtained for a
UML Class diagram and theorem provers sucl&8T [69] andRACER [I57] are used to ob-
tain instances by inferring from the knowledge base. Theygthat the time for inference using
a description logic representation of an UML Class diagraBXPTIME-complete. However,
their approach does not support transformation of metal-lmnstraints such as those expressed
in Object Constraint Language (OCL) [L14] to description logic. An extension of this work
for obtaining instances in finite domain is presented_in [9%e transformation of meta-level
constraints such a3CL along with UML class diagrams to formal higher-order logic language
called Isabelle has been explored in tools such as HOL-O®]. Rimilarly, we have seen the
transformation to constraint programming language ECERS[70]. Both, these approaches
are used primarily for verification of a UML Class Diagramtarsce against theMLCD meta-
model specification. A constraint @CL can be verified against an instanceUdiLCD but we
need the instance itself. In our pursuit to find complete nwde need to automatically synthe-
size instances of a meta-model rather than verifying artraripiconstraint against an existing
instance.

In this thesis, we use ARTIER to transform an input metamodel, metamodel constraints
and partial model to a constraint satisfaction problem in@vy [[71]. We solve the ALoy
model to generate one or more recommendations to completedtiial model such that it
contains all elements of the partial model and conforms ¢ontletamodel and its constraints.
The recommendations are brought back as high-level mad#teimodel editor.

2.7 State of the Art in Product Discovery

In this thesis, we develop product discovery in a SPL for geien of test products. We present
the related work below.

2.7.1 Related Work in SPL Test Generation

Our work deals with software-engineering specific dimemsiof SPL testing: (1) scalability of
test cases generation, (2) reduction of the resulting ésstcset (both in terms of size of the test
suite and redundancies) and (3) usability for the testers.

Concerning test generation for PL (1), McGredor]100] anebiiéinna [I50] propose a well-
structured overview of the main challenges for testing pobdines. A major one is obviously
the exponential growth of possible products. The idea afiguisiombinatorial testing for PL
test selection is not new and has been initially proposed diye@ et. al. [[42,41]. Combina-
torial interaction testing (CIT)[39].[T90] led to the defiioin of pairwise testing, and then its
generalization to t-wise testing. Cohen et. al. have agplliél to systematically select con-
figurations/products’[42] that should be tested. They clamsvarious algorithms in order to

CHAPTER 2. CONTEXT AND STATE OF THE ART i

compute configurations that satisfy pair-wise and t-wisega [41]. The constraints imposed
due to feature relationships in a feature model are solvezhltiyng SAT solvers such as ZChaff
[159]. However this approach is mainly theoretical and nan@ur work goes along the same
lines but deals with scalability of the test generationjmgpthat CIT+SAT approaches do not
scale directly with real-case feature diagrams, such a8spectOPTIMA PL example.

Concerning test minimization for PL (2), to limit repeates$ting efforts, a possible solu-
tion is to produce template system test cases, common to libéevwproduct line and that can
be adapted to each product. Nebut et/al. [109] proposed alfhaded approach to derive test
objectives for the whole system. In[133], Scheidemann ddfim method minimizing the set
of configurations to verify the whole software product lifide author exploits the commonali-
ties in order to minimize the verification effort required fequirements that pertain to several
configurations. However, this approach does not take intowat constraints between features
which limits the applicability of the approach (séel[41]n the same vein[[160] propose a
method to generate test plans covering user-specifiedopertf the huge number of possible
configurations of a component-based software system.

Concerning the last point (3), we choose a model driven igalento automatically map
a feature diagram into an Alloy input format. The user of tperaach can thus manipulate
directly feature digram and transform them directly in Allé formalization for feature models
in Alloy can be found in[[124], but is not dedicated to testamyl feature diagrams have to be
written by hand. Uzuncoava et al. _[152] use Alloy to genegratest suite incrementally from
the specification of a product, directly modeled as alloyrfalas. The interesting point in this
work is that tests are reused from one product to another umaulative way. Our work focuses
on testing the SPL as whole rather than individual produktdeed, these techniques of SPL
testing are complementary, our method focusing on autairssgiection of products, which can
then be individually tested.

Usability is also a question of analysis algorithms and ¢asks to manipulate and reason
about feature model§[20, 102]. Benavides et al. have deedlEAMA [Z1] a generic open-
source framework supporting various kinds of analyses.ilwlihtest-set computation is not part
of them but our EMF/Eclipse based T-wise toolset can be iated easily to it. Furthermore,
our variability metamodel is generic and has been sucdéssioplied/reused for product line
derivation [119] and variability weavin@ [1D5].

78

CHAPTER 2. CONTEXT AND STATE OF THE ART

79

Chapter 3

Automatic Effective Model Discovery

In the context of Model-driven Engineering (MDE), we usetfolass software artifacts called
modelsto build complex software systems. A model is a graph of intemected objects con-
structed using a modelling language. For instance, the kmelvn Unified Modelling Language
(UmL) [L18] is used to create models of various aspects of olpjgetted software systems.
The models include requirements specification usimg.UWise case diagrams, software struc-
ture using WL class diagrams and behavior usingnU activity and/or WML state machine
diagrams. The set of all models specified by a modelling laggus thenodelling domairof
the modelling language.

A modelling language can be very expressive and often altb<creation of an infinite
number of models. The ML is one such example of a very large and expressive modelling
language. The ML consists of 246 concepts with a number of properties. lefipdssible
objects of these concepts can be inter-connected in aNyrtaoéinite number of ways in models
of the UmL. This implies that the modelling domain oMl is an infinite set of models. Are all
the models in a modelling domain usefuleifectivefor a given set of objectives? The answer is
no. Not all models one can construct in a modelling languageuseful oreffectivegiven a set
of objectives. There is a need for knowledge from heterogemsources to ensure the creation
of an award-winning oeffective model

Heterogenous sources of knowledge that can restrict tia¢ieneof models to effective mod-
els can come from different domain experts, expressedferdiit languages and possibly devel-
oped at different times. For example, a source based on corsersse knowledge about a mod-
elling domain is a set of well-formedness rules for model$extual constraint language such as
the Object Constraint Language (OCL) [I14] is often used to specify such well-formedness rules.
An OCL invariant on the WL state machine models enforces that a state machine coatains
least one final stateThis invariant satisfies one of the requirements for coterenination of a
state machine’s execution. Other sources of knowledge nedyde partially specified models,
test criteria for creation of a model for testing, a pre-abod of a model transformation that
executes the model as its input and many others dependirfieabjective for creating the ef-
fective model. The restrictions imposed by heterogenousces of knowledge on a modelling
domain virtually leads to the notion of a subset of models madelling domain called the
effective modelling domairThe effective modelling domain is most likely to contairfeefive

80 CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

models for a given set of objectives.

The creation of models in the effective modelling domairspres a pitfall. Manually cre-
ating effective models is very tedious or sometimes imgssas the modeller must simulta-
neously satisfy constraints from a number of sources. Thgninale of the problem becomes
even more evident when we need to manually create thousénusdels with an objective such
as testing a model transformation. Can we partially or falljomate the process génerating
or discoveringeffective models? This is the question that intrigues us.

We present a framework and methodologydatomatic effective model discovenya mod-
elling domain. The framework is embodied in a model-driveal tCARTIER [L38] [6]. The
methodology is based on the general idea that an effectiekehiveg domain can be transformed
to aconstraint satisfaction problefCSP). Solving the constraints satisfaction problem giges
models in the effective modelling domain. However, thisegahidea entails a number of chal-
lenges. The three most important challenges are:

Challenge 1:Representing the modelling domainwry large modellindanguages such as the
UML as a CSP may result in a very large CSP that cannot be solverkasanable amount of
time.

Challenge 2: Knowledge from heterogenous sources are often specifieffénesht languages.

It is therefore a challenge smutomatically transfornthem to constraints in a common CSP lan-
guage where modelling domain constructs may be expressgdiierently.

Challenge 3: The solutions of a CSP may not be in the form of models of th@lnnodelling
language. There is a needaatomatically transform CSP solutions back to modefghe mod-
elling language.

Our methodology addresses these challenges in the foliprincipal steps:

1. We automatically prune an input modelling language taiobts effective subset

2. We transform heterogenous sources of knowledge inguttie pruned modelling lan-
guage to a common CSP in the formal specification languageA [[71]

3. We solve the ALoy model within finite bounds and automatically transform thkeisons
(if they exist) back as models of the input modelling langaiag

We describe the methodology in more detail along the chasieg the running case study
of generating models for theNt. modelling language.

We organize the chapter as follows. In Secfiod 3.1 we pretbenoverall framework and
methodology. In Sectiodn 3.2, we present the software emfoeati CARTIER of our framework.
We present the running case study of1lJin Section[3B. The first step of effective mod-
elling domain identification via metamodel pruning is preased in Sectiofi-314. We describe
the transformation of a basic metamodel with single inhade to ALoy in Section[3b. A
more complicated transformation metamodels with multipleeritance to ALoy is described
in Sectior3.B. In Sectidn3.7, present how we handle tramsftion of metamodel invariants to
ALLOY. We discuss automatic model generation by solving the finalok model in Section
B3. We summarize the contents of the chapter in SeEfioh 3.12

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY 81

Possible Sources

1. Static Analysis of a
Model Transformation

2. Set of Existing Models

Hetereogeneous Sources of Knowledge

> = Domain-specific Sources :
uses E Requ.ired Types T.req Partial Model Transformation E
Metamodel =|Required Properties Preq Model Mp Pre-condition pre(MT) || Coverage StrategyS |=

L]

Constraints C

T T T T T L LT LT T T T YT LT CETT LTI LY L TLTIT I

deﬁ,, s

Input Metamodel
Min

©Oemf

IVleffective

Finite Bounds | 4S€S | Cartier Model Discovery Framework A
Solver Parameters E! (\)‘ |
@emf 0 K@"m@fb&/

m Effective Modelling Domain
& 2 o7 defines set of effective models Meffective

Figure 3.1: A Framework for Automatic Effective Model Diseoy

3.1 Automatic Effective Model Discovery Framework

The framework for automatic effective model discovery iswh in Figure(31l. The inputs
to the framework include knowledge from heterogeneouscssuto help specify theffective
modelling domain We can divide the sources of knowledgeptimary sourcesand domain-
specific sourcesThe general methodology followed in the framework is pnése in Section

BI13.

3.1.1 Primary Sources of Knowledge

The primary sources of knowledge are:

¢ Input metamodel is the specification of an input modelling language. It sfiegia mod-
elling domain which is the set @il modelsin a modelling language. The input metamodel

82 CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

consists of a set of types (class with properties, enunoergprimitive) to instantiate ob-
jects. The industry standard framework for specifying grutrmetamodel is thEclipse
Modeling Framework (EMF) [58]. The input metamodel itself is stored as an instaof
the BECOREmetamodel.

¢ Metamodel Invariants/Constraints are expressed on an input metamodel using a textual
constraint language such @sject Constraint Language (OCL) [L14]. These constraints
encode restrictions that cannot be specified using a diagedin ECORE model.

3.1.2 Domain-specific Sources of Knowledge

A number of domain-specific sources of knowledge may alsp dhefine the effective modelling
domain. We present some of them below:

e Required types and propertiesin the input metamodel. The set of required types and
properties help extract a subset of the input metamodel ffecte’e model discovery.
There can be many possible sources for the set of requires gmpd properties:

— Static analysis of a model transformation gives a set ofsygel properties in the
input metamodel actually manipulated by the transfornmatio

— A set of models conforming to the input metamodel is anotloerce of required
types and properties. Visiting the models in the set gives et of types and prop-
erties used in the metamodel. A typical real-world exampléhis could be in a
classroom setting for object-oriented design usingLU The professor can point
out to students the required types and properties he useeédtedML by visiting
every object of a set of models automatically.

e Partial Model is a partially specified model using the input metamodel. iRstance, a
graphical model editor allows an user to create models in deffing language such as
UmL state machines. An incomplete model in the editor is a part@el in the UL
state machine language. The partial model may not resdetietdmodel constraints of
UML. Therefore, a partial model is often expressed as an irstainarelaxed version of
the input metamodel

e Test Coverage Strategiebelp define and generateodel fragmentfb5] that cover a wide
range of structural aspects in the input metamodel. Foaumest, an input domain partition
based strategy helps generate model fragments that cavitiopa on all types and prop-
erties of the input metamodel. These model fragments hédipedan effective modelling
domain forcoverage-based testimgf a model transformation. All test models that sat-
isfy a coverage strategy contain the model fragments gestefeom the strategy. Model
fragments are expressed in a modelling language that Fegmécification of ranges on
properties of an input metamodel.

e Transformation Pre-condition is a set of invariants on the metamodel that is specific to a
model transformation. A model transformation often mayb®tiesigned to transform all

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY 83

models specified by its input metamodel. For instance, #resformation from class dia-
gram models to entity relationship diagram modgels [22] meqiinat all classes in the input
class diagram have at least one primary attribute. @@k [I14] is often used to express
pre-conditions. Generating test models requires the tedein to satisfy transformation
pre-conditions.

3.1.3 Methodology

The methodology for automatic effective model discovergsushe inputs presented above and
can be divided in three principal steps:

1. Effective Metamodel Identification: We identify the effective metamodel from the input
metamodel via a technique known m&tamodel pruningf4d]. Briefly, the metamodel
pruning algorithm extracts a subset of the input metamodei as the effective meta-
model. The effective metamodel contains the set of requygees and properties provided
as input and all its obligatory dependencies. We preserammzdel pruning in Sectidn3.4.

2. Transformation of Effective Modelling Domain to ALLOY : Knowledge from hetero-
geneous sources including the effective metamodel arsftianed to a constraints model
in the formal specification languageLfoy [[71]]. We briefly describe ALOY in Chapter
B, Sectior . Z. We describe the transformation in Seclid &35 [36[317.

3. Model Generation by solving the ALLOY Model: We solve the ALOY model to obtain
solutions that satisfy the constraints in theL®Y model. The solutions are transformed
to models that conform to the input metamodel. In Sediioh Bédescribe the process
of model generation from thelAoy model.

3.2 Software Embodiment: Cartier

We implement our framework for automatic model discovehogen in Figurd-3J1 and described
in Section[3]l) in model-driven tool ARTIER. The tool was first presented i’ [138] and a
prototype is available af][6]. It is named aftircques Cartier a french discovery and explorer
from St. Malo, credited with the earliest exploration of @dman in-lands. The construction
of CARTIER has been motivated by a number of requirements as enlist8dation 3.2ZJ1. We
describe technical aspects oARTIER that address its requirements in Secfion3.2.2.

3.2.1 Requirements for Q\RTIER
This section presents a number of high-level consideratibat emerge while considering the
implementation of a tool foautomatic model discoveguch as @GRTIER.

Conformance to Industry Standards for Modelling

The widely-accepted industry standard for modelling andetiog language design is tEelipse
Modeling Framework (EMF) [3Z] initially developed by IBM. The metamodel of a nadlihg

84 CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

language is often available as Bnore model of the EMF. One of the primary objectives for
CARTIER is to discover or generate models that conform to a metanmaxdd@hble in theEcore
format. CARTIER must be able to manipulate and transform all or most relexspécts of the
Ecore metamodels.

Sophisticated Model Manipulation and Transformation

The framework for automatic model discovery, proposed intiSe[31, requires the imple-
mentation of a wide range of model manipulation algorithorspiruning and transformation to
ALLOY. CARTIER must solicit the use of a model transformation language shpports the

following important operations on models (and metamodels)

1. Scalability in loading, transforming, and saving vemg&ametamodels and models
2. Navigation of models and creating/removing model eleémen

3. Support model typing to check type conformance betweeamudels. We use model
typing to check type conformance between the original antiaga effective metamodel.

4. Support for invariants to express metamodel invariants model transformation pre-
conditions

5. Inter-operability with the high-level programming laragge Java. This will facilitate exe-
cution of ALLOY models

6. A model transformation language that can simultaneauslgipulate models in heteroge-
nous modelling languages

Metamodel for ALLOY

The tool must transform the effective modelling domain tmastraints model such as anA
Loy model. The transformation can be classified asamy-to-one exogenous transformation
between models in modelling languages for heterogeneausesoto a model in ALOY. There-
fore, there is a need to create an output metamodel repiegdiné ALLOY grammar.

3.2.2 (CaARTIER Technical Overview

CARTIER thrives within the context of MDE is built upon theclipse Modeling Framework
(EMF) [32]. CARTIER is developed in Kermet&[B82]T1D8] an executable (meta-)eiiog) and
model transformation language developed by the TRISKEIldugrin INRIA, Rennes, France.
The first step in @RTIER is to obtain an effective modelling domain or a smaller eflec
metamodel from an input metamodel via metamodel prurind][1Fhe metamodel pruning
algorithm solicits large metamodel loading/saving andhssiftated model transformation oper-
ators provided by Kermeta. The effective metamodel is aetulifghe input metamodel from a
set-theoretic point of view and supertype of the input meidehfrom a type-theoretic point of
view. We use model typind [145] (see Chaytker 2, Sedfionptd.2nsure this type conformance

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY 85

between the effective metamodel and input metamodel. T d¢gpnformance implies thatl
instanceof the effective model are instances of the input metamdagkfore preserving back-
ward compatibility. Furtherall operations and transformationsn the effective metamodel are
compatible with the possibly large input metamodel such & UWe take note of the great
advantage of pruning while dealing with large metamodethsas the WL which cannot be
readily handled by a constraint solver such as @y (see next paragraph). The advantage being
the capability of model typing to ensure compatibility wéh industry standard. Model typing
is only supported in Kermeta at the time of writing makinghi& torime choice for the pruning
transformation.

The core of QRTIER is a transformation from heterogenous sources of knowlauded-
ing the effective metamodel to the formal specification laage ALOY. This amounts to a
many-to-one exogenounsodel transformation. Kermeta supports the constructiauch model
transformations. The heterogeneous sources of knowleggaadels expressed as instances of
different Ecore metamodels that can be efficiently handled by Kermeta. Tigetd&anguage is
ALLoy [77] which is implemented in Java. To bring everything witlihe context of model
transformation between modelling languages we createdtanmoglel for A.LOY conforming
to theEcore standard. The ALOY Ecore metamodel is available for download Bl [2]ARTIER
navigates and extracts knowledge from the sources to cedgelarative model in the language
ALLOY using a Kermeta model transformation.

CARTIER must solve the ALoy model to obtain solutions that can serve as a source of
information to create model instances of the input metainodeis calls for inter-operability
with Java as the ALoy APl is in Java. Kermeta allows calling the Java API to solve th
ALLOY model using relevant parameters and a SAT solver of choick as MiniSAT [112],
ZChaff [159]. The ALOY solutions must be transformed back to model instances dhhe
metamodel. We present a transformationLAy 2EMF in Java that transforms theLBAOY
solutions back to model instances of A0y .

3.2.3 C(CARTIER Architecture

In Figure[32, we present the overall architecture @fRCIER. The architecture implements
a number of model transformations as indicated by sevenalenic prefixes. We enlist the
important steps in the architecture below:

1. Metamodel pruning (indicated as transformation 1 in Fef12) transforms an input meta-
modelMM;j, to the effective metamodelM M, containing the required types and prop-
erties and their obligatory dependencies. The pruningrigfgo is described in Section

B3.

2. If the effective metamod&MM;, contains multiple inheritance we apply the transforma-
tion (indicated as transformation 3 in Figlirel3.2) that éiastthe effective metamodel to a
base ALoy modelA with single inheritance. This transformation is describe8ection
4. If the effective metamodel contains only single intaerte Q\RTIER executes the ba-
sic transformation (indicated as transformation 2 in Fefffi2) to obtain the baseLAoy
modelA. This transformation is described in Section 3.5.

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

Domain-specific Sources of Knowledge

Textual Required .
> M:}I?VIm('):el Constraints Types and PartlaIpMode! Fryc:::l\ts Pre-condition
- c Properties g
]
A
manual 4. Partial Model
CARTIER 0 Alloy v
5. Fragment to
Allo
1. Metamodel | o y manual
Pruning N
Alloy Predicates 6. Generation of Conjunction Predicate

and Run Command

Effective

Memlﬂf{de' included in
S 2. Basic
Transformation
(Single Inheritance) Y
L0 Alloy ___| Base Alloy Final Alloy
Has Multiple Mc;fel ModFeI
Inheritance? =
3. Transformation
(Multiple Inheritance) Y
to Alloy 7. SAT Solver via
KodKod
) Triskell ¢
7 Metamodeling
0 Kernel
s, kermota . org
8. Alloy2EMF
Nty Kermeta

Effective Modelling Domain

effective model conforms to

Figure 3.2: QRTIER Architecture

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY 87

=i BFBEE| il i il i i il 8
]

Wil T T
T s AT T AT
[l J—]EI == I 11 B e i \‘\—"E
. i i i T l_— i H _ HL 1L1 w“ﬁ‘ ‘}—”‘ %_
(R 00 i il e I
N g i 1
| il N
M \ MU li il { lﬁ
N e

Figure 3.3: Bird’'s Eye View of the ML Metamodel

3. Domain-specific sources such as the partial mpdetodel fragments arautomatically
transformed to ALOY predicates using transformations 4, 5 in Fidure 3.2.

4. Arbitrary textual constraintS or domain-specific knowledge such as the pre-condition of
a model transformation are currenttyanuallytransformed to ALoY predicates.

5. CARTIER generates a conjunctionLAoy predicate of the set of all Aoy predicates
and a corresponding run command to solve the predicate. dijarction predicate is
combined with the base Aoy modelA to give a final A Loy modelAr. This is per-
formed in transformation 6 as shown in Figlirel 3.2. The dewlthis transformation is
presented in Sectidn-3.9.

6. CARTIER invokes KodKod from the ALoy API to transform the final ALoy model
Ar to a Boolean satisfaction (SAT) problem as shown in tramsébion 7 from Figure
B32. This transformation already exists in thel&y API and is not implemented in
CARTIER. CARTIER invokes a SAT solver such as ZChdft [159], or MiniSAL[112] to
generate ALOY instances.

7. The ALLOY instances are transformed to EMF models conforming to gt imetamodel
MMi,. This is depicted in transformation 8 of Figurel3.2. Thisgfarmation described
in Sectio3.91B.

3.3 Running Case Study : The WL

We use the WL as a running case study to describe automatic model discows present a
bird’s eye view of the WL metamodel in Figure=3.3.

We believe that WL is a convincing case study to illustrate our approach forehdiscov-
ery. There are a number of reasons to choose Es a running case study:

88

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

e Industry Standard Metamodel: The UML is a widely accepted industry standard for

software structure and behavior design and code gener&@inaomber of model transfor-
mations have been expressed usingLlas the input domain. Automatic model discovery
of models in the domain of ML clearly demonstrates the applicability of our approach to
real-world problems.

e Very Large and Complex Metamodel: The UML metamodel consists of 246 classes and

583 properties and incorporates complex metamodel patgerch as multiple containers
for a class, multiple inheritance between classes, anahgixgeuse of opposite properties
in metamodels.

Provokes use of Sophisticated Model TransformationThe complex structure of ML
solicits the use of sophisticated model transformationratpes in transformations be-
tween WL to other languages such as tRelational Database Management Systems
(RDBMS) [22]. Automatic generation of test models that discovegsin such transfor-
mations is of key interest to us.

lllustrates the benefits of Metamodel Pruning and Model Typng: The large size of
UML helps us demonstrates the benefits of metamodel prunindracea subset of ML
and demonstrating type conformance of the pruned metanattethe UmL. The type
conformance demonstrates that instance and operatiorfseassubset of WL preserve
backward-compatibility with L itself.

Can UmML be saved?A political question that we wish to address with this caselygt
is the growing debate about the large size ofilJ Critics state that WL is evolving
to become very and large incomprehensible for software ldgreent. However, they
also mention that the notion of general purpose modellimguages such asml is
necessary to maintain backward compatibility and interability for users. We want
to demonstrate with our approach that metamodel pruningnaodl typing help work
around the problem of the large size by extracting only eetesubsets of the ML for
applications such as model discovery. All the while stay@ognpatible with the WL
standard.

3.4 Effective Modeling Domain ldentification: Metamodel Pruning

We present anetamodel pruning algorithrthat takes as input a large metamodel and a set of
required classes and properties, to generate a teffpettive metamodelThe effective meta-
model contains the required set of classes and properties.tefmpruning refers to removal

of unnecessary classes and properties. From a graph-icgmoat of view, given a large input
graph (large input metamodel) the algorithm removes orgsumnecessary nodes (classes and
properties) to produce a smaller graph (effective metafpodene algorithm determines if a
class or property is unnecessary based on a set of rules #indopOne such rule is removal
of properties with lower bound multiplicity 0 and wha's tyfgenot a required type. We demon-
strate using the notion of model typing that the generattstife metamodel, a subset of the

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY 89

large metamodel from a set-theoretic point of view, suger-typefrom a type-theoretic point
of view, of the large input metamodel. This means that algpms written using the effective
metamodel can also be executed for models of the origingé laxetamodel. The pruning pro-
cess preserves the meta-class names and meta-property fnaméhe large input metamodel in
the effective metamodel. This also implies that all insean@gnodels) of the effective metamodel
are also instances of the initial large input metamodel. ddidels of the effective metamodel
are exchangeable across tools that use the large input wethas a standard. The extracted
effective metamodel is very much like a transient DSML widtessary concepts for a problem
domain at a given time.

3.4.1 Important Definitions

We present some general definitions we use to describe thengralgorithm.

Definition 3: A metamodel MMs a 3-tupleMM := (T, P, Inv), whereT is a finite set of class,
primitive, and enumeration typeB, is a set of propertiednv is a finite set of invariants. We
specify the modelling domain of modelling languageising a metamodel. We use tBeore
standard to represent a metamodel [32].

Definition 4: A primitive type bis an element in the set of primitivel:e {String
IntegerBooleart.

Definition 5: An enumeration type s a 2-tuplee := (nameL), wherenameis aStringidenti-
fier, L is a finite set of enumerated literals.

Definition 6: A class type ds a 4-tuplec := (nameP., SuperisAbstractcontainerg, where
nameis aStringidentifier, P; is a finite set of properties of classclassc inherits properties of
classes in the finite of class8siper isAbstractis aBooleanthat determines it is abstract and
containersis the set of all possible containing classes for the ingsuodc.

Type Operations: The operations on types used in this algorithm aret.({g@)nstanceO {X)
that returns true if is of typeX or inherits fromX. (b) t.allSuperClasses, if

t.isinstanceO {Class, returns the set of all its super class&uperincluding the super classes
of its super classes and so on (multi-level) {@llContainerg) returns all possible containers
for a class type.

Definition 7: A property pis a 7-tuplep := (nameoC,type lower,upperopposite
isCompositg, wherenameis a String identifier, oC is a reference to the owning class type,
typeis a reference to the property tydewer is a positive integer for the lower bound of the
multiplicity, upperis the a positive integer for the upper bound of the multipljcoppositeis

a reference to an opposite property if any, &s@om positeletermines if the objects referenced
by p are composite (No other properties can contain these apject

Property Operations: The operation on properties in this algorithnpissConstrained) which
returnstrueif constrained by any invarianmtsuch thatp € i.R. This is checked for all invariants

i € MM.Inv.

Definition 8: An invariant | is a 3-tuplec := (T, P,Expression, whereT, is the set of types
used in the invariant andP, is the set of properties usedlinAn Expressioris a function ofT,
andP that has a boolean value. TRepressioris often specified in a constraint language such

asOCL [114].

90 CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

Note: Throughout the section, we use theational dot-operatorto identify an element of a
tuple. For example, we want to refer to the set of all typesrimetamodel we use the expression
MM.T,or MM.P to refer to the set of all properties. Also, we do not considser-defined
metamodebperationsor its argument signatures in our approach.

3.4.2 Metamodel Pruning Algorithm

This section describes thmetamodel pruning algorithrto transform an input metamodel to a
pruned target metamodel. We acknowledge the fact there eamlentire family of pruning
algorithms that can be used to prune a large metamodel tovgiveus effective metamodels.
We present @onservativanetamodel pruning algorithm to generate effective metaiso®ur
initial motivation to develop the algorithm was to help scal formal method for test model
generation[[138] in the case of large input metamodels. &fheg, given a set of required classes
and properties the rationale for designing the algorithns ¥earemove a maximum number
of classes and properties facilitating us to scale a formethod to solve constraints from a
relatively small input metamodel. The set of required @asand properties are inputs that can
come from either static analysis of a transformation, amgta model, an objective function,
or can be manually specified. Given these initial inputs weraatically identify mandatory
dependent classes and properties in the metamodel andedh®orest. For instance, we remove
all properties which have a multiplicity 0..* and with a typet in the set of required class
types. However, we also add some flexibility to the pruningpathm. We provide options
such as those that preserve properties (and their classitypeequired class even if they have
a multiplicity 0..*. In our opinion, no matter how you choogedesign a pruning algorithm
the final output effective metamodel should be a supertypgbefarge input metamodel. The
pruning algorithm must also preserve identical meta-cpigames such that all instances of the
effective metamodel are instances of the large input medand hese final requirements ensure
backward compatibility of the effective metamodel withgest to the large input metamodel.

Algorithm Overview

In Figure[3%, we present an overview of the metamodel pguaigorithm. The inputs to the
algorithm are: (1) A source metamod¢Ms = MM,4rge Which is also a large metamodel such as
the metamodel for ML with about 246 Classes and 583 propertiesEgnre format) (2) A set

of required classeSreq (3) A set of required propertieieq, and (4) A boolean array consisting
of parameters to make the algorithm flexible for differenirpng options.

The set of required class€q and propertie®,.q can be obtained from various sources as
shown in Figurd_3J4: (a) A static analysis of a model tramsfation can reveal which classes
and properties are used by a transformation (b) The setsealirdxctly specified by the user
(c) A test objective such as a set of partitions of the metahfid] is a specified on different
properties which can be source for the Brt. (d) A model itself uses objects of different
classes. These classes and their properties can be thes@nCreq andPreg.

The output of the algorithm is a pruned effective metamdd®l; = MMe+ ecrivethat con-
tains all classes i€q, all properties inPq and their associated dependencies. Some of the
dependencies are mandatory such as all super classes skanlh some are optional such as

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY 91

Possible Sources

Large Meta-model MMg =MMiarge 1. Static analysis of model transformation/program

2. User specified
3. Test objective
4. Software process

5. Model(s)

Effective Meta-model

Set of required classes C req MM = MMetrective

Set of required properties Preq
Eg.: A Bird's Eye View of UML Inputs
(246 Classes, 583 Properties) ¢

. 3| A Bird's Eye Vi f Py d UML f
- Hal : ;. ird's Eye View of Prune for our
Parameters > M)eta Pruning Algorithm Output | CNES Case study
su=: @emf

(31 Classes, 15 Properties)

Esuper—type and sub-set of

Figure 3.4: The Meta-model Pruning Algorithm Overview

properties with multiplicity 0..* and whose class type id moCreq. A set of parameters allow
us to control the inclusion of these optional propertieslasses in order to give various effec-
tive metamodels for different applications. The outputaneidelM Mg+ tectiveiS @ SuUbset and a
super-type oMMs.

The Algorithm

The metamodel pruning algorithm (shown in Algorithm 1) hasrfinputs: (a) A source meta-
modelMM;s (b) Initial set of required type%eq (c) Initial set of required propertiéeq (d) The
top-level container class tyg&,p. (€) Parameterwhich is a Boolean array. Each element in
the array corresponds to an option to add classes or prepeotihe required set of classes and
properties. We consider three such options giving Barametervector of size 3.

The output of the algorithm is the pruned target metambtidl. We briefly go through the
working of the algorithm. The target metamod#&M; is initialized with the source metamodel
MMs. The algorithm is divided into three main phases: (1) Commguset of all required types
Treq in the metamodel ,(2) Set of all required properfieg in the metamodel (3) Removing all
types and properties not that are nofljgy andPreq

The first phase of the algorithm involves the computatiorheféntire set of required types
Treq- The initial sefTeq is passed as a parameter to the algorithm. We add the tolctaviiner
classCiop of MMs to the set of required typ€keq as shown in Step 2. In Step 3, we add the
types of all required propertieBq to the set of required typ€keq. In Step 4, we add types
of all mandatory properties theq. Types of all properties witbower bound greater than zero
are added to the set of required typks, (Step 4.1). Similarly, if a property is constrained
by an invariant inMM.Inv then its type is included ifieq as shown in Step 4.2. If a property
has an opposite type then we include the type of the opposifeefty toTreq in Step 4.3. The
algorithm provides three options to add types of propenvél lower multiplicity zero and
are of type Class, PrimitiveType, and Enumeration respagti The inclusion of these types is
depicted in Steps 4.4, 4.5, and 4.6. The truth values elenoétiteParameterarray determine if
these options are used. These options are only exampleskaigrthe algorithm flexible. The
Parameterarray and the options can be extended with general and pseifis requirements
for generating effective metamodels. After obtainifhgy we add all its super classes across all
levels to the seTieq as shown in Step 5.

The second phase of the algorithm consists of computingeahefsall required properties

92 CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

Required Properties Required Types
Property : Type Class
memberEnd : Class Association
general : Class Package
ownedEnd : Class Property
classifier : Package PrimitiveType

datatype : Property
attribute : Class
packagedElement : Package

Table 3.1: Required ML Types and Properties in the Transformatitass2rdbms

Preq- Inclusion of mandatory properties are depicted from Stéptirough Step 6.5. In Step
6.1, we add all properties whose type ard to Peq. In Step 6.2 we add all properties whose
owning class are iflieq t0 Preg. In Step 6.3, we add properties with lower multiplicity oiera
than zero toPeq. If @ property is constrained by a constraintNtM.Inv we add it toPeq as
depicted in Step 6.4. We add the opposite property of a reduiroperty tdPeq. Finally, based
on the options specified in tiegarameterarray, the algorithm adds propertiesRgq with lower
multiplicity zero and other characteristics.

In the third phase of the algorithm we remove types and ptigsgiromMM. In Step 7, we
remove all properties that are notfrq (Step 7.1) and all properties who's types are nokig
(Step 7.2). In Step 8, we remove all types noflig,. The result is an effective metamodel in
MM;. In ChapteER, SectidniZ.4.2, we preseridel typingor metamodels to show thsM; is
a super-type oMMs. As a result, any program written witiM; can be executed using models
of MMs.

3.4.3 lllustration on UmML Case Study

We prune the WL metamodel based on a set of required types and propertigs th& pruning
algorithm. The source for the set of required types and ptiggds the static analysis of a model
transformation between ML class diagrams anBelational Database Management Systems
models described il [22]. We enlist the set of required typesproperties in Tab[e=3.1.

The pruned WL metamodel contains 26 Classes and 65 Properties which ssicdiéy
smaller than the original 246 Classes and 583 Propertiesal¥deverify using model typing
(see Chapter 2, Secti@n2M.2) that the pruned. s a supertype of ML. This implies that
any model created as an instance of the pruned i also an instance of the originalMui.
Any operation or model transformation written fomu is also applicable to ML. The pruned
metamodel is an effective metamodel afil that will be used as an example for the subsequent
sections.

3.4.4 Validity and Complexity of the Algorithm

The metamodel pruning algorithm by construction generatesffective metamodel that is a
supertypeof the large input metamodel. Does the algorithm generatpert/pe effective meta-
model for any input metamodel and set of required types aodgrties? We need to answer

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY 93

Algorithm 1 metamodelPrunindMs, Treq, Preg, Ctop, Parametey

1. Initialize target meta-model MM;
MM; < MMg
2. Add top-level class into the set of required types
Treq — TreqUCtop
3. Add types of required properties to set of required types
Preg-€aCh p|Treq < TreqU P-type}
4. Add types of obligatory properties
MM;.P.eacK p|
4.1 (plower>0) = {Tieq — TreqU P-type}
4.2 (p.isConstrainedMM;.Inv)) = {Treq — TreqU p.type}
4.3 (p.opposité =Void) = {Treq < TreqU p.Oppositety pe}
Option 1: Property of type Class with lower bound O
if Parametef0] == Truethen
4.4 (p.lower == 0and ptypeisinstanceO {Clasg) = {Tieq < TreqU p.type}
end if
Option 2: Property of type PrimitiveType with lower bound O
if Parametefl] == Truethen
4.5 (p.lower== 0and ptypeisinstanceO {PrimitiveTypg) = {Treq < TreqU P-type}
end if
Option 3: Property of type Enumeration with lower bound O
if Parametef2] == Truethen
4.6 (p.lower == 0and ptypeisinstanceO fEnumeration) = {Treq— TreqU p.type} }
end if
5. Add all multi-level super classes of all classes iffeq
MM;.T.eacKt |t.isInstanceO {Clasg = t.allSuperClassesach{s|Treq < TreqUS}}
6. Add all required properties to Peq
MM;.P.eacK p|
6.1(ptypec Treq) = {Preq — PreqU P}
6.2(p.oC € Treq) = {Preq — PreqU P}
6.3 (p.lower > 0) = Preq PeqU P}
6.4 (p.isConstrainedMM;.Inv)) = {Preq < PreqU P}
6.5 (p.opposité =Void) = Preq < PreqU p.Oppositg
Option 1: Property of type Class with lower bound 0
if Parametef0] == Truethen
6.6 (p.lower== 0and ptypeisinstanceO{Clasg) = {Preq« PeqU P}
end if
Option 2: Property of type PrimitiveType with lower bound 0
if Parametefl] == Truethen
6.7 (p.lower == Oand ptypeisinstanceO {PrimitiveTypg) = {Preq « PreqU P}
end if
Option 3: Property of type Enumeration with lower bound 0
if Parametef2] == Truethen
6.8 (p.lower == Oand ptypeisinstanceO fEnumeration) = {Peq « PreqU P}}
end if
7. Remove Properties
MM;.P.eacK p|
7.1p¢ Peq = (tLP—t.P—p)
}
8. Remove Types
MM;.T.eacHt|t ¢ Teqg = MM. T «— MM.. T —t}

94

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

Figure 3.5: Bird’'s Eye View of WL Pruned With 26 Classes and 65 Properties

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY 95

To be removed Not Required

H UML
NamedElement [1..* 0..;: ‘\
clientDependency Dependency

name: String client
Type Conformance

@ Removal/Pruning

UML effective
Supertype of UML
(a) (b)

Figure 3.6: Validation of Pruning Operators (a) OperatdRémove a Property with Multiplicity
0..* (b) Model Type Conformance

to answer this question to ensure that the algorithm ismetarsuper type for all possible input
metamodels.

To answer this question we need to verify that epeiming operatortakes as input a meta-
model and returns supertypanetamodel as output. In our algorithm, each removal or pguni
operator satisfies this requirement. For example in Figiler@ illustrate the operator to re-
move a property with multiplicity 0..* of a property with a nequired type. Specifically, we
show that in the WiL metamodel the propertglientDependencgf NamedElement may be re-
moved when Dependency is not one of the required classegindfB.® (a). The resulting
effective UML metamodel is supertype of thevd metamodel.

Similarly, we verify that all removal/pruning operatorsdar algorithm give a supertype as
output. Therefore, by thiaw of transitivityexecuting the pruning operators in sequence always
gives a supertype as the output.

The metamodel pruning algorithm hésear time complexity The algorithm traverses the
metamodel three times. The metamodel is usually a graptsttatdure but acore metamodel
enforces a containment relationship for all types. Thismsehat a metamodel may be traversed
like a tree. If a metamodel hd? properties (leaf elements) then a depth-first traversal has
complexity O(P). The second traversal requires identification of dependéptoperties and
types. Finally, the third traversal removes or prunes tbhp@rties and types that are not required.
Therefore, in general the time complexity of the algoritts®{3P). However, if the metamodel
containsE enumerations then the complexity becor@é8P + E).

Thespace complexitgf the metamodel pruning algorithm corresponds to the felogigest
pathfrom the root of a metamodel to its root. This correspond$iégaath from the root class to
the property node in the last class of the containment libyanf a metamodel. The depth-first
algorithm stores this path in memory each time it traverdesach in the metamodel.

96 CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

Metamodel Element Alloy Paragraph

<PrimitiveType>

» open <location>/<PrimitiveType> as <PrimitiveType>

(An existing definition of a primitive type is loaded.

<PrimitiveType> can be String, Boolean or Integer. Alloy supports in-built notions of String,
Integer, and Boolean. In this thesis, we use the in-built versions for Integer and Boolean. We
use Integer for all occurrences of String for performance reasons in this thesis.

N\

Figure 3.7: Transformation of Primitive Types

3.5 Transformation Metamodel with Single Inheritance to ALLOY

In the previous section we obtain a concise and effectivametielM Mg+ tectivefrom the input
metamodeMM;,. We now describe the transformation of the effective metiah®l Mg+ tective
to ALLOY. For convenience, we denote the effective metamodel asjestmodeMM.

A metamodel MMs a 3-tupleMM := (T, P,Inv), whereT is a finite set of class, primitive,
and enumeration type® is a set of propertiesinv is a finite set of invariants. We use an
example-driven approach to explain the transformatioracheof these metamodel elements in
the following paragraphs. In this section, we consider ilmpkest form of transformation where
the metamodel contains ondyngle inheritanceand not multiple inheritance.

3.5.1 Transformation of a Primitive Type to ALLOY

Primitive Type Rule 1 (PTR1): We transform a primitive type such &solean, Integer, and
String by loading in-built ALLoy modules containing specifications Bdolean andinteger. At
the time of implementing the transformation we created and% model ofString. The com-
plete ALLOY string specification may be downloaded at the §ite [5]. H@reyenerating strings
using ALLOY is computationally expensive. Our focus is model genemaiitth emphasis on fa-
cilitating generation of complex structural aspects ofrtiwlel. Therefore, we make the choice
of replacing allString properties withinteger values.

3.5.2 Transformation of an Enumeration Type to ALLOY

Enumeration Type Rule 2 (ETR2): An enumeration type such &umerationA in Figure[3.8
is very simply and directly transformed to anlfoy enumeration.

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY 97

Metamodel Element Alloy Paragraph

4 \

enum EnumerationA

{

EnumerationA
EnumLiterald
EnumlLiteral2

EnumlLiterall,
Enumliteral2,

EnumerationN EnumlLiteralN,
S —

U ,

Figure 3.8: Transformation of Enumeration Type

3.5.3 Transformation of a Class Type to ALOY

There are four specific cases in transforming a class typeLt@A as seen in Figuie—3.9. We
describe them below:

Concrete Class Type With No Inheritance Rule 3 (CCNI3): A concrete clas€lassA that
does not inherit from any other class is transformed to ancX signature. See Figufe_B.9 (a).

Abstract Class Type With No Inheritance Rule 4 (ACNI4): A abstract clas€lassA that does
not inherit from any other class is transformed to an abs#acoy signature. See Figufe_B.9

(b).

Concrete Class Type With Single Inheritance Rule 5 (CCSI5)A concrete clas€lassA that
inherits from exactly one super claSsperClass is transformed to an ALOY signature that ex-
tends the signature representing the super dagsrClass. See Figur€3]9 (c).

Abstract Class Type With Single Inheritance Rule 6 (ACSI6):An abstract clas€lassA that
inherits from exactly one super classperClass is transformed to an ALOY signature that ex-
tends the signature representing the super dagsrClass. See Figur€3]9 (d).

3.5.4 Transformation of a Property to ALLOY

A propertyin a metamodel is either aattribute pointing to primitive type a or aeferenceto
object(s) of an other class. There are six specific casearsform properties in a metamodel
to fieldsin ALLOY signatures:

98 CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

Metamodel Element Alloy Paragraph

-

ClassA
1 sig ClassA { ... }
ClassA -
<abstract>
2 abstract sig ClassA { ... }

SuperClass

3. L‘l » sig ClassA extends SuperClass { ... }

ClassA

SuperClass
<abstract>

» abstract sig ClassA extends SuperClass { ... }
4. %S

ClassA

Figure 3.9: Transformation of Class Type

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY 99

Primitive Attribute with One Multiplicity Rule 7 (PAOMT7): Primitive attributes such as-
tributel, attribute2, attribute3 with both lower and upper bound multiplicity 1 as shown inuFig
B0 (a) are transformed toLAoy fields with the same name. Note that the usage of primitive
types had already led to the inclusion of in-built &0y modules implementing the definition
of the primitive types. The attributattribute3 of the String type is transformed to anl1Aoy
Integer in this thesis to avoid extra computational cost due to geiwar of strings.

Primitive Attribute with At Least One Multiplicity Rule 8 (P ALOMS) : A primitive attribute
attributel with lower bound multiplicity O and upper bound multipligi is transformed to an
ALLoyY field in its owning signature with thiene specialization as shown in Figure=3.10 (b).

Primitive Attribute with Variable Multiplicity Rule 9 (PAV M9) . A primitive attributeat-
tribute1 with lower bound multiplicityaand upper bound multipliciti, wherea>0,b>a,b# 1
is transformed to an ALOY field in its owning signature with theetspecialization as shown in

Figure[37TD (c).

Reference with One Multiplicity Rule 10 (ROM10) : A referencereferencel with lower and
upper bound multiplicities 1 is transformed to an®y field in its owning signature with the
onespecialization as shown in Figure=3.10 (d).

Reference with At Least One Multiplicity Rule 11 (RLOM11) : A referenceeferencel with
lower bound multiplicity 0 and upper bound multiplicity 1ltimnsformed to an ALoY field in
its owning signature with thione specialization as shown in Figure-3.10 (e).

Reference with Variable Multiplicity Rule 12 (RVOM12) : A referenceeferencel with lower
bound multiplicitya and upper bound multiplicitys, wherea > 0,b > a,b # 1, is transformed
to an ALLOY field in its owning signature with theetspecialization as shown in Figure=3.10 (f).

3.5.5 Transformation of Implicit Metamodel Constraints to ALLOY Facts

There are a number of constraints encoded in the input mekamdhese include constraints
due to multiplicity, opposite properties, identity propes, composite properties, and contain-
ment. These implicit constraints are automatically trarmekd to A.Lovy facts. We describe
the transformation of each fact below:

Primitive Attribute Multiplicity Constraint Rule 13 (PAMC 13): A primitive attribute at-
tributel in a ClassA with a lower bound multiplicitya and an upper bound multiplicity, where
a>0,b > ab+# 1results in the generation of an.Loy fact as shown in Figule=31L1 (a). The
ALLOY fact states that for all objects of ty@assA the size of (denoted by #)lassA.attributel
must be> attributel.lower and < attributel.upper.

100 CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

Metamodel Element Alloy Paragraph

(sig ClassA)
{
ClagsA attribute 1: one Boolean
attribute1: Boolean Hribute?2: | !
(a) attribute2: Integer attribute2: one Int,
attribute3: String attribute3: one String,
(or, attribute3: one Int)
|}
rsig ClassA)
ClassA {
(b) attribute1: <PrimitiveType>[0..1] attribute1: lone <PrimitiveType>
}
(sig ClassA)
ClassA {
(C) attribute1: <PrimitiveType>[a..b] attribute1: set <PrimitiveType>
}
rsig ClassA)
1.1 {
(d) S p—— » referencel: one ClassB
}
,sig ClassA)
{
0..1
ClassB » referencel: lone ClassB
(e S} ——C-" {Giasss |
,sig ClassA)
{
a..b
ClassA ClassB » referencel: set ClassB
() (G} o |

Figure 3.10: Transformation of Properties tal&y

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

Metamodel Implicit Constraint

(a) Attribute Multiplicity

ClassA |
[attribute1: <PrimitiveType> [lower..upper] |

(b) Reference Multiplicity

lower..upper
ClassA
[Classa |—— "= 2" Classs |

Condition

reference.lower > 0 and
reference.upper >= reference.lower

-~

=

(c) Opposite Property
@ propertyA propertyB @

Condition

propertyA.opposite = propertyB
propertyB.opposite = propertyA

(d) Identity Attribute

[ClassA |
[idAttribute: <PrimitiveType> |

Condition
idAttribute1.isID = 1

(e) Identity Reference

idReference1

Condition
idReferencel.isID = 1

=

>

Generated Alloy Paragraph

fact ClassA_attribute 1_multiplicity

all object : ClassA |

#object.attribute1 >= attribute 1.lower
and
ttobject.attribute1 <= attribute 1.upper

all object : ClassA |

»

fact ClassA_reference 1_multiplicity

#object.reference >= referencel.lower
and
ttobject.reference1 <= referencel.upper

fact ClassA_propertyB_ClassB_propertyA_opposite

{

all object1 : ClassA, object2 : ClassB |

object2 in object1.propertyB
implies
object1 in object2.propertyA

fact ClassA_idAttribute1_id

all object : ClassA, object2 : ClassA |
(object1.idAttribute1 ==
object2.idAttribute 1) implies
objectl = object2

fact ClassA_idReference1_id

all object1 : ClassA, object2 : ClassA |
(object1.idReferencel ==
object2.idReference1) implies
object1 = object2

Figure 3.11: Transformation of Implicit Constraints in Metodel to ALoy Part 1

101

102 CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

Reference Multiplicity Constraint Rule 14 (RMC14) : A referencereferencel in a ClassA
with a lower bound multiplicitya and an upper bound multiplicity, wherea > 0,b > a b# 1
results in the generation of anLAoY fact as shown in Figude=31L1 (b). The Loy fact states
that for all objects of typ€lassA the size of (denoted by #)lassA.referencel must be> refer-
encel.lower and< referencel.upper

Opposite Property Constraint Rule 15 (OPC15) :Bi-directional references in a metamodel
are modelled using the notion opposite propertiesFor instance, in FiguieZ3111 (c}lassA.propertyB
andClassB.propertyA are opposite properties that lead to the generation ofiaroi fact. The

fact states that for each objedtjectl of ClassA and each objeatbject2 of ClassB, if object2

is in the setClassA.propertyB thenobjectl is in the setClassB.propertyA. This fact ensures the
opposite property relationship between all opposite pigein instance models of the meta-
model.

Identity Attribute Constraint Rule 16 (IAC16) : An identity attributeidAttributel of primitive

type in aClassA as shown in FigurE=3111 (d), is transformed to an @y fact. The fact states
that for each objeaibjectl, object2 both ofClassA, if objectl.idAttributel = object2.idAttributel

, then the objectsbjectl andobject2 must be the same objects. There cannot exist two or more
instances of these objeaikjectl andobject2. The identity attribute is useful in creating objects
with one or more unique identifier attributes.

Identity Reference Constraint Rule 17 (IRC17) : An identity referencdsReferencel in a
ClassA referring toClassB as shown in FigurE2311 (e), is transformed to an @y fact. The
fact states that for each objeatjectl, object2 both of ClassA, if objectl.isReferencel = ob-
ject2.isReferencel , then the objectsbjectl andobject2 must be the same objects. There cannot
exist two or more instances of these objedijectl andobject2.

Composite Property Constraint Rule 18 (CPC18) :The composite propertglassA.compProp
in a clasClassA containing objects oflassB is transformed to an ALOY fact as shown in Fig-
ure[3I2 (f). The fact states that for all objeots 02 of ClassA and for each refereng® and
p2 in ClassA.ol.compProp, if p2 andp2 are the same then objeats ando2 are the same. The
fact simply states that an object ©fassB is contained in exactly one object OfassA.

Class Containers Constraint Rule 19 (CCC19) :Objects of a class can have many possible
containers. For instance, in Figlre3.12(g) @iessA has 3 possible containe@@ass1, Class2,
andClass3. The multiplicity 0..1 for referenc€lassA.containerl indicates thaClass1 may or
may not be a container fatlassA objects. Similarly, the multiplicities o€lassA.container2
andClassA.container3 indicate thatClass2 andClass3 are other possible containers foiassA
objects. In a model of the metamodel a givelassA object can be contained only in one of
the three classea8lassl, Class2, andClass3. This case can be extendedNgossible container
classes. We generate amloy fact to enforce this containment relationship betweenatbjef
classes. The fact states that for all objextts, ob2, andob3 of type Class1, Class2, andClass3
respectively, the reference @assA is disjoint or obl, ob2, andob3 always refer to different ob-

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY 103

Metamodel Implicit Gonstraint Generated Alloy Paragraph

(f) Composite Property Gonstraint

ab fact ClassA_compProp_composite

l
compProp all o1 : ClassA, 02 : ClassA |

all p1:o1.compProp, p2 : 02.compProp |
p1=p2 implies 01=02

Condition

compProp.isComposite = true

(g) Class Containers Constraint

0..1

. prop1 Clacsh fact ClassA_containers
containerl prop2 {
all o1: Class1, 02: Class2, 03:Class3 |
0..1 prop3 » disj[o1.prop1,02.prop2,03.prop3] and
container2 all 0:ClassA|

(#0.container1+#o.container2+#o.container3=1)

}

container3

Figure 3.12: Transformation of Implicit Constraints in Metodel to ALoy Part 2

jects ofClassA. The fact also states in conjunction that all object€iaksA must be contained
in eitherClass1, Class2 or Class3 but never in more than one class.

3.6 Transforming Metamodel with Multiple Inheritance to A LLOY

The basic transformation, discussed in the previous SeBilh, of a metamodel to IAOY is
suitable for small metamodels with single inheritance. Ewesv, it is not appropriate for large
and complex metamodels containing several hundreds slassigproperties along with complex
structure such as multiple inheritance. TheUis a notorious example of a metamodel with
several instances of multiple inheritance and a large nurabelasses (246) and properties
(583). The basic transformation does not handle multipkeiitance and may result in the
generation of an intractableLAoy model when the number of classes and properties is very
high.

In this section, we consider a very general case of trangfigriamy metamodel with multiple
inheritance to ALoY for the purpose of model synthesis. Our transformation setan the
following important observations:

e Given a metamodel, a modeller creates an instance model lpycoeating objects of
concrete classe the metamodel.

104 CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

e All properties have either primitive values such as integeolean, string or refer to ob-
jects of other concrete classes.

e Even properties referring to abstract classes ultimateiytfio objects of concrete classes
that inherit from these abstract classes.

e A model is always an interconnected grapttohcrete class objects

e Abstract class objects are never created! All we need areretanclass objects and build
relationships between them.

The transformation from a large and complex metamodel witktipie inheritance to A-
LOY is based on the observations made above. In the subsequdahsgwe present the trans-
formation of a metamodel to a tractable and smalL&y model. The ALoy model uniquely
contains signatures for concrete classes in the metamadgelimber of ALLOY facts are gener-
ated to emulate multiple inheritance and its effects onselssind properties inlAoy .

3.6.1 Flattening the Class Hierarchy

Before the flattening step, all primitive types detectechiminetamodel are transformed ta A

LOY open statements that load modules for primitive types sa¢htager, Boolean, and String.

This process is exactly the same as described in Sécilbordfansformation of primitive types.
The first step in the transformation involves flattening tless hierarchy in a metamodel

with multiple inheritance to a flat A.oy model. Consider a general metamodel as shown on the

left hand side of FigurE-3113 containing several abstrastses and concrete classes. As seen on

the right hand side Figufe=3]13, we transformcalhcrete classeis the metamodel to signatures

in ALLOY. We also see the graphical signature hierarchy repregantaftthe ALLOY model.

In the figure the concrete classes ConcreteClassl, CoGtasi2,..., ConcreteClassM are trans-

formed to ALLOY signatures.None of the abstract superclasses SuperClass11...SuperClassN

are transformed to ALOY signatures. We neglect abstract super classes based obstnwa

tion that we will never need to instantiate their objects.

3.6.2 Transforming Properties to ALLOY Fields and ALLOY Facts

The second step involves the transformation all propedfesach concrete class toLAOY.
These properties include those what were originally owned boncrete class and those inher-
ited from all other concrete/abstract classes. Therefoedransform each propergy(owned or
inherited) in each concrete claSg¢o ALLOY. We need to deal with the following cases:

1. Owned Property pis of Primitive Type in a Concrete ClassC:

Owned propertyp is transformed to an ALoY field f, inthe ALLOY signaturesigc. This
is possible because all concrete class types and primygpesthave a signature definition
in the ALLOY model after the flattening step in Sect[on-3 6.1.

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY 105

LHS: Metamodel RHS: Generated Alloy Paragraph(s)

Alloy. Si es for Multiple Inheritance Hierarchy.

Multiple Inheritance Class Hierarchy to Alloy Signatures .
sig ConcreteClass1

(..}
SuperClass1M
<abstract> sig ConcreteClass2

’ sig ConcreteClassN2
{..}

SuperClassi1 SuperClass12
<abstract> <abstract>

sig ConcreteClassNM

SuperClassN1 ConcreteClassN2 (..}

<abstract> ConcreteClassNM o
L.]
sig ConcreteClassM
(..}
Graphical Representation of the Alloy Model
ConcreteClass1 ConcreteClass2 ConcreteClassM ConcreteClass1 ConcreteClass2 ConcreteClassM
<signature> <signature> <signature>
ConcreteClassN2 ConcreteClassM
<signature> <signature>

Figure 3.13: Step 1: Flattening the Multiple Inheritancerdrchy

2. Inherited Property pis of Primitive Type in a Concrete ClassC:

Propertyp is transformed to an Aoy field in the ALLOY signature folC. This is possi-
ble because all concrete class types and primitive types aaignature definition in the
ALLOY model after the flattening step in Sectlon3.6.1.

3. Owned Property p of Concrete Class TypeCT in a Concrete ClassC:

Owned propertyp of a concrete class typ@T is transformed into an ALOY field in

the signature representiri@whenCT is not inherited by other classes. The process is
identical to the transformation described in Secfion B.3#wever, the concrete class
type CT of property p may be inherited by other concrete clas€ds...CM as shown

in the LHS of Figurd=314. We deal with the transformation hie following steps as
illustrated in Figuré-3.14:

(a) If not already existing we create an abstract signataliec GlobalSuperClass and
insert it into the ALoy model. The abstract signature acts aglaceholderfor
abstract classes and concrete classes inherited by otheret® classes in the input
metamodel.

(b) We insert the field fop into the ALLOY signature folC with the type GlobalSuper-
Class.

(c) Allconcrete classgs1..CM that inherit fromA now inherit from GlobalSuperClass.
The inheritance is illustrated on the RHS of Figlire B.14. Gtwcrete clas€T also

106 CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

LHS: Metamodel Pattern RHS: Generated Alloy Paragraph(s)

1. New (if not already, inserted) Alloy Abstract Signature GlobalSuperClass

abstract sig GlobalSuperClass {}

2. Insert Alloy. Field in ConcreteClassA of type GlobalSuperClass

sig C
{
: GlobalSuperCl
T &% p : GlobalSuperClass
o p L.
3. Insert Subclass CX and C1..CM of A extends GlobalSuperClass
sig CX extends GlobalSuperClass
{....//Existing fields_}
. sig C1 extends GlobalSuperClass
&] {...//Existing fields_}

4. New Alloy_Fact to Assign a Concrete Type to a Reference
fact Invariant_C_p_subclasses
{CpinCXorCpinClor..CpinCM}

GlobalSuperClass
<abstract signature>

CX C1 CM

<signature> <signature> <signalure>

Graphical Representation of Alloy Signature Hierarchy

Figure 3.14: Transforming Property of Concrete Type ta @y fact

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

107

LHS: Metamodel Pattern

A
<abstract>

[o5]

/5

RHS: Generated Alloy Paragraph(s)

1. New (if not already,_inserted)_Alloy_Abstract Signature GlobalSuperClass

abstract sig GlobalSuperClass {}

2. Insert Alloy, Field in ConcreteClassA of type GlobalSuperClass

sig C

{
p : GlobalSuperClass
1

3. Insert Subclass C1..CM of A extends GlobalSuperClass

sig C1 extends GlobalSuperClass
..,.//Existing fields

}
4. New Alloy Fact to Assign a Concrete Type to a Reference

fact Invariant_C_p_subclasses

{

CpinCl
or
CpinCM
}
GlobalSuperClass
<abstract signature>
C1 CM

<signature> <signature>

Graphical Representation of Alloy
Signature Hierarchy

Figure 3.15: Transforming Property of Abstract Type toLAY fact

inherits fromGlobalSuperClas# not already inheriting from it.

(d) We generate an Aoy fact that states that the propenpyof C is in CT or in one
of the concrete subclasses ©T namelyC1 , C2,..orCM. The fact enforces the
property to always refer t6T or concrete subclass objects®f.

4. Inherited Property p of Concrete Class TypeCT in a Concrete ClassC: Inherited
propertyp of a concrete class ty@eT is transformed into an ALOY field in the signature
representingC whenCT is not inherited by other classes.. The process is identical
the transformation described in Sectlon"3.5.4. However,cbncrete class typ@T of
property p may be inherited by other concrete clas€ds...CM as shown in LHS of

Figure[3IN. The inherited propertyis transformed in the same fashion as described

above for an owned property (described in Fidurel3.14).

5. Owned Property p of Abstract Class TypeA in a Concrete Clas<C:

108

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

Properties of abstract type cannot be simply transformeghtdLLOY field in a signature

for C. This is becausd is not transformed to a signature or an abstract signatuiteein
ALLoy model and hence does not have a type. Therefore, we deal with the transforma-
tion in the following steps as shown in Figire3.15.

(a) If not already existing we create an abstract signataliec GlobalSuperClass and
insert it into the ALoy model. The abstract signature acts gdaeeholderfor ab-
stract classes and concrete classes inherited by otheeslasthe input metamodel.

(b) We insert the field fop into the ALLOY signature foiC with the type GlobalSuper-
Class.

(c) All concrete classgsl1..CM that inherit fromA now inherit from GlobalSuperClass.
The inheritance is illustrated on the RHS of Figlre B.15.

(d) We generate an IAoy fact that states that the propenyof C is in one of the
concrete subclasses AfnamelyC1 ,C2,..orCM. The fact enforces the property to
always refer to concrete subclass object€ of

. Inherited Property p of Abstract Class TypeA in a Concrete ClassC: Inherited prop-

erty p of a abstract class typg&is exactly equivalent to transforming an owned property
of abstract class type discussed above and illustratedgunr€3.Ih. However, we may
choose to optimize this transformation.

All inherited properties may be flattened to into a concréésssignature. However, we
may alsoselect propertiegattributes and references) that will be transformed ta @y
fields. An objective for us is to minimize the number of prdjesr we flatten from the ab-
stract super classes to concrete classes. We use two lesui@@iven an ALOY signature
representing a concrete class,

(&) We create ALoY fields only for all inherited properties that caontain objects.
There properties can contain objects of any of the conctagses in the metamodel.
We perform the transformation to ensure that all objectseeontainer property
(except the top-level container class). This transforomatitems from the fact that
It is mandatory that objects of all classes have a contaimé&core. Hence, the
non-root ALLOY signatures must have a container.

(b) We create ALoY fields for all inheritedrequired propertiegor a given application
for model generation. For instance, we preserve all prigsedsed by a model
transformation for which we intend to generate models. Btep helps minimize
the size of the constraint satisfaction problem for modekgation.

We illustrate the flattening of composite properties that@antain concrete class objects
in Figure[3I6 (a). There are two possibilities while flatbgnsuch properties. If a com-
posite property such aontainlcan hold concrete classes we transform the property as
an ALLoy field as shown on the RHS of Figute—3.16 (a). A composite pigpaich
ascontain2may refer to an abstract class that is inherited by severatrete classes.

In such a case, we transform the property as and¥ field of type GlobalSuperClass.

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY 109

LHS: Metamodel Pattern RHS: Generated Alloy Paragraph

(a) Super Class Composite Properties to Alloy Fields

L. 1 sig ConcreteClass1 extends GlobalSuperClass

contains]1 : set ConcreteClass2
contains2 : set GlobalSuperClass

contains1 contains2

ConcreteClass1

P ConcreteClass2 SuperClass2 }

ConcreteClass3 ConcreteClass4

(b) Super Class Required Properties to Alloy Fields

Alloy, Fields for Primitive Attributes of an Abstract Type Super Class
sig ConcreteClass1 extends GlobalSup

lass

SuperClass {
requiredProperty1 : <Pri

requiredProperty2 : <Pril x:%s:: H):} requiredProperryl : one <Prif"i'iYeT7Pe>
requiredProperty3: <PrimitiveType> [a..b] requiredProperty2 : lone <PrimitiveType>
notRequiredProperty4 : <PrimitiveType> [a..b requiredProperty3 : set <PrimitiveType>
requiredProperty5: set ConcreteClass2
requiredPropertyé: set GlobalSuperClass
}

ConcreteClass1 requiredProperty6

SuperClass2
L]

requiredProperty5

[C lass3 | [C lass4 |
. |]

Figure 3.16: Flattening Properties in the Multiple Inhemite Hierarchy

While model generation, the GlobalSuperClass is replagedbects of concrete sub-
classes of SuperClass2. This implies that the field CorClas¢s1.contains2 can refer to
both objects of type ConcreteClass3 and ConcreteClass4.

The flattening of required properties is very similar to tlatéining of composite proper-
ties with the exception that properties that are not reguare not transformed asLAOY

fields. For instance, in Figute=3]16 (b) the primitive typepsrty notRequiredProperty4
Is not transformed to an A Oy field.

3.6.3 Transforming Implicit Constraints to ALLOY Facts

In the third step, we transform implicit constraints in a ambdel with multiple inheritance to
ALLOY. We present the transformations as follows:

Transforming Opposite Properties to ALLOY Facts

First, we consider the transformation of opposite properto ALLOY facts. We recall that
an opposite property represents a bi-directional relakignbetween two classes. After the
property flattening process, an opposite property in a &ealass may refer to an abstract
class or a concrete class. An opposite property betweenaeterclass and an abstract class
leads to the generation of a different L0y fact since all abstract classes are not included in

110 CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

the ALLOY model. We illustrate this transformation in Figlire=3.17.
The transformation states that if any property propertyBaicrete class ConcreteClassA
has an opposite property propertyA in the abstract supss SaperClassB then,

1. If ConcreteClassA.propertyB refers to any object olZjeuft ConcreteClassl1 then Con-
creteClassl.propertyA refers to ConcreteClassA.

2. If ConcreteClassA.propertyB refers to any object olgjesit ConcreteClass2 then Con-
creteClass2.propertyA refers to ConcreteClassA.

3. ..

4. If ConcreteClassA.propertyB refers to any object olgjexft ConcreteClassN then Con-
creteClassN.propertyA refers to ConcreteClassA.

We generate facts for opposite properties to all possikbectasses of the abstract super
class SuperClassB.

An opposite property between two concrete classes Co@issteA.propertyD and Con-
creteClassB.propertyC can be transformed in a similar vgashawn in Figur€3.17. The only
difference being the generation of the additional fact far bpposite property between Con-
creteClassA and ConcreteClassB.

Transforming Composite Properties to ALLOY Facts

A composite property for each concrete class in the metalhisdensformed to an ALoY
fact. The transformation is identical to the transformatiee have already seen for composite
properties in a metamodel with single inheritance. See@dBI5.% for more detail.

Transforming Containers of a Class to ALLoY Facts

A concrete class can be contained by another concrete alassastract super class as shown
in Figure[3IB. Therefore, any object of ConcreteClassAeither be contained by the concrete
class ConcreteClassB its subsclasses ConcreteClassdicreteClass1N or all subclasses of
abstract SuperClasB such as ConcreteClassl,...,Codlas$®l. The Alloy fact on the RHS
of the transformation in Figule—3118 depicts the containnoemstraint. All objects of Con-
creteClassA will be contained by either ConcreteClassBiyo@ieClass11, ConcreteClass1N,...
ConcreteClassl,..,or ConcreteClassN. The fact alssdtaéean object of ConcreteClassA can
have only one containing object.

Transforming Multiplicity Constraints of a Class to A LLOY Facts

Multiplicity constraints on properties for each concrelgss in the metamodel is transformed to
an ALLoy fact. The transformation is identical to the transformatiee have already seen for
multiple properties in a metamodel with single inheritan8ee Sectiof~3.3.5 for more detail.

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

LHS: Metamodel Pattern

Opposite Property Constraint

propertyA
propertyC
multilevel

lass1 | .. [C lassN |

Condition
propertyA.opposite = propertyB
propertyB.opposite = propertyA
propertyD.opposite = propertyC
propertyC.opposite = propertyD

ConcreteClassB
propertyD

multilevel

[ConcreteClassB1] [ConcreteClassBN]

Figure 3.17: Transforming Opposite Properties toLAy Facts in Metamodel with Multiple

Inheritance

SuperClassB
propertyB <abstract> »

RHS: Generated Alloy Paragraph

Facts for property of abstract type SuperClassB

fact ConcreteClassA_propertyB_ConcreteClass1_propertyA_opposite

all object1 : ConcreteClassA, object2 : ConcreteClass1|
object2 in object1.propertyB
implies
object1 in object2.propertyA
}

fact ConcreteClassA_propertyB_ConcreteClassN_propertyA_opposite

all object1 : ConcreteClassA, object2 : ConcreteClassN |
object2 in object1.propertyB
implies
object1 in object2.propertyA
}

Facts for property of concrete type ConcreteClassB

fact ConcreteClassA_propertyB_ConcreteClassB_propertyA_opposite

all object1 : ConcreteClassA, object2 : ConcreteClassB |
object2 in object1.propertyD
implies
object1 in object2.propertyC
}
fact ConcreteClassA_propertyB_ConcreteClassB1_propertyA_opposite

all object1 : ConcreteClassA, object2 : ConcreteClassB1|
object2 in object1.propertyD
implies
object1 in object2.propertyC
}

fact ConcreteClassA_propertyB_ConcreteClassBN_propertyA_opposite

all object1 : ConcreteClassA, object2 : ConcreteClassBN |
object2 in object1.propertyD
implies
object in object2.propertyC

112 CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

LHS: Metamodel Pattern RHS: Generated Alloy Paragraph

Class Gontainers Gonstraint -
fact ConcreteClassA_containers

{
0.1 prop1 all o: ConcreteClassA |

(o in ConcreteClassB.prop1 or
o in ConcreteClass11.prop1 or
o in ConcreteClass1N.prop1 or

o in ConcreteClass1.prop2 or
ConcreteClass11 | ... [ConcreteClassiN | » ° iz ConcreteClassN.prop2)
an
all o1: ConcreteClassB, 02: ConcreteClass1,
container2 oN:ConcreteClassN, o11:

ConcreteClass11,..01N:ConcreteClass TN |

disj[o1.prop1,02.prop2,0N.prop2,011.prop]1,
ConcreteClass1 | ... [ConcreteClassN ..01N.propN]

Figure 3.18: Transforming Containers of a Concrete ClaastALLOY Factin Metamodel with
Multiple Inheritance

Transforming ldentity Properties of a Class to ALLOY Facts

Identity properties on properties for each concrete claghe metamodel is transformed to an
ALLoy fact. The transformation is identical to the transformative have already seen for
identity properties in a metamodel with single inheritan8ee Sectioi-3.3.5 for more detail.

3.7 Handling the Transformation of Metamodel Invariants to AL -
LOY Facts

Metamodel invariants are textual constraints on a metamodé express some constraints
textually due to limitations of class diagrarsére model in describing constraints on the mod-
elling domain. Textual constraints are often specifiedgittire industry standard language€eL.

An OCL constraint is specified on a pattern of a model in a modellmgliage. For instance,
the constraint thato cyclic inheritancecan exist in an WL class diagram can be represented
in OCL as shown in Listing-3]1.

context Class
inv. noCycliclnheritance
not self.allGenerals (}>includes (self)

Listing 3.1: An ExampledCL Constraint

Automating the transformation of aliCL constraints to ALOY facts is not within the scope
of this thesis. We manually transform @fCL constraints in this thesis tolAoy facts. Devel-
opers experienced in bothCL and ALLOY can extract the meaning of &CL constraint and
express it as an Aoy fact.

For example, we transform the constraint in Lisfind 3.1 mAuLoy fact in Listing[3.2.

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY 113

fact noCycliclnheritance

no c: Class | cin c.~general

}

Listing 3.2: ALLoY fact representing No Cyclic Inheritance

The ALLOY fact usedransitive closureo enforce the constraint that no Classxists such
that it is contained in either.general or c.general.general or c.general.generalggah... and
so on. This implies that no multi-level super classes of asctan contain it thereby eliminating
the cyclic inheritance in all ML class diagram models. During the course of the thesis a numbe
of OCL constraints have been manually transformed to@y .

3.8 lllustration of Transformation to A LLOY

We transform the effective metamodel oMU with 26 classes and 65 properties, shown in
Figure[3® to an ALoy model. The resulting ALoy model contains signatures only for the
concrete classeis the metamodel.

The generated signatures are shown in Lidiny 3.3.

module EffectiveUML
open util/boolean as Boolean
sig GlobalSuperClass { }

one sig Package extends GlobalSuperClass

packagedElementset GlobalSuperClass,// PackageabhleElement
name one Int

sig Association extends GlobalSuperClass

ownedEndset Property,
memberEndset Property,
attribute :set Property,
name one Int

sig Property extends GlobalSuperClass

datatype pne DataType,
owningAssociationone Association ,
associationone Association ,

name one Int

sig Class extends GlobalSuperClass

nestedClassifierset GlobalSuperClass,// Classifier
ownedAttribute set Property,

attribute :set Property,

name one Int

sig DataType extends GlobalSuperClass

ownedAttribute set Property,

114 CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

attribute :set Property,

name one Int
s}ig PrimitiveType extends GlobalSuperClass
{

ownedAttribute :set Property,

attribute :set Property,

name one Int

}

Listing 3.3: Generated AL.OY Signatures in Effective ML

Signatures for concrete classes (those that initiallyribfim abstract superclasses) now
extend the abstract signature GlobalSuperClass in theoX model. For instance, Associa-
tion inherits from PackageableElement imU. Therefore, the signature Association extends
GlobalSuperClass.

Each property (owned/inherited/primitive) of a concrdsessC is transformed to an ALOY
field in the signature representi@y For instance, in Listing=3 3, the primitive propertgmein
Association is an inherited property from NamedElement ihdirectly transformed to a field
in the Association signature. Similarly, the propeotynedEndof Association is of a concrete
class type Property. The property is directly transforneedrt ALLOY field in the Association
signature. A property may have an abstract class type in #tamodel. For instance, the
property nestedClassifieof Class is of abstract class type Classifier. There is noasige
for Classifier in the ALoy model. Therefore, the property is transformed to an@v field
of type GlobalSuperClass in theLAOY model. We generate IAoy facts for fields of type
GlobalSuperClass. TheseLPoy facts state that the type of the field is one or more of the
signatures already in thetAoy model. In fact these signatures represent the exact cencret
subclasses of the abstract class type. For instance, indgii3f4 we present two such generated
facts. The second fact states that all objects of type @lastedClassifier must be of type Class
or DataType, or PrimitiveType. Class, DataType, and Piillype are concrete classes that
inherit from Classifier in the ML metamodel.

fact Invariant_Package_packagedElement_subclasses

Package . packagedElemenh Packageor Package.packagedElemenh Association or Package.packagedElemenn Class or
Package . packagedElemernth DataType or Package.packagedElemernn PrimitiveType

}

fact Invariant_Class_nestedClassifier_subclasses

Class.nestedClassifiein Associationor Class.nestedClassifiein Class or Class.nestedClassifiein DataType or
Class.nestedClassifiein PrimitiveType
}

Listing 3.4: Generated ALOY Facts for Subclasses in Effectivevid

We generate ALOY facts for opposite properties, composite properties, amdamers in
the effective WL metamodels. We present examples of these facts in Lisfhhg 3.

The first fact in Listind=316 enforces thapposite property constrairietween two proper-
ties Association.ownedEnd and Property.owningAssamiatiThe fact states that if any Prop-
erty object is in the set o.ownedEnd (where o is an Assodiatigiect) then o is in the set
ol.owningAssociation (where 01 is a Property object).

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY 115

The second fact enforces tbemposite property constraifdr the property Package.packagedElement.
The fact states that for each object 01, 02 of type Packagdparach property plin ol.packagedElement,
p2 in o2.packagedElement, if pl is equal to p2 then the cangiobjects ol and 02 are one
and the same. The constraint enforces that if packagedBtamfers to an object of type Pack-
agedElement then the object can have exactly one Packagermon

The third fact enforces theontainers constrainfor the class Association. Association
objects can be contained by two different containers narRelykage.packagedElement and
Class.nestedClassifier. The fact first states that eachcia$sm object o is either contained
by Package.packagedElement or Class.nestedClassifi@on@ðe fact states that objects
contained by Package.packagedElement cannot be contayreldss.nestedClassifier and vice
versa.

/1'1. An Example of a fact generated for Opposite Property ofsAciation.ownedEnd and Property.owningAssociation
fact Invariant_Association_ownedEnd_Property_owningAskdton_opposite
all o :Association, ol:Property |

(ol in o.ownedEndimplies o in ol.owningAssociation)

}

/1'2. An Example of a fact generated for Composite Propertycksae . packagedElement
fact Invariant_Package_packagedElement_composite
{
all ol :Package, o2:Package |
all pl:ol.packagedElement,p2:02.packagedElement|plAapplies 0l=02
}
/3. An Example of a fact generated for Containers of Assdtém Objects
fact Invariant_Association_containers
all o : Association | (oin Package.packagedElemermtr
o in Class.nestedClassifier)

and

all o1 : Package,o02 : Class | disj[ol.packagedElement,02.ad€tassifier]
}

Listing 3.5: Generated A Oy Facts for Implicit Constraints in Effective naL

The entire solvable ALoy model for the effective metamodel is available for downla&ad
this site [4].

3.9 Model Generation by Solving ALoy Model

As a consequence of the transformation steps describee iprévious sections we obtain the
ALLOY model of an effective modelling domain. The oy model contains a set of set signa-
tures representing the concepts and their relationshigglomain. It also contains a set of facts
that encode implicit constraints in a metamodel. In thigisec we demonstrate how we can
generate models in the effective modelling domain spec#ged constraint satisfaction problem
in ALLOY. The generation of models intAoy must satisfy an ALoy predicate (which may

subsume other predicates). Objective-specific knowledgk as for test model generation may

116 CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

nn

MF1{Classifier(name="") and Classifier(hame=".+")}
MF2{Class(is_persistent = true) and Class(is_persistent = false)}
MF3{Class(parent = 0) and Class(parent = 1)}
MF4{Class(ownedAttribute = 1)and Class(ownedAttribute > 1)}

MF5 { Attribute(is_primary = true) and Attribute(is_primary = false)}
MF6{Attribute(name="") and Attribute (name=".+")}
MF7{Attribute(type=0) and Attribute (type=1)}

MF8{Association (name="") and Association (name=".+")}
MF9{Association(ownedEnd=0) and Association(ownedEnd=1)}
MF10{Association(memberEnd=0) and Association(memberEnd =1)}
MF11{Package(packagedElement=1) and Package(packagedElement>1)}

Figure 3.19: Some Model Fragments from effectivalUmetamodel

help specify such predicates or an empty predicate regiegem new knowledge. In Section
B8, we introduce specification ofLAoy predicates to guide generation of models in an ef-
fective modelling domain. In ALOY solving for a predicate implies generation of models that
satisfy the predicate and alllAoy facts. ALLOY allows generation of models within a certain
scope or within finite-bounds on the number of objects fohagpe. Therefore, in Secti@n3.p.2
we describe the specification to guide generation of modedsfinite scope.

3.9.1 Specifying ALoY Predicates to Guide Generation
Empty Alloy Predicate

If the goal is to generate models in the modelling domain isigelconly by the metamodel and
the invariants we do not need to guide generation with mdoerimation. Therefore, we generate
an empty A Loy predicate as shown in Listifig"B.6.

pred Unguided
{

}

Listing 3.6: Empty ALovY Predicate

Objective-specific AL.LOY Predicates

A number of objective-specific sources of knowledge may leadeneration or specification
of ALLOY predicates to guide generation with an objective. We enyila generation of such
predicates with the help of two examples.

In the first example, an objective-specific source of knogedhay be thgre-condition
of model transformation. We consider the model transfoionafrom UmML class diagrams to
Relational Database Management Systems (RDBMS) models calledtlass2rdbms. For instance,
the pre-condition the transformation states that all ela$s the input model must have at least
one primary attribute. The condition is necessary for imugxand may be expressed in the
predicate shown in Listing3.7.

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY 117

/I All Classes must contain at least one primary attribute
pred atleastOnePrimaryAttribute

all c:Class|some a:c.attrs | a.is_primary==True

Listing 3.7: A model transformation pre-condition ir.foy

The propertyisPrimaryof the class Attribute is not part of the originaMu specification. It
has been added to the effectivéilU metamodel as a new property of the cl@ass Similarly,
we add the propertis_persistentto the class Class to enable serialization of class@P ®&MS
models.

In the second example we use knowledge based on input domuditigming to guide model
generation. Input domain partitioning[153] is a well-knowource of knowledge to ensure
coverage of the input domain for software testing. Part#iof the modelling domain or the
metamodel are a source of knowledge to generateoX predicates. TheselAoy predicates
ensure that the entire modelling domain is covered. In ptesivork, Franck et. al[[55] extract
partitions of an input metamodel known m®del fragmentsFor instance, the following model
fragment states that the model to be generated must contaiashone "Classifier" object with
an empty name attribute and a "Classifier" object with noptgmame.

Classifief(name="") and Classifigmame=".4")

The model fragment can be transformed to an @y predicate as shown in Listifig_B.8.

pred modelFragment

some cl: Classifier, c2:Classifier| cl.name=&nd c2.name!=0

}

Listing 3.8: Model Fragment ALOY Predicate

In Figure[3ID, we present some of the important model fragsngenerated from the effec-
tive UML metamodel.

3.9.2 Specifying ALoy Run Commands with Finite Bounds

A run commandells ALLOY to search for an instance of a predicate. We may specify ascop
that bounds the size of the instances of the @&v model. The basic run command in shown in
Listing[323. The command attempts to generate an instartesdhisfies the predicaexample

in the finite scope of 20.

/A Basic Run Command
pred example () {}

run example for 20

Listing 3.9: Basic ALoy Run Command

We can go a step further and control the generation of modéfsvariable scope for each
signature. The scope for integer and sequences may be sgexdfivell. For instance, a scope of
5 int implies an instance can contain integers betweg&fand2®. Similarly, 5 segimplies that
an instance can contain sequences up to a size of 5. Thed[&ii0 illustrates a run command
with variable scope.

118 CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

/I/A Variable Scope Run Command
pred example() {}

run example for 1 Package, 5 Class, 5 Association, 3 PrimitiveDataType5..int, 5 seq

Listing 3.10: ALLoy Run Command with Variable Scope

If known in advance, we may also specify the exact scope fayreasure as shown in Listing

B13.

/IA Variable Scope Run Command
pred example() {}

run example for 1 Package, exactly 5 Class, 5 Association, exactly 3 PrimeDataType,...5int, 5 seq

Listing 3.11: ALLoy Run Command with Exact Scopes

3.9.3 ALLOY Instances to EMF models

The ALLOY instances generated are in the form of atoms and relatiomgebe atoms. They
need to be transformed back to models that conform to a mekaimd his transformation is
rather straightforward as thelAOY instances have a structure very similar to objects with
properties. @RTIER contains a Java module that traverses thedy instance and instantiates
objects with properties of the inpecore metamodel. The ALOY instance acts as a source of
information to recreate a valid model of the input metamodel

3.10 lllustrative Examples: Generation WL Class Diagram Mod-
els

We generate models from the input domain ofd¢laes2rdbms transformation using the different
sources knowledge discussed in Secfion B.9.1. We show lénetisa of 4 UvL Class Diagram
(UMLCD) models.

To begin, we use the A.0Y analyzer to generate a model that conforms only to the eféect
UMLCD meta-model. This is shown in FiguEe—=320 (a) usimgLCD concrete syntax. The
selected test model was found is@peof 10. The scope is the maximum number of objects for
each type (or class) in the meta-model. The model selectiparformed up to the limit proposed
by the scope. We see that the resulting model satisfies all-metlel constraints. However, an
attribute ofClassO0 is not primary. This implies that it is not a valid inputdiass2rdbms.

The second generated model must con@Glass objects with at least one primary attribute
which is a pre-condition for transformingnMu class diagrams to indexabRDBMS models.
The model is shown in Figuie=3120 (b). The selected model lagses with at least one primary
attribute just as required by the pre-condition. The setéechodel was found in a maximum
scope of 20. We note that the model now has two claG&ss6 andClass7, both of which have
at least one primary attribute.

Third, we generate a model that has some classesisvifiersistent= Truewhich is trans-
formation test specific objective. We generate a model inxdmmam scope of 20. The resulting

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY 119

\/ association6 o [Vassociation6
<<persistent>> association? <<persistent>> <<persistent>>
Class7 association Class5 Class6
<primary>> <<primary>> <<primary>>
+attributeM3 : Class7 +attributeM3 : Class7 +attribute1 : PrimitiveDataType0
association2 association4 - association4 association2
- association0
association5
Class0 association0 <<persistent>>
+attribute7 : PrimitiveDataType4 Class7
associationM1 — <<primary>>
(a) association4 | +attribute1 : PrimitiveDataType0
L A
Class4 associationM6
<<primary>> (b)
+attribute0 : Class7
% <<persistent>>
Class5
Class5 association0 <<pr'imary>> association1
<<primary>> +attribute7 : Class5
+attributeM5 : Class7
association1 \l/associationMs CheeE
<<persistent>> association4: - associationM5
- Class7 association? <<primary>> association3
association6 —m— +attribute7 : Class5 <
<<primary>> —
association0 | +attributeM8 : Class7 association7 | . ,1\ [
? +attribute? : Class? eaSS|ociation5 association6

I associationM7lf\ | (c)

(d)

Figure 3.20: (a) Model conforming to Meta-model (b)Modehfoming to Meta-model + Pre-
condition (c) Model conforming to Meta-model+ Pre-corwliti+ Test Model Objective (d)
Model conforming to Meta-model + Pre-condition + Model Frant

120 CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

Sources of Knowledge Time(sec)
Meta-model Only 0.78
Meta-model + Pre-condition 7.813

Meta-model + Pre-condition + Test Model Objectivg.97
Meta-model + Pre-condition + Model Fragments| 10.477

Table 3.2: Test Model Selection Times

model is shown in FigurEZ3:P0 (c). We note the clagsss5 is persistent as per the objective.
RDBMS models generated from such an input model is

Finally, we introduce model fragment facts along with thetam@odel and pre-condition.
The model that covers the meta-model and 5 model fragmestwisn in Figuréd-3.20 (d). The
resulting model covers some of the model fragments factsemergted from th&core model.
The model is selected for a maximum scope of 20. The modetfeats covered ,as described
in Figure[3IP, were MF2, MF3, MF4, MF5. This guarantees thatequivalence classes for
property values are covered at least once by a test modekrrmstof test qualification, this
increases the trust we have in the test models, based ondomain coverage.

In Table[32, we summarize the time taken (on a P4 2.6Ghz algsitith 1Gb RAM) to
generate models. From the table we can generally say tha&t knokvledge we have the longer
it takes to generate models.

3.11 Validity and Complexity of Transformation to ALLOY

We need to validate the transformation from a metamodeltandviariants to an ALOY model.
Therefore, we ask the questioAre all solutions of theALLOY model in the modelling domain
specified by the metamodel and constraints from heterogesources? We may answer this
by generating all possible solutions of thel&y model in a finite scope and checking if each
model conforms to the metamodel. However, generating akipte models is computationally
expensive. Therefore, can be generate an effective subakipossible models? In Chapfér 4,
we perform model generation experiments that cover the Hoglelomain using partitioning
strategies. We demonstrate that all effectives modelsrggteconform to the input metamodel.

The transformation from an effective modelling domain toLAY haslinear time com-
plexity. The transformation involves 2 passes for transformingniieéamodel and 1 pass for
transforming implicit constraints in a metamodel such asposite properties, opposite proper-
ties, etc. to ALOY facts. Therefore, the time complexity@ 3+ N) whereN is the number of
concepts (total number of classes and properties) in the mptamodel.

3.12 Summary

In this chapter we present three important steps in autematidel discovery. The first step is
the metamodel pruning algorithm which is used to obtain ffeetive metamodel given an input
metamodel. We illustrate pruning onMu, a very large input metamodel, to obtain an effective

CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY 121

metamodel that represents the class diagram subsetiof OUhe second step is the transfor-
mation of heterogeneous sources of knowledge includingtieetive metamodel, metamodel
invariants, partial model and possibly several domaireci$jgesources to a common constraint
model in ALLoy. We demonstrate the transformation of the class diagrasesutd UvL and
other sources of knowledge such as a simple partial modetau| fragments for test models
to ALLOY. In the third and the final step we illustrate the generatiomadels that conform to
various sources of knowledge. In particular, we illusttatt model generation and partial model
completion for WML class diagrams. In the next chapter, we present experiniieistsating the
application of automatic model discovery.

122 CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

123

Chapter 4

Experiments in Effective Model
Discovery

In this chapter, we present two domain-specific experimgvasapply and validate automatic
effective model discovery already described in Chdgter 3.

1. The first application is to synthesize thousands of maelsst a model transformation
using testing specific knowledge knowniaput domain coverage criteria|We qualify
the effectiveness or bug detecting ability of these modielsnutation analysi§107].

2. The second application is to generate model completioommenendations for partial
model The partial model is specified in a domain-specific modebedi

The chapter is organized as follows. In Secfiod 4.1, we des¢he model transformation
testing application. We present model discovery as modapbetion in a model editor in Sec-
tion[43.

4.1 Automatic Model Synthesis for Model Transformation Tesing

Model transformations are core MDE components that auterimaportant steps in software
development such as refinement of an input model, re-fagtdo improve maintainability or
readability of the input model, aspect weaving, exogenausesndogenous transformations of
models, and generation of code from models. Although thereide spread development of
model transformations in academia and industry the vadidaof transformations remains a
hard problem[[I9]. In this study, we address the challengealidating model transformations
via black-box automatic test data generatiokiVe think that black-box testing is an effective
approach to validating transformations due to the divemsittransformation languages based
on graph rewriting[[17] (AToM [67]), imperative execution (Kermeta [108]), and ruledshs
transformation (ATL[[/5]) that render language specifiaxfat methods and white-box testing
currently impractical.

In black-box testing of model transformations we requést modelghat candetect bugs
in the model transformation. These models are graphs afaotenected objects that must con-

124 CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY

form to a meta-model and satisfy meta-constraints such kfommedness rules, transformation

pre-conditions, and test strategies. Manually specifygegeral hundred test models targeting
various testing objectives is a tedious task and in manysaaggossible since the modeller may
have to simultaneously satisfy numerous possibly intiated constraints.

In this section, we apply our automatic model discovery faumrk CARTIER previously
discussed in Chapt&t 3 sutomatic test model generatio€ARTIER has to address two main
problems for test generation: identify a precise model ef tiansformation’s input domain;
automatically select relevant test models in the input domahe first issue is related to the
fact that the input domain of a transformation is generatigalibed with a general purpose
metamodel (e.g., ML). However, the effective input domain, that captures ohly set of
models that can be transformed, is much smaller than thd settances of the general purpose
metamodel. @RTIER can prune the metamodel in order to explicitly build a sulmdethe
metamodel that the transformation can manipulateRTTER also assists the definition of pre
conditions on the metamodel to make the input domain moreigge Once the input domain
is precisely modelled, ERTIER can generate models in the input domainARTIER either
generates models without guidance or it can use test statégorder to have models that
cover the input domain [55].

Are the test models generated by®YIER able to detect bugs in a model transformation?
We answer this question by generating and comparing se¢siofriodels using different testing
strategies. Specifically, we consider two testing strateginguidedandinput domain coverage
strategiedb5]. We usemutation analysi§49] [L07] for model transformations to compare these
testing strategies. Mutation analysis serves &storacleto determine the relatively adequacy
of generated test sets.

We perform experiments to generate test models using eliffeesting strategies and qual-
ify them using mutation analysis. We generate test modelghiorepresentative model trans-
formation ofUnified Modelling Language Class Diagram (UMLCD) to Relational Database Man-
agement Systems (RDBMS) models callectlass2rdoms. The mutation scores show that input
domain coverage strategies guide model generation witkiderably higher bug detection abil-
ities (93%) compared to unguided generation (70%). Thesdtseare based on 3200 generated
test models and several hours of computation on a 10 machidefghigh-end servers. The
large difference in mutation scores between coverageegiest and unguided generation can
be attributed to the fact that coverage strategies enf@eeral aspects on test models that un-
guided generation fail to do. For instance, coverage sfiegeenforce injection ohheritance
in the UMLCD test models. Unguided strategies do not enforce such aresgeint. Several
mutants are killed due to test models containing inherganc

Thescientific contributionin this section addresses three important questions:

e Question 1: How can we scale the approach to generating test modelsrigs laput
meta-models such thend. ?

e Question 2. Does the model transformation pre-condition preciselycs$pdahe input
domain of a model transformation? If not, can automaticgéiyerated test models help
improve the pre-condition by presenting unforeseen ancanted modelling patterns?

CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY 125

e Question 3: Are we consistently able to generate effective test moaela §iven strategy
using our approach?

The precise contributions of this section addresses gxdtbe problems. We enlist them
below:

e Contribution 1: We usemeta-model pruningsee Chaptdi 3, SectiénB.%, [141]) to prune
a large input meta-model such as theUto a subset called the effective input meta-
model. The effective input meta-model contains only claspeoperties, their dependen-
cies relevant the transformation under test. The oftenlemeffective input meta-model
is transformed to a small formal representation inLAY. In contrast, transforming a
large input meta-model such as the whole ofilUto ALLOY results in a formal model
that renders SAT solving intractable due to the large nurobsignatures and facts.

e Contribution 2: We show how automatically generated test models can helppove
a model transformation’s pre-condition. For instance téfs models we generate for the
case study transformatiatiass2rdbms helps us discover new pre-condition constraints.
These pre-conditions were not initially envisaged by thespaf world experts in model-
driven engineering who propose ttless2rdbms as the benchmark case study atthe MTIP
workshop [22]. We show that automatic generation can hetppislly discover structures
that human or even experts cannot preview in advance ormreesenveral years of transfor-
mation usage experience.

e Contribution 3: We show that @RTIER consistently generates effective test models for
a given strategy. We illustrate consistency by demonsgétiat generating multiple test
models for the same test strategy does not significantlygehamutation scores. These
test models correspond to multiple non-isomorphic sohstiobtained using ALOY’S
symmetry breaking scheme[143].

4.1.1 Problem Description

We present the problem of black-box testimgpdel transformations A model transformation
MT (I,0) is a program applied on a set of input model® produce a set of output models
O as illustrated in FigurE=4l1. The set of all input models iscéiied by a meta-modéilM;.
The set of all output models is specified by meta-mdd®lo. The pre-condition of the model
transformationpre(MT) further constrains the input domain. A post-conditipostMT) lim-
its the model transformation to producing a subset of alsjixds output models. The model
transformation is developed based on a set of requiremi&fgquirements

Model generation for black-box testing involves findingigahput models we caliest mod-
elsfrom the set of all input models Test models must satisfy constraints that increase tse tru
in the quality of these models as test data and thus shouldase their capabilities to detect
bugs in the model transformatidiT (I, O). Bugs may also exist in the input meta-model and its
invariantsMM, or the transformation pre-conditioore(MT). However, in this study we only
focus on detecting bugs in a transformation.

126 CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY

MM specifies input MTrecuremens)
! model set i e o develop M Mofn":;g'zset"“tp”t
1} pre(T) [MT(1,0) {postiT

Figure 4.1: A Model Transformation

4.1.2 Transformation Case Study

Our case study is the transformation frormU Class Diagram models ®DBMS models called
class2rdbms. In this section we briefly descrilidass2rdbms and discuss why it is a representa-
tive transformation to validate test model generationteagjies.

In black-box testing we need input models that conform toirtipeit meta-modeMM,; and
transformation pre-conditiopre(MT). Therefore, we only discuss tiM,; and pre(MT) for
class2rdbms and avoid discussion of the model transformation outputaionin Figurd 4P, we
present a subset of theMll input meta-model fotlass2rdbms. The concepts and relationships
in the input meta-model are stored askmre model [58] (FigurdZl2 (a)). The invariants on
the UMLCD Ecore model, expressed i@bject Constraint Language (OCL) [I14], are shown in
Figure[Z2 (b). Th&core model and the invariants together represent the true inptasmodel
for class2rdbms. The OCL andEcore are industry standards used to develop meta-models and
specify different invariants on thenDCL is not a domain-specific language to specify invari-
ants. However, it is designed to formally encode naturajl@age requirements specifications
independent of its domain. IATI565] the authors present doni&tions of OCL.

The input meta-modeéMM, gives an initial specification of the input domain. Howevbe
model transformation itself has a pre-conditipre(MT) that test models need to satisfy to be
correctly processed. Constraints in the pre-conditioncfass2rdbms include: (a) All Class
objects must have at least one prim&mpperty object (b) The type of aRroperty object can
be aClass C, but finally the transitive closure of the type Pfoperty objects ofClass C must
end with typePrimitiveDataType. In our case we approximate this recursive closure comnstrai
by stating thaProperty object can be of typ€lass up to a depth of 3 and the 4th time it should
have a typePrimitiveDataType. This is a finitization operation to avoid navigation in afinite
loop. (c) AClass object cannot have afissociation and anProperty object of the same name
(d) There are no cycles between non-persis@ass objects. These initial pre-conditions are
transformed to ALoy and are presented in AppendixJ6.5.

We chooselass2rdbms as our representative case study to validate input sefestiiategies.

It serves as a sufficient case study for several reasonsrditsfdrmation is the benchmark pro-
posed in the MTIP workshop at the MoDELS 2005 confereick f@2kperiment and validate
model transformation language features. The input doma&ita+smodel of WL class diagram
model covers all major meta-modelling concepts such agitanee, composition, finite and
infinite multiplicities. The entire ML input meta-model serves as a large input meta-model
to demonstrate meta-model pruning to an effective inpuarmeddel containing only class dia-
gram concepts.The constraints on thelUmeta-model contain both first-order and higher-order
constraints. There also exists a constraint to test treagitosure properties on the input model

CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY 127

Class diagram subset of Samples of OCL Invariants
UML Meta-model
Property datatype | Classifier context Class
is_primary: Boolean 1" hame: String inv noCyclicInheritance: ‘
not self.allGenerals()->includes(self)

name: String -
classifier |+
1. | attribute % inv uniqueAttributesName:
self.attribute->forAll(att1, att2 |
gene) att] .name=att2.name implies attl=att2)

0.1 Class ‘ Model

- - - context Model
is_persistent: Boolean

E inv uniqueClassifierNames:
ownedEnd self.classifier->forAll(cl, c2 |

PrimitiveDataType ﬂ cl.name=c2.name implies c1=c2)

inv uniqueClassAssociationSourceName :
Association self.packagedElement->forAll(ass1, ass2 |
. assl.name=ass2.name implies
(assl=ass2 or assl.src != ass2.src))

(a) (b)

memberEnd| 1

-

name: String packagedElement

Figure 4.2: (a) Class Diagram Subset oilJ Ecore Meta-model (b)OCL constraints on the
Ecore meta-model

such as there must be no cyclic inheritance. dlags2rdbms exercises most major model trans-
formation operators such as navigation, creation, andifij§described in more detail iRTI07])
enabling us to test essential model transformation festukenong the limitations th&MLCD
meta-model does not contalimeger andFloat attributes. The number of classes in thdLCD
meta-model is not very high when compared to the standard RLO specification. There are
also no inter meta-model references and arbitrary contitsrin the simple meta-model. How-
ever, this not really limitation in our approach as we clairattspecifying a test model requires
only a small subset of the entire meta-model and extrachirsgsubset via meta-model pruning
is part of our methodology.

Model generation is relatively fast but performing mutatanalysis is extremely time con-
suming. Therefore, we perform mutation analysislass2rdbms to qualify transformation and
meta-model independent strategies for model synthesithetfe strategies prove to be useful
in the case otlass2rdbms then we recommend the use of these strategies to guide model s
thesis in the input domain of other model transformationaramitial test generation step. For
instance, in our experiments, we see that generation of &a$5WMLCD models takes about
20 seconds and mutation analysis of a set of 20 such models &iout 3 hours on a multi-core
high-end server. Generating thousands of models for difteransformations takes about 10%
of the time while performing mutation analysis takes mogheftime.

4.1.3 Automatic Test Model Generation and Qualification Mehodology

We outline the methodology for test generation usirgROER and qualification of the gen-
erated test models via mutation analysis in Fiduré 4.3. Sehg the test model generation
methodology follows the steps:

128 CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY

Heterogenous Sources of Knowledge
Input meta-model (in Ecore) Model transformation

c U o Search Strategy S
Finite Scope Parameters MM, (contains invariants) pre'c°p"r:'(tr'°l15') Eq.: Test Coverage Criteria
E.! Cartiergh 2 ®en B
acommen [PSIar | et synenets| reeon e |\ e

\
Model Transformation
(MT)

All Models

Test Models

invokes/uses _.-

Mutation| Mutation
Analysis | “Scores

Figure 4.3: QRTIER Methodology for Automatic Test Generation and Mutation ke based
Qualification

1. CARTIER performs static analysis on the model transformatbh to obtain the initial
set of used types and properties.

2. CARTIER performs metamodel pruning &M, using these used types and properties to
obtain the effective input metamodaM, (details in Chaptdil3, Secti@nB.4)

3. CARTIER transformseMM,, its invariantsC, the transformation pre-conditiopre(MT)
and test strategy to anLAoy model (details in Chapté&l 3, Sectidnsl 5] 3.7).

4. CARTIER generates models to detect inconsistencies in test strateglicates. These
test strategy predicates inLAOY are automatically generated in the previous step and
are included in the ALoy model. For instance, a predicate contains a model fragment
that is desirable in a test model (see Sediioh 3.9 for mocenmtion on fragments). We
attempt to synthesize a model that satisfies the conjuncfidhe predicate, the Aoy
model representation of the metamod®M,, its invariantsC, and pre(MT). If we fail
to generate a model in a maximum finite scope then we elimitmegredicate as it is
inconsistent witreMM,, its invariantsC, andpre(MT) (introduced in Sectiof3.9)

5. Finally, CARTIER generates sets of test models that satisfy all consistedtqates repre-
senting test strategies in a finite scope using run commamnasaEh predicate (introduced
in ChapteB, Section3.9). It can also generate multipleisomorphic test models by
soliciting ALLOY’s symmetry breaking schenle143] currently applicabléneoMiniSAT
[51]] SAT solver.

The generated models may lead to raising of general excepsioch as memory leaks, di-
vide by zero, infinite loops in the model transformatMii as its initial pre-condition definition

CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY 129

::Class ownedEnd memberEnd --Class attribute | Attribute
— _— | -
name: B ::Association name: C is_primary: true
is_persistent : false name: assol is_persistent : false name: att1 datatype
general ::PrimitiveTygel
name: String
uClass ownedEnd membernd ::Class attribute | Attribute /:Iatatype
— | -
name: A ::Association > name: D is_primary: true
is_persistent : true name: assol is_persistent : false name: att1
::Table
name: A
OOE/ \ cols
::Column ::Column

name: assol_att1 name: asso1_att1
type : String type : String

Figure 4.4: Model Excerpt for Pre-condition Improvement

may not have been well defined. In the following Seclion 4 weshow how automatically gen-
erated models resulted in discovery of patterns that wetréoneseen by experts who original
designed the transformati@ass2rdbms.

After discovering pre-conditions that no longer lead toegation of models that are raise
exceptions we regenerate sets of test models. We qualifgetseof generated test models via
mutation analysis (see Section411.4).

Pre-condition Improvement

The execution of a transformation helps us discover newtraings for the pre-conditiopre(MT)
of the transformatioMT. In this sub-section we illustrate how some of the constsaiim the
pre-condition of the transformatiarass2rdbms are discovered.

The discovery of a pre-condition starts with the detectibatmormal behaviour during the
execution of automatically generated models. These mdydacexceptions such as memory
leaks, infinite loops, or divide by zero errors. Models naviously considered by the model
transformation specification often result in such exceystid' he exception handling mechanism
in Kermeta allows us to detect and catch these exceptionst, ke prevent the lock of the
execution when a transformation runs into infinite loop. iRstance, this situation occurs when
input models are navigated through a series of associdii@tsan create loop structure in the
transformatiorclass2rdbms. These loops structures can navigate through diverse ptssech
as inheritance trees, associations, and type of attribuié®e Kermeta interpreter throws an

130 CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY

StackOverflowError exception when it detects such a problem.

Second, we detect other inconsistencies when output mpaelsiced from an automatically
generated input model are not in the output domain. The odipmain specified by an output
metamodeMMp, set of invariants on i€, and a post-conditiopostMT). In our case study,
the transformatiorlass2rdoms can produce ill-forme®DBMS models outside the valid output
domain. A typical example is when a table contains sevetahmos with same name. We detect
these inconsistencies by checking if output models confarrthe output metamodeE¢ore
model of the metamodel with invariants) and satisfy posteitions of the model transformation.
The FigurdZ} illustrates this detection. It representsaerpt (bottom part) of an output model
produced by the original transformation of a generated m@deerpt on the top part).

Our tool isolates inconsistent output models and corredipgninput models. We then use
a traceability mechanism and tool such as[inl [60] to restifananalysis of these models on
excerpts such as the one illustrated in Fiduré 4.4. Clasedans transformed into one table
because itis persistent. It redefined an association oflémsB. Two associations with the same
nameassolpoint to classes with the same attribute/propattit. Respecting the specification,
the original transformations produces a table with two coig nameéssol_attl This does not
conform to theRDBMS metamodel and it is detected by our tool. Construction ohsuodels
can be prevented by generating objects with different nariés solve this inconsistency by
creating a new pre-condition constraint that protects thesformation from executing such
models. We also regenerate new models that satisfy the nevegodition constraints. For
instance, the faulty model excerpt in Figlirel4.4 can helprodyze a new pre-condition that
states:

In the classes of an inheritance tree, two associations thighsame name can't point to
classes that have (or their parent) attributes with same emm

Several new pre-conditions were discovered fordlhses2rdbms case study. We enlist nine
newly discovered ALOY facts in Appendif8l6 apart from the initial set of pre-cdiugi con-
straints as shown in AppendixX6.5. TheseLAY facts can be easily expresseddCL to
improve the pre-condition specification @éss2rdbms. The conditions may even be applicable
to commercial implementations ofass2rdoms.

4.1.4 Qualifying Models: Mutation Analysis for Model Transformation Testing

We generate sets of test models using different strategiésyaalify these sets via mutation
analysis [[4B]. Mutation analysis involves creating a sefaofty versions omutantsof a pro-
gram. A test set must distinguish the program output frontredl output of its mutants. In
practice, faults are modelled as a set of mutation operatbese each operator represents a
class of faults. A mutation operator is applied to the progtander test to create each mutant.
A mutant is killed when at least one test model detects thénpeeted fault. It is detected when
program output and mutant output are different. A test setletively adequate if it kills all
mutants of the original program. A mutation score is assedi&o the test set to measure its
effectiveness in terms of percentage of the killed/revceat@tants.

We use the mutation analysis operators for model transtwmsapresented in our previous
work [I07]. These mutation operators are based on threeagbsiperations linked to the basic

CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY 131

Table 4.1: Repartition of thelass2rdoms mutants depending on the mutation operator applied

Mutation Operator CFCA CFCD CFCP CACD CKCK RSMA RSMD ROCC RSCC Total
Number of Mutants 19 18 38 11 72 12 12 9 200

treatments in a model transformation: the navigation ofrttoglels through the relations be-
tween the classes, the filtering of collections of objetis,dreation and the modification of the
elements of the output model. Using this basis we define akrartation operators that inject
faults in model transformations:

Relation to the same class change (RSCCThe navigation of one association toward a
class is replaced with the navigation of another associdatidthe same class.

Relation to another class change (ROCC)The navigation of an association toward a class
is replaced with the navigation of another association titsaT class.

Relation sequence modification with deletion (RSMD)This operator removes the last
step off from a navigation which successively navigategisdvelations.

Relation sequence modification with addition (RSMA):This operator does the opposite
of RSMD, adding the navigation of a relation to an existingigation.

Collection filtering change with perturbation (CFCP): The filtering criterion, which could
be on a property or the type of the classes filtered, is disturb

Collection filtering change with deletion (CFCD): This operator deletes a filter on a col-
lection; the mutant operation returns the collection it wagposed to filter.

Collection filtering change with addition (CFCA): This operator does the opposite of
CFCD. It uses a collection and processes an additionalirfigfem it.

Class compatible creation replacement (CCCR)The creation of an object is replaced by
the creation of an instance of another class of the sameitahee tree.

Classes association creation deletion (CACD)Fhis operator deletes the creation of an
association between two instances.

Classes association creation addition (CACA)This operator adds a useless creation of a
relation between two instances.

Using these operators, we produced two hundred mutantstfrectass2rdbms model trans-
formation with the repartition indicated in Talfle}.1.

In general, not all mutants injected become faults as sontkeoh are equivalent and can
never be detected. The controlled experiments presentadsiempirical study uses mutants
presented in our previous work [107]. We have clearly idetifaults and equivalent mutants
to study the effect of our generated test models.

4.1.5 Test Strategies

Good strategies to guide automatic model generation angregjto obtain test models that
detect bugs in a model transformation. We define a strategymescess that generates A
LoY predicateswhich are constraints added to the 1y model synthesized by ARTIER as
described in Sectidn4.1.3. This combinedLA&Y model is solved and the solutions are trans-
formed to model instances of the input meta-model thatfgatie predicate. We present the
following strategies to guide model generation:

132 CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY

e Random/Unguided Strategy: The basic form of model generation is unguided where
only the ALLoy model obtained from the meta-model and transformationes oS gen-
erate models. No extra knowledge is supplied to the solverder to generate models.
The strategy yields an emptyLAoY predicate as shown in Listiig4.1.

‘pred random { } ‘

Listing 4.1: Empty ALovY Predicate

e Input-domain Partition based Strategies: We guide generation of models using test
criteria to combinepartitions on domains of all properties of a meta-model (cardinality
of references or domain of primitive types for attribute&)partition of a set of elements
is a collection ofn rangesAy,..., A, such thatds, ..., A, do not overlap and the union of
all subsets forms the initial set. These subsets are cedieges We use partitions of
the input domain since the number of models in the domainrdigitely many. Using
partitions of the properties of a meta-model we define twbdsteria that are based on
different strategies for combining partitions of propesti Each criterion defines a set
of model fragments$o cover an input meta-model. These fragments are transfbrim
predicates on meta-model properties byRTIER. For a set of test models to cover the
input domain at least one model in the set must cover eaclesétmodel fragments. We
generate model fragment predicates using the followingctéeria to combine partitions
(cartesian product of partitions):

— AllIRanges Criteria: AllRanges specifies that each range in the partition of each
property must be covered by at least one test model.

— AllPartitions Criteria: AllPartitions specifies that the whole partition of each prop-
erty must be covered by at least one test model.

The notion of test criteria to generate model fragments wiisiliy proposed in the paper
[B5]. The accompanying tool called Meta-model Coverageckére(MMCC) [55] generates
model fragments using different test criteria taking anytanmaodel as input. Then, the tool
automatically computes the coverage of a set of test modetsr@ing to the generated model
fragments. If some fragments are not covered, the set aftedeéls should be improved in order
to reach a better coverage.

In this study, we use the model fragments generated by MMEC@&UMLCD Ecore model
(Figure[42). We use the criterilRanges andAllPartitions. For example, in Tablg—4. 2nfAll-
RangeslandmfAllRangesare model fragments generated byrG1ER using MMCC [55] for
thenameproperty of a classifier object. TimfAllRangesktates that there must be at least one
classifier object with an empty name whilgAllRanges&tates that there must be at least one
classifier object with a non-empty name. These values foreram® the ranges for the property.
The model fragments chosen usiitRanges mfAllIRangeshndmfAllRanges2lefine two parti-
tionspartition1 andpartition2. The model fragmeninfAllPartitions1chosen usingllPartitions
defines botlpartition1 andpartition2.

These model fragments are transformed ta @y predicates by @RTIER. For instance,
model fragmenmfAlIRanges’s transformed to the predicate in Listihgl4.2.

CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY 133

pred mfAllRanges?7

some ¢ : Class | #c.attribute=1

}

Listing 4.2: ALLOY Predicate fomfAllRanges7

As mentioned in our previous work[B5] if a test set contairedeis where all model frag-
ments are contained in at least one model then we say thahpig domain is completely
covered. However, these model fragments are generate@ledng only the concepts and re-
lationships in theEcore model and they do not take into account the constraints oiE¢hes
model. Therefore, not all model fragments are consistettt thie input meta-model because
the generated models that contain these model fragmentstdsatisfy the constraints on the
meta-model. @RTIER invokes the ALOY Analyzer [72] to automatically check if a model
containing a model fragment and satisfying the input donecaim be synthesized for a general
scope of number of objects. This allows uddetect inconsistent model fragmenEor exam-
ple, the following predicatenfAllRanges7ais the ALLOY representation of a model fragment
specifying that some€lass object does not have am®yoperty object. GARTIER calls the A.LOY
API to execute the run statement for the predicafdllRanges7along with the base ALOY
model to create a model that contains up to 30 objects pes/ctascept/signature (see Listing
3).

Table 4.2: Consistent Model Fragments Generated usiRgnges andAllPartitions Strategies
Model-Fragment Description
mfAllRanges1 AClassifier ¢ | c.name=""
mfAllRanges2 AClassifier ¢ | c.name =""
mfAllRanges3 AClass c| c.is_persistent= True
mfAllRanges4 AClass c| c.is_persistent= False
mfAllRanges5 AClass c| #c.general=0
mfAllRanges6 AClass c| #c.general=1
mfAllRanges7 AClass c | #c.attribute= 1
mfAllRanges8 AClass c | #c.attribute > 1
mfAllRanges9 ArProperty a | a.is_primary = True

mfAllRanges10
mfAllRanges11
mfAllRanges12
mfAllRanges13
mfAllRanges14
mfAllRanges15
mfAllPartitions1
mfAllPartitions2
mfAllPartitions3
mfAllPartitions4
mfAllPartitions5

ArProperty a | a.name=

ArProperty a | a.name =""

ArProperty a | #a.datatype= 1

Amssociation as| asname=""

AnmAssociation as| #asmemberEnd-= 0

AnmAssociation as| #asmemberEnd-= 1
Classifiers c1,c2 | cl.name="" and c2.name =""
Classescl,c2 | cl.is_persistent= Trueandc2.is_persistent= False
Classescl,c2 | #cl.general= 0 and #2.general= 1
Propertysal,a2 | al.is_primary = Trueanda2.is_primary = False
Associations asl,as? | asl.name=""and a2.name ="’

134 CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY

pred mfAllRange7a

some c:Class | #c.attribute = 0

run mfAllRanges7 for 30

Listing 4.3: ALLOY Predicate and Run Command

The ALLOY analyzer yields ano solutionto the run statement indicating that the model
fragment is not consistent with the input domain specificatiThis is because no model can be
created with this model fragment that also satisfies an idputain constraint that states that
everyClass must have at least oroperty object as shown in Listing4.4.

sig Class extends Classifier

attribute : some Property

Listing 4.4: Example ALoyY Signature

In Listing[£4,someindicates 1..*. However, if a model solution can be founahggALLOY
we call it aconsistent model fragmenMMCC generates a total of 15 consistent model frag-
ments usinghliRanges and 5 model fragments using th&Partitions strategy, as shown in Table
3.

4.1.6 Experiments
Experimental Setup and Execution

We use the methodology in Sectibn411.3 to compare coverageditest generation with un-
guided/random test model generation.

We generate sets of test models based on factorial expaahdasign[[1211]. We consider
the exact number of objects for each clarsshe effective input meta-model as factors for ex-
perimental design. A factor level is the exact number of ciisjef a given class in a test model.
These factors help study the effect of number of differepegyof objects on the mutation score.
For instance, we can ask questions such as whether a largeenaiissociation objects have
a correlation with the mutation score? The large numbeysebciation objects also indicates a
highly connected WL class diagram test model. We decide these factor levelsipylsiexper-
imentation such as verifying if models can be generateddasaeable amount of time given that
we need to generate thousands of test models in a few houralsé/evant to cover a combina-
tion of a large number of varying factor levels. We have 8eadléht factor levels for the different
classes in the ML class diagram effective input meta-model as shown in Talde@ther fac-
tors that may affect but are not considered for test modetigeion are the use different SAT
solvers such as SAT4J, MiniSAT, or ZChaff, maximum time tlyept-wise interaction between
model fragments.

TheAllRanges criteria on theUMLCD meta-model gives 15 consistent model fragments (see
Table[4P). We have 150 models in a set, where 10 non-isoritonpbdels satisfies each differ-
ent model fragment. We generate 10 non-isomorphic modelertty that mutation scores do

CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY 135

Table 4.3: Factors and their Levels for Test Sets

Factors S1 S2 S3 S4 S5 S6 S7 S8
#ClassModel 1 1 1 1 1 1 1 1
#Class 5 5 15 15 5 15 5 15
#Association 5 15 5 15 5 5 15 15
#Attribute 25 25 25 25 30 30 30 30
#PrimitiveDataType 4 4 4 4 4 4 4 4
Bit-width Integer 5 5 5 5 5 5 5 5§
#Models/Set 15 15 15 15 15 15 15 15
AllRanges

#Models/Set 15 15 15 15 15 15 15 15
Unguided

#Models/Set 5 5 5 5 5 5 5
AllPartitions

#Models/Set 5 5 5 5 5 5 5
Unguided

Table 4.4: Mutation Scores in Percentage for All Test ModskS
Set 1 2 3 4 5 6 7 8
Unguided 150 models/setin 8 sets 68.56 69.9 68.04 70.1 70.1 6855 69 70.1
AllRanges 150 models/set in 8 sets 88.14 92.26 81.44 85 91.23 80.4 91.23 88.14
Unguided 50 models/setin 8 sets 70.1 62.17 68.04 70.1 65.46 68.04 69.94 70.1
AllPartitions 50 models/set in 8 sets 90.72 93.3 84.53 87.62 87.62 82.98 92.78 88.66

not drastically change within each solution. We synthe8izets of 150 models using different
levels for factors as shown in Talile .3 (see rows 1,2,8},5 he total number of models in
these 8 sets is 1200.

The AllPartitions criteria gives 5 consistent model fragments. We have 50nestels in a
set, where 10 non-isomorphic test models satisfies a diffen@del fragment. We synthesize 8
sets of 50 models using factor levels shown in T&blé 4.3. €hels for factors foAllRanges
and AllPartitions are the same. Total number of models in the 8 sets is 400. Teetisa of
these factors at the moment is not based on a problem-indepestrategy.

We compare test sets generated usiMiBanges and AllPartitions with unguided test sets.
For each test set of coverage based strategies we geneede@amumber of random/unguided
models as a reference to qualify the efficiency of differdratsgies. Precisely, we have 8 sets
of 150 unguided test models to compare witliRanges and 8 sets of 50 unguided test models
to compare withallPartitions. We use the factor levels in Talfle}.3.

To summarize, we generate a total of 3200 models using a@R®y@ore’ M 2 Duo processor
with 4GB of RAM. We perform mutation analysis of these setslitain mutation scores on a
grid of 10 Intel Celeron 440 high-end computers. The contmrdime for generating 3200
models was about 3 hours and mutation analysis took abouek.w&e discuss the results of
mutation analysis in the following section.

136 CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY

Results and Discussion

Mutation scores foAllRanges test sets are shown in Talilel4.4 (row 2). Mutation score<sefir t
sets obtained usingliPartitions are shown in TablEZ4.4 (row 4). We discuss the effects of the
influencing factors on the mutation score:

e The number oflass objects and\ssociation objects are factors that have a strong correla-
tion with the mutation score. This is due to a specific charétic of the transformation.
The transformatiortlass2rdbms principally transforms all persistent classes in amLU
model to tables iRDBMS and all attributes/associations to columns. Therefoeepthb-
ability of finding a fault that process classes and assatiatis high. We notice this
correlation due to an increase in mutation score with thel lefthese factors. This is true
for sets from unguided and model fragments based stratefi@sinstance, the lowest
mutation score usingliRanges is 80.41 %. This corresponds to set 1 where the factor
levels are 1,5,5,25,4,5 (see Column for set 1 in TRble 4.@highest mutation scores are
91,24 and 92,27% where the factor levels are 1,15,5,25m13 &,15,25,4,5 respectively
(see Columns for set 3 and set 7 in Tdhld 4.3).

e \We observe thatllPartitions test sets containing only 50 models/set gives a score of max-
imum 93.3%. ThellPartitions strategy demonstrates that knowledge from two different
partitions satisfied by one test model greatly improves ketgaing efficiency. This also
opens a new research direction to explore: Finding stregeigicombine model fragments
to guide generation of smaller sets of complex test modeis bétter bug detecting ef-
fectiveness.

We compare unguided test sets with model fragment guidedrsttebox-whiskerdiagram
shown in Figurd]5. The box whisker diagram is useful toalige groups of numerical data
such as mutation scores for test sets. Each box in the diagraimided into lower quartile
(25%), median, upper quartile (75% and above), and lardestrgation and contains statisti-
cally significant values. A box may also indicate which olia@ons, if any, might be considered
outliers or whiskers. In the box whisker diagram of Fidur@we shown 4 boxes with whiskers
for unguided sets and sets #@ifRanges andAllPartitions. The X-axis of this plot represents the
strategy used to select sets of test models and the Y-axisses the mutation score for the
sets.

We make the following observations from the box-whiskeigdian:

e Both the boxes oAllIRanges andAllPartitions represent mutation scores higher than cor-
responding unguided sets.

e The high median mutation scores for strategi#Ranges 88.14% andhlIPartitions 88.14%
indicate that both these strategies return consistentiy gest sets.

e The small size of the box foallPartitions compared to thellRanges box indicates its
relative convergence to good sets of test models.

e The small set of 50 models usirgjPartitions gives mutations scores equal or greater than
150 models/set usingliRanges. This implies that it is a more efficient strategy for test

CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY 137

100%
95%
10/
93,30% 92,27%
90% -
88,14% 88,14%
85%
o J- 82,99% |
o
& 80% 80,41%
c
i)
8 75%
E]
=
70,10%
70% - 70,10% %
% 63,993/0 g 69,95%
68,04%
65% J_
62,18% 3rd quartile ~—max
60% - median =min
1st quartile
55% T . :
Random AllPartitions(50/8) Random(150/8) AlIRanges(150/8)
(50 models/set in 8 sets) Strategy

Figure 4.5: Box-whisker Diagram to Compare Automatic Mo@eheration Strategies

138 CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY

model selection. The main consequence is a reduced effovtite correspondingest
oracles[L07] with 50 models compared to 150 models.

e Despite the generation of multiple solutions (10 solutimorseach model fragment or an
empty fragment for unguided generation) for each strateggee a consistent behaviour
in the mutation scores. There is no large difference in th&atimn scores especially for
unguided generation. The median is 69% and the mutatioescange between 68% and
70%. TheAllRanges andAllPartitions vary a little more in their mutation scores due to a
larger coverage of the effective input meta-model.

The freely and automatically obtained knowledge from thgutnmeta-model using the
MMCC algorithm shows thatllRanges andAllPartitions are successful strategies to guide test
generation. They have higher mutation scores with the sanress of knowledge used to gener-
ate unguided test sets. A manual analysis of the test mogledsls that injection of inheritance
via the parent relation in model fragments results in highetation scores. Most unguided
models do not contain inheritance relationships as it ismpbsed by the meta-model.

What about the 7% of the mutants that remain alive given tilehtghest mutation score is
93.3%7? We note by an analysis of the live mutants that thetharsame for botAllRanges and
AllPartitions. There remain 19 live mutants in a total of 200 injected mistéwith 6 equivalent
mutants). In the median case bathRanges and AllPartitions strategy give a mutation score
of 88.14%. The live mutants in the median case are mutantkilied due to fewer objects in
models.

To consistently achieve a higher mutation score we need 1@&ld speed, memory and
parallelization to efficiently generate larger test mo@eid perform mutation analysis on them.
This extension of our work has not be been explored by us. ithportant for us to remark
that some live mutants can only be killed with more informatabout the model transformation
such as those derived from its requirements specificatiam.irfStance, one of the remaining
live mutant requires a test model with a class containingrsd\primitive type attributes such
that at least one is a primary attribute. A test model thagfses such a requirement requires the
combination of model fragments imposing the need for séatdbutes in a class A, attributes
of class A must have primitive types, at least one primanybaiie in the class A, and at least
one non-primary attribute in the class A. This requirement either be specified by manually
creating a combination of fragments or by developing a begeeral test strategy to combine
multiple model fragments. In another situation, we obséhag not all model fragments are
consistent with the input domain and hence they do not reziyer the entire meta-model.
Therefore, we miss killing some mutants. This informationld help improve partitioning and
combination strategies to generate better test sets.

4.1.7 Conclusion for Test Generation

Black-box testing exhibits the challenging problem of depang efficient model generation
strategies. In this empirical study we usergIER to generate models conforming to the input
domain and guided by different test strategies. FirsiRGER helps us precisely specify the in-
put domain of a model transformation via meta-model prumingd pre-condition improvement.

CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY 139

Second, we use ARTIER to generate sets of test models that compare coverage andledg
strategies for model generation. All test sets using thesgegies detect faults given by their
mutation scores. The comparison of coverage strategi@smguided generation taught us that
both strategiesaliPartitions andAllRanges look very promising. Coverage strategies give a max-
imum mutation score of 93% compared to a maximum mutatiomesob70% in the case of
unguided test sets. We observe that mutation scores do notsastically despite the genera-
tion of multiple solutions for the same test strategy. Wechaate from our experiments that the
AllPartitions strategy is a promising strategy to consistently generateall test of test models
with a good mutation score. However, to improve efficiencyest sets we might require effort
from the test designer to obtain test model knowledge/testeg)y that take the internal model
transformation design requirements into account.

4.2 Towards Model Completion in Domain-specific Model Editos

Documents in the form of computer programs, diagrams, otednformulas, and markup text
can currently be edited in document editors caiedcture editors These structure editors are
cognizant of the document’s underlying structure such aggtammatical syntax or a formal
grammar of the language. Functionally, these structuremsdare syntax or language-directed
to aid the user by presenting recommendations for completi@ode, text, or a diagram based
on correct possibilities prescribed by the underlying ctrce. This enables faster document
development with fewer errors. However, structure editoesseparately constructed for each
domain-specific language and are built mainly for gramnzeseld textual languages. We are
interested in the subject of extending structure editayasfhigh-level models built using the
principles ofModel Driven EngineerindMDE) [67] where domain-specific model editors are
automatically synthesized for a variety of modelling laages.

In MDE, given a meta-model specification of a domain-specifadelling language, soft-
ware tools can automatically generatemain-specific model editors-or example, generative
modelling tools such asToM® (A Tool for Multi-formalism Meta-modelling) [48[[67ME
(Generic Modelling EnvironmenE)[1.2EMF (Eclipse Graphical Modelling Framework)[79] can
synthesize a domain-specific visual model editor from aatative specification of a domain-
specific modelling language. A declarative specificationsigts of a meta-model and a visu-
al/textual syntax that describes how language elemenjsdisband relationships) manifest in
the model editor. The designer of a model uses this modebretitconstruct a model on a
drawing canvas. This is analogous to using an integratedlai@wment environment (IDE) to
enter a program or a word processor to enter sentences. ldgv¥s such agclipse present
recommendations for completing a program statement whssilge based on its grammar and
existing libraries[[1B]. Similarlymicrosoft Word presents grammatical correction recommenda-
tions if a sentence does not conform to a natural languagargea. Therefore, we ask: Can
we extrapolate similar technology or develop new technplog partial models constructed in
a model editor for a domain-specific modelling languan8ML)?

Extrapolating code completion techniques for model cotigoids not feasible in the general
case. The first reason is the difference between the undgrstructure of code and models.
Code completion techniques use the Backus-Naur Form (BMd&igar of a programming

140 CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY

language while models are specified by a meta-model andragriston it. Second, model
completion must consider completing the entire model astcaimts can span entire models
unlike code completion which presents solutions at a pragstatement level. Third, in terms of
reduction in effort model completion must help reduce tlieredf a modeller by automatically
satisfying all relevant language constraints since in garibey may be too hard for a modeller
to resolve manually. The output of model completion must e or many valid models that
conform to their language. This notion of reduction in dffisr different from that in code
completion. Code completion presents local suggestiomsnuplete navigational expressions
or concept names but it does not perform constraint satigfato output a valid program. In the
general case, model completion may take more time than aasntence completion which are
almost instantaneous. Therefore, there is a need to demelepechniques for model completion
with different goals such as relaxing the exigence towamnds to complete.

The major difficulty for providing completion capabilities model editors is to integrate
heterogeneous sources of knowledge in the computationegbdlsible solutions for comple-
tion. The completion algorithm must take into account thecepts defined in the meta-model,
constraints on the concepts and the partial model built bynaaih expert/user. The difficulty is
that these three sources of knowledge are obviously ref{tied refer to the same concepts) but
are expressed in different languages, sometimes in difféites, and in most cases by different
people and at different moments in the development cyclaeysare separable concerns.

In this section, we propose present a transformation fromragb model to an ALoy [[71]]
[[72] predicate. The generated LOY predicate is included in thelAoy model generated from
the metamodel of ®SML. The transformation of a metamodel has been discussed ipt€ha
B. The predicate is solved to obtain recommendations forptetng the partial model in a
model editor. Our transformation from the heterogeneousces to A LOY is integrated in the
software toolaToM3.

Thescientific contributionn this section addresses two important questions:

e Question 1: How can we generate a complete model(s) from a partial mpeelfscation?

e Question 2: How can we integrate a model completion mechanism in a dosyexific
model editor?

The precise contributions of this section addresses gxtmke problems. We enlist them
below:

e Contribution 1: First, theDSML metamodel and its invariants in transformed to a base
ALLoy [I[Z7] model using techniques already described in Chdgtetr3this section
present a transformation from a partial model to arn@y predicate and concatenate
it to the base ALoy model. The predicate representing the partial model isesoix
the resulting ALoy model to generate complete models that conform to the metaimo
specification.

e Contribution 2: We integrate this model completion mechanism into the metkaimg
environmentAToM® such that anypSML generated usingToM® by construction comes
with model completion. Users can create partial modelsisiL generated usingTom3

CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY 141

and automatically obtain recommendations to complete theolicking on a button. The
complete models are shown in the concrete visual syntaxeddSviL.

An overview of our methodology is presented in Secfion 4.2fe of the key parts of our
methodology is the automatic synthesis of domain-specifideheditors from their specification
comprising of the meta-model and visual syntax. This pred¢sgiescribed in Sectidn4.P.2.
The component that will add model completion ability to tlyathesized model editor is a
transformation from a partial model to anLkoy predicate. We present this transformation
in SectionlZZJ6. Once we include this transformation ihi@ $ynthesis of a domain-specific
model editor we are able to synthesize domain-specific medigbrs with automatic model
completion. We describe the model completion process ii@#E28. We present examples of
model completion recommendations generated for partialaisan Sectiol’4.219. We conclude
in SectiorZ2T0.

4.2.1 Methodology for Model Completion

The development and use of a domain-specific model editdér aitomatic model completion
can be divided into the following phases and sub-phases:

1. Specification of a domain-specific modelling languagex{sm®)

(a) Specification of a metamodel

i. Specification of a class diagrarBdore model)

ii. Specification of facts on the concepts in the class diagfALLOY facts in our
case)

(b) Specification of a visual syntax in an icon editor (avalgain ATom?) for concepts
in the metamodel

2. Transformation of metamodel and visual syntax to a modiébe

(a) Synthesis of an editor with buttons, menus and icons

(b) Synthesis of a drawing canvas with features such as atioiayout
(c) Synthesis of a clickable widget for model completion

(d) Synthesis of a dialog box for specifying model complefi@rameters

3. User interaction

(a) Drawing a partial model on the canvas
(b) Editing model completion parameters
(c) Click on a button to generate complete model(s)

4. Model Completion (hidden from user)

(a) Transformation to a baseLAoY model from theEcore model

142 CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY

(b) Augmenting metamodel facts with basel®y model

(c) Synthesis of an ALoY predicate from partial model and augmentation to base A
LOY model

(d) Synthesis of run commands from the model completionmpatars and augmenta-
tion to current ALoy model

(e) Solving final A Loy model and returning complete models as recommendations to
the model editor

The specification of a domain-specific language is usualhediy alanguage designewho
interacts with domain experts to identify the conceptsijrtheoperties and relationships in a
domain of knowledge, science or engineering. The languageder also develops a repos-
itory of constraints among the concepts and its properfidse assembly of the concepts and
relationships is expressed asEeore model by the language designer. The constraints on the
Ecore model or class diagranT) are expressed in a formal constraint language. Preferably
constraint language that has a finite number of solutionssddcidable. In our methodology
we usefactsexpressed in the language Loy to represent such constraints. Tt and the set
of constraints on it results in theetamodebf a Domain-specific Modelling Language (DSML)

A visual syntax designespecifies a concrete visual syntax for the concepts andomethips
in the modelling language. In our methodology we useAfuw® icon editor to specify a visual
syntax. In Sectioh 422 we discuss in detail the specifinatif the modelling language for
Finite State Machines (FSM) along with a visual syntax.

Once we have all the elements (metamodel and visual syntogssary for a domain-
specific modelling languageraodel transformation engineelevelops a transformation to syn-
thesize a visual domain-specific model editor from thesmefdgs. The model editor consists
of buttons, menus, and a canvas. A user can select and dregi®lojn a drawing canvas and
connect them using relationships. The objects are maedfess icons as specified in the icon
editor for the concrete visual syntax by the visual syntasigieer. The relationships are links
between these icons. In the model editor by clicking on tbe ibe user can edit or specify the
values of properties.

In our work, we extend this model transformation by transiioig the metamodel to an
ALLoy model (see Chaptdll 3). The transformation also synthesiZastton widget in the
domain-specific model editor. Aomain experor usercan click on this button resulting in the
solving of the ALoy model augmented with A OY predicates synthesized from the partial
model drawn on the canvas. Recommendations as one or mometermodels (if found) are
returned to the model drawing canvas. In Seclion #.2.6 wseptethe transformation from a
partial model to ALoy. Anillustrative outline of the model completion methodgjas shown
in Figure[Z®.

4.2.2 Specifying a DSML

4.2.3 Metamodel

The first step in specifying a DSML is creating a metamodehforodelling language. The meta-
model for thec<SM modelling language is presented in Figlird 4.7. The classieimetamodel

CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY

143

Step 1: Specify a meta-model

M3

0..1 currentstate

isiitial; Boolean
el Int

fabe 0.4
1 target]| outgoingTraJsition
1 source

O Tt L

(class diagram) in ATo

0..1 fsmCurrentState INIESIVINNN
1fsmStates

fsmTransitions
Meta-information
X states 0..* transitions
I Boolean

.40.*

eeeeeeeeeee

Textual

e

Textual }
Meta-information

Step 2: Specify Alloy Facts on the
class diagram in AToM3

fact exactlyOnelnitialState {
one s:State|s.isInitial == True

//Atleast one final state
fact atleastOneFinalState {
some s:State | s.isFinal == True

Step 3: Specify visual syntax in
AToM3 icon editor

wiase am-

<<Bool>>

“<|Initial ?
- |Final

<<Bool>>

[[11 B |

Step 8: Parse XML and return

recommendation(s)

solution(s) as a model completion

Step 7: Call Alloy AP to solve Boolean CNF
using a SAT solver and save solution(s) as

XML file(s)

incomingTransition /[Exactly one FSM Wz, =
fact exactlyOneFSM{ - = =
one FSM =
Sl Y
Generate Model Editor
Y
Step 4: Specify a partial model
> miynthes 'Ef!fl editor Step 5: Model transformation
Initial ?89 from partial model, meta-model,
Initial ? Final 75 and constraints.
Final ¢ R Input: Meta-model, constraints,
- T and partial model
7 Final 2o 0 Output: Alloy Model

Step 6: Call Alloy API to
Transform Alloy Model to Boolean CNF

Figure 4.6: Methodology Overview

144 CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY

1 fsmCurrentState FSM
1 fsmStates 1 fsmTransitions
0..1 currentstate 0.* states 0. transitions
State Transition
isFinal : Boolean event : String
islnitial: Boolean
label : Int 0. 0.x*
1 target 1source outgoingTransition incomingTransition

Figure 4.7: The Finite State Machine Metamodel

areFSM, State andTransition. The metamodel is specified using theore industry standard.

4.2.4 Constraints on Metamodel

The second step comprises of specifying constraints on #tamodel. We directly specify
ALLOY facts on theFSM metamodel. These IA0Y facts were manually transformed from
original OCL constraints ofSM. In Table4b, we present the constraints onRae! metamodel
in natural language and as.RoY facts.

In the appendix we present the completeLAy model for theFSM modelling language.
This ALLoYy model can be loaded into theLAoY Analyzer [72] for directly obtaining valid
FSM models.

4.2.5 Visual Syntax

The final step (in specifying BSML for synthesizing a model editor) we take is to specify the
concrete visual syntax of the class of objects in the metainddhe visual syntax specifies what
an object looks like on a 2D canvas. An icon editorfoM? is used to specify the visual syntax
of the classes in the metamodel.

An icon editor is used to specify the visual syntax of metaehadncepts such as classes and
relationships. The icon fdtate is a circle annotated with three of its attributés=ipal, isInitial,
and label). The connectors in the diagram are points of connectiowdxt State objects and
Transition objects.

The visual syntax can also by dynamically changed basedeprtbperties of the model.
In an iconic visual modelling language suchr®&M, the first step taken in specifying a visual
syntax is drawing an icon that represents a class of objécteeeded it is annotated with text

CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY

145

Table 4.5: Constraints in natural language and ascX facts

Constraint Name and Definition

Alloy Fact

exactlyOneFSM There must be ex-
actly oneFSM object in aFSM model

atleastOneFinalState: There must be
at least one final state inkSM model

exactlyOnelnitialState : There must
be exactly one initial state in thesm
model

sameSourceDiffTarget: All transi-

tions with the same source must have

different target

setTargetAndSource: The target of
an incoming transition to 8tate itself
and the source of all its outgoing tran-
sitions is the sam8tate

noUnreachableStates There can be
no unreachable states in tA8M from

an initial state. Since, its a ternary con-
straint we approximate it by stating that
a non-initial state can be reached from
an initial state up to a maximum depth
of N (N=3 is the given example).

uniqueStateLabels: All State objects
have unique labels

fact exactlyOneFSM

{
one FSM

}

fact at |eastOneFinal State

{

sone s: State|s.isFinal ==True

}

fact exactlyOnelnitial State

{

one s:State|s.islnitial==True

}

fact sameSourceDiff Target

{

all t1:Transition,t2:Transition|
(t1'=t2 and t1.source==t2.source)
tl.target!=t2.target

}

fact setTarget AndSource
{

all s:State |

=

s.incomngTransition.target = s and

Ss.out goi ngTransition. sour ce=s

}

fact noUnreachabl eSt at es

{
all s:State| (s.islnitial==False)
#s.incom ngTransition >=1 and
(s.islnitial==True and #State > 1)
#s. out goi ngTransi tion >=1 and
s.outgoi ngTransition.target!=s

}

fact uniqueStatelabel s

{

I
\YJ

I
\YJ

#State>1 => all sl:State,s2:State |

sll=s2=>s1.label != s2.|abel

146 CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY

and its properties. Connectors are added to the visualtodgpetbat it can be connected to other
objects if they are related.

4.2.6 Transformation of a Partial Model

We define a partial model as a graph of objects such that: (&)dHjects are instances of
classes in the modelling language metamodel (2) The pantige! either does not conform to
the language metamodel or its invariants expressed in adiectnstraint language. A complete
model on the other hand contains all the objects of the pantimlel and additional objects or
property value assignments in new/existing objects suahiticonforms both to the metamodel
and its invariants.

A partial model, such as in Figufe#.8 (a),astomaticallytransformed to a set of A oY
predicates by navigating it object by object in the canvag nAvigate all objects of a certain
type and put them together as an®y predicate. We want to keep the already specified
properties for each object in the partial model but alsonafior extensibility. For instance, for
all the State objects in the partial model of Figufe’h.8 (a) we create amnd@dy predicate as
shown in the first predicate of Figute ¥.8 (b). TheL®Y predicate states that there exists at
least oneState object s1, at least ongtate object s2, at least ongtate object s3, at least one
State object s4 (representing the fo8tate objects in the partial model), at least ofransition
object t1, and at least oreansition object t2 such that s1,s2,s3,s4 are not equal and t1,t2 are
not equal. The predicate also states thatrthesition objects t1 and t2 are in the set of outgoing
transitions forState object s1.Transition object t1 is in the set of incoming transitions of s1. The
Transition object t2 is in the set of incoming transitions of s2. Thesg aee open for inclusion of
new Transition objects. These predicates preserve all knowledge comamg tine partial model
while allowing the extension to relations to more objects.

We present a procedure to describe the transformation fhenpartial model to a set of
ALLOY predicates below:

The following represents the procedure to synthesize an ALLOY predicate from a partial model

1. We start by synthesizing the header of a partial model:
pred partial Mdel {

2. For all objects ob;j of typeClasg in a partial model we synthesize ami£oy expression:
somegjj : Class, ... |

3. For all objects obj; of type Clasg and all objectsy; of typeClasg in a partial model
we synthesize an A OY expression:
0ij! = 0kj, each expression separatedangd

4. For all defined attributesx of o;; we synthesize the expression:
0ij.ajk = V, wherev is the specified value separated by commas

5. For all defined referencegy of oj; we synthesize the expression:
vin 0jj.rij, wherev is the object in the set of referred objects separated by @snm

CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY 147

~ |Synthesized Predicate
-0 | pred partialModel

{
Initial ? . inal ? some s1: State, 52 : State, 53 : State, s4 : State,
t1: Transition, t2 : Transition |
sl!=s2ands2!=s3ands3!=s4and sl !=s3and
sl!=sdands2!=sdand tl!=t2 and

Initia

Initial ? © t1 in s2.incomingTransition and t2 in s3.incomingTransition
_ @ Final ? and t1 in s1.outgoingTransition and t2 in s1.outgoingTransition and
Final 7.2 P s2.islnitial = True and sd.isFinal = True
§ Caw Dp e X@ : ‘0\113“* a::a/ar. }
(a) (b)

Figure 4.8: (a) Partial Model (b) Synthesized PredicatefPartial Model

6. We finish the predicate by closing the brace.

4.2.7 Transforming ALLOY Model Completion Parameters

The user is provided with a dialog box to inserddel completion parametersiodel completion
parameters include finite scopes such as the upper boune owithber of objects of any class,
or the upper-bound on the number of objects for each clastheoexact number of objects
for each class, or a mixture of upper bounds and exact nunilmsjects for different classes.
The default scope is number of objects in the partial model.other parameter is the number
of solutions required. This information is used to synthesize anl®Yy run commandhat

is finally inserted in the ALoy model. For example, if the partial model predicate is called
partialModelland the user states that he wants exactly one object of clasg # 10 objects

of class B, and a scope of 5 for integers then the followingstatements is synthesized:

run partial Model 1 for exactly 1 A 10 B, 5 Int

If the number of objects in the partial model is N, then thead&frun command the editor
generates is:

run partial Model 1 for N

4.2.8 Model Completion Process

The model completion process integrated in the domain#spetodel editor takes as input the
Ecore model, augmented A oY facts, and a partial model drawn in the model editor synthe-
sized from the class diagram of a modelling language, andfggirameters to define the scope

148 CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY

of the complete models to be synthesized. The process ikedwwhen a user draws a partial
model in the modelling canvas and clicks on @enerate Completion Recommendatibagon.
The following steps are executed during the completiongssc

1. An ALLoy model (ALS) file is synthesized containing the signaturerigdns of the
classes in th&€core model as described in Chaplér 3.

2. The modelling language facts are augmented to theoX model. These facts are speci-
fied as described in Sectibn 4.4.

3. The partial model drawn in the model editor canvas is foanged to a predicate as de-
scribed in Sectiof’4.2.6 and augmented to the curremto& model

4. The model completion parameters are transformed to acmamand (See Sectién 4.P.7)
and augmented to theLAoy model giving us an adequate description for model comple-
tion.

5. The model editor invokes a solver to generate completeehredommendations for the
partial model.

It is important to note that the partial model is specified aparce of knowledge about
what objects and properties that the user wants to absplsés in the complete model. In
the complete model we can see the intact contents of theapartidel. However, the object
identifiers of the partial model are not preserved in the detepnodel. We also do not perform
pattern matching to identify the original partial model lretcomplete model, although such a
mechanism can be incorporated if needed. In the default wasiénd the nearest-consistent
complete model(s) to a given partial model.

If a solution is not found the ALOY solver returns ao solution found exceptioio ATom3
(the invoker). We show this result in a dialog box in &ieM?2 environment. In our work we do
not debug a partial model to find the exact source of incagrsist This incurs a computational
cost and time as we need to check every partial model predeqiression against the meta-
model constraints to see which characteristics of theglarodel leads to an inconsistency. We
leave it to the user and depend on his/her expertise dd#néL to identify the inconsistent part
of the partial model and correct it.

4.2.9 Examples in Completion

In this section, we consider four examples of partial modelhe FSM modelling language.
The examples are shown in Figlirel4.9 [@) 4.9[(0), 4.9[(C) ().B=spectively. The synthesized
predicates for these models are shown in Figuréds 4.8(&)f)48d43 (g) [ZP (h). The example
in Figure[4® (a) contains only orsate object with none of the properties having been set. The
example in Figur€4l9 (b) contains tvpate objects and dransition object not connected. In
Figure[4® (c) we consider a more complex model with sev&eaé andTransition objects with
some properties set and some not. Finally, in Figurk 4.9 @present a model containing at
least twoState objects withisInitial set to True.

We perform the model completion of these models using twdots of setting parameters
for completion:

CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY 149

Initial ? ©

Final ?@
(o]

(a)
Initial ? ©
Initial ? ©. Final ?
O, °
Final ?
o

(b)

Initial ? L
'Y

o Initial ? ©
Initial ?

Final ?
Final ? o
1

(c)

Initial ? ©

Final ?
Initial ? L
Initial ? © \
Final ?
Final ? o
o

(d)

Synthesized Predicates

fact partialModel_Factl
{

some State

}

(e)

Synthesized Predicates
pred partialModel2_Fact

{

some sl : State, 52 : State, t1 : Transition | 51 != 52 and
t1in s1.outgoingTransition and t1 in s2.incomingTransition

}

()

Synthesized Predicates
pred partialModel3 Fact

{
some s1: State, s2: State, s3 : State, 54 : State, t1 : Transition, t2 : Transition |
sll=s2ands2!=s3ands3!'=sdand sl '=s3and s !=sd and s2 = 54 and
t1 =12 and t1 in s2.incomingTransition and t2 in s3.incomingTransition and
t1in sL.outgoingTransition and t2 in s1.outgoingTransition and

s2.ishnitial = True and s4.isFinal = True

}

(9)

Synthesized Predicates
pred partialModel4 Fact

{
some s1: State, s2: State, 3 : State, s4 : State, t1 : Transition, t2 : Transition |
sll=s2ands2!=s3ands3!=sdand sl !=s3and s = sdand 52 != 54
and t1 !=1t2 and t1 in s2.incomingTransition and t2 in s3.incomingTransition
and tLin sL.outgoingTransition and t1 in sL.outgoingTransition and

s2.isInitial = True and s3.isitial = True

}

(h)

Figure 4.9: (a) Partial model 1, (b) Partial model 2, (c) Rarhodel 3, (d) Partial model 4,
(e) Predicate synthesized for Partial model 1 (f) Predisgtg¢hesized for Partial model 2, (g)
Predicate synthesized for Partial model 3, (f) Predicatth®sized for Partial model 4

150 CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY

event: 7
Initial 7

Final ?
1
(a)
Initial ? L
event : 7 @
Initial ?

Final ?

Initial ?

Final ?

Initial ? ©

X
Final ? &
1 >

(c)

Figure 4.10: (a) Complete Model for Partial Model 1 (b) CoatelModel for Partial Model 2
(c) Complete Model for Partial Model 3

CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY 151

e Scope Here we specify a scope as a model completion parameterscpe is a unique
number that defines the maximum number of objects for all gptscin the metamodel.
We choose the default scope to be 10. The correspondingy run statement generated
is:

pred partial Model {}
run partial Model for 10

The partialModel predicate is empty and is simply used to obtain a completeeinoe
stance. We solve for up to a scope of 10 objects for each coircdpe metamodel.

e Exact Number and/or ScopeAnother mechanism to complete a model is to specify the
exact number of objects and/or scope for objects we expebeinomplete model.

pred partial Model {}
run partial Mdel for exactly 1 FSM exactly 5 State,
exactly 10 Transition, 5 int

Here we find a solution for a partial model containing exadtlySM object, exactly 5
State objects, exactly 10Qransition objects. Finally we set a bit-width for integers which
is 5. This means that all integers range betwe@n to 2°.

All the above parameters were initially set in the synthesiztom® modelling environment.
The user is only exposed to the graphical syntax of the casdaphe metamodel and with
a text-box to specify the exact number of objects or a scopee mModel completions were
performed on a Macbook Pro laptop with an Intel Core 2 Duo gseor running at 2.6 GHz
clock speed and with 2 GB of RAM. We use thelfy analyzer API to invoke the SAT solver
Minisat [111] [112] from Chalmers University to solve the @ean CNF synthesized from the
ALLoY model. The time to obtain the solutions for the four partialdels for the completion
parameters is presented in Tabld 4.6.

We show the complete models themselves in Figurd 4.10 witbesof 10. Normally, there
is more than one solution to a model completion. We show onleeopossible solutions. We do
not show that the complete models synthesized for the exmabar of objects due to large size
of the models. However, it is interesting to note in TdhIg ha the time taken to synthesize
models with the exact number of objects specified for eactsdtaa lot faster even though the
models are larger. This is because the additional knowletiget the number of objects makes
the search space of the models much smaller, thereforeiajavg to obtain a solution faster.

The complete model in FiguteZ4110 (a) satisfies all the metkinconstraints such that the
single State label has a unique value 7. There is at least one final statexawdly one initial
state. In addition, the complete model containgaasition object of theState to itself with an
event 7. This new object added to the complete model doesiolater any of the knowledge
already present in the partial model.

The second complete model in Figlire 4.10 (b) originally wparéial model with twdState
objects and &ransition object. The complete model now contains two fi&dte objects and

152 CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY

Table 4.6: Model Completion Times

Partial Model Description Timescope(S) TiMexact TiMEcopescaled T IMExactScaled

(I=Inconsistent)

Fig.[43 (a) Only onestate ob- 1.283 0.447 118.045 32.002
ject with no proper-
ties specified

Fig. 2 (b) Two State objects ~ 1.289 0.496 115.994 31.488
and one Transition
object

Fig.[Z9 (c) SeveralState and 1.315 0.575 11.4301 32.517

Transition objects
with some proper-
ties specified and
some not

Fig. 9 (d) SeveralState and 1.291 () 0.402 () 111.352(l) 31.734 ())

Transition objects
with two initial
State objects

exactly one initialState object. There is also an inclusion offansition object in the complete
model. The synthesized model conforms to all metamodelt@ints.

The third complete model I’4.]10 (c) contains a complex ahmiodel with additional ob-
jects that preserve the knowledge in the partial model. Widescale up to a model with several
hundred atoms using IAoOY to obtain results in a reasonable amount of time (for onliser u
interaction with the modelling environment). An atom caitsiof any non-divisible entity in the
ALLoY model. This includes objects and their properties condeagterelations.

The fourth partial model in219 (d) consisted of two initgthte objects which is not permit-
ted by the metamodel constraint which states that~hid metamodel must contain only one
initial State object. Therefore, the SAT solver was unable to find a corapteddel that could
take into account the partial model.

4.2.10 Conclusion of Model Completion

We present a methodology to synthesize domain-specific nedders with metamodel directed

model completion for domain-specific modelling languagesr goal has been to provide model
editors with completion capabilities similar to text or eodditors in IDEs such as Eclipse or
word processors such as Microsoft Word. A potential futyspliaation of our approach is

generation of test models from partial knowledge. DAML user draws a partial test model
for testing a model transformation and subsequently setseehrmmmpletion parameters. Then
he/she clicks on a button to generate complete test modsisath valid test cases for model
transformations. Moreover, the model completions ardalygual in the concrete visual syntax of

CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY 153

the modelling language while evading all the details in th=CXML files, or other intermediate
low-level representations. This aspect of our tool helpsice the time to develop models in the
modelling environment as the user only works in his domangulege. The user does not need
to manually transform his models to a different constrainguage, solve his models and return
the results to the editor anymore since the underlying mooi@lpletion process is hidden from
the user. After all, the goal of MDE is to leverage modellingthe highest possible level of
abstraction.

Our approach uses a modelling language metamodel , thexsyam@ itsstatic semanticén
the form of metamodel constraints to perform model commtetHowever, since the presented
approach is modelling language independent we do not cemdjthamic semanticsften real-
ized in a simulator for model completion. Nevertheless, vaggqut several implications to simu-
lation as it goes hand in hand with modelling. Model simulseitsuch as MATLAB/Simulink for
causal block diagrams, often contdiard-coded declarative constraints or program statements
that check and report on the validity of input models durimguation. For example, a causal
block diagram simulator analyzes input models to detedesyand warns the modeller. These
statements that are integrated in simulator code come fedardgenous sources of knowledge
such as domain experience, static/dynamic analysis, atidde This gradual inclusion of model
validity knowledge directly into simulator code makes thieutky and slow to execute. This ap-
proach also obscures the user from potentially using thisviedge to build correct models.
Extracting knowledge from simulators and developing mitgllanguage invariants to guide
modellers to create invariant-validated models leveragesrect by constructiomphilosophy.
Further, using these invariants for automatic model cotigief partial models makes the mod-
elling and simulation process less error-prone as modelfrat checked and then completed to
satisfy invariants before simulation.

Our lightweight approach is effective for small yet usefubdelling languages. Time to
complete models by the state of the art SAT solvers for abOubljects in the model is not
more than a few minutes fa*fSM. The completion time greatlgepends on the complexity
theDSML. The time taken to obtain complete models also gives uslihsigout how restricted
aDSML is and how it can be relaxed.

As future work we intend to run thorough performance experita on a specific industry
strengthDSML. Such aDSML will have a larger metamodel with a several complex constsai
We will limit ourselves to the confines of first-order relat&d logic in ALLOY as the language to
express constraints. We also wish to enlist the set of @etagdquirements to synthesipSML
modelling environments with completion. For example, aeresting factor is user interaction
time. If a complete model is not returned within a given tirnert the user can no longer make
developments quickly. Other aspects of model completigtude completion of models when
two or more metamodels are involved, expression of part@lets as invariants or constraints,
and aiding the user by helping him/her set parameters forehtmnpletion.

154 CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY

155

Chapter 5

Automatic Effective Product Discovery

In previous chapterfl 3 arld 4, we have seen how models can dmvelisd in any modelling
domain specified by a metamodel. The generic approach ofaémg models can be applied
to any metamodel. However, not all software systems candsoacically modelled and conse-
quently discovered in a modelling language due to existeficeliable software assets. Often,
such time-tested legacy software assets are economidabjevonly in their original form in-
stead of being represented as a model instance in a new imgdalhguage. For instance, the
redevelopment / remodeling of the Linux kernel 2.6.25 isnestied to cost of a whopping 1.3
billion dollars! Therefore, we ask how do we discover usefmnbinations existing software
assets to create software ? To answer this question we pras|matic discovery in a mod-
elling domain representing the variability in combiningstixg software assets. The variability
in combining different software assets in a software sysgares rise to a family of software
products called a Software Product Line (SPL). Téwture diagram(FD) or feature model is a
widely used language to specify the modelling domain of a.&ments in the domain of the
SPL are callegoroductswhich are obtained by composing configurations of variodsisoe
assets. In this chapter, we present a methodology and tosHKAR for automatic discovery
of test productsn the modelling domain of a Software Product Line.

The remainder of the chapter is structured as follows: 8efi]l we introduce automatic
effective product discovery. In this thesis, we focus ongecific case of test product discovery
in a SPL. The context and the problem for test product disgosegpresented in Sectidnb.2. In
SectiorT 5B, we describe metrics to assess SPL test gemédigtovery strategies. Sectionls.4
gives an overview of the test product generation methogotogl tool A/ISHKAR. In Section
we present two “divide-and-compose” strategies thkt $eale product generation to large
SPLs. In Sectiof 516 we present experiments to qualify aategies on transaction processing
SPL case study: AspectOPTIMA. Sectlon]5.7 draws some csiocls and outlines future work.

5.1 Introduction

The idea of automatic effective product discovery in a SPUllistrated in Figurd5ll. As
illustrated in the figure, a feature diagrdfb specifies the modelling domain for a SPL. The
modelling domain consists of a set of productdeterogenous sources of knowledgmay

156 CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY

uses eeresr
H

Hetereogeneous Sources of Knowledge ED omain-specific Sources

Textual Partial ! | T-wise Strategy S
Product P H N

Constraints C

Feature Diagram
FD

P effective

Finite Bounds |4S€S | Avishkar Prqduct Discovery Framework

Solver Parameters ‘\)U it E!
- i@
O oo Effective Modelling Domain

& X & |defines set of effective products P effective

Figure 5.1: Automatic Effective Product Discovery

further constrain the modelling domain specified by a featliagram:

e Textual Constraints C are expressed on a set of features. Boolean dependencyadoisst
are expressed textually when they cannot be directly emtiodéeF D. These constraints
specify the subsd® C P

e Partial Product pis a set of features chosen in product. The set of featuresrecayre
the selection of other features to derive a complete proditet partial product specifies
the subseP, C P

e T-wise StrategySis a product generation strategy to detect faults in softyanduct lines
[©@0] [120]. The large number of products specified by a featliagram can be sampled
using a strategy such 8s— wise The objective is to generate a minimum number of
products that satisfy all — wiseinteractions between features. The- wisestrategy for
a particular value of specifies the subs& C P.

The intersection of all the sources of knowledge definegtiegetive modelling domaiihe
effective modelling domain is the set of products definedPByeciive«— PNPLN PN P3. Can

CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY 157

we automatically generate or discover models in the effeatiodelling domain of products?
This is thegeneral questionthat intrigues us.

In this thesis, we address this question for the specificlprnolof test generation for soft-
ware product lines. Our solution is embodied in the toovAsHKAR as shown in the Figure
B

Product line testing consists in deriving a set of produats ia testing each product. This
raises two major issues: 1) the explosion in the number plesproducts; 2) the generation
of test suites for products. The first issue rises from theltoatorial growth in the number
of products with the number of features in a feature diagramrealistic cases, the number
of possible products is too large for exhaustive testingeréfore, the challenge is to select a
relevant subset of products for testing. The second isdoe@snerate test inputs for testing each
of the selected product. This can been seen as applying miiowal testing techniques while
exploiting the commonalities between products to reduedssting effort[152, 150, 100]. Here,
we focus on the first issuédow can we efficiently select a subset of products for protinet
testing?

Previous work[[3B["90] has identified combinatorial inté¢i@t testing (CIT) as a relevant
approach to reduce the number of products for testing. CdBistematic approach for sampling
large domains of test data. It is based on the observatidnribat of the faults are triggered
by interactions between a small numbers of variables. Téssléd to the definition of pairwise
(or 2-wise) testing. This technique selects the set of atilmoations so that all possible pairs
of variable values are included in the set of test data. Rsertesting has been generalized to
T-wise testing which samples the input domain to cover allise combinations. In the context
of SPL testing, this consists of selecting the minimal seirofiucts in which alll -wise feature
interactions occur at least once.

Current algorithms for automatic generationTefvise test data sets have a limited support
in the presence of dependencies/constraints betweerbleriaThis prevents the application
of these algorithms in the context of software product lisiese feature diagrams define com-
plex dependencies between variables that cannot be igdaredy product derivation. Previous
work [42,[4]] propose the use of constraint solvers in ordetdal with this issue. However,
they still leave two open problemscalability and the need for formalismto express feature
diagrams. The former is related to the limitations of caistrsolvers when the number of vari-
ables and clauses increases. Above a certain limit, sobaemsot find a solution, which makes
the approach infeasible in practice. The latter probleneiated to the engineering of SPLs.
Designers build feature diagrams using editors for a dégticlormalism. On the other hand,
constraint solvers manipulate clauses, usually in Booléanjunctive Normal Form (CNF).
Both formalisms are radically different in their expregsiess and modeling intention. This is a
major barrier for the generation @fwise configurations from feature diagrams.

We propose an approach for automatic discovery/generatidast products that contain
all valid t-wise interactions between features. The general apprgachtransform the input
feature diagram andwise interactions to a constraint satisfaction probleftodzed by solving
it. The result is a test products that satisfy the FD tamdse criteria. However, for large feature
diagrams with several dependencies the generatidnvide products is highly limited by the
solver. Current constraint solvers have a limit in the nundéelauses ,emerging from FD and

158 CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY

t-wise criteria constraints, they can solve at once. It iegeary to divide the set of clauses into
solvable subsets. We compose the solutions in the subselgam a global set. In this work,
we investigate two “divide-and-compose” strategies taddithe problem off -wise generation
for a feature diagram into several sub problems that can lvedsautomatically. The solution
to each sub-problem is a set of products that cover sbmégse interactions. The union of
these sets cover all interactions, thus satisfying Theise criterion on the feature diagram.
However “divide-and-compose” strategies may yield a highember of products to be tested
and redundancy amongst them which is the price for scalabie define metrics to compare
the quality of these strategies and apply them on a concaste study.

Our T-wise testing toolset,\ASHKAR, first transforms a given feature diagram and its inter-
actions into a set of constraints into Alldy |72 71], a foirmeodeling language, based on first-
order logic, and suited fautomatic instance generatioithen it complements the Alloy model
with the definition of theT -wise criteria and applies one of the chosen strategiesdaduge a
suite of products forming test cases. Finally, metrics amefuted giving important information
on the quality of the test suite. We extensively applied ootset on AspectOPTIMA[86, 87]
a concrete aspect-oriented SPL devoted to transactionzgeanent.

5.2 Context and Problem

In this chapter, we focus on generating a small set of testymts for a feature diagram. A
product is a valid configuration of the feature diagram tlaat lse used as a relevant test case for
the SPL. We give a brief definition and an example of featuegmims before describing test
case generation for them.

Feature Diagram

Feature DiagramgFD) introduced by Kang et al_T7 7] compactly represent UFef5.2) all the
products of an SPL in terms of featufbwhich can be composed. Feature diagrams have been
formalized to perform SPL analysis 118,185, 1187, 45].[In9,1837], Schobbens et al. propose
an generic formal definition of FD which subsumes many exgskD dialects. FDs are defined
in terms of a parametric structure whose parameters sereha@cterize each FD notation
variant. GT (Graph Type) is a boolean parameter indicates whether th&dsred notation is a
Direct Acyclic Graph (DAG) or atreeNT (Node Type) is the set of boolean operators available
for this FD notation. These operators are of the fam with k € N denoting the number of
children nodes on which they apply to. Considered operai@and; (mandatory nodeskory
(alternative node)ri (true if any of its child nodes is selected)pt (optional nodes). Finally
vp(i..j)k (€ Nandj € NUx)is true if at least and at mosj of its k nodes are selected. Existing
other boolean operators can usually be expressedwpitiGCT (Graphical Constraint Type) is
the set of binary boolean functions that can be expresseuhigedly. A typical example is the
“requires” between two features. FinallyCL (Textual Constraint Language) tells if and how
we can specify boolean constraints amongst nodes. A FD isedkéis follows:

1Defined by Pamela Zave as “An increment in functionality”. eSe
http: /7 ww. resear ch. att. conf ~panel a/ fag. htm

http://www.research.att.com/~pamela/faq.html

CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY 159

Transaction

Nested [ConcurrencyControlStrategﬂ

O

[2-PhaseLocking] [OptimisticValidationJ

Recovering

PhysicalLogging
Checkpointing

OutcomeAware
Checkpointable

Copyable

Shared

Context [AccessClassiﬁed] [Lockable]
[SemanticClassiﬁedJ
Composition Rule: Composition Rule: Key: O Optional feature
‘2-PhaseLocking’ excludes ‘OptimisticValidation’ requires
‘Recovering.Deferring’ ‘Recovering.Deferring’ < XOR feature

Composition Rule:
‘Deferring. Traceable’ requires
‘Traceable.SemanticClassified’

Figure 5.2: Feature Diagram of AspectOMA

160 CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY

e A set of nodedN, which is further decomposed into a set of primitive noBéwhich have
a direct interest for the product). Other nodes are useddoomposition purposes. A
special root node;, represents the top of the decomposition,

e AfunctionA: N+— NT that labels each node with a boolean operator,

e AsetDE € N x N of decomposition edges. As FDs are directed, mddae2 € N, (n1,n2) €
DE will be notednl — n2 where nl is th@parentand n2 thechild,

e AsetCE e N x GCT x N of constraint edges,
e Asetpe TCL

A FD has also some well-formedness rules to be valid: only (dohas no parent; a FD
is acyclic; if GT = true the graph is a tree; the arity of boolemperators must be respected.
We build upon this formalization to create feature modekmgironments supporting product
derivation [119] where we encode the Aspeet@A SPL feature diagram (see figlrels.2). We
implement Aspect®TIMA SPL as an aspect-oriented framework providing run-tim@sttgor
different transaction models. Aspect@MA has been proposed inJd7.186] as an independent
case study to evaluate aspect-oriented software devetdpapproaches, in particular aspect-
oriented modeling techniques. Once we defined the FD, we reatecproducts (i.e a selection
of features in the FD). To bealid, a product follows these rules: 1) The root feature has to be
in the selection, 2) The selection should evaluate to tru@lfcoperators referencing them, 3)
All contraints (graphical and textual) must be satisfied @) &y feature that is not the root,
its parent(s) have to be in the selection. We enforce thditralof a product according to well-
formedness rules defined on our generic metamédel [119]hdrie automatically translated to
Alloy by our FeatureDiagram2Alloy transofrmation (see tRedb.4).

Once we introduce the notion of feature diagram and forraaliwe can form our notion of
SPL testing on such an entity.

SPL Test Case

A SPL test cases one valid product (i.e. a) of the product line. Once thit tase is generated
from a feature diagram, its behaviour has to be tested.

SPL Test Suite

A SPL Test Suites a set of SPL test cases.

Example

Figure[52 presents 3 test cases, three products which cdarived from the feature model.
These three test cases form a test suite.

CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY 161

Product 1: Product 2:

Transaction

Transaction

Recovering [ConcurrencyControlStrateg}a [ConcurrencyControlStrateg}a

[PhysicalLogging] [Z-PhaseLocking] [OptimisticValidation]

OutcomeAware

[Checkpointing]

[Checkpointable] [Lockable]
=

Context AccessClassified

Context

AccessClassified
SemanticClassified

Product 3:

Transaction

[ConcurrencyControlStrategy]

Recovering

[PhysicalLogging] [Z-PhaseLocking]

OutcomeAware

[Checkpointing]

[Checkpointable]

Copyable

Context

[Lockable]
AccessClassified

Figure 5.3: Three Test Cases

162 CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY

Valid/Invalid T-tuple

A T-tuple (wereT is a natural integer giving the number of features presetite'ff—tupl@) of
features is said to bealid (respectivelyinvalid), if it is possible (respectively impossible) to de-
rive a product that contains the pair-(uple) while satisfying the feature diagram’s constraint

Example

In the AspectOptima product line we have a total of 19 featur@ll these 19 features can
take the value true or false. Thus, we can generate 681 pairalfi pariwise combinations of
feature values. However, not all of these pairs can be parpodduct derivable from the feature
model. For example, the pai(not Transaction), Recovering> is invalid with respect to
the AspectOptima feature diagram which specifies that theeifeTr ansact i on is mandatory.

SPL test adequacy criterion

(all-T-tuples): To determine whether a test suite is able to chwefd¢ature model of the SPL

, We need to express test adequacy conditions. In partiouéaconsider the “t-wise'T[90,42]
adequacy criteria were each valldtuple of features is required to appear in at least one test
case.

Example

The test suite presented in figlrel5.2 does not satisfy ouquadg criterion since the pair (2-
tuple)<semantic classified, |ockabl e>does notappear in any of the three test cases.

Test generation

In our context of SPL testing, test generation consists afyaing a feature diagram in order to
generate a test suite that satisfies pairwise coverage.

Pairwise (and more generally t-wise) is a set of constraimts a range of variables (math-
ematically defined asovering arrayqiL22]). Thus it is possible to use SAT-solving technology
[53,[159[11P] to compute such arrays. In our case, variaeshe features of a given given
feature diagram. It is therefore mandatory to encode arfeatiagram in first order logic so
SAT-solvers can analyze them. Thanks to feature diagramdization, this is possiblé 1B, 5]
and have been done for various purpo§es[[20, 101].

5.2.1 Problem

The work in this chapter builds upon this idea: model the gesteration problem as a set of
constraints and ask a constraint solver for solutions. i1 ¢bntext we tackle two issues: (1)
modelling the SPL test generation problem in order to usenatcaint solver and (2) dealing

2In general we will use the term “tuple” to mentionTatuple whent does not matter. In the special case of
pairwise, i.e. when = 2, we denote a 2-tuple by the term “pair”.

CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY 163

with the scalability limitations of SAT solvers. Our coriition on the first issue is an automatic
transformation from a feature diagram to an Allbyl[71] model

Scalability is a major issue with SAT solvers. It is knownttsalving a SAT formulae
on more than 2 variables in an NP-complete problem. It is latsmvn that depending on the
number of variables and the number of clauses, satisfialbitiinsatisfiability is more or less
computiationally complex[104]. However, we currently ¢tdimow how to predict the com-
putation complexity of a given problem. An empirical approdhus consists in trying to solve
the set of “constraints all-at-once”. Three things can kapphe solver returns a solution, the
solver returns an unsatisfiability verdict, the solver bessbecause the problem is too complex.
In the latter case, one way to generate a test suite thatcbwase interactions, is to decompose
the problem into simpler problems, solve them indepengeantd merge the solutions. In the
following, we refer to this approach as “divide-and-congioapproach.

One pragmatic approach, and a naive one, consists of rutimengplver once for each-
tuple that as to be covered. This iterative process is thplesh“divide-and-compose” approach
and it generates one test case for each vedtdple in the FD. For the AspectQ@IMA SPL, we
obtain 421 test cases that satisfy pairwise and that camelspto 421 products to be tested. The
all-pairs criterion is satisfied but with a large number aqurcts. It also has to be noted that
only 128 different products can be instantiated from thee&$prTIMA SPL. This indicates that
the application of “divide-and-compose”, although it ntiglefine problems that can be solved,
also introduces a large number of redundant test cases ieshéing test suite. Indeed, if it
generates 421 test cases, but there can be only 128 diftesintases, there is an important
redundancy rate.

In general, a solution for generating a test suite with a Sé{Ves consists in finding a
strategy to decompose the SAT problem in smaller problemiscin be automatically solved.
Also, the strategy should decompose the problem in such ahedyvhen the solutions to all
sub-problems are composed, the amount of redundancy initeeislimited

Test generation strategies

In this chapter we calitrategieghe way we “divide-and-compose”. Depending on the strategi
and its parameters we will derive more or less test casesr®eklving into the two different
strategies we will introduce in the next section metricsval@ate them.

5.3 Metrics for Strategy Evaluation

We need efficiency and quality attributes in order to evaluhé generated SPL test cases and
compare the automatic generation strategies. The firstegitig attribute relates to the size of
the generated SPL test suite:

SPL Test suite size

The size of a test suite is defined by thenber of SPL test cas#fsat a given generation strategy
computes. In the best case, we want a strategy to generatarfreal number of test cases to

164 CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY

satisfy the SPL test adequacy criterion. As this optimal neims generally not known a priori,
we use the SPL test suite size as a relative measure to coiepageneration strategies.

A second efficiency attribute relates to the cost of test ggins in itself. We measure this
cost as the time taken for generation.

SPL strategy time taken

We characterize the cost of a given strategy by the time k toalecompose the problem into
solvable sub-problems and the time it took to merge theglayéinerated solutions to a SPL test
suite.

We also evaluate the quality of the generated test casest, Wwie want to appreciate the
coverage of the generated test cases with respect to thedatiagram. We measure coverage
by looking at the rate of similarity between the test casasdle generated. The intuition is that,
the more test cases are similar, the less they cover thayafiproducts that can be generated
from the feature diagram.

Test Case Redundancy

We definetest case redundandyetween two valid products as the ratio rdn-compulsory
features they have in common. Bpmpulsory we mean that it comprises mandatory features
and features that are explicitly required by them. Put ireotlerms, for any set of features
F C N representing &alid product according to the aforementioned rules for constrgd=-Ds

in sectio 2.2, we form the sé€fF C F;:

CF={{fi} eN|V{f;} eNAfj >,
VkGN,)\(fj) = andkU
{fi} e N|requireg f;, f|) = true

Given a set of featurd; in all set of featureN in a product, the sefF is the union of the
subset of feature§; in N such that a featurg; is a parent offj, or fj is in a binary AND relation
with f;, and the subset of featuréssuch thatf, is required by anyfi. In which requiresis a
binary boolean function (belonging @CT) such that it returns true if there is a constraint edge
labeled as “requires” between theses two features.

Hence the redundancy ratio between two test prodpicisid p; is:

o Card((Fpi _CFPi) N (ij _CFPJ))
(P Py) = card((Fp —CFy) U (Fp; —CFyy))

The setsCF, andCF, represent the compulsory sets of features for prodpctnd p;
while Fp, andFp, are the sets of all features in produgtsand p;. This ratio equals to 1 if the
two products are the same and 0 if they have no non-compuleatyre in common.

CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY 165

Example

Products 1 and 3 (Figufe'®.2) have test case redundancyofddi@8 since they differ only by
one feature out of 9 non-compulsory.

At the test suite level, we compute test case redundancy tmpgting the average of test
case redundancy ratio for any two (cartesian product) ssstscof the suite.

As a second quality attribute, we want to assess the qudlityeogenerated SPL test cases
with respect tol -wise interactions coverage. If we know that, by constarctieach tuple ap-
pears at least once in the test suite, we also know that theratgon process might lead to the
repetition of tuples an arbitrary number of times. For thé &RBters, such repetitions imply that
they will test the same interaction of features severaldime

T-tuple Occurrence

This metric is the number of occurrences of a validtgple) in a test suite. LE[Sbe a test
suite comprised ofy; valid cases andr, C N be their associated features. ltea T-tuple
(t = {fi € N}). Tuple occurrence redundancy is then:

to=cardte Tt CFy)

5.4 Test Generation Methodology & AVISHKAR Toolset

In this section, we describe the automatic generation opteslucts from a feature diagram that
satisfy theT -wise SPL test adequacy criteria. Our toolI8HKAR has been designed to support
any value ofT. The methodology consists of five key steps shown in Figidle 5.

The generation is based onLkoY as the underlying formalism to formally capture all
dependencies between features in a feature diagram assviieét ghe interactions that should be
covered by the test cases.

5.4.1 Step 1: Transforming Feature Diagrams to ALOY

In order to generate valid test products directly from audeatiagram, we need to transform
the diagram in a model that captures constraints betwedurésa(defined in Sectidn®.2). The
FeatureDiagram2Alloytransformation automatically generates anLdy model Az from any
feature diagrank D expressed in our generic feature diagram formallsmi[119].

The Ar model captures all features as 1Y signaturesand a set of ALOY signatures
that capture all constraints and relationships betweeturiess This model also declares two
signatures that are specific to test generatmonfigurationthat corresponds to a test case and
that encapsulates a set of features (lisfiing 52@ductConfiguration(listing [£:3) which will
encapsulate a set of test cases.

Example

The AspectOptima feature diagram, shown in Fidure 5.2, we k8 featured;, fo, ..., f19. The
transformatiorFeatureDiagram2Alloygenerates 19 signatures to represent these features shown

166 CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY

Software Product Line
Feature Diagram Valueof T

Y

1. Transformation 2. Generation of
FeatureDiag ram2AIon initial T-wise tuples 1

Alloy ‘
Feature Diagram 3. Detection of
AF Valid tuples
4. Creating and Solving Serof v 1.(; Tool
Conjunctions of Tuples etot Va IV uples
: : Incremental
BinarySplit Growth [Min,Max] Scope
[Min,Max] Duration
T Selection Strategy
Set of Test Cases (Products) -
covering all Valid Tuples >(__ 9. Analysis
P

Figure 5.4: Product Line Test Generation Methodology

CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY 167

in listing[5. The root featur&ransactionis always mandatory indicated by the predine for
the fieldf as shown in listing 5]2. Optional features are indicatedHeyrefixlone such as
featureNestedor f2 in listing [5.2.

sig Transaction {}

sig Nested {}

sig Recovering {}

sig ConncurrencyControlStrategy {}
sig PhysicalLogging {}

sig TwoPhaseLocking {}

sig OptimisticValidation {}
sig Checkpointing {}

sig Deferring {}

sig OutcomeAware {}

sig Checkpointable {}

sig Tracing {}

sig Context {}

sig Copyable {}

sig Traceable {}

sig Shared {}

sig SemanticClassified {}
sig AccessClassified {}
sig Lockable {}

Listing 5.1: Generated Signatures for Features in Aspeat@ap

sig Configuration

fl1: one Transaction , // Mandatory
f2: lone Nested, //Optional

f19: one Lockable //Mandatory

Listing 5.2: Generated Signature for Configuration of Fesgin AspectOptima

one sig ProductConfigurations

{
}

configurations : set Configuration

Listing 5.3: Generated Signature for Set of Configurations

The FeatureDiagram?2Alloyransformation generatesLAOY factsin Ag.

Example

In listing &4, we present two A OY facts generated to show the mutually exclusive (XOR)
selection of featured$s (TwoPhaselLockingand f; (OptimisticValidation given we select the
featuref, (ConcurrencyControlStratedyy The fact must be true for all configurations.

//Two Phase Locking XOR Optimistic Constraint 1
pred TwoPhaselLocking_constraint

all c: Configuration |
#c.f6==1 implies (#c.f4=1 and #c.f7=0)
}

//Two Phase Locking XOR Optimistic Constraint 2
pred OptimisticValidation_constraint

all c: Configuration |
#c.f7==1 implies (#c.f4=1 and #c.f6=0)

Listing 5.4: Generated Fact for XOR

168 CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY

The FeatureDiagram2Alloytransformation has been implemented as a model transforma-
tion in the Kermeta metamodeling environment [108]. Sinoe feature diagram formalism
is generic [[11B,106] various kinds of feature diagrams aamaudttomatically transformed. We
summarize the transformation rules in Figlird 5.5. The pméation of these rules is straightfor-
ward. The generated facts inLAOY state boolean constraints on relevant features in thergeatu
diagram.

5.4.2 Step 2: Generation of Tuples

In Step 2, we automatically compute the kef all possible tuples of features from feature dia-
gramAF and the numbeF. The tuples enumerate dllwise interactions between all selections
of features inAF.

Example

The 3-tuplet =< #f; = 0,#f, = 1.#f3 = 1 > for the valueT = 3 contains 3 features and their
valuations. In the tuple we state that the set of test predumetist contain at least one test case
that has feature§, and f3 and does not have f1.

The initial set of tupled is the set of tuples that cover all combinationsTofeatures taken
at a time. For example, if there al features then the size dfis NGt minus all tuples
with repetitions of the same selected feature. Each tupiel also has an ALoy predicate
representation. An ALOY predicate representation of a tuplis t. predicate

The tuplet =< #f; = 0,#f, = 1,#f3 = 1 > is shown in listind &.b.

pred t

some c: Configuration | #c.fl=0and #c.f2=1 and #c.f3=1

Listing 5.5: Example Tuple Predicate

5.4.3 Step 3: Detection of Valid Tuples

In this third step, we use the predicates derived from easBiple tuple in order to select the
valid ones according to the feature diagram. We say thatla tspalid if it can be present in a
valid instance of the feature diagrem

Example

Consider AspectOptima (in Figureb.?2) featufgIransaction fo:Nested, and4:ConcurrencyControlStrategy,
The 3-tuplet =< #f, = 0,#f, = 1#f, = 1 > is not a valid tuple as the featufg required the ex-
istence of featurd; and hence we neglect it. On the other hand, the 3-tuple #f; = 1, #f, =
0,#f4 = 1 > is valid since all feature selections hold true For We determine the validity of
each such tupleby solvingAr Ut.predicatefor a scope of exactly 1. This translates to solving
the ALLOY model to obtairexactly one produdbor which the tuple holds true.
For the AspectOptima case study we generate 681 tuples ifewis (T = 2) interactions
in the initial setl. We select 421 valid tuples in the 3ét

CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY

169

Feature Model Pattern Generated Alloy Fact

Optional

fact fB_Optional_constraint

{
all c: Configuration | #c.fB =1 implies #c.fA=1

}

fact fA_AND_constraint

{
all c: Configuration | #c.fA =1 implies (#c.f1=1 and

#c.f2=1and ... #c.fN=1)
}

fact fA_OR constraint
{
all c: Configuration | #c.fA =1 implies
(#c.f1=1 or #c.f2=1 or ...#c.fN=1 and
(#c.fl+#c.f2+...+#c.fN)>=a and
(#c.fl+#c.f2+...+#c.fN)<=b)

}

XOR

fact fX_XOR_constraint

{

all c: Configuration | (#c.fX ==1 implies
(#c.fA=1 and #c.f1=0 and ...and
#c.fN=0)) and

(#c.fA==1 implies (#c.fl+#.cf2+..
+#c.fN=1))

}

Requires (unidirectional)

requires

fact fA_Requires_constraint

{
all c: Configuration | #c.fA =1 implies #c.f1=1

}

Mutex /excludes

fact f1_f2_Mutex_constraint

{
all c: Configuration |
(#c.f1=0 and #c.f2=0 implies #c.f1=1 and #c.f2=1) and
mutex (#c.f1=0 and #c.f2=1 implies #c.f1=1 and #c.f2=1) and
(#c.fl=1 and #c.f2=0 implies #c.f1=1 and #c.f2=1) and
(#c.fl=1 and #c.f2=1 implies #c.f1=0 and #c.f2=0)
}
One/Multiple Parent fact f1_Parent _constraint
{

all ¢: Configuration |
#c.fl =1 implies (#c.fA=1 ...or #c.fB=1 or #c.fN=1)

}

Figure 5.5: Feature Diagram toLAOY Transformation

170 CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY

5.4.4 Step 4: Creating and Solving Conjunctions of MultipleTuples

Once we have a set of valid tuples, we can start generatingt auge according to th€-wise
SPL adequacy criteria. Intuitively, this consists in conitg all valid tuples fronV with respect
to Ar in order to generate test products that cover all t-wiseactens.

Example

For pair-wise testing in the case of AspectOptima this anstmsolving a conjunction of 421
tuple predicate$; . predicatent,. predicaten ... Nts;. predicatefor a certain scope. The major
issue we tackle in this work is that in general, constraihtess cannot generate the conjunction
of all valid tuples at once.

Using the “all-at-once” strategy on aspectOPTIMA, with 4ziid tuples, the generation
process crashes without giving any solution after sevealites using MiniSAT[[112] solver.

Hence we derived two “divide-and-compose” strategies éabidown the problem of solv-
ing a conjunction of tuples to smaller subsets of conjumctibtuples. The strategies we present
areBinary SplitandIincremental GrowthEach strategy is by parameterized by intervals of val-
ues defining the scope of research for each (sub)-conjuncfidquples, the duration in which
ALLOY is authorized to solve the conjunction as well as a strategyidg how features are
picked in a tuple. We describe these strategies in morel detction2.b. The combination of
solutions is a test suif€ Sthat covers all tuples.

5.4.5 Step 5: Analysis

In order to assess the suitability of our “divide-and-cosgicstrategies and compare their ability
to generate test suites, we need to compute the metrics défirsectio 518. We compute for
each generated test suite the number of products or test, ¢astecase and tuple redundancy. We
performed extensive experimentation on AspectOPTIMA hyegating test suite with different
scope and time values. We present consolidated resultesd gxperiments in sectibnb.6.

5.5 Two strategies forT-wise SPL Test Suite Generation

As mentioned previously, to be scalable we divide the probt# solving tuples into sub-
problems, i.e. we are creating conjunctions of subsets glesu We solve the conjunction

of tuples in each of these subsets using the algorithm prexém Sectiofi 5.5]1. The first strat-
egy to obtain subsets of tupldginary Split is discussed in Sectign’5.b.2. We present the second
strategy,ncremental Growthin Sectio5.513.

5.5.1 Solving a Conjunction of Tuples

We solve a conjunction of tuples using the Algorithin 2. We boma the Alloy modelA: with
a predicateCT(S).predicaterepresenting the conjunction of tuples in the Set tj,to,.... 1, .
We solve the resulting Alloy modeh usingincremental scopingWe create aun commandc
starting for a scope between the minimum scopescand the max scopexScope We insert

CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY 171

the command into m. A SAT solver such as MiniSAT[112] or ZChaff[159] is used &
m. We determine the duratichur = startTime— end Timefor each scope value. tfur exceeds
maximum duratiormxDurwe stop incrementing the scope. T¢$@vemethod returns theesult
of the SAT solving and the correspondiaglutionif a solution exists.

Algorithm 2 solveCTAr,S mnScmxScmxDur) : BooleanA4Solution

Let current modein = A UCT(S). predicate
scope— mnSc
result «— False
dur—0
while scope< mxSc\ dur < mxDurdo
Letc=“run” CT(S).namefor < scope>
m«+— muc
startTime= currentTime
solution= SAT solvém)
if solutionisEmpty then
result — False
scope— scopet 1
Remove command from m
end if
if IsolutionisEmpty then
result«< True
Break While Loop
end if
endTime— currentTime
dur < endTime- startTime
end while
Return{result,solution}

5.5.2 Binary Split

Thebinary splitalgorithm shown in Algorithriid3 is based on splitting the dadlbvalid tuplesV
into subsets (halves) until all subsets of tuples are stdvalie first order the set of valid tuples
based on the stratedytr. The strategy can bendomor based ordistancemeasure. In this
chapter, we consider a random ordering. Poel is set of sets of tuples. Initiallypool contains
the entire set of valid tupleg. If each set of tuple®ool[i],0 < i < Pool.sizein Pool is not
solvable in the given range of scop@mScand mxScor within the maximum duratiomxDur
thenresult is Falsefor Pooli]. A single value ofresult = FalserendersAllResult= False

In such a case, we select tlaegest setn Pool[i] and split it into halve§H1} and{H2}. We
insert the halvegH1} and{H2} into Pool[i]. The process is repeated until all sets of tuples in
Pool can be solved given the time limits aAdiResult= True In the worst case, binary split
convergences with one tuple a set makiRupl.size= V.sizeas all tuples iV are solvable.

5.5.3 Incremental Growth

Theincremental growths shown in Algorithn{}. In the algorithm we incrementallyildua set
of tuples in the conjunctio@T and add it to thd?ool. Theselectfunction based on a strategy

172 CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY

Algorithm 3 binSplit(As,V, mnScmxScmxDut Str)
AllIResult«— True
V « order(V, Str)
Pool — {{V}}
repeat
result — False
i<—0
repeat
{result Poolfi].solution}
«— solvd Ag, Pool[i],mnScmxScmxDur)
j—i+1
AllIResult«— AllResultA result
until i == Pool.size
if AllResult== Falsethen
{L} = maxPool)
{{H1}.{H2}} =split({L},2)
Pool.add({H1})
Pool.add({H2})
end if
until AllResult= false
ReturnPool

Str selects a tuple iV and inserts it intdCT. The strategystr can berandomor based on a
distancemeasure between tuples. In this paper, we consider onlydanastrategy for selection.
We select and remove a tuple foivnand add it toCT until the conjunction cannot be solved
anymore ,i.e.result= False We remove the last tuple and put it back ito We includeCT
into Pool. In every iteration, we initialize a new conjunction of tapluntil we obtain sets of
tuples inPool that contain all tuples initially ilv or whenV is empty.

Algorithm 4 incGrow@Ag,V, mnScpmxScpmxDut Str)

Pool — {}
repeat
CT—{}
repeat
tuple« V.selectStr)
CT.add(tuple)
{result CT.solution}
«— solvd Ag,CT,mnScmxScmxDur)
if result== Falsethen
CT.removétuple)
V.add(tuple)
end if
until result== False
Pool.add(CT)
until V.isEmpty
ReturnPool

CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY 173

5.6 Experiments

The objective for our experiments is: To demonstrate thsilbday of “divide-and-compose”

strategies (Binary Split and Incremental Growth) and camgzeir efficiency with respect to test
case generation. All experiments are performed on a reafdature model: AspectOPTIMA.
In this section we report and discuss the automatic geoerafit-wise test suites for this model.

5.6.1 Experimental Setting

We automatically generate test suites with the two “divaehe-compose” strategies and compare
them according to: (a) the number of generated test cagesiglmumber of tuple occurrences
in the test suites; (c) the similarity of the products in teeegrated test suites. For both strategies
we have to set the values for two parameters that specifyehiels space: the scope and the
time limit. We vary scope over 5 values: 3, 4, 5, 6, 7; the maximdurationmxDur to find

a solution for a given conjunction of constraints is fixed @Qams. We generate 100 sets of
products for each scope giving us a total of 200 sets of products for a strategy. The reason
we generate 100 solutions is to study the variability in thieitsons given that we useniform
random orderingin binary split andrandom tuple selectioim incremental growth. Therefore,
for two strategies we havex25 x 100 sets of products or test cases. We perform our expersment
on a MacBook Pro 2007 laptop with the Intel Core 2 Duo proaeasad 2GB of RAM.

Before studying the results of our experiments we note titetgting “solving-all-constraints-
as-once” does not yield any solutions for the AspectOPTIMALSThis is true even for simple
feature models such as AspectOPTIMA that does not lead teatien of billions of products
(like industrial product lines). On the other hand, all axeans of both “divide-and-compose”
strategies generate t-wise test suites. This first obsenvaidicates that these strategies enable
the usage of SAT solvers for the automatic generation okewiteractions test suites for both
simple and potentially complex feature models. This is tret fhain result of our study.

5.6.2 Number of Products Vs. Scope

In Figure[2®, we present the number of products generatedifferent scopes, which corre-
sponds to the number of test cases in a suite. Each box antigkexs correspond to 100 solu-
tions generated using a strategy for a given scope. On th&sxw& have scope for two strategies
. Binary Split represented Hyin_scopeand Incremental Growth representediby_scope

For the binary split strategy, the number of products is liggha scope of 3 (average of 50
products), decreases towards a scope of 5 (average 18 pspdnd increases again towards a
scope of 7 (average of 35 products). In our experiments thgescearest to the minimal number
of test cases is 5. For a scope of 7 we ask the solver to creatdidqts per subset of tuples
(or pairs) while only 5 products suffice for the same set ofesipeading tanore products that
satisfy the same set of tuplekhis is true for highly constrained SPLs such as AspectQ/A |
where the total number of products generated does not exceedple of hundred. Therefore,
fewer products are sufficient to capture all t-wise intéoes. For a scope too small such as 3,
binary split gives a large number of products. This comemftioe coarse-grain splitting (into

NumberOfProducts

2d02S "SA S19Npo.d JO Jaquinp 10} 10|d X0g :9°G aInbi-

120

0]
BinarySplit Incremental
100 Upper Quartile (Q3)
Omax
=U Whisk
" pper Whisker
+median (Q2)
=Lower Whisker
60 Omin
0]
X X average
T == Lower Quartile (Q1)

20

b
G-
—o0
e I
R
dklo
0

V.1

AHINODSIA LONA0Hd INILDFH443 DILVYNOLNY 'S HFLdVHO

CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY 175

halves) of the set of tuples leading to the non-optimal usg pfoducts to cover a maximum
number of tuples.

For the incremental growth, the general trend that is thie hignber of products for a scope
of 3 (average 25 products), decrease towards a scope of Eagavé7 products), and increase
again towards a scope of 7 (average 27 products). The reasfamithis general trend is similar
to binary splitting except that incremental growth attesrtptoptimize the number of tuples that
can be squeezed into a product.

When comparing binary split and incremental growth, thera notable difference in the
variability in the solutions. Binary split results in a largariability (minimum 18 products
at scope 5 to a maximum of 115 products at scope 3) in the nuaih@oducts compared to
incremental growth (minimum 16 products to a maximum of 3@dpicts). This is reasonable
as binary split applies a coarse-grain strategy of halvetg while incremental growth applies
a selective strategy to 'squeeze in’ a maximum number oktuplto a test suite. However, in
terms of performance binary split for the AspectOPTIMA cately is far superior compared
to incremental growth. Binary split takes an average of 64ltamobtain a set of products for a
scope of 3 while incremental growth takes about 14000 mss iBhprimarily due to the fewer
steps (average 20) to divide in binary split compared toelamgmber of steps (average 420) for
incremental growth. Therefore, we have a trade-off betvibersize of the test suite and the
time to generate the suite. Both strategies are able to atiwatly find asmall number of test
casessatisfyingall valid pair of feature interactions

5.6.3 Tuple Occurrence Vs. Scope

In Figure[5.Y, we present a box plot showing the total ocoweeof tuples for different scopes.
We know that a possible limitation divide-and-composstrategies is that they can generate test
cases that cover the same tuple multiple times. This is ddiion for the testing effort, since
a redundant tuple means that the same interaction of feahag to be tested several times.
The total number of valid tuples is 421 for AspectOPTIMA arahte ideally we would like
to have a minimum number of products with exactly one occuweeof a tuple. However, the
existence of mandatory features force to have multiple weoges of some tuples in the suite.
An effective strategy for test generation is thus a stratbgy limits the occurence of the same
tuple in the test suite.

For binary split, the total tuple occurrence for a scope o$ about 3000 on an average,
decreases to about 1400 for a scope of 5 and increases ag@aiddor a scope of 7. Therefore,
a scope of 3 generates products with about 7 times the tqikd tccurrence compared to the
ideal unique occurrence, scope of 5 about 3 times. We agai&radthat the near-optimal scope
of 5 has the least total tuple repetition.

For incremental growth, the total tuple occurrences areta@empared to binary split.

Binary split and scope 3 gives products with 1.6 times moigences compared to in-
cremental growth. In general, incremental growth converigea better set of products: less
products with less occurences of tuples.

The strategy and the scope help us choose the ideal set ohtes.

Tuple Occurence

2d02S "SA 99uUa1IN290 8|dNn] €101 10} 10|d XOg :2°G aInbi4

9.7

BinarySplit Incremental
6,000
Upper Quartile (Q3)
= Omax
5,000 =Upper Whisker
+median (Q2)
=Lower Whisker
Oomin
4,000 s Xaverage
? Lower Quartile (Q1)
3,000 ==
i T T :
2,000 = ‘] Q gﬁ
;‘TQ % = % é %
©» ==
1,000 o 5
0
b/'/? b/,] bl/? s b/,7 b/,; s /hc /}70 /'/70 I}]c /}70

S ~ ~ S ~ S S S S
h CO»O@ 3 b 00/3@4 CO,O@ 5 00.096 CO»O@ > cO,Oe 3 Co,Oeq coﬁes 00'06'6‘

AHINODSIA LONA0Hd INILDFH443 DILVYNOLNY 'S HFLdVHO

CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY 177

055 UpperQuartie Q 3)
BharySplt Thcremental Om ax
0] =UpperW hisker
05 +median Q2)
=LowerW hiker
o = = Om i
045 © 0] X average
< LowerQuartdke Q1)
(6] =
0.4 <] —
1)
= | | b
S 035
5 il
T 03 =] * S (] [X o m (W
; iR A 0
% | I
© 025 7 T t + 1 |
ij .)F_ - L <
==
ot |
kJ 02 5 E=2 <
& O b & o
015 + ==
0]
01 T T T
b bip) b bjp) bjp) ne ne Ine e
S SCODsa S scopeq S scopeg S scol’es L scope7 S scoﬁeg S Scopeq < scoﬂes S Scopee < scope?

Figure 5.8: Box Plot for Test Case Redundancy

5.6.4 Test Case Redundancy

Results for test case redundancy are presented in HigureOme first observation is that the
values are similar (except for scope 3) for BinarySplit anckémentalGrowth strategies. This
can be because both strategies are based on random ordetiptes. Hence the coverage of the
feature diagram by SPL test cases is quite similar and itecplar structure does not influence
test case redundancy between the two strategies.

We also observe that test case redundancy increases wheuntiher of products decreases
for both strategies, the minimum being obtained with scopdis can be explained by the
fact that when the number of products decreases, the genenaist “fill” each product with
more non-compulsory features in order to cover each tupleast once. When we give more
“freedom” to the strategies (by increasing the number ofipots), they have more options to
fill products with non-compulsory features and generats lest case redundancy on average.
High redundancy in a small test suite can be beneficial focases reusé [152]. However, high
redundancy also means similar test cases in a suite andassisdverage of the SPL, which
might not be a good caracteristic of a test suite. ults, whielans it has to be tuned for

178 CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY

5.6.5 Threats to Validity

This work mainly focused on the definition of tvdivide-and-composstrategies and the exper-
iment was performed on only one real-world feature diagrdinis a realistic FD, in size and
complexity of the constraints between feature. Howevegesiwe evaluate our strategies only
on this one, there is an important threatetdernal validity We cannot know how the trends
we observed for both strategies can be generalized to &dtagrams with more features or a
different topology. We are currently running similar expgnts on larger feature models (and
less constrained) to assess the impact of topology on thet®#ness of our strategies and im-
plementation. We also have another threataastruct validity we have developed the tools
to measure the different metrics on the test suites. Comgethe metrics themselves, they are
usual metrics to evaluate test suites (number of test cesesrage) that we believe are relevant
for the evaluation of the proposed strategies.

5.7 Conclusion

In this chapter, we propose an approach and platform supgdhte automated generation of test
cases for software product lines. Our work is motivated lyceons of scalability and usability.
With respect to the first concern, we combined combinatartakaction testing, as a systematic
way to sample a small set of test cases, with two “divide-eonipose” strategies. These strate-
gies address the scalability limitations of SAT solversdugegenerate test cases that satisfy all
constraints captured in a feature model. Using these giestenve are able to automatically gen-
erate sets of test cases for a medium-sized realistic SFLasu8specdPTIMA which could not
be processed in an “all-constraints-at-once” fashion . ¥gessed our strategies by computing
metrics and discussed the factors that influence test caseagon. We addressed usability via
model driven engineering techniquési[81] to automaticiiypsform generic feature diagrams
into alloy models amenable to t-wise test generation inyAllo

We would like to extend our work along two main dimensionse Tinst one concerns test
generation strategies. We are currently experimenting teiblset on a crisis management sys-
tem which is characterized by a large number of optional dtedrative features inducing more
than one hundred billions of possible test cases for exivausbvering. Using the incremental
strategy we were able to reduce this number to a few hundrezlwlid also like to exploit
the feature model structure to reduce the number of tuplesrisider and fine-tune t-wise gen-
eration. Generated products testability is the secondrmioge for future work. We would like
to extend our test case generation platform with automakld dgrivation techniques such as
[L19] acting as oracles. This will then form a complete SPRit tmethodology starting from
considering the SPL “as a whole” to individual product tegti

179

Chapter 6

Conclusion and Perspectives

Model-driven engineering is leveraging the use of modekslliseveral aspects of software de-
velopment. Research into the theories, techniques, arslfroathe various parts that make up
a model driven system -models and transformations- iseetid is seeing uptake in industrial
contexts. However, as MDE is advancing it is facing chalentipat characterize software engi-
neering such as managing scalability, reliability and afipalar interest in this thesisutomatic
discovery of effective models to facilitate test-basetigtibn and model construction

In order to address the challengesaimomatic model discoveryve must develop mecha-
nisms to explore and discover models in a modelling domaimther, the models must conform
to constraints heterogenous sources of knowledge suchtasiogel constraints, search strate-
gies, and partial models. How can we discover models in a linoglelomain?

We address this question in the thesis by presenting a gemethodology that transforms
a modelling domain and heterogeneous sources of knowledgeanstraint satisfaction prob-
lem in the formal specification language.foy. We solve the constraint satisfaction problem
to discover models of interest. We specialize the generithou®logy to first consider discov-
ery in a modelling domain specified by a metamodel and canstiieby heterogeneous sources
of knowledge. This approach is concretely embodied in tloék @ARTIER. We validate our
approach and ERTIER by performing experiments in test model generation andgbamiodel
completion. Second, we specialize our generic methoddloggiscovery in a modelling do-
main specified by a feature diagram of a Software Product LAmeSPL allows modelling vari-
ability in software systems using legacy software assdiis ffroves to be better than modelling
everything from scratch in a modelling language specifie@ loyetamodel. The methodology
is embodied in the tool WSHKAR. We validate AISHKAR using experiments to generate
test products for a transaction processing SPL AspectORAT I¥sing both methodologies and
tools CARTIER and A/ISHKAR we demonstrate the feasibility of automatic model discpver
different modelling domains.

The rest of the chapter is organized as follows. In Sedfidh e present a summary of
the different chapters in this thesis. In Sectionl 6.2, wesgme ongoing work on the use of
AVISHKAR to analyze variation in QoS of web service orchestratiorisally, in Section 6.3,
we present perspectives for future work.

180 6. CONCLUSION AND PERSPECTIVES

6.1 Summary and Conclusion

ChaptefR, presents the general context of MDE and the oreatimodelling domains in MDE.
In particular, we discuss (a) The modelling domain speciiied metamodel and its constraints
in OCL and (b) The modelling domain specified by a feature diagrahre modelling domain
specification are transformed to constraint satisfactroblpm (CSP) in the formal specification
language ALoy which we describe in this chapter. The model transformalémguage to
perform the transformation from modelling domain tol®y is Kermeta. We describe Kermeta,
aspect-weaving in Kermeta, and model typing in Kermetaismc¢hapter. The chapter presents
the state of the art in automatic model discovery with emishas test model generation and
partial model completion. It also presents the state of thim@utomatic product discovery.

In Chaptei B, we present a framework for automatic modebdity in the modelling do-
main specified by an input metamodel. The framework is endabithi the tool @QRTIER. First,
we present a metamodel pruning algorithm to extract an tafeeenetamodel from the input
metamodel. The effective metamodel is a supertype of the metamodel from a type-theoretic
point of view and a subset of the input metamodel from a ssw+tic point of view. Second, we
present a transformation of any metamodel or the effectie'amodel to a CSP inlAoy. The
transformation takes into account all non-trivial artteam a metamodel such as multiple inheri-
tance, multiplicity, containers, composite propertiggy@site properties, and identity properties.
A discussion on the validity and complexity of the transfation is presented. Third, we dis-
cuss how heterogeneous sources of knowledge sutitagonstraints may be transformed to
ALLoy. Finally, we demonstrate the generation of models for thgelaase study of the ML
metamodel.

In Chapteill#, we present experiments to validate automatidetndiscovery presented in
Chaptei[B. We present experiments in test model generatidpartial model completion in a
model editor. First we consider test model generation whereise input domain partitioning
strategies to generate test models usim@RGER. These models detect 93% of the bugs in a
representative model transformation compared to only 7@tiiguided generation. The rep-
resentative transformation fromMl class diagrams t&DBMS models exercises most model
transformation operators. The input metamodeiLUcontains almost all complex metamodel
constructs and is a widely used industrial metamodel. Insgmnd experiment we perform
partial model completion in a model editor. Given a panialbecified model in a model editor
we use QRTIER to generate recommendations to complete partial model. rééept an algo-
rithm to transform a partial model to anLAoY predicate. We solve the predicate to generate
one or more model completions for models in thierarchical Finite State Machine modelling
language. We present the different times taken for conguieif partial models of various size.

Chapteb, we present a framework for automatic producbeery in the modelling domain
specified by the feature diagram (FD) of a Software Produnt (SPL). The framework is
embodied in the tool YWSHKAR. We first transform a FD to a CSP inLAoy. We solve
the resulting ALoy model to generate products. The focus of this chapter isstwouer test
products that satisfy th€-wise coverage criteria between features in the FD. Geperaf test
products for large FDs usinglAoOY is not tractable. We scale the use afidY using divide-
and-compose strategies that can generate a close to misanhalf test products that satisfy

6. CONCLUSION AND PERSPECTIVES 181

T-wise coverage. A side-effect of using divide-and-compsisategies is the introduction of
redundancies of pairs in products. We presents metrics &sune these redundancies. Using
pairwise coverage we show that SHKAR generates test products with acceptable redundancy
for a transaction processing FD AspectOPTIMA.

6.2 \Variability Modeling and QoS Analysis of Web Services (@go-
ing)

In ongoing work we model the variability in a composite webvaes orchestration using FDs.
We apply A/ISHKAR to generate different possible orchestrations of a conpegtb service.
We analyze the consequent variation in Quality of ServiceSJof these orchestrations using
probabilistic models of QoS. This work is described below.

Inherent choice in an ever-growing world of services is mglarchestration variability
a significant aspect of a composite web service. The diffenarys of orchestrating atomic
services can be seen as either multiple variants of a cotepssivice created offline or an
online composite service that reconfigures dynamicallyeither case, we expect to observe
variation in Quality of Service (QoS) across different @stnations. This variation in QoS must
not only take into account service variability but also theertainty/probabilistic nature of QoS
itself.

It is important to consider orchestration variability atsl implications on composite ser-
vice behavior. For instance, not considering variabikgds to misrepresentation of contractual
agreements on Qo$& [151]. Contractual agreements such\aseskavel agreements (SLAS)
[L17] is the industry standard to ensure QoS compliance dmivservice providers and cus-
tomers. Usual deviations from SLAs are a result of non-ipoaation of QoS variability and in
particular QoS outliers in its specification. Therefore,veed systematic analysis of variability
in order to improve robustness of contractual SLAS.

Modeling variability in web service orchestrations andlgriag the consequent variation
in QoS is the principal subject of this work. We present a moétiiogy to model orchestration
variability usingfeature diagramgFDs). Feature diagrams[77] provide a graphical congsain
based framework to specify a product-line of orchestratideach orchestration in the product-
line is represented as an authorized configuration of irdibkgcted atomic services. In most
cases the FD specifies a very large set of configurations makxinaustive sampling infeasible.
Instead, we sample the set of all possible configurationg/stesatically analyzing configura-
tions covering all valid pairwise service interactiofs][4Binally, we use probabilistic models
of QoS [129] to analyze variants of orchestrations derivechfall valid configurations.

We use our methodology to investigate merits of systembtisampling the set of all con-
figurations of web service orchestrations. Random sampfngpnfigurations, generally em-
ployed, is both ineffective and expensive because it cammeystematic and requires computing
QoS values for a large number of configurations. Moreovedeen sampling is not easy when
FD constraints like mutual exclusion/requirement needetaedtisfied. This work focuses on the
adaptation of combinatorial interaction testing (CIT)][3® select a sample of configurations
that covers all pairwise interactions of services whilés§ghg all FD constraints. We use the
recently proposed scalable approach’in[120] for geneaydkiase configurations. CIT is based

182 6. CONCLUSION AND PERSPECTIVES

on the observation that most of the faults are triggered taractions between a small number
of variables[[9D]. For example, consider the output qualftprinting web pages depending on
a hypothetical combination of parameters representedbtel&l.

Parameters Options
Operating System Windows, Linux, Macintosh
Browser IE, Firefox, Chrome, Opera
Printer Model HP, Canon, Xerox, Epson
Printer Type Ink-Jet, Laser
Orientation Portrait, Landscape
Size A3, A4, A5, A6
Color B/W, Multicolor

Table 6.1: Examples of printing parameters requiring caimspa.

An exhaustive generation of combinations of these paranogiions would entail 1536
cases with many redundancies. Pairwise coverage of optiongbinations would require just
17 tests, resulting in a reduction of close to 99%. The numbexhaustive tests will increase
exponentially with addition of more parameters/optionguigng an employment of efficient
sampling strategies.

Pairwise coverage test generation has been used to deibstifiesoftware systems in prior
work [48], [39]. However, the application of these coverdigesed techniques to sample config-
urations in service orchestrations is yet to be examineds Wwhrk performs such an examina-
tion through a series of experiments that aim at investigaseveral facets of the question: is
pairwise service interaction sampling of orchestrationfigurations effective for overall QoS
analysis and the consequent definition of a global SLA?

Our experiments are based oorssis management syst@MS) case study described com-
prehensively in[[85]. This work reports on the following gtiens:

e |s it possible to automatically sample the orchestratianfigorations space to select con-
figurations that cover all pairwise service interactions?

e What global QoS metrics can we infer from a pairwise sample?

e How stable is the SLA computed from a pairwise sample? Thestjon is related to the
fact that the automatic generation of pairwise configuretiis not deterministic and thus
the global contract might vary depending on the genersaedple

e |s pairwise sampling more effective and efficient compaceexhaustive sampling of the
configuration space?

From our experimentation, we have seen that analysis of dyfarhconfigurations (and
their corresponding QoS values) can be accurately repesséy a small set of configurations
satisfying pairwise interactions. Consistency of varigeserated pairwise solutions are also
demonstrated through simulations. This comprehensiviysiaaf variability helps the orches-
trator understand the global QoS extremities of the congasirvice before negotiating a SLA
agreement. Deterioration in service quality or non-coemgie of SLA standards during on-
line deployment of the service is thus prevented. Improvema the orchestration model to

6. CONCLUSION AND PERSPECTIVES 183

eliminate some deviant configurations (causing excessteridration of end-to-end QoS) or
grouping a family of configurations with similar QoS behavaéwe other extensions of this tech-
nique.

Accurate offline analysis of a composite web service beftyreléployment is essential to
ensure non-repudiation of a SLA contract. This is necessanyaintain optimal QoS behavior
of mission-critical services such as crisis managemenorder to do this, the service provider
must keep in mind the probabilistic aspect of QoS parametedsthe variable configurations
in a composite service. In this work, we study an analysiméaork to test the QoS of an
orchestration before deployment. Further, the notion sfesyatic pairwise sampling procedure
has also been demonstrated, which provides a more effigemilsg of the configuration space
than exhaustive trails while still maintaining sufficiemtverage. Larger FD and orchestration
models can be analyzed using the divide-and-compose ap@®Rl20] to handle this scalabil-
ity issue. This should provide a simple, systematic andhststically correct methodology for
pre-deployment QoS analysis of a composite service.

While this work concentrates on a particular compositiofiibxad atomic services, a future
area of interest would be optimal compositions. The use ofigorations and scenarios mod-
eled by a FD leads to a family of composite services. Theseyrin may be used to generate
many versions of the orchestrations. Further implemertaif these techniques to study larger
composite orchestrations is useful for both obtainingisgalQoS bounds and product genera-
tion of families of services.

6.2.1 Related Work

The combinatorial testing framework described by Coheh B8] has been applied extensively
to efficient testing for fault detection. In the work of Cohetral. [40], this technique is extended
to software product lines with highly configurable systei®deling variability in SPLs using
feature models is the work of Jaring and Boschel [74] wheeg #how that the robustness of
a SPL architecture is related to the type of variability. Tisw@e that constraints in the FD are
incorporated in the efficient sampling of t-wise tests, thlger proposed by Perrouin et &l.[120]
is used. In[[95] Larsen et al. define modal I/O automata, agnsidn of interface automata with
modality. These allow models of varying configurations tadegeloped from a single produce
line while disallowing trivial implementations. Such a ot when extended to a composite
service can provide interesting configurations and vessarcomposite products as described
in [95].

Pre-deployment testing of SLAs has been studied by Di Perta f. 18], where they make
use of genetic algorithms to generate test data causing &tlatiens. Analysis of white and
black box approaches are provided in the paper[_Ih [31], Betnal. make use of regression
testing to ensure that an evolving service maintains thetimmal and QoS assumptions. The
service consistency verification due to evolution is donekscuting test suites contained in a
XML encoded facet attached to the service.

The use of probabilistic QoS and soft contracts was intreduzry Rosario et. al[129] and
Bistarelli et al. [2B]. Instead of using fixed hard bound ealdor parameters such as response
time, the authors proposed a soft contract monitoring amgirdo model the QoS measurement.

184 6. CONCLUSION AND PERSPECTIVES

The composite service QoS was modeled using probabilisticegses by Hwang et all_]68]
where the authors combine orchestration constructs teedglobal probability distributions.

In our work, we extend these two notions to analyze the QoSaninaposite orchestration
under various configurations. The hard contract notionsnofte-end QoS are replaced by
the probability quantile based approach. This providesstrgice provider the technique for
estimating composite service QoS distributions and esingahe global soft contract SLA.
Though formal analysis of end-to-end QoS has been studi€aiidoso et al[[35], there are no
practical testing tools available for the service providdre pairwise testing procedure has been
shown to outperform other testing techniqueslin [39]. Weedtthis testing tool to develop
a generic testing methodology to query end-to-end QoS oftasgevice. The efficacy of this
scheme is provided though experimental verification.

Related empirical studies of optimal QoS compositions meleeof genetic programming in
Canfora et al.[[34] and linear programming in Zeng etlal._J1@hese are dynamic techniques
to choose the best possible atomic services and configasdieeping QoS in mind. This differs
from our work due to the assumption that the atomic servindglaeir composition have already
been defined. The goal is to analyze the variable configmstizat may result due to invocation
or non-invocation of particular web services. This is of che@ghen atomic SLAs and their
interactions in an orchestration have already been esledali Such efficient, systematic and
stochastically correct analysis provides an accuratenagti of the global QoS distributions of
composite services.

6.3 Perspectives

The ideas presented in this thesis represents a first stepdswutomating discovery of models
in a modelling domain. The work evokes a number of future agerof research.

6.3.1 A Family of Metamodel Pruning Algorithms

In Chapte B, we present the metamodel pruning algorithnxtiaet an effective metamodel
from an input metamodel. We show that the effective metainisda supertype of the input
metamodel from a type-theoretic point of view. It is also bsgi of the input metamodel from
a set-theoretic point of view. The supertype property ofdfiective metamodel makeshack-
ward compatiblewith the input metamodel. By backward compatibility we medinmodel
transformations or operations for the effective metameaudelvalid for the input metamodel.
Similarly, all models of the effective metamodel are alslidvimstances of the input metamodel.
This property has practical implications to the usage gfdandustry standard metamodels such
as the UiL. Experts may extract a small and relevant subset of thie tb create models or
transformations while preserving type conformance with Utself. Therefore, the type confor-
mance property between an effective metamodel and theilgggemetamodel leverages several
applications of the metamodel pruning algorithm. In futwark, we would like to investigate
the possibility of creating a family of metamodel pruningaithms.

The notion of a family metamodel pruning algorithms is basedhe possibility of develop-
ing combinations of atomic pruning operators that satigbetconformance. An atomic pruning

6. CONCLUSION AND PERSPECTIVES 185

operator has an input metamodel and gives an effective noelelnas output. The effective
metamodel shows type conformance with the input metamodleiven sequence of pruning
operators on an input metamodel should give an effectivamedel as output such that it shows
type conformance with the original input metamodel. Thigig to a transitivity property of
pruning operators in a sequence. What are the differenilpessequences of pruning opera-
tors? Which pruning operators are commutative? Which pgioperators in sequence show
transitivity? These are some of the questions that needtjuns.

6.3.2 Transforming OCL Subset to ALLOY

In ChapteB, we present a complete transformation of a metahto ALLOY implemented in
the CARTIER framework. However, not all constraints may be expressdbdermetamodel. A
textual constraint language such as @igect Constraint Language (OCL) is the industrial stan-
dard to expressed additional metamodel constraih@. is a side-effect language that queries a
model of a modelling language and check structural progedin the model. There are several
similarities betweem®CL and ALLOY in the way constraints are expressed. In future work, we
would like to focus on transforming a subset@fL to ALLOY facts or predicates. IAOY also
has some features not yet exploitedd@L which may help concurrently improv@CL itself. In
[L55], the authors presents some shortcomingdaif with respect to ALOY.

6.3.3 Product Discovery Strategies based on Feature Diagrastructure

In Chapteib, we present thev/SHKAR framework to generate products that satisfyTallvise
feature interactions in a FD. We believe that the qualityh&f test products and the number
of effective test products may be improved if we considerdtractural semantics of the FD
in developing new strategies. New strategies will essint@mprise of analyzing the tree
structure of the FD to obtain knowledge to generate testymtsd The idea is to generate test
products using knowledge that explore the FD’s productespédle respecting FD constraints.
This is in contrast, td@ -wise generation where a lot of feature interactions aregeead that do
not satisfy the FD constraints. Only a subset of TA@ise interactions are valid and are used to
generate test products.

6.3.4 Scaling Constraint Solving using ALOY

In most of the thesis we have used 1y to generate models or products. Generation using
ALLOY is based on the hypothesis that small models are often igfed¥/e demonstrate this us-
ing experiments in test model generation. However, for pcbdeneration we make advances in
scaling ALLOY to generate products for a large FD. The idea is based onmtvile constraint
satisfaction problem and composing the results into a fieabsproducts. This approximate
approach can handle large FDs but introduces some tupladaday in the generated products.
What are other ways to scale the size and number of modelsahdie generated using Loy

? This is a question that intrigues us. We would like to redednis question in two axes: (a)
Develop divide and compose strategies to first create snualeia and then weave them together

186 6. CONCLUSION AND PERSPECTIVES

into larger models (b) Leverage SAT solving using parall&T Solvers such as ManySAT[56]
in order to generate instances from a large and highly-cainstd ALLoy model.

187

Appendix

6.4 ALLOY Model of UMLCD Synthesized by Q\RTIER

module tmp/UMLCD
open util/boolean as Bool

sig Model
{

classifier : set Classifier ,
associationset Association

abstract sig Classifier
name : Int
sig PrimitiveDataType extends Classifier
{1}
sig Class extends Classifier
is_persistent:one Bool,

general :lone Class,
attribute : some Property

}

sig Association

{
name: Int,
memberEnd: one Class ,
ownedEnd: one Class

}

sig Property
name: Int,
is_primary : Bool,
datatype: one Classifier
/I Meta—model constraints

I+« There must be No Cyclic Inheritance in an UMLED

fact noCycliclnheritance

{
}

/% All the attributes in a Class must have unique attribute namé

no c: Class | cin c.~general

fact uniquePropertyNames

all c:Class | all al: c.attribute, a2: c.attribute | al.name = a2.nameplies al=a2

}

I+« An attribute object can be contained by only one clas$

188 7. Appendix

fact attributeContainment

all cl:Class, c2:Class |all al: cl.attribute , a2 : c2.attribute | al = aiplies cl=c2

}
I/« There is exactly one Model object/
fact oneModel

#Model=1

I« All Classifier objects are contained in a Modél
fact classifierContainment

all c:Classifier | cin Model.classifier

/«All Association objects are contained in a Model/
fact associationContainment

all a:Association| ain Model.association

}
/«xA Classifier must have a unique name in the Class Diagsdm
fact uniqueClassifierName

all cl:Classifier, c2:Classifier |cl.name = c2.nameplies cl=c2

}

/«An associations have the same name either they are the sansocaation or they have different sourceb
fact unigeNameAssocSrc

all al:Association, a2:Association |
al.name = a2.namemplies (al = a2 or al.src != a2.src)

Listing 6.1: ALLoy Model for UmL Class Diagram

6.5 Initial Set of Pre-conditions

/«Initial Model Transformation Preconditionssx/

fact atleastOnePrimaryProperty

all c:Class |one a:c.attribute | a.is_primary =True

}
fact no4CyclicClassProperty

all a:Property | a.datatypdn Class implies all al:a.datatype.attribute | al.datatype

Class implies all a2:a.datatype.attribute | a2.datatyge Class implies all a3:a.datatype. attribute |a3.datatype

in Class implies all a4:a.datatype.attribute | a4.datatype PrimitiveDataType

}
fact noPropertyAndAssociationHaveSameName

all c:Class , assoc :Association |

all a:c.attribute | (assoc.src = c)mplies a.name != assoc.name
}
fact nolCycleNonPersistent

all a: Association | (a.memberEnd = a.ownedEndpplies a.ownedEnd.is_persistent = True

}
fact no2CycleNonPersistent

all al: Association, a2:Association |
(al.memberEnd = a2.ownedEnand a2.memberEnd = al.src)jmplies

7. Appendix

189

al.ownedEnd.is_persistent = Truer a2.ownedEnd.is_persistent=True

)

Listing 6.2: Initial pre-conditions as A0y facts

6.6 Discovered Set of Pre-conditions

/I Discovered Model Transformation preondition constraints
I/« 1. At a depth of 4 the type of an attribute has to be primitive danannot be a class typ€
fact no4CyclicClassProperty{

attribute |a4.datatypein PrimitiveDataType
}

I/« 2. A Class cannot have an association and an attribute of thmesnamex/

fact noAttribAndAssocSameName {

}

I/« 3. No cycles between nowpersistent classes«/

fact nolCycleNonPersistent

{
}

all a: Association | (a.memberEnd == a.ownedEnd) => a.membirEs_persistent= True

fact no2CycleNonPersistent

ownedEnd. is_persistent= Truer a2.ownedEnd.is_persistent=True

/I« 4. A persistent class can’t have an association to one of itenagral =/

fact assocPersistentClass

{
}

all a:Association | a.ownedEnd.is_persistent=Trumplies a.memberEnd notin a.ownedEnd.”general

I/« 5. Unique association names in a class hierarchy
fact unigueAssocNameslinlinHeritanceTree
all c:Class |

all al:Association, a2:Association |
(al.ownedEndin ¢ and a2.ownedEndin c.“generaland al!=a2) implies (al.name!=a2.name)

I/« 6. A class can’'t be the datatype of one of its attributes (anmpuall its attributes x/

fact classCantTypeOfAllofitsProperty

all c:Class | all a: (c.attribute+c.~general.attribute) | a.datatype !=c
}

that one association of that persistent classxB

fact classinheritsOutgoingNotSameNameAssoc

all A:Class | all B:A.~general | B.is_persistent == Truemplies (no al: Association, a2:Association

all c:Class, assoc:Association all a : c.attribute | (assoc.ownedEnd == c¢) => a.name != assomena

all a:Property | a.datatypen Class =>all al:a.datatype. attribute |al.datatype Class =>all a2:a.datatype.
attribute |a2.datatypein Class =>all a3:a.datatype. attribute |a3.datatyge Class =>all a4:a.datatype.

all al: Association, a2:Association | (al.memberEnd == a2 .edfind and a2.memberEnd==al.ownedEnd) => al.

I/« 7. A Class A which inherits from a persistent class B can’'t khamn outgoing association with the same name

190 7. Appendix

(al.ownedEnd = Aand a2.ownedEnd=Band al.name=a2.name))

/« 8. A class A which inherits from a persistent class B can’'t hamn attribute with the same name
that one attribute of that persistent class B

fact classinheritsOutgoingNotSameNameAttrib
all A:Class | all B:A.~general | B.is_persistent == Truémplies (no al: A.attribute , a2:B. attribute |
(al.name=a2.name))
/+ 9. No association between two classes of an inheritance trde
fact noAssocBetweenClassinHierarchy
{

all a : Association |all c¢c: Class | (a.ownedEnd =é¢mplies a.memberEnd notin c.~general)and (a.memberEnd =c
implies a.ownedEnd notin c.”general)

Listing 6.3: Discovered pre-conditions as 10y facts

6.7 FSM ALLOY Model with Facts and Partial Model Predicates

module metamodelFSM

open util/boolean as Bool

sig FSM

{

states set State ,
currentState :lone State ,
transitions: set Transition

}
sig State

label: Int,

outgoingTransition:set Transition,
incomingTransition: set Transition,
fsmCurrentState:one FSM,
fsmStates:one FSM,

isFinal:one Bool,

islnitial:one Bool

}

sig Transition

{

event: Int,

target: one State ,
source: one State ,
fsmTransitions one FSM

}
/I Meta—model constraints//

/I Exactly one initial state
fact exactlyOnelnitialState

one s:State|s.islnitial == True

// Atleast one final state
fact at leastOneFinalState

{

some s: State | s.isFinal == True

}

// Exactly one HFSM
fact exactlyOneFSM
{
one FSM
}

7. Appendix

191

fact sameSourceDiffTarget

all tl:Transition,t2:Transition| (tl!=t2and tl.source==t2.source) =>

tl.target!=t2.target
}

fact setTargetAndSource
all s:State| s.incomingTransition.target =and
s.outgoingTransition .source=s

}

fact noUnreachableStates

all s: State | (s. islnitial == False) =>
all incl : s.incomingTransition |
incl.source.islnitial = Trueor

all inc2 : incl.source.incomingTransition
| inc2.source.islnitial = Trueor

all inc3 : inc2.source.incomingTransition
| inc3.source.islnitial = True

fact uniqueStateLabels

#State >1 =>all sl:State,s2:State | sll=s2=>sl.label != s2.label

}
fact containmentState

State in FSM. states

fact containmentTransition

Transition in FSM. transitions

/I Partial Model Facts
// Partial Model 1
pred partialModell_Fact

some State

}

/I Partial Model 2
pred partialModel2_Fact
{

some sl1:State ,s2:State ,tl:Transition |sl!=sad
tl in sl.outgoingTransitionand tl in
s2.incomingTransition

}

// Partial Model 3
pred partialModel3_Fact

some sl:State ,s2:State ,s3:State ,s4:State ,
tl:Transition, t2:Transition |

sl!=s2 and s2!=s3 and s3!=s4 and s1!=s3 and

sl!=s4 and s2!=s4 and t1!=t2 and

tl in s2.incomingTransitionand t2 in
s3.incomingTransitionand t1 in sl.outgoingTransition
and t2 in sl.outgoingTransitionand

s2.islnitial = Trueand s4.isFinal = True

/I Partial Model 4

pred partialModel4_Fact

{

some sl:State ,s2:State ,s3:State ,s4:State ,
tl:Transition ,t2:Transition |

sl!=s2 and s2!=s3 and s3!=s4 and s1!=s3 and

sl!=s4 and s2!=s4 and t1!=t2 and

tl in s2.incomingTransitionand t2 in
s3.incomingTransitionand t1 in sl.outgoingTransition
and t1 in sl.outgoingTransitionand

s2.islnitial=True and s3.islnitial=True

192

7. Appendix

run partialModell_Factfor 10

run partialModel2_Factfor 10

run partialModel3_Factfor 10

run partialModel4_Factfor 10

run partialModell_Factfor exactly 1 FSM, exactly 5 State,
exactly 5 Transition, 5int

run partialModel2_Factfor exactly 1 FSM, exactly 5 State,
exactly 5 Transition, 5int

run partialModel3_Factfor exactly 1 FSM, exactly 5 State,
exactly 5 Transition, 7int

run partialModel4_Factfor exactly 1 FSM, exactly 5 State,
exactly 5 Transition, 5int

Listing 6.4: ALLOY model forFSM

193

List of Figures

[l Des structures effectives en découverte scientifique 16
[__Des structures effectives en ingénlerie 17
B___Unetransformatidn 91

4___Modele partiel dans I'éditeur de modéles UML : TopCaseD 20

I5___Un feature diagram pour le systéme de gestion de crise poidemt des voitures 21
l6___Contexte du probléme pour la découverte automatique ddglgo. 22

B2 Carmem Architecturk L s

3.3 Bird's Eve View of the Wil Metamodé! o o v, 87

3.4 _The Meta-model Pruning Algorithm Qvervlew 91
R.5_Bird's Fye View of U Pruned With 26 Classes and 65 Propdrties 94

194 LIST OF FIGURES

.6 Validation of Pruning Operatdrst ..

B.7 _Transformation of Primitive TVOES« + o v v o oo e

B9 Transformation of Class TYPE o o oo v
B.10 Transformation of Properties ta #OYl o o v e

B.12 Transformation of Implicit Constraints in MetamodeWi 1 oy Part?
3.13 Step 1: Elattening the Multiple Inheritance Hierarchy

B__’I_A_'L[a_ns_f_o_Lmj_n,g Property of Concrete Type toidy fack
B__’I_E_'L[a_ns_f_o_Lmj_n,g Property of Abstract Type toiy fack
B___’Iﬁ_EI_a,LLeuj_n,g Properties in the Multiple Inheritanceddiehy
B__’Ij_'[[a_ns_f_o_Lmj_n,g Opposite Properties toi&y Factk

leu_nae_Eme_amMamme_Mﬂamddel

5.7 _Box Plat for Total Tuple Qccurrence vs Sdope

5.8 Box Plot for Test Case Redunddncy

195

List of Tables

3.1 Required W Types and Properties in the Transformatitass2rdoms) . 92
B2 TestModelSelection Timbso v i 120
4.1 Repartition of thelass2rdbms mutantso 131
4.2 Consistent Model Fragments 133
.3 _Factors and their Levelsfor Test$etso oo v vt . 135
4.4 _Mutation Scares in Percentage for All Test ModellSets 135
4.5 Constraints in natural language and as @y facts 145
kU6 Model Completion THMES v oo oo 152

196 LIST OF TABLES

197

Listings

.1 Signatures folFSM metamod®l 69
.2 Facts foHESM metamad®l 69
0.3 AnExample Predicateo oot 70
2.4 _Example Run Commamds o oot 0 7
3.1 An ExampleDCL CONSHAailt v v oo oo 112
3.2 Aoy fact representing No Cyclic Inheritahce 113
3.3 _Generated A oy Signatures in Effective bl 113
13.4__Generated & ov Facts for Subclasses in Effectivedd 114
[3.5__Generated A ov Facts for Implicit Constraints in Effectivesat] 115
B6 Empty Aloy Predicale 116
3.7 A madel transformation pre-condition inAovl 117
.8 Model Fragment Aoy Predicale 117
B9 BasicAtovyRunCommand 117
[3.10 Aioy Run Command with Variable Scdpe 118
B.11 Alioy Run Command with Exact Scopeso ovv v oot 118
M1 Empty Aoy Predicae v v 132
k.2 Aoy Predicate fomfAIIRANGed7o 133
L3 Aoy Predicate and Run Command 133
M4 Example ALOY SINAtUe oot 134
E_l_GﬂnﬂaLed_S_i,gnatures for Features in AspectOptima 167
5.2__Generated Signature for Configuration of Features ire@&Qptima 167
%wﬂions.”””“”“”167
DR o 167
5.5 _Example Tuple Predichte o i i 168
la.J_Aum_MgdaLLamm_QLass_Dﬁgiajn 187
(6.2 Initial pre-conditions as oy facts 188
[6.3 Discovered pre-conditions as Oy facts oo 189
6.4 Aoy modelforESM 190

198 LISTINGS

199

Bibliography

[1] Adaptive inc, http://www.adaptive.com/.

[2] Alloy Ecore Metamodel. https://www.irisa.fr/triskéhembers/sagarsen/papers/
thesis/ThesisSources/alloyecore.

[3] The atl homepage, http://www.sciences.univ-nantéiaé/atl/contrib/bezivin.

[4] Effective UML class diagram alloy model, https://wwmisa.fr/triskell/members/sagarsen/papers/thesis/
ThesisSources/UML_CD_Small.

[5] https://lwww.irisa.fr/triskell/members/sagarsempers/thesis/
ThesisSources/alloyString/attachment_download/file.

[6] http://www.irisa.fr/triskell/software-protos/Cier.
[7] http://www.openarchitectureware.org/.

[8] Meta-model pruning kermeta implementation https:/iwinisa.fr/triskell/softwares-
fr/protos/metamodelpruner/.

[9] UML 2.0 Specfication, http://www.omg.org/spec/UML/2.0/
[10] XMI Meta-data Interchange Format. http://www.omgtechnology/documents/formal/xmi.htm.

[11] A. D. Brucker and B.Wolff. The HOL-OCL book. TechnicakRort 525, ETH Zurich,
2006.

[12] A. Ledeczi, A. Bakay, M. Maraoti, P. Volgyesi, G. Nordsin, J. Sprinkle, and G. Karsai.
Composing Domain-Specific Design Environmer@amputey pages 44-51, November
2001.

[13] A. Queralt and E. Teniente. Reasoning on UML class @iagyr with OCL constraints.
Lecture Notes in Computer Science ER 2006, Springer-\e#l2th:497?512, 2006.

[14] Kattepur Ajay, Sen S., and Baudry B. Pairwise inte@udito effectively sample qos in
dynamic web services. 2010.

[15] Andrew J. Ko, Htet Htet Aung, and Brad A. Myers. Desiggugements for more flexible
structured editors from a study of programmer’s text editiim CHI 2005 2005.

200

BIBLIOGRAPHY

[16] Archer J.E. Jr. and Delvin M.T. Rational’s experiensing Ada for very large systems.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

In The First International Conference on Ada Programming Lizenge Applications for
the NASA Space Statigpages B.2.5.1-B.2.5.11, Houston, Texas, NASA, June 1986.

R. Bardohl, G. Taentzer, and A. Schurr M. Minadandbook of Graph Grammars and
Computing by Graph transformation, vil: Applications, lgarages and Tools World
Scientific, 1999.

Don S. Batory. Feature models, grammars, and propositiformulas. InSPLG pages
7-20, 2005.

Benoit Baudry, Sudipto Ghosh, Franck Fleurey, RobesnEe, Yves Le Traon, and Jean-
Marie Mottu. Barriers to systematic model transformatiesting. Communications of
the ACM 2009.

David Benavides, Antonio Ruiz-Cortés, don Batory, &atrick Heymans. First inter-
national workshop on analysis of software product linepl{@8). In SPLC '08: Pro-

ceedings of the 2008 12th International Software ProduoelLConferencepage 385,
Washington, DC, USA, 2008. IEEE Computer Society.

David Benavides, Sergio Segura, Pablo Trinidad, antbAin Ruiz Cortés. Fama: Tool-
ing a framework for the automated analysis of feature modieldaMoS pages 129-134,
2007.

Jean Bezivin, Bernhard Rumpe, Andy Schurr, and Lawedmatt. Model transformations
in practice workshop, october 3rd 2005, part of models 200Broceedings of MODELS
2005.

S. Bistarelli and F. S. Santini. Soft constraints foralify aspects in service oriented
architectures. IrFourth European Young Researchers Workshop on Servicent®de
Computing Italy, 2009.

Grady Booch. Object-oriented analysis and design with application8enjamin-
Cummings Publishing Co., Inc., Redmond City, CA, USA, 1994.

Behzad Bordbar and Kyriakos Anastasakis. Mda and aisalyf web applicationsIn
Trends in Enterprise Application Architecture (TEAA) irchige notes in Computer Sci-
ence, Trondheim, Norwag888:44-55, 2005.

Behzad Bordbar and Kyriakos Anastasakis. Uml2alloyodl for lightweight modelling

of discrete event systems. In Nuno Guimar?es and PedroslsaditorsJADIS Interna-
tional Conference in Applied Computingolume 1, pages 209-216, Algarve, Portugal,
2005. IADIS Press.

Gerard Boudier, Ferdinando Gallo, Regis Minot, andTAomas. An overview of PCTE
and PCTE+. volume 24, pages 248-257, New York, NY, USA, 198M.

BIBLIOGRAPHY 201

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darkoifdv. Korat: automated test-
ing based on java predicates. Pnoceedings of the 2002 ACM SIGSOFT international
symposium on Software testing and analya@02.

E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. Ladin. Metamodel-based test gen-
eration for model transformations: an algorithm and a tboProceedings of ISSRE’'06
Raleigh, NC, USA, 2006.

Kim B. Bruce and Joseph Vanderwaart. Semantics-driaeguage design: Statically
type-safe virtual types in object-oriented languad#sctronic Notes in Theoretical Com-
puter Science20:50-75, 1999.

M. Bruno, G. Canfora, M. Di Penta, G. Esposito, and V. iz Using test cases as
contract to ensure service compliance across releaseBrotn of the 3rd Intl. Conf. in
Service-Oriented Computingages 87—100, Amsterdam, The Netherlands, 2005.

Frank Budinsky, David Steinberg, Ed Merks, Ray Elleksiand Timothy GroseEclipse
Modeling Framework The Eclipse Series. Addison Wesley Professional, 2003.

Eugene C Butcher, Ellen L Berg, and Eric J.Kunel. Systdmnology in drug discovery.
Nature Biotechnologypages 1253-1259, 2004.

G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani.nAapproach for qos-aware
service composition based on genetic algorithmsCamf. on Genetic and evolutionary
computation pages 1069-1075, USA, 2005.

J. Cardoso, J. Miller, A. Sheth, and J. Arnold. Modelmglity of service for workflows
and web service processes, Isdis lab technical report gp Tethnical report, University
of Georgia, 2002.

Peter Pin-Shan Chen. The entity-relationship modelaard a unified view of datsACM
Trans. Database Systl(1):9-36, 1976.

Paul Clements and Linda NorthrogSoftware Product Lines: Practices and Patterns
Addison Wesley, Reading, MA, USA, 2001.

Curtis Clifton, Gary T. Leavens, Craig Chambers, andd®. Millstein. MultiJava:
Modular open classes and symmetric multiple dispatch fea.jdn Proceedings of the
15" International Conference on Object-Oriented ProgrammiBgstems, Languages,
and Applications (OOPSLApages 130-145, 2000.

David M. Cohen, leee Computer Society, Siddhartha RaD&lichael L. Fredman, and
Gardner C. Patton. The aetg system. an approach to testsegl mn combinatorial
design.IEEE Transactions on Software Engineeri2g:437-444, 1997.

M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing intgian test suites for highly-
configurable systems in the presence of constraints: A grapgroach.IEEE Trans. on
Software Engineering84(5):633—-650, 2008.

202 BIBLIOGRAPHY

[41] M.B. Cohen, M.B. Dwyer, and J. Shi. Interaction testofchighly-configurable systems
in the presence of constraints. IBSTA pages 129-139, 2007.

[42] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Cagerand adequacy in software
product line testing. IROSATEA '06: Proceedings of the ISSTA 2006 workshop on Role
of software architecture for testing and analyspages 53-63, New York, NY, USA,
2006. ACM.

[43] K. Czarnecki, S. Helsen, and U. Eisenecker. Formaligiardinality-based Feature Mod-
els and their SpecializationSoftware Process Improvement and Practit8(1):7-29,
2005.

[44] Krzysztof Czarnecki and Simon Helsen. Classificatidnmwdel transformation ap-
proaches, 2003.

[45] Krzysztof Czarnecki and Andrzej Wasowski. Featuregdians and logics: There and
back again.Software Product Line Conference, Internatignal23—-34, 2007.

[46] J. Czerwonka. Pairwise testing in the real world. 2lth Pacific Northwest Software
Quality Conferenceg2006.

[47] D. Berardi, D. Calvanese, and G. D. Giacomo. ReasonmgL class diagramsArti-
ficial Intelligence 168:70?118, 2005.

[48] Juan de Lara and Hans Vangheluwe. AforA tool for multi-formalism modelling and
meta-modelling. In_ecture Notes in Computer Scienceimber 2306, pages 174-188,
2002.

[49] DeMillo, R. Lipton R., and F. Sayward. Hints on test da&ection : Help for the prac-
ticing programmerlEEE Computer11(4):34 — 41, 1978.

[50] Donzeau-Gouge, V. Huet, G. Kahn, and Langrgeractive Programming Environments
chapter Programming environments based on structuregrgdithe Mentor experience,
pages 128-140. McGraw-Hill, New York, 1984.

[51] N. Een and N. S?rensson. Minisat: A sat solver with cohfllause minimization. In
SAT, 2005.

[52] K. Ehrig, J.M. Kuster, G. Taentzer, and J. Winkelmannen€rating instance models
from meta models. IFMOODS’06 (Formal Methods for Open Object-Based Distrdolt
Systems)pages 156 — 170., Bologna, Italy, June 2006.

[53] Emina Torlak and Daniel Jackson. Kodkod: A Relationadddl Finder. InTools and
Algorithms for Construction and Analysis of SysteBraga,Portugal, March 2007.

[54] Patrick Farail, Pierre Gaufillet, Agusti Canals, Ctojshe Le Camus, David Sciamma,
Pierre Michel, Xavier Crégut, and Marc Pantel. The TOPCAS#®ject: a toolkit in
open source for critical aeronautic systems design.Erdmedded Real Time Software
(ERTS) Toulouse, FebruaryMay 2006.

BIBLIOGRAPHY 203

[55] Franck Fleurey, Benoit Baudry, Pierre-Alan Mullergayives Le Traon. Towards depend-
able model transformations: Qualifying input test deaftware and Systems Modelling
(Accepted)2007.

[56] C. A. Floudas, A. R. Ciric, and I. E. Grossmann. Autoraatynthesis of optimum heat
exchanger network configuration&lChE Journa) 32(2):276-290, 1986.

[57] Robert France and Bernhard Rumpe. Model-driven dgvetnt of complex software: A
research roadmap,. FOSE '07: 2007 Future of Software Engineerji2p07.

[58] Budinsky FrankEclipse Modeling Frameworkolume 1 ofThe Eclipse Seriefddison-
Wesley, 2004.

[59] Gail E. Kaiser. Incremental Dynamic Semantics for Laage-Based Programming Envi-
ronments.ACM Transactions on Programming Languages and Syst&h{8):169-193,
April 1989.

[60] F. Glitia, A. Etien, and C. Dumoulin. Traceability fonande approach of embedded
system conception. in ,. IFourth ECMDA Tracibility WorkshopBerlin, Germany, June
2008.

[61] M. L. Griss, J. Favaro, and M. d’ Alessandro. Integrgtifreature Modeling with the
RSEB. InICSR Washington, DC, USA, 1998.

[62] Nicolas Guelfi and Gilles Perrouin. Coherent Integnatof Variability Mechanisms at
the Requirements Elicitation and Analysis Levels. In Dirkithig and Paul Clements,
editors,Workshop on Managing Variability for SPBaltimore, MD, USA, 2006.

[63] Nicolas Guelfi and Gilles Perrouin. A flexible requiremte analysis approach for soft-
ware product lines. IREFSQ LNCS-4542, pages 78-92, Norway, 2007. Springer-
Verlag.

[64] Walter J. Gutjahr. Partition testing versus randontirigs the influence of uncertainty.
IEEE TSE 25:661-674, 1999.

[65] Habermann A.N. and David Notkin. Gandalf: Softwareelepment environment$EEE
Trans. of Softw. Eng., SE-122:1117-1127, December 1986.

[66] Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Mangsaew parallel sat solver.
Journal of Satisfiability Boolean Modeling and Computatibnspecial issue on Parallel
SAT solving6:245-262, 2009.

[67] Hans Vangheluwe and Juan de Lara. Domain-Specific Miadekith ATOM3. In The 4th
OOPSLA Workshop on Domain-Specific Modelivigncouver, Canada, October 2004.

[68] S.Y.Hwang, H. Wang, J. Tang, and J. Srivastava. A priblsib approach to modeling
and estimating the gos of web-services-based workfl@isevier Information Sciences
177:5484-5503, 2007.

204 BIBLIOGRAPHY

[69] lan Horrocks. Using an expressive description logaCH or fiction? Ir6th International
Conference on Principiles of Knowledge RepresentationReasoningpages 636—647,
1998.

[70] J. Cabot, R. Claris?, and D. Riera. Verification of UMIGOD Class Diagrams Using
Constraint Programming. WCST Workshop on Model Driven Engineering, Verification
and Validation (MoDeVVa’'2008P008.

[71] Daniel JacksonSoftware Abstractions: Logic, Language, and Analy3ise MIT Press,
April 2006.

[72] Daniel Jackson. http://alloy.mit.edu. 2008.
[73] Ivar JacobsonObject-oriented software engineeringCM Press, 1991.

[74] M. Jaring and J. Bosch. Representing variability inwafe product lines: A case study.
In Proc. of the Second Intl. Conf. on Software Product Lipegjes 15-36, London, UK,
2002.

[75] F Jouault and | Kurtev. On the Architectural AlignmeftdL and QVT. InProceedings
of ACM Symposium on Applied Computing (SAG 0gjpn, FRA, April 2006.

[76] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, dwan Kurtev. Atl: A model transfor-
mation tool. Science of Computer Programming2(1-2):31-39, June 2008.

[77] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Petersortufee®riented Domain Anal-
ysis (FODA) Feasibility Study. Technical Report CMU/SHI-BR-21, Software Engi-
neering Institute, November 1990.

[78] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, EuibeBhin, and Moonhang Huh.
FORM: A Feature-Oriented Reuse Method with Domain-Speé&tiederence Architec-
tures.Ann. Softw. Eng5:143-168, 1998.

[79] Karsten Ehrig, Claudia Ermel, and Stegan Hansgen. faéoe of Visual Editors as
Eclipse Plug-ins. IIThe 20th IEEE/ACM Internation Conference on Automated\Boé
Engineering pages 134-143, 2005.

[80] Baudry B. Beneveniste A. Jard C. Kattepur Ajay, Sen Sriadlity modeling and qos
analysis of web services orchestrations. International Conference on Web Services
Miami, Florida, July 2010.

[81] Stuart Kent. Model Driven Engineering. I&M, pages 286-298, London, UK, 2002.
Springer-Verlag.

[82] Kermeta. http://www.kermeta.org/.

[83] Sarfraz Khurshid.Generating Structurally Complex Tests from Declarativen§€mints
PhD thesis, MIT, 2003.

BIBLIOGRAPHY 205

[84] Gregor Kiczales, John Lamping, Anurag Mendhekar, €Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-OgenProgramming. IriPro-
ceedings of tha1!" European Conference on Object-Oriented Programming (E@HO
volume 1241, pages 220-242. Springer-Verlag, June 1997.

[85] J. Kienzle, N. Guelfi, and S. Mustafiz. Crisis managensstems: A case study for
aspect-oriented modeling, mcgill univ.

[86] Jorg Kienzle, Wisam Al Abed, and Jacques Klein. Aspedented Multi-View Model-
ing. In AOSDO pages 87 — 98. ACM Press, March 2009.

[87] Jorg Kienzle and Gliven Bélikbasi. AspectOPTIMA: Arpast-Oriented Framework for
the Generation of Transaction Middleware. Technical RepQCS-TR-2008.4, McGill
University, Montreal, Canada, December 2008.

[88] John R. Koza, Forrest H. Bennett, Ill, David Andre, andrtih A. Keane. Automated
wywiwyg design of both the topology and component valuesl@gtacal circuits using
genetic programming. IGECCO '96: Proceedings of the First Annual Conference on
Genetic Programmingpages 123-131, Cambridge, MA, USA, 1996. MIT Press.

[89] Krysztof R. Apt and Mark G. WallaceConstraint Logic Programming with ECLiPSe
Cambridge University Press, 2007.

[90] D. Richard Kuhn, Dolores R. Wallace, and Albert M. GallBoftware fault interactions
and implications for software testingEEE Trans. Softw. Eng30(6):418-421, 2004.

[91] Vipin Kumar. Algorithms for constraint satisfactiomgblems: A survey.Al Magazine
pages 32-44, 1992.

[92] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg,laddakshi Ray. UML2Alloy: A
Challenging Model Transformation. MoDELS pages 436-450, 2007.

[93] Francois Lagarde, Francois Terrier, Charles Andrd, @@bastien Gérard. Extending ocl
to ensure model transformations. pages 126—-136. 2007.

[94] Pat Langley, Herbert A. Simon, G. Bradshaw, and y J. @ytkScientific Discovery, Com-
putational Explorations of the Creative MindMIT Press, Cambridge, Massachusetts,
1987.

[95] K. G. Larsen, U. Nyman, and A. Wasowski. Modal i/o autéatar interface and product
line theories. INJoint European Conf. on Theory and Practices of Softwaages 64—79,
Braga, Portugal, 2007.

[96] Xactium Limited. Language driven development and xmdsaic.Whitepaper 2005.

[97] Hod Lipson and Jordan B. Pollack. Automatic design arahuofacture of robotic life-
forms. Nature 406(6799):974-978, 2000.

206 BIBLIOGRAPHY

[98] Hennessy M and J.F. Power. An analysis of rule coverage eriterion in generating
minimal test suites for grammar-based software.Ptac. of the 20th IEEE/ACM ASE
NY, USA, 2005.

[99] M. Cadoli, D. Calvanese, G. D. Giacomo, and T. Mancininité satisfiability of UML
class diagrams by Constraint Programming. InhWorkshop on Description Logics
(DL?2004), CEUR Workshgmumber 104, 2004.

[100] J.D. McGregor. Testing a software product line. Tecalhreport, CMU/SEI, Technical
report, 2001.

[101] Marcilio Mendoncca, Andrzej W?sowski, and Krzysz@#arnecki. Sat-based analysis
of feature models is easy. BPLG San Francisco, CA, USA, 2009.

[102] Andreas Metzger, Klaus Pohl, Patrick Heymans, Pi¥wes Schobbens, and Germain
Saval. Disambiguating the documentation of variabilitysowftware product lines: A
separation of concerns, formalization and automated aisaRRE, 0:243-253, 2007.

[103] Faucher C. Barais O. Jezequel J.M. Moha N., Sen S. Btiatuof kermeta for solving
graph-based problemdnternational Journal on Software Tools for Technologgrisfer
(STTT), 10 p. (In Press2010.

[104] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selmard &. Troyansky. Determining
computational complexity from characteristicphase ftaorss’. Nature 400(6740):133—
137, 1999.

[105] Brice Morin, Gilles Perrouin, Philippe Lahire, Oler Barais, Gilles Vanwormhoudt, and
Jean-Marc Jézéquel. Weaving Variability into Domain Metdeis. INMODELS LNCS,
page 15, Denver, Colorado, USA, October 2009. ACM/IEEEirtger.

[106] Brice Morin, Gilles Perrouin, Philippe Lahire, Oler Barais, Gilles Vanwormhoudt, and
Jean-Marc Jézéquel. Weaving Variability into Domain Metdeis. INMODELS LNCS,
page 15, Denver, Colorado, USA, October 2009. ACM/IEEEirtger.

[107] J.-M. Mottu, B. Baudry, and Y. Le Traon. Mutation arsiy/testing for model transfor-
mations. InProceedings of ECMDA’Q@ilbao, Spain, July 2006.

[108] Pierre-Alain Muller, Franck Fleurey, and Jean-Maézéquel. Weaving executability into
object-oriented meta-languages.Aroc. of MODELS/UML’2005LNCS, Jamaica, 2005.
Springer.

[109] Clémentine Nebut, Yves Le Traon, and Jean-Marc JétédBoftware Product Lings
chapter System Testing of Product Families: from Requirgsmé Test Cases, pages
447-478. Number ISBN: 978-3-540-33252-7. Springer Ver26.

[110] Jean Bezivin Nicolas, Nicolas Farcet, Jean marc detegenoit Langlois, and Damien
Pollet. Reflective model driven engineering. Tlhe 6th International Conference on the
Unified Modeling Language, Modeling Languages and Appticat (UML 2003) pages
175-189. Springer, 2003.

BIBLIOGRAPHY 207

[111] Niklas Een and Niklas Sorensson. An Extensible SAIW&0 In SAT 20032003.

[112] Niklas Een and Niklas S?rensson. MiniSat a SAT solvigh wonflict-clause minimiza-
tion. In SAT, 2005.

[113] Anders Olsen, Ove Faergemand, Birger Moller-PederRéck Reed, and J.R.W. Smith.
Systems Engineering with SDL-9%0orth Holland, 1995.

[114] OMG. UML 2.0 OCL 2.0 specification. Technical Report/06-06-06, Object Manage-
ment Group, June 2005.

[115] OMG. MOF 2.0 Core Specification. Technical Report falf®6-01-01, OMG, April
2006. OMG Available Specification.

[116] OMG. The UML 2.1.2 Infrastructure Specification. Taatal Report formal/2007-11-04,
OMG, April 2007. OMG Available Specification.

[117] A. Paschke and M. Bichler. Knowledge representationcepts for automated sla man-
agementJournal of Decision Support Systerd$:187—205, 2008.

[118] M. Di Penta, G. Canfora, and G. Esposito. Search-bsssithg of service level agree-
ments. InProc. of the 9th Conf. on Genetic and evolutionary compaoiagages 1090—
1097, London, England, 2007.

[119] Gilles Perrouin, Jacques Klein, Nicolas Guelfi, ananiMarc Jézéquel. Reconciling au-
tomation and flexibility in product derivation. Rth Software Product Line Conference
pages 339348, Limerick, Ireland, September 2008. IEEELden Society.

[120] Gilles Perrouin, Sagar Sen, Jacques Klein, BenoitdBawand Yves le Traon. Auto-
matic and scalable t-wise test case generation strategiesoftware product lines. In
International Conference on Software Testigg10.

[121] Shari Lawrence Pfleeger. Experimental design and/aisah software engineeringin-
nals of Software Engineeringages 219-253, 2005.

[122] M.S. PhadkeQuality engineering using robust desigRrentice Hall PTR Upper Saddle
River, NJ, USA, 1995.

[123] Karl Popper.The Logic of Scientific Discoverydutchinson & Co., 1959.

[124] T. Massoni R. Gheyi and P. Borba. A theory for featuredais in alloy. InFirst Alloy
Workshop 2006.

[125] Reiss S.P. Graphical program development with PECANgi@am development systems.
In SIGSOFT/SIGPLAN Software Engineering Symposium on Redoftware Devel-
opment Environmentpages 30-41, Pittsburg, Pa., April 1984. ACM, New York.

[126] Isidore Rigoutsos, Aris Floratos, Laxmi Parida, YuWaao, and Daniel Platt. The emer-
gence of pattern discovery techniques in computationdbgyo Metabolic Engineering
2(3):159 - 177, 2000.

208

BIBLIOGRAPHY

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

James Rumbaugh, Michael Blaha, William PremerlamedErick Eddy, and William
Lorensen.Object-oriented modeling and desighrentice-Hall, 1991.

Sen S., Mottu J.M., and Baudry B. Automatic model gatien for transformation test-
ing. SoSyM special issue010.

S. Haar S. Rosario, A. Benveniste and C. Jard. PrabbiQoS and Soft Contracts for
Transaction-Based Web Services OrchestratidiE£E Trans. on Services Computing
1(4):187 — 200, 2008.

Sagar Sen, Benoit Baudry, and Doina Precup. PartialéMGompletion in Model Driven
Engineering using Constraint Logic Programming. Initernational Conference on the
Applications of Declarative Programming007.

Sagar Sen, Benoit Baudry, and Hans Vangheluwe. Doscific Model Editors with
Model Completion. InMulti-paradigm modelling workshop associated with MoDeLs
2007, Nashville, TN, USA, October 2007.

Sandeep Neema, Janos Szitpanovits, and Gabor K&eastraint-Based Design Space
Exploration and Model Synthesis. Proceedings of EMSOFT 2003, Lecture Notes in
Computer Sciencenumber 2855, pages 290-305, 2003.

Kathrin D. Scheidemann. Optimizing the selection epresentative configurations in
verification of evolving product lines of distributed emided systems. ISPLGC pages
75-84, 2006.

Pierre-Yves Schobbens, Patrick Heymans, Jean40phe Trigaux, and Yves Bontemps.
Feature Diagrams: A Survey and A Formal SemanticsREnMinneapolis, Minnesota,
USA, sept 2006.

Pierre-Yves Schobbens, Patrick Heymans, Jean4Ghphs Trigaux, and Yves Bontemps.
Feature Diagrams: A Survey and A Formal SemanticsRExMinneapolis, Minnesota,
USA, sept 2006.

P.Y. Schobbens, P. Heymans, J.C. Trigaux, and Y. Bopse Generic semantics of feature
diagrams.Computer Network$1(2):456—479, 2007.

P.Y. Schobbens, P. Heymans, J.C. Trigaux, and Y. Bopse Generic semantics of feature
diagrams.Computer Network$1(2):456-479, 2007.

Sagar Sen, Benoit Baudry, and Jean-Marie Mottu. Orbioimg multi-formalism knowl-
edge to select test models for model transformation testimgEEE International Con-
ference on Software Testingllehammer, Norway, April 2008.

Sagar Sen, Benoit Baudry, and Jean-Marie Mottu. Aatimrmodel generation strategies
for model transformation testing. ICMT, pages 148-164, 2009.

Sagar Sen, Benoit Baudry, and Hans Vangheluwe. Tandothain-specific model editors
with automatic model completiorSimulation 86(2):109-126, 2010.

BIBLIOGRAPHY 209

[141] Sagar Sen, Naouel Moha, Benoit Baudry, and Jean-Meeqgliel. Meta-model pruning.
In Model Driven Engineering Languages and Systems, 12thriatenal Conference
(MODELS) Denver, CO, USA, October 4-9 2009.

[142] Shane Sendall and Wojtek Kozaczynski. Model tramsfdion: The heart and soul of
model-driven software developmenEEE Softw, 20(5):42—-45, 2003.

[143] llya Shlyakhter. Generating effective symmetrydkiag predicates for search problems.
In SAT 2001, the Fourth International Symposium on the Theady Applications of
Satisfiability Testingvolume 155, pages 1539-1548, June, 2001.

[144] A. Solberg, Robert France, and R. Reddy. Navigatimgnhietamuddle. lProceedings of
the 4th Workshop in Software Model Engineeripntego Bay, Jamaica, 2005.

[145] Jim Steel.Typage de modéle®hD thesis, Université de Rennes 1, April 2007.

[146] Jim Steel and Jean-Marc Jézéquel. On model typilmgirnal of Software and Systems
Modeling (SoSyM)6(4):401-414, December 2007.

[147] Gabriele Taentzer, Karsten Ehrig, Esther Guerran digal ara, Laszl6 Lengyel, Tihamér
Levendovszky, Ulrike Prange, Daniel Varro, , and SzilviardaGyapay. Model transfor-
mation by graph transformation: A comparative study. ABM/IEEE 8th International
Conference on Model Driven Engineering Languages and Sstéontego Bay, Ja-
maica, October 2005.

[148] Teitelbaum T. and T. Reps. The Cornell Program Syiitkes A syntax-directed pro-
gramming environmentCommunications of the ACN24(9):563-573, 1981.

[149] Teitelman W. and L. Masinter. The Interlisp ProgramgiEnvironmentlEEE Computer
14(4):25-34, 1981.

[150] Antti Tevanlinna, Juha Taina, and Raine KauppinenodBct family testing: a survey.
SIGSOFT Softw. Eng. Note29(2):12-12, 2004.

[151] VlIadimir Tosic and Bernard Pagurek. On comprehensomractual descriptions of web
services. InEEE '05: Proceedings of the 2005 IEEE International Confees on e-
Technology, e-Commerce and e-Service (EEE’05) on e-Tedye-Commerce and e-
Service pages 444-449, Washington, DC, USA, 2005. IEEE Computeie§o

[152] Engin Uzuncaova, Daniel Garcia, Sarfraz Khurshid] Bron Batory. Testing software
product lines using incremental test generationlS8RE pages 249-258, Washington,
DC, USA, 2008. IEEE Computer Society.

[153] Tomas Vagoun. Input domain partitioning in softwaesting. INnHICSS '96: Proceed-
ings of the 29th Hawaii International Conference on Systerarges (HICSS) Volume 2:
Decision Support and Knowledge-Based Systé&dashington, DC, USA, 1996.

[154] A.Van Der Hoek. Design-time product line architeesifor any-time variabilityScience
of computer programmind3(3):285-304, 2004.

210 BIBLIOGRAPHY

[155] Mandana Vaziri and Daniel Jackson. Some shortcomaigscl, the object constraint
language of uml. INTOOLS '00: Proceedings of the Technology of Object-Orignte
Languages and Systems (TOOLS 34'@@ge 555, Washington, DC, USA, 2000. IEEE
Computer Society.

[156] Viatra2. Department of measurement and informatigstesns, budapest university of
technology and economics. http://www.eclipse.org/gnimfRA2/.

[157] Volker Haarslev and Ralf M?ller. RACER system dedioip In International Joint
Conference on Automated Reasoning (IJCAR 20@dlume 2083 ofLecture Notes in
Artificial Intelligence pages 701-705. Springer, 2001.

[158] Elaine J. Weyuker, Stewart N. Weiss, and Dick HamlebmParison of program testing
strategies. IIMAV4: Proceedings of the symposium on Testing, analysikyerification
pages 1-10, New York, NY, USA, 1991. ACM.

[159] Y. S. Mahajan, Z. Fu, and S. Malik. ZChaff2004: An Effiot SAT Solver. InLecture
Notes in Computer Science SAT 2004 Special Volume LNCS pag2s 360-375, 2004.

[160] I. Yoon, A. Sussman, A. Memon, and A. Porter. Direcpeledency-based software com-
patibility testing. INASE pages 409-412, Atlanta, Georgia, USA, 2007.

[161] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagaar) and H. Chang. Qos-
aware middleware for web services compositit BEE Trans. on Software Engineering
30(5):311-327, 2004.

[162] Tewfik Ziadi, Loic Hélouét, and Jean-Marc Jézéquelwdimls a UML Profile for Soft-
ware Product Lines. IRroduct-Family Engineering (PFEYyolume 3014 o NCS pages
129-139, Siena, Italy, November 2003. Springer.

	Contents
	Résumé en français(French Summary)
	Découverte de structures effective en sciences et génie
	Contexte: L'ingénierie dirigée par les modelés
	Motivation: Pourquoi le besoin de découverte automatique modèle?
	Scénario 1: La génération de tests pour les transformations de modèles
	Scénario 2: Achèvement d'un modèle partiel dans un éditeur de modèles
	Scénario 3: La génération de produits dans une ligne des produits logiciels

	Contexte du problème et défis
	These
	Un framework pour la découverte automatique de modèles effectifs
	Un framework pour la découverte automatique de produits effectifs

	Contributions
	Contributions à la découverte automatique modèle effectif
	Contributions à la découverte automatique produits effectif

	Organisation de la thèse

	Introduction
	Discovery of Effective Structures in Science and Engineering
	Context: Model Driven Engineering
	Motivation: Why the Need for Automatic Model Discovery?
	Scenario 1: Test Generation for Model Transformations
	Scenario 2: Partial Model Completion in a Model Editor
	Scenario 3: Generation of Products in a Software Product Line

	Problem Context and Challenges
	Thesis
	A Framework for Automatic Effective Model Discovery
	A Framework for Automatic Effective Product Discovery

	Contributions
	Contributions in Automatic Effective Model Discovery
	Contributions in Automatic Effective Product Discovery

	Thesis Organization

	Context and State of the Art
	Model-driven Engineering
	Metamodel Specification of a Modelling Domain
	Specification of a Metamodel
	Object Constraint Language to Specify Metamodel Constraints
	Models in the Modelling Domain

	Feature Diagram Specification of a Modelling Domain
	The Feature Diagram Modelling Language
	Specification of a Feature Diagram
	Products in the Modelling Domain of a Feature Diagram

	Modelling and Model Transformation Language: Kermeta
	Aspect-weaving in Kermeta
	Model Typing with Kermeta

	Formal Specification Language: Alloy
	State of the Art in Model Discovery in a Modelling Language
	Related Work for Effective Modelling Domain Identification
	Related Work for Generation of Models in a Modelling Domain
	Related Work for Test Model Generation
	Related Work for Completion in Editors

	State of the Art in Product Discovery
	Related Work in SPL Test Generation

	Automatic Effective Model Discovery
	Automatic Effective Model Discovery Framework
	Primary Sources of Knowledge
	Domain-specific Sources of Knowledge
	Methodology

	Software Embodiment: Cartier
	Requirements for Cartier
	Cartier Technical Overview
	Cartier Architecture

	Running Case Study : The Uml
	Effective Modeling Domain Identification: Metamodel Pruning
	Important Definitions
	Metamodel Pruning Algorithm
	Illustration on Uml Case Study
	Validity and Complexity of the Algorithm

	Transformation Metamodel with Single Inheritance to Alloy
	Transformation of a Primitive Type to Alloy
	Transformation of an Enumeration Type to Alloy
	Transformation of a Class Type to Alloy
	Transformation of a Property to Alloy
	Transformation of Implicit Metamodel Constraints to Alloy Facts

	Transforming Metamodel with Multiple Inheritance to Alloy
	Flattening the Class Hierarchy
	Transforming Properties to Alloy Fields and Alloy Facts
	Transforming Implicit Constraints to Alloy Facts

	Handling the Transformation of Metamodel Invariants to Alloy Facts
	Illustration of Transformation to Alloy
	Model Generation by Solving Alloy Model
	Specifying Alloy Predicates to Guide Generation
	Specifying Alloy Run Commands with Finite Bounds
	Alloy Instances to EMF models

	Illustrative Examples: Generation Uml Class Diagram Models
	Validity and Complexity of Transformation to Alloy
	Summary

	Experiments in Effective Model Discovery
	Automatic Model Synthesis for Model Transformation Testing
	Problem Description
	Transformation Case Study
	Automatic Test Model Generation and Qualification Methodology
	Qualifying Models: Mutation Analysis for Model Transformation Testing
	Test Strategies
	Experiments
	Conclusion for Test Generation

	 Towards Model Completion in Domain-specific Model Editors
	Methodology for Model Completion
	Specifying a DSML
	Metamodel
	Constraints on Metamodel
	Visual Syntax
	Transformation of a Partial Model
	Transforming Alloy Model Completion Parameters
	Model Completion Process
	Examples in Completion
	Conclusion of Model Completion

	Automatic Effective Product Discovery
	Introduction
	Context and Problem
	Problem

	Metrics for Strategy Evaluation
	Test Generation Methodology & Avishkar Toolset
	Step 1: Transforming Feature Diagrams to Alloy
	Step 2: Generation of Tuples
	Step 3: Detection of Valid Tuples
	Step 4: Creating and Solving Conjunctions of Multiple Tuples
	Step 5: Analysis

	Two strategies for T-wise SPL Test Suite Generation
	Solving a Conjunction of Tuples
	Binary Split
	Incremental Growth

	Experiments
	Experimental Setting
	Number of Products Vs. Scope
	Tuple Occurrence Vs. Scope
	Test Case Redundancy
	Threats to Validity

	Conclusion

	Conclusion and Perspectives
	Conclusion and Perspectives
	Summary and Conclusion
	Variability Modeling and QoS Analysis of Web Services (Ongoing)
	Related Work

	Perspectives
	A Family of Metamodel Pruning Algorithms
	Transforming OCL Subset to Alloy
	Product Discovery Strategies based on Feature Diagram structure
	Scaling Constraint Solving using Alloy

	Appendix
	Alloy Model of UMLCD Synthesized by Cartier
	Initial Set of Pre-conditions
	Discovered Set of Pre-conditions
	 FSM Alloy Model with Facts and Partial Model Predicates

	List of Figures
	List of Tables
	Listings
	Bibliography

