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Abstract

Scientific discovery often culminates into representing structure in nature asnetworks (graphs)
of objects. For instance, certain biological reaction networks aim torepresent living processes
such as burning fat or switching genes on/off. Knowledge from experiments, data analysis
and mental tacit lead to the discovery of sucheffectivestructures in nature. Can this process of
scientific discovery using various sources of knowledge be automated? In this thesis, we address
the same question in the contemporary context of model-driven engineering (MDE) of complex
software systems.

MDE aims to grease the wheels of complex software creation using first class artifacts called
models. Very much like the process of effective structure discovery in science a modeler creates
effective models, representing useful software artifacts, in a modelling domain. In this thesis,
we considertwo such modelling domains: metamodelsfor modelling languages andfeature di-
agramsfor Software Product Lines (SPLs). Can weautomate effective model discoveryin
a modelling domain? The central challenge in discovery is the automatic generation of mod-
els. Models are graphs of inter-connected objects with constraints on their structure and the
data contained in them. These constraints are enforced by a modelling domain and heteroge-
neous sources of knowledge including several well-formedness rules. How can we automati-
cally generate models that simultaneously satisfy these constraints? In this thesis, we present a
model-driven framework to answer this question.

The framework for automatic model discovery uses heterogeneous sources of knowledge to
first setup a concise and relevant subset of a modelling domain specification called theeffective
modelling domain. Next, it transforms the effective modelling domain defined in possibly differ-
ent languagesto a constraint satisfaction problemin the unique formal specification language
Alloy. Finally, the framework invokes a solver on the Alloy model to generate one or more ef-
fective models. We embody the framework in two tools:Cartier for model discovery in any
modelling language andAvishkarfor product discovery in a SPL. We validate our framework
throughrigorous experiments in test model generation, partial model completion, product gen-
eration in SPLs, andgeneration of web-service orchestrations. The results qualify that our
framework consistently generates effective findings in modelling domains from commensurate
case studies.
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Abstrait

Les découvertes scientifiques aboutissent souvent à la représentation de structures dans l’environnement
sous forme degraphes d’objets. Par exemple, certains réseaux de réactions biologiques visent à
représenter les processus vitaux tels que la consommation de gras ou l’activation/désactivation
des gênes. L’extraction de connaissances à partir d’expérimentations, l’analyse des données et
l’inférence conduisent à la découverte destructures effectivesdans la nature. Ce processus de
découverte scientifiques peut-il être automatisé au moyen de diverses sources de connaissances?
Dans cette thèse, nous abordons la même question dans le contexte contemporain de l’ingénierie
dirigée par les modèles (IDM) de systèmes logiciels complexes.

L’IDM vise à accélérer la création de logiciels complexes enutilisant de artefacts de base
appelésmodèles. Tout comme le processus de découverte de structures effectives en science
un modeleur crée dans undomaine de modélisationdes modèles effectifs, qui représente des
artefacts logiciels utiles. Dans cette thèse, nous considérons deux domaines de modélisation:
métamodèlespour la modélisation des langages et desfeature diagramspour les lignes de pro-
duits (LPL) logiciels. Pouvons-nousautomatiser la découverte de modèles effectifsdans un
domaine de modélisation? Le principal défi dans la découverte est lagénération automatique
de modèles. Les modèles sont desgraphes d’objets interconnectésavec des contraintes sur
leur structure et les données qu’ils contiennent. Ces contraintes sont imposées par un domaine
de modélisation et des sources hétérogènes de connaissances, incluant plusieurs règles de bonne
formation. Comment pouvons-nous générer automatiquementdes modèles qui satisfont ces con-
traintes? Dans cette thèse, nous présentons un framework dirigé par les modèles pour répondre
à cette question.

Le framework pour la découverte automatique de modèles utilise des sources hétérogènes
de connaissances pour construire, dans un premier temps, unsous-ensemble concis et perti-
nent d’une spécification du domaine de modélisation appeléedomaine de modélisation effectif.
Ensuite, il transforme le domaine de modélisation effectif défini dans différent langages
vers unproblème de satisfaction de contraintesdans le langage de spécification formelAlloy.
Enfin, le framework invoque un solveur sur le modèle Alloy pour générer un ou plusieurs mod-
èles effectifs. Nous incorporons le framework dans deux outils: Cartier pour la découverte de
modèles a partir de n’importe quel langage de modélisation et Avishkarpour la découverte de
produits dans une LPL. Nous validons notre framework par desexpérimentations rigoureuses
pour la génération de test, la complétion de modèles partiel, la génération de produits, et la
génération d’orchestrations web service. Les résultats montrent que notre framework génère
systématiquement des solutions effectives dans des domaines de modélisation à partir de cas
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Résumé en français
(French Summary)

L’ingénierie dirigée par les modèles (IDM) est une approchepour spécifier, construire, va-
lider et maintenir des systèmes logiciels complexes en utilisant des artefacts primitifs appelés
modèles. IDM est issu d’un certain nombre de domaines dans le développement de logiciels tels
que l’analyse de langages de conception orientes objets, des méthodologies orientées objet [24]
[73] [127], et Computer-Aided Software Engineering (CASE)élabores dans les années 80 et 90
afin d’automatiser plusieurs étapes dans le génie logiciel [113] [27].

Les modèles sont desgraphes d’objets interconnecterdans undomaine de modélisation.
Un domaine de modélisation définit unensemble des modèlesoù chaque modèle est construit
en utilisant un ensemble commun de concepts, et des relations. Par exemple, dans cette thèse,
nous considérons la spécification de deux domaines de modélisation : (a) lesmétamodèlesqui
spécifient un ensemble de modèles dans un langage de modélisation (b) feature diagrams qui
spécifient un ensemble des produits donnant lieu à une ligne de produits logiciels (LPL). Très
souvent, la création desmodèles effectifsdans un domaine de modélisation exige la satisfac-
tion de contraintes à partir de sources hétérogènes. Par exemple, la création d’un modèle de
workflow en utilisant le diagramme d’activitésUnified Modelling Language (UML ) exige que le
modèle satisfasse les règles de forme, logique métier, contraintes économiques, les qualités de
service, et les restrictions de sécurité. Les modeleurs créent progressivement avec l’expérience
les modèles en vigueur en veillant tacitement à ce que les modèles soientcorrects par construc-
tion et satisfassent les contraintes provenant de sources hétérogènes. Malgré tout, ce processus
est extrêmement difficile et parfois impossible s’il y a un besoin de créer des milliers de mo-
dèles.Peut-on automatiser la création de modèles effectifs compte tenu de l’hétérogénéité
des sources de la connaissance ?C’est la question qui nous intrigue et le sujet de cette thèse.

L’introduction est organisée comme suit. La notion de découverte des modèles effectifs se
situe dans le contexte global de découverte des structures effectives dans les sciences et l’ingé-
nierie. Nous décrivons brièvement ce contexte global dans la section 0.1. Cette thèse aborde le
problème de la découverte automatique dans le contexte plusrécent et spécifiques de la IDM
que nous décrivons dans la section 0.2. Un certain nombre de scénarios dans IDM nécessitent
la génération de modèles effectifs. Notre motivation vientde ces scénarios que nous décrivons
dans la section 0.3. Dans la section 0.4, nous présentons lecontexte général du problèmeet
ses défis. Nous présentons notre thèse et décrivons notre méthode de découverte automatique de
modelés et de produits effectifs dans la section 0.5. Nous renonçons les contributions de notre
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FIG. 1 – Des structures effectives en découverte scientifique : (a) Réseau alimentaire du sol (b)
Voie suppresseur de tumeur

thèse dans la section 0.6. Enfin, nous présentons l’organisation de la thèse dans la section 0.7.

0.1 Découverte de structures effective en sciences et génie

Les découvertes scientifiquesaboutissent souvent en représentant la structure dans la nature
comme unréseaux d’entitésou graphes d’objets. Par exemple,

– Les réseaux trophiquessont des représentations des relations prédateur-proie entre les
espèces dans un écosystème ou d’habitat. Un exemple courantest leréseau alimentaire
du solillustré à la figure 1. La chaîne alimentaire du sol est souvent trouvé dans un jardin
bio-compost.

– Les réseaux réaction biochimiqueou des voies métaboliques représentent des échanges
moléculaires dans les êtres vivants. Lavoie suppresseur de tumeurlargement étudié de
la figure 1 (b) illustre le rôle crucial de la protéine p53 dansla mort cellulaire. La mort
cellulaire est importante pour réguler l’évolution cancéreuse.

Les connaissances à partir de l’expérience, l’analyse des données et de tacite mentale mène à
la découverte de tellesstructures utiledans la nature. L’existence de structures effective n’est pas
limitée à la virtuosité de la nature. Nous, les humains sommes doués de la capacité de représenter
et de créer des structures utiles tels que les bâtiments, lesponts, les robots et logiciels complexes.

La conception en ingénierieaboutissent souvent en représentant effectif structures artifi-
cielles comme des graphes d’objets. Par exemple,

– Diagrammes de circuits électroniquesreprésentent un réseau de composants électriques
qui permettent d’atteindre un but donné. Lecircuit de récepteur FMde la figure 2, par
exemple, est utilisé dans des millions d’appareils radio.
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FIG. 2 – Des structures effectives en ingénierie : (a) Circuit derécepteur FM (b) Le patron de
conception observateur

– Les patrons de conceptionreprésentent en général des solutions réutilisables aux pro-
blèmes fréquemment rencontrés dans la conception de logiciels. Ils sont souvent repré-
sentés commeles diagrammes de classes.Le patron observateur de logiciels orientés ob-
jet dans Figure 2 (b) est un modèle commun dans les logiciels en nécessitant la gestion
des événements distribues. Le célèbre logiciel d’édition photo Adobe Photoshop est un
exemple.

Comme la découverte scientifique, la conception en ingénierie est dirigée par la connais-
sance d’un certain nombre de sources associée a la créativité d’un ingénieur. Puis ce proces-
sus de découverte scientifique ou de conception en ingénierie en utilisant diverses sources de
connaissances peut-il êtreautomatisé? Cette question a fait l’objet d’études depuis plusieurs
décennies avec l’arrivée de l’informatique moderne.

Des programmes informatiques ont été utilisés pour découvrir la structure dans la nature. Par
exemple, inspiré par le logique de découverte scientifique de Karl Popper,[123], Pat Langley,
Herbert Simon, G. Bradshaw, et Zytkow ont mit au point plusieurs programmes informatiques
tels que Bacon, Glauber, Dalton, and Stahl décrit dans leur livre [94]. Ces programmes ont été
dirigée par des heuristiques pour réussir à re-découvrir des lois anciennes de la chimie.

Approches de computations évolutionnaire a été développe pour automatiser la conception
tels que la production de circuits électroniques [88]. Un concours lors de la conférence an-
nuelle GECCO, le "Humies award", récompense des programmesimplémentent une approche
évolutive. L’attribution d’un prix de 10,000$ est accordéeà la solution la plus proche des rai-
sonnement humaine. Dans la communauté du génie logiciel, des conférences récentes, telles que
le conférence Automated Software Engineering(ASE) fournit des lieus de compétition pour la
présentation des approches de génération des structures delogiciels.

Dans cette thèse, nous abordons la question de la découverteautomatique dans le contexte
contemporain de l’ingénierie dirigée par les modèles de systèmes logiciels complexes.
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0.2 Contexte : L’ingénierie dirigée par les modelés

IDM [110] vise à accélérer la création de logiciels complexes en utilisant des objets de base
appelémodèles. La philosophie IDM utilise des modèles pour représenter des objets importants
dans un système, comme d’exigences, les dessins de haut niveau, les structures de données, les
vues, les interfaces, les transformations de modèles, les scénarios de test, et le code source. Un
modèle est construit dans undomaine de modélisationqui capture un ensemble de concepts
communs et des relations. La construction d’un modèle dans un domaine de modélisation peut-
être encore réduite en utilisant des règles de bonne formation et des contraintes de hétérogène
sources.

La notion générale d’un domaine de modélisation peut êtrespécialiséesà de nombreux
égards. Une description précise de concepts et de relationsdéfinissant un ensemble de modèles
appelé un domaine de modélisation. Par exemple, unmétamodèlespécifie le domaine d’un lan-
gage de modélisation. Le célèbre langage de modélisation,Unified Modelling Language (UML )
[116], a son propre métamodèle qui spécifie l’ensemble des modèles UML . Un autre exemple,
d’un domaine de modélisation est unfeature diagramou feature modelqui spécifie un ensemble
de produits appelé un ligne des produits logiciels (LPL). Modèles peuvent être chargé stocké,
manipulé et transformer à d’autres modèles ou code source pour résoudre les problèmes logi-
ciels.

IDM fournit un certain nombre de processus logiciels et de technologies permettant la mo-
délisation des domaines et la transformation de ses modèles. Le Model-Driven Architecture
(MDA) est une marque commercialisée par l’Object Management Group (OMG), qui propose
une approche pilotée par modèles pour développer un systèmelogiciel. L’approche MDA com-
mence par le développement d’un domaine de modélisation pour les platform independent mo-
dels (PIM), ces modeles sont progressivement transformés ou raffinés dans des platform specific
models (PSM). Les PSM sont réifiés au code exécutable. Cette construction automatique de sys-
tèmes à partir de modèles de haut niveau permet de capturer l’expertise en génie logiciel sous la
forme detransformations de modèles réutilisables. Actuellement, le framework largement ac-
cepté pour la spécification de domaines de modélisation estEclipse Modeling Framework (EMF)
[58]. Par exemple, les métamodèles sont créés dans le formatEMF Ecorepour spécifier le do-
maine d’un langage de modélisation. Langages de transformation des modèles [142] telles que
le langage impératif Kermeta [82] [108], les fondé sur des règles ATL [76] [75] [3], AToM3

[67], Viatra [156] base sur une grammaire de graphes permettent la transformation des modèles.
Langages de transformation de modèle sont tenus de se conformer au standard Query-View-
Transformation (QVT) [75]. Différents types de transformations de modèles peuvent être créées
en utilisant ces langages, comme classés dans le [44]. Les transformations de modèles peuvent
transformer des modèles dans le même domaine de modélisation (transformations endogènes),
entre les différents domaines de modélisation (transformations exogènes) et même réaliser du
code exécutable à partir d’un modèle de haut niveau.

Notre objectif dans cette thèse est la découverte automatique ou assistée, de modèles dans
un domaine de modélisation.
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FIG. 3 – Une transformation

0.3 Motivation : Pourquoi le besoin de découverte automatique mo-
dèle ?

Notre motivation pour la découverte automatique dans le contexte général de tiges d’ingé-
nierie dirigée par les modèles existants de la découverte decalcul efforts dans des domaines
hétérogènes. Ces domaines vont des systèmes [33] [126], au génie des systèmes physiques [97]
[132] [56], [88]. Nous voyons la découverte automatique de modèles efficaces dans un domaine
de la modélisation en tant que cadre général subsumant les approches existantes à la décou-
verte de structure effective dans des domaines hétérogènesde la science et l’ingénierie. IDM des
systèmes à logiciel ne fait pas exception. Dans cette thèse,nous étudions trois scénarios IDM
comme décrit ci-dessous :

0.3.1 Scénario 1 : La génération de tests pour les transformations de modèles

Les transformations de modèles sont des entite logiciels debase en IDM. Un modèle simple
de transformationMT prend les modèles d’entrée conforme à un métamodèleMMI d’entrée et
de sortie produit des modèles conformes au méta-modèle de sortie MMO comme le montre la
figure Figure 3. Pas tous les modèles spécifiés par le méta-modèle d’entrée peutêtre executer par
la transformation du modèle. Par conséquent, nous composons des post-conditionspost(MT).
Les transformations du modèle lui-même est construit en utilisant des connaissances à partir
d’un ensemble d’exigencesMTRequirements.

Test d’une transformation de modèles nécessite modèle d’entrée qui permet de détecter des
bogues dans la transformationMT. Création manuelle des modèles de test est fastidieuse car
il doitêtre un graphe d’objets qui doiventêtre conformes aux MMI , pre(MT), et d’utiliser les
connaissances deMTRequirements. Création manuelle devient impossible lorsque nous avons be-
soin de créer des milliers de modèles de ces essais qui codentpour objectifs de test différentes.
Par conséquent, il est clairement nécessaire de automatiser la génération de modèles d’essai
qui satisfont les connaissances provenant de diverses sources telles queMMI , pre(MT), et
MTRequirements. La génération automatique de modèles d’entrée exalte au niveau de la décou-
verte automatique si nous validons qu’ils peuvent détecterles bugs dans une transformation.
On peut qualifier l’efficacité des modèles d’essai par des techniques telles quel’analyse de mu-
tation pour les transformations modèle [107]. Basé sur une description de ce scénario, nous
demandons,Comment pouvons-nous générer des modèles de tester et de qualifier leur efficacité
pour la détection des bugs?
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FIG. 4 – Modèle partiel dans l’éditeur de modèles UML : TopCaseD

0.3.2 Scénario 2 : Achèvement d’un modèle partiel dans un éditeur de modèles

Les modélisateurs ont souvent recours à des éditeurs de modèles à construire des modèles
progressivement. Par exemple, le éditeur TopCaseD [54] peutêtre utilisé à construire des modèles
UML comme dans la figure 4. Le modèle présenté est une machine d’état incomplète en UML .
Par exemple, le modèle ne contient pas un état initial qui estune règle de bonne formation.
Il ya une infinité des moyens possible pour compléter le modèle tel qu’il devient une valable
modèle UML de la machine d’état et répond à toutes les règles de bonne formation. Ce qui est
probablement plus intéressant est la modèle plus proche quiest compatible à UML et qui contient
tous les éléments du modèle partiel. Il peut y avoir un certain nombre de possibilités de mener
à bien les modèles partiellement spécifié. On peut rapporterl’achèvement mode automatique au
problème de complétion de code automatique dans les environnements de programmation [15].
Ce scénario soulève la question suivante :Comment pouvons-nous des modèles de découverte
automatique complète ou recommandations pour compléter les modèles partielle ?

0.3.3 Scénario 3 : La génération de produits dans une ligne des produits logiciels

Un ligne des produits logiciel (LPL) se réfère à un ensemble de produits partageant en-
semble commune de caractéristiques/features qui répondent aux besoins spécifiques d’une mis-
sion particulière [37]. UnFeature Diagram(FD) ou unfeature modelprécise un domaine de
la modélisation d’un LPL. Feature diagrams introduite par Kang et al. [77] [78] compacte re-
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FIG. 5 – Un feature diagram pour le système de gestion de crise pour accident des voitures

présentent tous les produits d’un LPL en termes de caractéristiques qui peuventêtre composés.
Un FD se compose dek featuresf1, f2, ..., fk et les contraintes de dépendance entre les features.
Par exemple, la sélection de certaines features dans un produit peut obligatoirement imposer la
sélection d’autres features. En outre, certaines des features peutêtre associé à un actif de logi-
ciels tels que service web. Considérons le FD pour un systèmede gestion des crises accident
de voiture dans la figure 5. Le FD contient 47 éléments dont 25 d’entre eux sont optionnels.
Certaines des features sont associées à des services ou des actifs logiciels. Le FD décrit 33, 554,
432 configurations différentes de features. Puis toutes lesconfigurations se composer en des pro-
duits valide ? Pour répondre à cette question, il faut créer tous les produits ou un sous-ensemble
représentatif de tous les produits. Par exemple, ce sont l’ensemble des produits qui répondent à
l’interaction entre les paires de features. La création de ces produits nous aidera à dévoiler des
produits non valide. Manuellement créer des produits qui satisfont toutes les contraintes FD est
très fastidieux. Par conséquent, nous demandons,Comment peut-on automatiser la génération
de produits dans une ligne des produits logiciels pour différents objectifs ?

0.4 Contexte du problème et défis

Nous sommes motivés par la nécessité de génération automatique de modèles effectifs dans
un domaine de modélisation. Le contexte du problème de découverte automatique de modèle est
illustré dans la figure6. Le contexte identifie les points suivants :

– Spécification d’un domaine de modélisation : le domaine de la modélisation spécifie
un ensemble de modèlesM. Les exemples de spécifications pour les domaines de modé-
lisation sont des métamodèles pour la langage de modélisation etfeature diagramspour
LPLs.
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FIG. 6 – Contexte du problème pour la découverte automatique desmodèle

– Sources hétérogènes de connaissances :connaissances provenant de sources hétéro-
gènes
Source1,Source2, ...Sourcek éventuellement dans différents langages de modélisation spé-
cifient des sous-ensembles du domaine de modélisationM1,M2, ..,Mk. L’intersection de
ces sous-ensembles
M1,M2, ...,Mk est le domaine de modélisation effectif représenté par un ensemble de mo-
dèles effectifMe f f ective. Nous pouvons voir les sources hétérogènes de la connaissance
comme un ensemble de contraintes dans les différentes langages qui limitent l’ensemble
des modèlesM à un sous-ensembleMe f f ective.

Compte tenu de ces apports, nous demandons : quel est le mécanisme de découverte auto-
matique qui peut créer des modèles dans l’ensembleMe f f ective? Telle est la question globale qui
nous intrigue.

Cette question donne lieu à un certain nombre de défis ayant trait à la découverte automatique
de modèle. Nous décrivons les défis les plus importants ci-dessous :
Défi 1. Mécanisme de découverte : générative ou satisfactionde contraintes ? Notre re-
cherche a commencé avec l’exploration des mécanismes existants pour automatiser la généra-
tion / découverte de modèles dans un domaine de modélisation. Nous classons les approches
existantes que soitgénérativeou ceux basés sur lesatisfaction de contraintes. La question était
de savoir lequel est le plus prometteur ?

Une approche générative tente a incrémentalment créer des modèles dans un domaine de
la modélisation par instanciation de l’objet. Par exemple,dans [29], les auteurs présentent un
algorithme impératif et un outil pour générer des modèles qui ne sont conformes qu’aux spécifi-
cation,Ecore d’un métamodèle. L’approche ne garantit pas la satisfaction de contraintes à partir
de sources hétérogènes de connaissances telles que les règles de bonne formation. De même,
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dans Ehrig et al. [52], les auteurs proposent une approche basée sur les grammaires de graphe
pour générer des modèles conformes à un diagramme de classes(comme un modèleEcore). Ces
modèles ne sont pas conforme à toute contraintesOCL sur le métamodèle.

Les approches fondées sur la satisfaction de contraintes essaient de transformer un domaine
de modélisation à un ensemble de variables et de contraintes. L’ensemble des contraintes est
résolu en utilisant un solveur de contraintes [91]. Une ou plusieurs solutions de bas niveau sont
transformés comme des modèles du domaine de modélisation. Cette approche a été utilisée dans
des contextes spécifiques à un domaine comme les tests de logiciels. Le système Korat (Chandra
et al.) [28] est capable de générer des structures de donnéesimplémentées dans le framework
de Java Collections Framework qui satisfont des prédicats.De même, Sarfraz Khurshid dans
son thèse doctoral [83] présente l’outil TestEra tool pour générer des structures de données Java
telles que les listes chaînées, tree maps, jeux de hachage, les tableaux tas, et les arbres binaires
pour les tests. Les deux approches sont limitées à des structures de données standard et non pas
à la notion plus générique de modèles. L’approche la plus intéressant est l’outil UML2Alloy
[92]. L’outil tente de transformer les diagrammes de classeUML , qui ressemblent largement à
de métamodèles, à le langage de spécification formelle ALLOY [72]. On peut alors utiliser AL-
LOY pour analyser modèles UML en générant des exemples et des contre-exemples. Bien que
l’outil ne soit pas directement lié à la découverte du modèle, il vise à transformer les éléments
d’un diagramme de classe à un problème de satisfaction de contraintes dans ALLOY . Toutefois,
UML2Alloy ne transforme pas les éléments complexes d’un métamodèle tels que l’héritage mul-
tiple et lesmultiple containers. UML2Alloy ne parvient pas à solliciter l’utilisation de ALLOY

lorsque la taille de le modèle UML est grand, rendent cette qui rendre l’approche non scalable.
Les approches génératives créent des modèles progressivement et ne peuvent pas satisfaire

les contraintes simultanément. Par conséquent, un certainnombre de modèles doit être rejeté
parce qu’ils ne peuvent pas satisfaire les contraintes. Parconséquent, les approches fondées sur
le satisfaction de contraintes semblent plus prometteuses.
Défi 2. Transformer la spécification d’un domaine de la modélisation à un problème de
satisfaction de contraintesLa spécification d’un domaine de modélisation contient un ensemble
de concepts et de relations entre eux. Ces relations pourraient coder des contraintes complexes
qui ne sont pas facilement transformées en un problème de satisfaction de contraintes. En outre,
un grand nombre de concepts et de relations peut conduire à unproblème de satisfaction de
contraintes très grand qui devient incalculable.

Par exemple, la transformation d’un spécification des métamodèle à un problème de satis-
faction de contraintes requiert un modèle de contraintes pour des constructions telles que :

– Héritage multiple
– Plusieurs conteneurs pour une classe
– Propriétés opposées
– Propriétés d’identité
– Propriétés composite

La grande taille d’un métamodèle tels que le UML avec environ 246 classes empêche la trans-
formation directe en un problème de satisfaction de contraintes traitable.
Défi 3. Transformer les connaissances provenant de sources hétérogènes à des contraintes
Les connaissances provenant de sources hétérogènes sont spécifiées dans les différents langages
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de modélisation. Toutefois, pour la satisfaction de contraintes, ils doivent tous être transformés
à des contraintes dans une langage commun. Par exemple, la tâche de génération des modèles
de tests pour une transformation de modèles doit satisfaireles contraintes spécifiées dans un
langage de contraintes textuelles, telles queObject Constraint Language, objectifs de test, et la
pré-condition de la transformation de modèles exprimés dans le langage de la transformation.
Défi 4. La génération de modèles doivent être dans des limitesmaniable et finis La dé-
couverte de modèles dans un domaine de modélisation nécessite la génération de modèles de
taille finie. Quels sont les heuristiques pour déterminer lataille appropriée d’un modèle qui soit
suffisant pour satisfaire à la connaissance à partir de sources hétérogènes de la connaissance ?
Défi 5. Détection des sources incohérentes de la connaissance La connaissance provenant de
diverses sources peut être incompatible avec le spécification du domaine de modélisation. Com-
ment pouvons-nous détecter de telles sources de connaissances incompatibles et les éliminer ?
Défi 6. Validation de l’efficacite des modèlesIl est nécessaire de procéder a desexpériences ri-
goureusesqui qualifient les modèles générés par satisfaction de contraintes. La qualification ga-
rantit que les modèles sont effectifs ou utiles pour des objectifs donnés. Ces expériences doivent
tenir compte de l’effet de divers facteurs qui influent sur laqualité des modèles générés. Par
exemple, on peut se demander quelle est l’influence de la génération de modèles multiples en
utilisant la même solveur de contraintes sur leur efficacitéen tant que modèles de test ? Les dif-
férents paramètres de solveur de contrainte ont ils une incidence considérable sur la qualité des
solutions ?

0.5 These

Dans cette thèse, nous montrons qu’il est possible de découvrir automatiquement des mo-
dèles effectifs dans un domaine de modélisation. Nous abordons le problème de la découverte de
modèle effectif dans deux domaines de modélisation : (a) Métamodèles (b) Feature Diagrams.

Un métamodèle est une spécification générale du domaine d’unlangage de modélisation. Un
métamodèle peut être utilisé pour spécifier le domaine d’un langage spécifique au domaine de la
modélisation. Cependant, les systèmes logiciels existants et les composants ne peuvent pas tou-
jours être modélisé ou transformé dans un langage de modélisation à partir de zéro. Idéalement,
des composants fiables dans le temps doivent être réutilisésdans leur forme mature pour être
combines avec d’autres composants a fin de construire un système logiciel. Si nous voyons ces
composants matures comme des features alors les combinaisons possibles de features sont mieux
modélise avec le langage feature diagram aboutissant à une ligne de produits logiciels (LPLs).
Les macro composants associés aux features peuvent être combinées dans des configurations
différentes faisant partie du domaine de modélisation du feature diagram. Cette distinction entre
les modèles purs dans le domaine d ’un langage de modélisation et la configuration des compo-
sants matures dans une ligne de produits logiciels permet laconstruction dirigée par les modèles
à différents niveaux. Par conséquent, nous considérons de la même manière les spécifications de
domaines de modélisation dans cette thèse.

Par conséquent, nous proposons deux frameworks pour la découverte de modèles qui spéci-
fient le framework général de la figure 6 :

1. Le framework pour la découverte automatique de modèle effectif dans le domaine de
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FIG. 7 – Un framework pour la découverte automatique de modèles effectifs

la modélisation spécifiée par un métamodèle. Ce framework est incorporé dans l’outil
CARTIER.

2. Le framework pour la découverte automatique des produitseffectifs dans le domaine de
la modélisation spécifiée par un feature diagram. Ce framework est incorporé dans l’outil
AVISHKAR.

0.5.1 Un framework pour la découverte automatique de modèles effectifs

La figure 7 présente la vue d’ensemble du framework pour la découverte automatique de
modèle effectif. Le framework est incorporé dans l’outil CARTIER. Le nom CARTIER vient
du célèbre découvreur français originaire de Saint-Malo qui a découvert les terres du Québec
au Canada. L’entrée principale du framework est la spécification du domaine de la modélisa-
tion donnée par unmétamodèle d’entrée. Le input métamodèle MMin spécifie un ensemble de
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modèlesM. Le métamodèle d’entrée se compose d’un ensemble de types (classe avec des pro-
priétés, des enumerations, primitive) pour former des modèles d’un langage de modélisation.
Concrètement, le métamodèle d’entrée est stocké comme une instance du métamodèle ECORE

qui fait partie de la norme de l’industrieEclipse Modeling Framework (EMF) [58]. Les modèles
eux-mêmes sont stockées sous forme de fichiers XMI [10] fichiers représentant des instances du
métamodèleEcore.

Les sources hétérogènes de connaissanceslimitent le domaine de la modélisation spécifié
par un métamodèle :

– TypesTreq et propriétésPreq requisesdans le métamodèle d’entrée. L’ensemble des types
et propriétés requis aide à extraire un sous-ensemble du métamodèle d’entrée appelémé-
tamodèle effectif. Le métamodèle effectif précise le sous-ensemble de modèlesM1⊂M. Il
peut y avoir plusieurs sources possibles pour l’ensemble des types et propriétés requises :
– L’analyse statique d’une transformation modèle donne un ensemble de types et de pro-

priétés dans le métamodèle d’entrée effectivement manipulé par la transformation.
– Un ensemble de modèles conformes au métamodèle d’entrée est une autre source de

types et propriétés requises. Visiter les modèles dans l’ensemble nous donne un en-
semble de types et propriétés utilisées dans le métamodèle.Un exemple typique de cette
initialisation dans le monde réel pourrait être dans une salle de classe pour la concep-
tion orientée objet en utilisant UML . Le professeur peut faire remarquer aux élèves les
types et propriétés requises, utilisé à créer UML , en visitant automatiquement tous les
objets d’un ensemble de modèles.

– Contraintes sur métamodèleC sont exprimés sur un métamodèle d’entrée en utilisant un
langage de contraintes textuelles, telles queObject Constraint Language (OCL) [114]. Ces
contraintes encodent des restrictions qui ne peuvent être spécifiées en utilisant un modèle
Ecore. Nous illustrons ce dans l’ensembleM2⊂M.

– Les sources spécifiques à un domaine de connaissancespeuvent également aider à défi-
nir le domaine de la modélisation effectif. Nous en présentons quelques-unes ci-dessous :
– Le modèle partiel mp est un modèle partiellement spécifié qui utilise les métamodèle

d’entrée. Par exemple, un éditeur de modèle graphique permet à un utilisateur de créer
des modèles dans un langage de modélisation telles que les machines d’état UML . Un
modèle incomplet dans l’éditeur est un modèle partiel dans langage machine d’état de
UML . Le modèle partiel peut ne pas respecter toutes les contraintes du métamodèle
UML . Par conséquent, un modèle partiel est souvent exprimé comme une instance d’un
version relaxée du métamodèle d’entrée. Le modèle partiel définit le sous-ensemble
M3⊂M.

– La stratégie de couvertureSaider à définir et générer desfragments de modèles[55]
qui couvrent un large éventail d’aspects structurels dans le métamodèle d’entrée. Par
exemple, la stratégie d’une partition de domaine d’entrée permet de générer un en-
semble de fragments modèlesMF qui couvrent les partitions sur tous les types et
les propriétés du métamodèle d’entrée. Ces fragments de modèles aider à définir un
domaine de modélisation effectif pour uncoverage-based testingd’une transforma-
tion de modèles. Tous les modèles de test qui répondent à une stratégie de couverture
contiennent le modèle de fragments générés par la stratégie. Les fragments de modèles
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sont exprimé dans un langage de modélisation qui permet de préciser des rangs sur
les propriétés d’un métamodèle d’entrée. Une stratégie de couverture définit le sous-
ensembleM4⊂M.

– La pré-condition d’une transformation pre(MT) est un ensemble d’invariants sur
le métamodèle qui est spécifique à une transformation de modèles MT. Une transfor-
mation de modèles ne peu souvent pas être conçue pour transformer tous les modèles
spécifiés par son métamodèle d’entrée. Par exemple, la transformation des modèles de
diagramme de classe vers des modèles entité relation diagramme [22] exige que toutes
les classes dans le modèle d’entrée aient au moins un attribut principal. LeOCL [114]
est souvent utilisé pour exprimer des pré-conditions. Un pré-condition définit le sous-
ensembleM5⊂M.

L’intersection de toutes les sources de connaissances définit le domaine de la modélisa-
tion effectif. Le domaine de la modélisation effectif est l’ensemble des modèles définis par
Me f f ective←M∩M1∩M2∩M3∩M4∩M5.

La méthodologie pour la découverte de modèles utilise les sources de connaissances pré-
sentées ci-dessus pour générer automatiquement des modèles effectifs dans le domaine de la
modélisation. Nous suivons les étapes ci-dessous :
Étape 1. Identification métamodèle effectif :Nous élaguons les métamodèle d’entréeMMin

pour obtenir le métamodèle effectifMMe f f ectiveutilisant un algorithme d’élagage de métamodèle[141].
Le métamodèle effectifs contient l’ensemble des typesTreq et propriétés requisesPreq fournies
en entrée et toutes ses dépendances obligatoires calculé par l’algorithme de l’élagage métamo-
dèle. Tous les types de biens inutiles et sont éliminés.MMe f f ectiveest un super type deMMin

d’un point de vue théorie de typage et un sous-ensemble deMMin d’un point de vue théorie des
ensembles. La taille du métamodèle effectifMMe f f ectiveest souvent beaucoup plus petite que la
taille du métamodèle d’entréeMMin.
Étape 2. Transformation de la spécification de domaine effectif à A LLOY : La spécification
de domaine effectif de la modélisation est définie par un certain nombre d’artefacts. Elle est
d’abord définie par le métamodèle effectifMMe f f ectiveet contrainte par la connaissance d’une
ou plusieurs sources : (b) Contraintes sur métamodèleC (b) Modèle partielmp (c) Modèle frag-
mentsMF de la stratégie de couvertureS, et (d) Pré-conditionpre(MT) d’une transformation
de modèlesMT. Nous transformons ces artefacts exprimés dans des langages différentes, éven-
tuellement à unconstraint satisfaction problem (CSP) dans la langage pour la spécification
formelle ALLOY [71] [72]. Le formalisme théorique pour exprimer le CSP est le logique rela-
tionnelle de premier ordre.
Étape 3. Génération de modèles dans un domaine de modélisation effectif : Nous résol-
vons le CSP enALLOY pour générer des modèles effectifs dans le domaine de la modélisation.
CARTIER atteint cet objectif en invoquant KodKod [53] en ALLOY de transformer le CSP à
Boolean Conjunctive Normal Form (CNF) . Nous invoquons une solveur de satisfiabilité (SAT)
comme MiniSAT [112], ZChaff [159] pour résoudre le Boolean CNF. Enfin, nous transformons
des solutions à faible niveau de la CNF vers des modèles conformes au métamodèle d’entrée
MMin.

La génération de modèles dans un domaine de modélisation estsouvent orientée vers un ob-
jectif. Nous devons nous assurer que l’objectif est atteintde manière cohérente en tenant compte
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FIG. 8 – Un framework pour la découverte automatique de produitseffectifs

de tous les facteurs déterminants. Une question typique peut être quel est l’effet d’un solveur
SAT sur la qualité de la solution ? Pour répondre à cette question nous avons besoin de réali-
ser des expériences qui génèrent plusieurs solutions pour le même problème de satisfaction de
contraintes. Il existe de nombreux autres facteurs pour lesquels nous effectuons des expériences
rigoureuses pour valider l’efficacité de la découverte. Dans cette thèse, nous réalisons des expé-
riences dans les domaines d’application suivants :

1. Génération de modèles de teste pour les transformation demodèles

2. Complétion du modèle partiel dans les éditeurs de modèle de domaine spécifique

0.5.2 Un framework pour la découverte automatique de produits effectifs

La figure 8 présente la vision globale du framework pour la découverte de produits effectifs.
Le framework est incorporé dans l’outil AVISHKAR. AVISHKAR en hindi signifieinventionet
représente capacité de l’outil a découvrir les produits dans une LPL. L’entrée principale du
framework est la spécification d’un domaine de modélisationdonnée par unfeature diagramou
feature model. Le feature diagram FDspécifie un ensemble de produitsP. LesFeature Diagrams
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(FD) introduits par Kang et al. [78] représentent tous les produits (ou configurations) d’un LPL
en termes de features qui peuvent être composés. Les Featurediagrams ont été formalisés pour
effectuer des analyses des LPL[136]. Dans [136], Schobbenset al. proposent une définition
générique formelle de FD qui subsume les nombreux dialectesFD existants. Nous définissons
un FD comme suit :

– Un FD se compose dek featuresf1, f2, ..., fk
– Un featurefi peut être associé à un morceau de logiciel.
– Les Features sont organisés dans une relation parent-enfant dans un arbreT. Un feature

sans enfant est appelé une feuille.
– Les relations parent-enfant entre les featuresfp et fc sont classée comme suit :

– Mandatory- enfant featurefc est requis sifp est sélectionné.
– Optional - enfant featurefc peut être sélectionné sifp est sélectionné.
– OR- au moins un des enfantsfc1, fc2,..,fc3 de fp doit être sélectionné.
– Alternative (XOR)- l’un des enfantsfc1, fc2,..,fck de fp doit être sélectionné.

– Relations à travers l’arbre entre deux featuresfi et f j dans l’arbreT sont classés comme
suit :
– fi requiresf j - La sélection defi dans un produit implique la sélection def j .
– fi excludesf j - fi et f j ne peuvent pas faire partie du même produit et sontmutuellement

exclusives.

A partir du FD nous créons des produits / configurations de features.

Un certain nombre de sources hétérogènes de connaissancescontraignent le domaine
spécifié par un FD

– Contraintes textuelsC exprimée sur un ensemble de features. Les contraintes sont ex-
primées textuellement quand elles ne peuvent pas être directement encodées dans leFD.
Ces contraintes précisent le sous-ensembleP1⊂ P

– Produit partiel p est un ensemble de features choisis dans le produit. L’ensemble des
features peut nécessiter la sélection d’autres features pour obtenir un produit complet. Le
produit partiel précise le sous-ensembleP2⊂ P

– Stratégie T-wiseS est une stratégie de génération de produits pour détecter des défauts
dans les lignes de produits logiciels [90] [120]. Le grand nombre de produits visés par un
feature diagram peut être échantillonné en utilisant une stratégie tels queT−wise. L’ob-
jectif est de générer un nombre minimal de produits qui couvrent a toutes les interactions
T−wiseentre les features. Par exemple, unFD avec 25 options (voir la figure 5) spécifie
au moins 225 produits. Une stratégie 2−wiseoùT = 2 permettra de sélectionner de seule-
ment 4× 25C2 = 300 produits qui couvrent toutes les interactions entre paires de features.
La stratégieT−wisepour une valeur particulière deT spécifie le sous-ensembleP3⊂ P.

L’intersection de toutes les sources de connaissances définit un domaine de la modélisation
effectif. Le domaine de modélisation effectif est l’ensemble des produits définis parPe f f ecti f←
P∩P1∩P2∩P3.

La méthodologie de découverte utilise les sources de connaissances présentées ci-dessus
pour générer automatiquement des produits dans le domaine de la modélisation effectifFD. La
génération se fait selon les étapes suivantes :
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Étape 1. Transformation du feature diagram vers ALLOY : Nous transformons un feature
diagram vers un problème de satisfaction de contraintes vers la langage formelle ALLOY [72]
[71].
Étape facultative. Transformation des produits partiels vers ALLOY et leur complétion :
Nous pouvons transformer un produit partielp vers ALLOY . Cela génère un prédicat ALLOY

qui représente des informations partielles sur les features sélectionnés dans le produit partiel.
On peut alors résoudre le modèle ALLOY pour générer un ou plusieurs produits complet.
Étape 2. Génération de tuplesT−wiseet la détection de tuples valide à l’aide d’ALLOY :
Dans cette thèse nous nous concentrons sur la création de produits qui couvrent les interaction
T−wiseentre features. Nous avons d’abord généres les prédicats ALLOY représentent les tuples
T−wiseet détecte ceux qui ne sont pas compatibles avec les contraintes dans leFD.
Étape 3. Gestion de la taille des produitsNous proposons les stratégiesdivide-and-compose
pour générer un ensemble de produits qui couvre les tuples defeatures représentant les interac-
tionsT-wise. L’approche divise le problème de satisfaction pour tous les tuples. Nous résolvons
de multiples modèles ALLOY avec ces sous-ensembles pour obtenir des ensembles de produits.
Les ensembles de produits sont fusionnés en un ensemble finaldes produits.

Le framework peut-il constamment decouvrir des produits capables d’atteindre leurs objec-
tifs ? Par exemple on peut se demander quel est l’effet de la stratégie divide-and-compose sur
la redondance des produits générés ? Pour répondre à cette question nous avons besoin de gé-
nérer des produits compte tenu de tous les autres facteurs déterminants. Dans cette thèse, nous
validons notre framework a l’aide d’expériences rigoureuses dans les domaines d’application
suivants :

1. Génération de produits de tests qui satisfont aux critères de interactiont-wise.

2. Avec nos travaux en cours, nous montrons que notre framework peut effectivement échan-
tillonner l’espace Qualité de Service (QoS) d’un service web dynamique. La variabilité du
service web dynamique est modélisée avec unFD.

0.6 Contributions

La définition des frameworks découverte de modèles et de produits ont conduit aux contri-
butions scientifiques dans cette thèse. Nous expliquons cescontributions dans les sous-sections
suivantes. Nous citons les publications pertinentes des conférences par des pairs et des revues.

0.6.1 Contributions à la découverte automatique modèle effectif

Contribution 1.1 Nous présentons un framework global pour la génération de modèles effectifs
de taille finie a partir de tout langage de modélisation et contraints par des sources hétérogènes
de connaissance. Le framework est incorporé dans l’outil CARTIER. Nous utilisons le langage de
spécification formelle ALLOY pour sa capacité a définir des contraintes sur les graphes d’objets
et donc a représenter le métamodèle comme un problème de satisfaction de contraintes. Cette
contribution résume la réponse à tous les défis présentés dans la section 0.4 pour un domaine de
modélisation spécifié par un métamodèle. L’outil CARTIER, est présente dans [130], [138].



Résumé en français
(French Summary) 31

Contribution 1.2. Le framework transforme touts les éléments d’un métamodèlevers ALLOY

pour la satisfaction de contraintes. Il traite également des métamodèles avec héritage multiple
en l’aplatissant vers l’héritage simple en ALLOY . En outre, le framework présente la transfor-
mation de contraintes imposées par multiple containers, opposite properties, identify properties,
et composite properties vers des faits ALLOY . Cette contribution adresse défi 2 de la section 0.4.
La transformation vers ALLOY a été brièvement décrite dans deux de nos contributions [138]
and [140].
Contribution 1.3. Le framework est construit en utilisant Kermeta pour traiter simultanément
traiter des modèles venant de langage différents. Chaque source de connaissance est exprimée
comme un modèle dans un langage de modélisation. Par exemple, des fragments de modèle
sont exprimés en tant que modèles d’un langage de fragment modèle. Kermeta peut charger,
enregistrer et manipuler simultanément des modèles conformes a des métamodèles différents.
Par conséquent, CARTIER, écrit en Kermeta, transforme la connaissance des différents modèles
vers des faits dans le langage cible ALLOY . Cette contribution adresse le défi 3 de la section 0.4
et est publié dans nos papiers [138] [103].
Contribution 1.4. Nous présentons un algorithme pour élaguer un métamodèle[141] qui utilise
un ensemble de types et propriétés requises pour générer un métamodèle effectif à partir d’un
grand métamodèle. Le métamodèle effectif est souvent très petit et peut facilement être trans-
formé vers ALLOY comme un problème de satisfaction de contraintes. Cette contribution porte
sur une partie du défi 2 de la section 0.4 est présentée dans le papier [141].
Contribution 1.5. Le framework inclut la possibilité de définir des bornes pourle nombre d’ob-
jets de chaque type dans le modèle. Il transforme aussi les solutions du solveur SAT en AL-
LOY vers des modèles de haut niveau conformes à un métamodèle. Lagénération de modèles
conformes à des sources hétérogènes de connaissance permetde déterminer les incohérences
le cas échéant. Des sources incohérentes de connaissance sont soit modifiées ou supprimées à
partir de la spécification du domaine de modélisation effectifs. Cette contribution porte sur les
défis 4 et 5 de la section 0.4 et est publiée dans [138] et [140].
Contribution 1.6. Nous validons la pertinence des modèles générés avec les expériences sui-
vantes :

– Génération de modèles de test pour des transformations de modèles :Nous générons
des milliers de modèles pour une transformation représentative. Nous utilisons l’analyse
de mutation [107] pour démontrer que les modèles de test obtenus peuvent détecter 93%
des bugs par rapport à une génération aléatoire qui détecte 70% des bugs. Nous montrons
que la stratégie de partitionnement n’est pas affectée par divers biais tels que la dépen-
dance au solveur ALLOY . L’étude expérimentale est publié dans [139] et la version journal
en revue [128].

– La complétion du modèle partiel dans les éditeurs de modèle de domaine spécifique :
Nous utilisons notre framework pour produire des recommandations et compléter les mo-
dèles partiels dans l’éditeur de modèle AToM3 [67]. Nous montrons que notre framework
peut automatiquement compléter des modèles partiels dans un éditeur de modèle. Les
expériences montrent que cela peut être fait pour les petitsexemples dans des délais rai-
sonnables. Ces travaux sont publiés dans [131], [140].

Cette contribution adresse le défi 6 de la section 0.4.
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0.6.2 Contributions à la découverte automatique produits effectif

Contribution 2.1. Nous présentons un framework global pour la production de produits effectifs
dans une ligne de produit logiciel spécifié par un feature diagram. Le framework est incorporé
dans l’outil AVISHKAR. Le framework contient la transformation d’un feature diagram vers
un problème de satisfaction de contraintes en ALLOY . Le framework invoque un solveur sur le
modèle ALLOY pour automatiquement générer des produits conformes au feature diagram. Cette
contribution résume la réponse à tous les défis dans la section Section 0.4 pour un domaine de
modélisation spécifié par un feature diagram.

Contribution 2.2. Étant donné un ensemble des features sélectionnes (disponible / non dispo-
nible) le framework utilise ALLOY pour détecter si un produit peut être créé a partir de cette
sélection. Une contrainte par exemple dit que la featuref1 est présente dans le produit, tandis
que f2 ne devrait pas être présente. Sif2 est un élément obligatoire alors AVISHKAR utilise AL-
LOY pour détecter que la contrainte n’est pas valide. Cette contribution adresse le défi 5 de la
section 0.4.

Contribution 2.3. Passage a l’échelle de la génération de produits de test à partir d’un fea-
ture diagram Des travaux précédents ont transforme des FD vers un ensemble de contraints. Par
exemple, Cohen et. al. ont appliqué les tests d’interactioncombinatoire pour systématiquement
sélectionner les configurations [42] a partir d’un feature diagram. Ils considèrent les différents
algorithmes afin de calculer les configurations qui répondent à des critères pair-wise et t-wise
[41]. Les contraintes imposées en raison de relations entres les features sont résolues en invo-
quant les SAT solveurs tels que ZChaff [159]. Toutefois, leur approche n’est pas très extensible
si l’on considère les feature diagrams de grande taille. Notre framework contient des stratégies
divide-and-composevisant à scinder le problème de la génération de produits de test satisfai-
santT−wiseen sous-problèmes. L’outil AVISHKAR résout les sous-problèmes et fusionne les
résultats dans un petit ensemble de produits qui contiennent tous les tuples valides requis par le
critèresT−wise. Ce mécanisme rend notre méthodologie évolutive pour générer des produits
dans une ligne de produits logiciels. Cette contribution adresse le défi 4 de la section 0.4.

Contribution 2.4. Validation de l’efficacité des produits de test: Il est nécessaire de réaliser
des expériences qui valide la pertinence des produits générés à l’aide de notre framework. Nous
effectuons des expériences pour générer des produits d’un feature diagram AspectOPTIMA.
Nous montrons qu’une certaineredondanceest introduite dans les produits en raison de straté-
gies de divide-and-compose. Dans les travaux en cours, nouseffectuons des expériences pour
générer des configurations différentes d’une orchestration dynamique de services Web. Nous
démontrons que la qualité de service d’un service compositevarie en fonction de différentes
configurations du web-service. Ces expériences d’analyse nous aident à identifier une méthodo-
logie effectif pour la définition d’accords contractuels pour les services Web dynamiques.

Les contributions ci-dessus sont publiées dans [120]. Le papier [14] applique l’outil de dé-
couverte de produits AVISHKAR à l’analyse des variables de la QoS dans une orchestration de
services web. L’article [80] a été soumis pour vérifier l’approche d’une manière globale avec les
grandes études de cas.
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0.7 Organisation de la thèse

La thèse comprend 6 chapitres, dont l’introduction. Les 5 chapitres suivants sont organisés
comme suit :

– Chapitre 2 : nous introduisons le contexte de IDM et l’état de l’art dans la découverte
automatique de modèles effectifs dans un domaine de modélisation.

– Chapitre 3 : nous présentons la découverte automatique de modèles effectifs dans le do-
maine spécifié par un métamodèle.

– Chapitre 4 : nous présentons une validation empirique de l’approche présente en Chapitre
3. En particulier, nous nous concentrons sur deux domaines d’application pour la vali-
dation : (a) la génération des modèles du test pour une transformation de modèle (b) la
complétion partielle de modèle dans l’éditeur de modèle AToM3

– Chapitre 5 : nous décrivons l’approche de découverte automatique de produits de test
dans une LPL. Nous validons empiriquement le framework pourla redondance dans les
produits générés.

– Chapitre 6 : nous résumons notre travail et ses perspectives. Nous décrivons brièvement
nos travaux en cours sur l’analyse de la variabilité de qualité de service dans un service
de web dynamique.
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Chapter 1

Introduction

Model-driven engineering (MDE) is an approach to specify, construct, validate and maintain
complex software systems using first class artifacts calledmodels. MDE has emerged from
a number of areas in software development such as object-oriented analysis and design lan-
guages, object-oriented methodologies [24] [73] [127], and Computer-Aided Software Engi-
neering (CASE) endeavours in the 80s and 90s to automate several steps in software engineering
[113] [27].

Models aregraphs of inter-connected objectsin a modelling domain. A modelling domain
defines aset of modelswhere each model is constructed using a common set of concepts and re-
lationships. For instance, in this thesis we consider the specification of two modelling domains:
(a) metamodelsthat specify a set of models in a modelling language (b)feature diagramsor
feature modelsthat specify a set of product models or simply products in a Software Product
Line (SPL). Very often the creation of useful oreffective modelsin a modelling domain require
the satisfaction of constraints from heterogeneous sources. For instance, creating a workflow
model for a business process using the well-knownUnified Modelling Language (UML ) activ-
ity diagram requires the model to satisfy UML well-formedness rules, business logic, economic
constraints, quality of service constraints, and securityrestrictions. Human modellers with expe-
rience incrementally create such effective models by tacitly ensuring that the models arecorrect
by constructionand satisfy constraints from heterogenous sources. Still and all, this process
is extremely tedious and sometimes impossible if there is a need to create thousands of mod-
els. Can we automate the creation of effective models given the heterogenous sources of
knowledge?This is the question that intrigues us and the subject of thisthesis.

The introduction is organized as follows. The notion of effective model discovery situates
itself in theglobal contextof discovering effective structures in science and engineering. We
briefly describe this global context in Section 1.1. This thesis addresses the problem of automat-
ing discovery in the contemporary and specific context of MDEwhich we describe in Section
1.2. A number of scenarios in MDE necessitate generation of effective models. Our motivation
stems from these scenarios that we describe in Section 1.3. In Section 1.4, we present the gen-
eralproblem contextand its challenges. We present our thesis and describe the methodology for
automatic effective model and product discovery in Section1.5. We enlist the contributions of
our thesis in Section 1.6. Finally, we present the organization of the thesis in Section 1.7.
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Figure 1.1: Effective Structures in Scienctific Discovery:(a) Soil Food Web (b) Tumor Suppres-
sion Pathway

1.1 Discovery of Effective Structures in Science and Engineering

Scientific discoveryoften culminates into representing structure in nature asnetworks of entities
or graphs of objects. For instance,

• Food websare representations of the predator-prey relationships between species within
an ecosystem or habitat. A common example is thesoil food webshown in Figure 1.1.
The soil food web is often found in a garden bio-compost.

• Biochemical reaction networks or metabolic pathways represent vital molecular ex-
changes in living beings. The widely studiedtumor suppressor pathwayshown in Figure
1.1 (b) illustrates the crucial role of protein p53 in cell death. Cell death is important in
order to regulate cancerous growth.

Knowledge from experiments, data analysis and mental tacitlead to the discovery of such
effective structuresin nature. The existence of effective structures is not limited to the virtuosity
of nature. We humans are endowed with the ability to represent and create effective structures
such as buildings, bridges, robots, and complex software.

Design in engineeringoften results into representing effective man-made structures as graphs
of objects. For instance,

• Electronic circuits diagrams represent a network of electrical components that achieve
a given purpose. TheFM Receiver Circuitshown in Figure 1.2, for instance, is used in
millions of radio devices.
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Figure 1.2: Effective Structures in Engineering: (a) FM Radio Circuit (b) Observer Design
Pattern

• Software Design Patternsrepresent general reusable solutions to commonly occurring
problems in software design. They are often represented asclass diagramsin object-
oriented software engineering.Theobserver patternin Figure 1.2 (b) is a common pattern
in software requiring distributed event handling. The well-known photo editing program
Adobe Photoshop is one such software product.

Very much like discovery in science, design in engineering is guided by knowledge from
a number of sources coupled with the creativity of an engineer. Can this process of scientific
discovery or design in engineering using various sources ofknowledge beautomated? This
question has been a subject of study for several decades withthe advent of the modern computer.

Computer programs have been used to discover structure in nature. For instance, inspired
by Karl Popper’s logic of scientific discovery [123], Pat Langley, Herbert Simon, G. Bradshaw,
and Zytkow developed several computer programs such as Bacon, Glauber, Dalton, and Stahl
described in their book [94]. These programs were guided by heuristics to successfully re-
discover historical laws in chemistry.

Evolutionary computing approaches have been develop to automate design in engineering
such as generation of electronic circuits [88]. Computer programs implementing an evolutionary
approach contest for the "Humies Award" conferred each yearat the GECCO conference. The
award of $10,000 is given to the approach with most human-competitive results. In the soft-
ware engineering community, recent conferences such as theAutomated Software Engineering
(ASE) conference provide competitive venues for presenting approaches to generating software
structures.

In this thesis, we address the question of automatic discovery in the contemporary context
of Model-driven Engineering of complex software systems.



38 CHAPTER 1. INTRODUCTION

1.2 Context: Model Driven Engineering

MDE [110] aims to grease the wheels of complex software creation using first class artifacts
calledmodels. The MDE philosophy is using models to represent important artifacts in a system
such as requirements, high-level designs, data structures, views, interfaces, model transforma-
tions, test cases, and implementation-level artifacts such as source code. A model is constructed
in a modelling domainthat captures a set of common concepts and relationships. The construc-
tion of a model in a modelling domain may be further constrained using well-formedness rules
and constraints from various sources.

The general notion of a modelling domain can bespecializedin many ways. A precise
specification of concepts and relationships that defines a set of models is a modelling domain.
For instance, ametamodelspecifies the modelling domain of a modelling language. The well-
known Unified Modelling Language (UML ) modelling language [116] has its own metamodel
that specifies the set of all UML models. Another, example of a modelling domain is afeature
diagram or feature modelthat specifies a set of products in a Software Product Line(SPL).
Models in a modelling domain can be loaded/stored, manipulated, and transformed to other
models/implementation artifacts to solve software problems.

MDE provides a number of software processes and technologies to allow creation of mod-
elling domains and the transformation of its models. Historically, the Model-driven Architecture
(MDA) trademark marketed by the Object Management Group (OMG), presents a model-driven
approach to system development. The MDA approach begins development of a modelling do-
main for platform-independent models (PIMs), which are incrementally transformed or refined
into lower-level platform specific models (PSMs) in anothermodelling domain. The PSMs are
reified into implementation artifacts such as implementation code. This automatic construc-
tion of systems from high-level models allows software engineering expertise to be captured as
reusablemodel transformationsapplied more reliably and efficiently. Currently, the widely ac-
cepted framework for specifying modelling domains is theEclipse Modeling Framework (EMF)
[58]. For instance, metamodels are created in the EMFEcore format to specify the domain
of a modelling language. Model transformation [142] languages such as the imperative Ker-
meta [82] [108], rule-based ATL [76] [75] [3], graph grammarbased AToM3 [67], Viatra [156]
transform models. Model transformation languages are expected to conform to the Query-View-
Transformation (QVT) standard [75]. Different types of model transformations can be created
using these languages as classified in [44]. Model transformations may transform models within
the same modelling domain (endogenous transformations), between different modelling do-
mains (exogenous transformations) and even realize the classical view of generating executable
code from a high-level model.

Our focus in this thesis is the automatic discovery or computer-assited discovery of models
in a modelling domain.

1.3 Motivation: Why the Need for Automatic Model Discovery?

Our motivation for automatic discovery in the general context of model-driven engineering stems
from existing computational discovery endeavors in heterogenous domains. Computational dis-
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Figure 1.3: A Model Transformation

covery approaches in these domains range from systems biology [33] [126], to engineered physi-
cal systems [97] [132] [56], [88]. We see automatic discovery of effective models in a modelling
domain as general framework subsuming existing approachesto effective structural discovery
in heterogeneous areas. MDE of software systems is no exception. In this thesis, we investigate
three scenarios in MDE as described below:

1.3.1 Scenario 1: Test Generation for Model Transformations

Model transformations are core software artifacts in MDE. Asimple model transformationMT
takes input models conforming to an input metamodelMMI and produces output models con-
forming the output metamodelMMO as shown in Figure 1.3. Not all models specified by
the input metamodel can be processed by the model transformation. Therefore, we compose
pre-conditionspre(MT) that restrict some models from being processed by the model trans-
formation. The output models must also satisfy a set of constraints called the post-condition
post(MT). The model transformation itself is built using knowledge from a set of requirements
MTRequirements.

Testing a model transformation requires input model that can detect bugs in the transforma-
tion MT. Manually creating such test models is tedious since they must be graphs of objects
that must conform toMMI , pre(MT), and use information fromMTRequirements. Manual creation
becomes impossible when we need to create thousands of such test models that encode differ-
ent test objectives. Therefore, there is a clear need to automate the generation of test models
that satisfy knowledge from various sources such asMMI , pre(MT), and use information from
MTRequirements. The automatic generation of input models exalts to the level of automatic dis-
covery of test models if we validate that they can indeed detect bugs in a transformation. We
can qualify the effectiveness of test models via techniquessuch asmutation analysisfor model
transformations [107]. Based on a description of this scenario, we askhow do we generate test
models and qualify their bug detecting effectiveness?

1.3.2 Scenario 2: Partial Model Completion in a Model Editor

Modellers often use model editors to incrementally build models. For instance, the TopCaseD
editor [54] can be used build UML models as shown in Figure 1.4. The model shown is an
incomplete UML state machine. The model does not have an initial state whichviolates a well-
formedness rule. There are infinite possible ways to complete the model such that it becomes a
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Figure 1.4: Partial Model in the TopCaseD UML Model Editor

valid UML state machine model and satisfies all the well-formedness rules of a state machine.
What is probably more interesting is the nearest consistentUML state machine that contains all
elements of the partial model. There may be a number of possibilities to complete such partially
specified models. We can relate automatic model completion to the automatic code completion
problem in programming environments [15]. This scenario raises the question:How do we
automatically discovery complete models or recommendations to complete partial models?

1.3.3 Scenario 3: Generation of Products in a Software Product Line

A Software Product Line (SPL) references to a set of productssharing a common, managed set of
features that satisfy the specific needs of a particular mission [37]. A Feature Diagram(FD) or a
feature modelspecifies of a modelling domain for a SPL. Feature diagrams introduced by Kang
et al. [77] [78] compactly represent all the products of an SPL in terms of features which can be
composed. A FD consists ofk featuresf1, f2, ..., fk and dependency constraints between features.
For instance, selection of some features in a product may compulsorily link the selection of
other features. Further, some of the features may be associated with a software asset such as
web service. Consider the FD for a car crash crisis management system in Figure 1.5. The FD
contains 47 features where 25 of them are optional. Some of the features are associated with
services or software assets. The FD describes 335,54,432 different configurations of features.
Can software assets in all configurations be composed into a valid product? Answering this



CHAPTER 1. INTRODUCTION 41

Crisis Management 
System

Communication

Crisis Type

GSMGPS

Legend

Mandatory

Optional

XOR

Feature

Service 

Asset

InternalResource

FirstAidMaterial
HumanResource

Coordinator

Observer

Worker

Paramedic

Witness
HumanVictims

Small

Area

Sudden Crisis

Major Accident

Car Crash
External 

Service Used

External 
Company

Governmental 
Services

Medical 
Services

Garage Tow 
Truck

Private 
Ambulance 
Company

Public Hospital

Hospital Worker

Doctor
Ambulance

Police

PoliceMan

Fire department

Fire

IT-Option

Database 
System

Authentication 
System

Surveillance 
System

Mission

Remove Obstacle

Rescue

Observe

Transport

Investigation

Nurse the wounded

Sort the wounded

CrisisType

Area

Police

Fire

Figure 1.5: A Feature Diagram for Car Crash Crisis Management System

requires creating either all products or a representative subset of all products. For instance, what
are the set of all products that contain all valid pairwise interaction between features? Creating
these products will help us reveal invalid products. Manually creating products that satisfy all
FD constraints is very tedious. Therefore, we ask,how do we automate product generation in a
software product line for various objectives?

1.4 Problem Context and Challenges

We are motivated by the need for automatic generation of effective models in a modelling do-
main. The problem context for automatic model discovery is shown in Figure 1.6. The context
identifes the following inputs:

• Specification of a Modelling Domain: The modelling domain specifies a set of models
M. Examples of modelling domain specifications are metamodelfor modelling languages
and feature diagrams for SPLs.

• Heterogenous Sources of Knowledge:Heterogeneous sources of knowledge
Source1,Source2, ...Sourcek possibly in different modelling languages specify subsetsof
the modelling domainM1,M2, ..,Mk. The intersection of these subsets
M1,M2, ...,Mk is the effective modelling domain represented by a set of effective models
Me f f ective. We can see the heterogeneous sources of knowledge as a set ofconstraints in
different languages that limit the set of modelsM to a subsetMe f f ective.

Given these inputs we ask: What is the automatic discovery mechanism that can create
models in the setMe f f ective? This is the global question that intrigues us.
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Figure 1.6: Problem Context for Automatic Model Discovery

This question gives rise to a number of challenges pertaining to automatic model discovery.
We describe the most important challenges below:

Challenge 1 Discovery mechanism: Generative vs. Constraint Satisfaction? Our research
began with the exploration of existing mechanisms to automate the generation/discovery of mod-
els in a modelling domain. We classify existing approaches as eithergenerativeor those based
on constraint satisfaction. The question was which approach is promising?

A generative approach attempts to incrementally create models in a modelling domain by
object instantiation. For instance, in [29], the authors present an imperative algorithm and a tool
to generate models that conform only to theEcore specification of a metamodel. The approach
does not ensure the satisfaction of constraints from heterogeneous sources of knowledge such
as well-formedness rules. Similarly, in Ehrig et al. [52], the authors propose a graph grammar
based approach to generate models that conform to a class diagram (orEcore model). These
models do not conform to anyOCL constraints on the meta-model.

Constraint satisfaction based approaches attempts to transform a modelling domain to a set
of variables and constraints on them. The set of constraintsis solved using a constraint solver
[91]. One or more low-level solutions are transformed as models of the modelling domain. This
approach has been used in domain-specific settings such as software testing. The Korat (Chan-
dra et al.) [28] system is able to generate data structures implemented in the Java Collections
Framework that satisfy predicates. Similarly, Sarfraz Khurshid in his Ph.D. thesis [83] presents
the TestEra tool for generating Java data structures such aslinked lists, tree maps, hash sets,
heap arrays, and binary trees for testing. Both approaches are limited to standard data struc-
tures and not to the more generic notion of models. The most intriguing approach was the tool
UML2Alloy [92]. The tool attempts to transform UML class diagram models, that largely resem-
ble metamodels, to the formal specification language ALLOY [72]. One may then use ALLOY
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to analyze UML models by generating examples and counterexamples. Although the tool is not
directly related to model discovery it aims to transform class diagram constructs to a constraint
satisfaction problem in ALLOY . However, UML2Alloy does not transform complex metamodel
constructs such as multiple inheritance and multiple containments. UML2Alloy fails to solicit
the use of ALLOY when the size of the UML model is large making the approach unscalable.

Generative approaches create models incrementally and cannot satisfy constraints simul-
taneously. Therefore, a number of models may need to be rejected as they may not satisfy
constraints. Therefore, constraint satisfaction based approaches seem more promising.
Challenge 2. Transforming the specification of a modelling domain to a constraint satisfac-
tion problem The specification of a modelling domain contains a set of concepts and relation-
ships between them. These relationships might encode complex constraints that are not easily
transformed to a constraint satisfaction problem. Further, a large number of concepts and rela-
tionships may lead to a very large constraint satisfaction problem that becomes computationally
intractable.

For instance, the transformation of a metamodel specification to a constraint satisfaction
problem requires a constraints model for constructs such as:

• Multiple Inheritance

• Multiple containers for a class

• Opposite properties

• Identity properties

• Composite properties

The large size of a metamodel such as the UML with about 246 classes hampers the direct
transformation to a tractable constraint satisfaction problem.
Challenge 3. Transforming heterogeneous sources of knowledge to constraintsHeteroge-
neous sources of knowledge are specified in different modelling languages. However, for con-
straint satisfaction they all need to be transformed to constraints in a common language. For
instance, the task of generating test models for a model transformation must satisfy constraints
specified in a textual constraint language such asObject Constraint Language, test objectives,
and the pre-condition of the model transformation expressed in the language of the transforma-
tion.
Challenge 4. Generation of models must be within tractable and finite boundsThe discov-
ery of models in a modelling domain requires generation of models of finite size. What are the
heuristics to determine the appropriate size of a model thatis sufficient to satisfy knowledge
from heterogenous sources of knowledge?
Challenge 5. Detection of Inconsistent Sources of Knowledge Knowledge from various
sources may be inconsistent with respect to the modelling domain specification. How can we
detect such inconsistent sources of knowledge and eliminate them?
Challenge 6. Validating the Effectiveness of ModelsThere is a need to conductrigorous ex-
perimentsthat qualify models generated by constraint satisfaction.The qualification guarantees
whether models are effective or useful for given objectives. These experiments must consider
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the effect of various influencing factors on the quality of the generated models. For instance,
one may ask what is the influence of generating multiple models using a particular constraint
solver on their effectiveness as test models? Do different parameters to the constraint solvers
drastically affect the quality of the solutions?

1.5 Thesis

In this thesis we propose that it is possible to automatically discovery effective models in a
modelling domain. Categorically, we address the problem ofeffective model discovery in two
modelling domains: (a) Metamodels (b) Feature Diagrams. A metamodel is a very general spec-
ification of a modelling language’s domain. A metamodel can be used to specify the domain of
any domain-specific modelling language. However, legacy software systems and components
cannot always be modelled or remodeled in a modelling language from scratch. Ideally, time
tested components must be reused in their legacy form for combination with other components
to build a software system. If we see these legacy componentsas features then the possible
combinations of features is best modelled using the featurediagram language giving rise to a
Software Product Line. The coarse-grained components associated with features may be com-
bined in different configurations which are part of the feature diagram modelling domain. This
distinction between pure models in the domain of a modellinglanguage and configurations of
coarse-grained legacy components in a product line realizemodel-driven software construction
at different levels .Therefore, we consider both specifications of modelling domains in this the-
sis.

Consequently, we propose two frameworks for model discovery specializing the general
framework shown in Figure 1.6:

1. The framework for automatic effective model discovery inthe modelling domain specified
by a metamodel. This framework is embodied in the tool CARTIER.

2. The framework for automatic effective product discoveryin the modelling domain speci-
fied by a feature diagram. This framework is embodied in the tool AVISHKAR.

1.5.1 A Framework for Automatic Effective Model Discovery

The Figure 1.7 presents the overall view of the framework forautomatic effective model
discovery. The framework is embodied in the tool CARTIER. The name CARTIER comes from
the famous French discoverer from St. Malo who discovered Canadian in-lands in Quebec. The
primary input to the framework is the specification of the modelling domain given by aninput
metamodel. The input metamodel MMin specifies a set of modelsM. The input metamodel
consists of a set of types (class with properties, enumeration, primitive) to instantiate models of
a modelling language. Concretely, the input metamodel is stored as an instance of the ECORE

metamodel which is part of the industry standardEclipse Modeling Framework (EMF) [58]. The
models themselves are stored as XMI [10] files representing instances of theEcore metamodel.



CHAPTER 1. INTRODUCTION 45

Figure 1.7: A Framework for Automatic Effective Model Discovery
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Heterogenous sources of knowledgeconstrain the modelling domain specified by a meta-
model:

• Required typesTreq and properties Preq in the input metamodel. The set of required
types and properties helps extract a subset of the input metamodel called theeffective
metamodel. The effective metamodel specifies the subset of modelsM1 ⊂M. There can
be many possible sources for the set of required types and properties:

– Static analysis of a model transformation gives a set of types and properties in the
input metamodel actually manipulated by the transformation.

– A set of models conforming to the input metamodel is another source of required
types and properties. Visiting the models in the set gives usa set of types and prop-
erties used in the metamodel. A typical real-world example of this could be in a
classroom setting for object-oriented design using UML . The professor can point
out to students the required types and properties he used to create UML by visiting
every object of a set of models automatically.

• Metamodel ConstraintsC are expressed on an input metamodel using a textual constraint
language such asObject Constraint Language (OCL) [114]. These constraints encode
restrictions that cannot be specified using a diagrammaticEcore model. We illustrate this
as the setM2⊂M.

• Domain-specific sources of knowledgemay also help define the effective modelling do-
main. We present some of them below:

– Partial Model mp is a partially specified model using the input metamodel. For
instance, a graphical model editor allows an user to create models in a modelling
language such as UML state machines. An incomplete model in the editor is a partial
model in the UML state machine language. The partial model may not respect all
metamodel constraints of UML . Therefore, a partial model is often expressed as an
instance of arelaxed version of the input metamodel. The partial model defines the
subsetM3⊂M.

– Coverage StrategyS help define and generatemodel fragments[55] that cover a
wide range of structural aspects in the input metamodel. Forinstance, an input
domain partition based strategy helps generate a set of model fragmentsMF that
cover partitions on all types and properties of the input metamodel. These model
fragments help define an effective modelling domain forcoverage-based testingof
a model transformation. All test models that satisfy a coverage strategy contain the
model fragments generated from the strategy. Model fragments are expressed in a
modelling language that permits specification of ranges on properties of an input
metamodel. A coverage strategy defines the subsetM4⊂M.

– Transformation Pre-condition pre(MT) is a set of invariants on the metamodel that
is specific to a model transformationMT. A model transformation often may not be
designed to transform all models specified by its input metamodel. For instance, the
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transformation from class diagram models to entity relationship diagram models [22]
require that all classes in the input class diagram have at least one primary attribute.
The OCL [114] is often used to express pre-conditions. A pre-condion defines the
subsetM5⊂M.

The intersection of all the sources of knowledge defines theeffective modelling domain. The
effective modelling domain is the set of models defined byMe f f ective← M ∩M1∩M2∩M3∩
M4∩M5.

The methodology for model discovery uses the sources of knowledge presented above to
automatically generate models in the effective modelling domain. We enlist the steps below:

Step 1. Effective Metamodel Identification :We prune the input metamodelMMin to obtain
the effective metamodelMMe f f ectiveusing a metamodel pruning algorithm [141]. The effective
metamodel contains the set of required typesTreq and propertiesPreq provided as input and all its
obligatory dependencies computed by the metamodel pruningalgorithm. All unnecessary types
and properties are removed.MMe f f ective is super type ofMMin from a type theoretic point of
view and a subset ofMMin from a set-theoretic point of view. The size of the effectivemetamodel
MMe f f ectiveis often considerably smaller than the size of the input metamodelMMin.

Step 2. Transformation of Effective Modelling Domain Specification to ALLOY : The effec-
tive modelling domain specification is defined by a number of artifacts. It is initially defined by
the effective metamodelMMe f f ectiveand constrained by knowledge from one or more sources:
(b) Metamodel constraintsC (b) Partial modelmp (c) Model fragmentsMF from coverage strat-
egy S, and (d) Pre-conditionpre(MT) of a model transformationMT. We transform these
artifacts expressed in possibly different languages to aconstraint satisfaction problem (CSP)
in the unique formal specification language ALLOY [71] [72]. The theoretical formalism for
expressing the CSP isfirst-order relational logic .

Step 3. Generation of Models in Effective Modelling Domain :We solve the CSP in ALLOY

to generate models in the effective modelling domain. CARTIER achieves this by invoking Kod-
Kod [53] in ALLOY to transform the CSP as relational model to Boolean Conjunctive Normal
Form (CNF) . We invoke a satisfiability (SAT) solver such as MiniSAT [112], ZChaff [159] to
solve the Boolean CNF. Finally, we transform low-level solutions of the CNF to models con-
forming to the input metamodelMMin.

The generation of models in a modelling domain is often directed towards an objective. We
need to ensure that the objective is consistently achieved considering all influencing factors.
A typical question maybe what is the effect of a SAT solver on the quality of the solution? To
answer this question we need to perform experiments that generate several solutions for the same
constraint satisfaction problem. There are many other influencing factors for which we conduct
rigorous experiments to validate discovery effectiveness. In this thesis, we perform experiments
in the following application domains:

1. Test model generation for model transformation testing

2. Partial model completion in domain-specific model editors
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Figure 1.8: A Framework for Automatic Product Discovery
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1.5.2 A Framework for Automatic Effective Product Discovery

The Figure 1.8 presents the overall view of the effective product discovery framework. The
framework is embodied in the tool AVISHKAR. AVISHKAR in Hindi meansInventionwhich sig-
nifies the character of the tool to discover products in a SPL.The primary input to the framework
is the specification of the modelling domain given by afeature diagramor feature model. The
feature diagram FDspecifies a set of productsP. Feature Diagrams(FD) introduced by Kang
et al. [78] compactly represent all the products (or configurations) of a SPL in terms of features
which can be composed. Feature diagrams have been formalized to perform SPL analysis [136].
In [136], Schobbens et al. propose an generic formal definition of FD which subsumes many
existing FD dialects. We define a FD as follows:

• A FD consists ofk featuresf1, f2, ..., fk

• A feature fi may be associated with a software asset.

• Features are organized in a parent-child relationship in a treeT. A feature with no further
children is called a leaf.

• A parent-child relationship between featuresfp and fc are categorized as follows:

– Mandatory- child featurefc is required if fp is selected.

– Optional - child featurefc maybe selected iffp is selected.

– OR- at least one of the child-featuresfc1, fc2,..,fc3 of fp must be selected.

– Alternative (XOR)- one of the child-featuresfc1, fc2,..,fck of fp must be selected.

• Cross tree relationships between two featuresfi and f j in the treeT are categorized as
follows:

– fi requiresf j - The selection offi in a product implies the selection off j .

– fi excludesf j - fi and f j cannot be part of the same product and aremutually exclu-
sive.

Using the FD we create products/configurations of features.We can compose software assets.
associated with these features to derive the final product.

Heterogenous sources of knowledgeconstrain the modelling domain specified by a feature
diagram:

• Textual ConstraintsC are expressed on a set of features. Constraints are expressed textu-
ally when they cannot be directly encoded in theFD. These constraints specify the subset
P1⊂ P

• Partial Product p is a set of features chosen in product. The set of features mayrequire
the selection of other features to derive a complete product. The partial product specifies
the subsetP2⊂ P
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• T-wise StrategySis a product generation strategy to detect faults in software product lines
[90] [120]. The large number of products specified by a feature diagram can be sampled
using a strategy such asT −wise. The objective is to generate a minimum number of
products that satisfy allT−wiseinteractions between features. For instance, in aFD with
25 optional features (see Figure 1.5) specifies at least 225 products. A 2−wisestrategy
whereT = 2 will lead to generation of only 4×25C2 = 300 products that cover all pairwise
interactions between features. TheT−wisestrategy for a particular value ofT specifies
the subsetP3⊂ P.

The intersection of all the sources of knowledge defines theeffective modelling domain. The
effective modelling domain is the set of products defined byPe f f ective← P∩P1∩P2∩P3.

The product discovery methodology uses the sources of knowledge presented above to au-
tomatically generate products in the effective modelling domain of aFD. We enlist the steps
below:
Step 1. Transformation of Feature Diagram to ALLOY : We transform a feature diagram to
constraint satisfaction problem in the formal specification language ALLOY [72] [71].
Optional Step. Transformation of Partial Product to A LLOY and their Completion : We
can transform a partial productp to ALLOY . It generates an ALLOY predicate that represents the
partial information about selected features in the partialproduct. It can then solve the ALLOY

model to generate one or more complete products.
Step 2. Generation ofT −wise Tuples and Detection of Valid Tuples using ALLOY : In
this thesis we focus on generating products that satisfyT −wise interaction between features.
We first generate ALLOY predicate representsT −wise tuples and detects those that are not
consistent with the constraints in theFD.
Step 3. Scalable Generation of ProductsWe proposedivide-and-composestrategies to gener-
ate a set of products that cover all valid tuples that coverT−wiseinteractions between features.
The approach splits the satisfaction problem for all tuplesto solving subsets of tuples. We solve
multiple ALLOY models with these subsets to obtain sets of products. The sets of products are
merged into a final set of products.

Do products discovered using the framework consistently attain their objectives? For in-
stance we may ask what is the effect of divide-and-compose strategies on the redundancy of
products generated? To answer this question we need to generate products considering all impor-
tant influencing factors. In this thesis, we validate our framework using rigourous experiments
in the following application domains:

1. Test product generation that satisfy thet-wise interaction criteria

2. In ongoing/future work, we show that our framework can effectively sample the space of
Quality of Service (QoS) of a dynamic web service who’s variability is modelled as aFD.

1.6 Contributions

Both the frameworks for model and product discovery have ledto the scientific contributions in
this thesis. We explain these contributions in the following sub-sections. Some of the contribu-
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tions are extracted and pin-pointed from the methodology already described in Section 1.5. We
cite the relevant publications in peer-reviewed conferences and journals.

1.6.1 Contributions in Automatic Effective Model Discovery

Contribution 1.1 We present a comprehensive framework for generation of finite-sized effective
models in any modelling language and constrained by heterogeneous sources of knowledge. The
framework is embodied in the tool CARTIER. We use the formal specification language ALLOY

for its ability represent constraints on graphs of objects and consequently to represent he entire
metamodel as a constraint satisfaction problem. This contribution summarizes the answer to all
challenges presented in Section 1.4 for a modelling domain specified by a metamodel. The tool
CARTIER, saw its origins in our papers [130], [138].
Contribution 1.2. The framework transforms all metamodel constructs to ALLOY for constraint
satisfaction. It also deals with metamodel with multiple inheritance by flattening it to single
inheritance in ALLOY . Further, the framework presents transformation to ALLOY facts from
constraints imposed by multiple containers, opposite properties, identify properties, and com-
posite properties. This contribution addresses challenge2 of Section 1.4. The transformation to
ALLOY has been briefly described in two of our contributions [138] and [140].
Contribution 1.3. The framework is built using Kermeta modelling and model transformation
language to simultaneously process models of knowledge in different languages. Each source
of knowledge is expressed as a model in a modelling language.For instance, model fragments
are expressed as models of a model fragment language. Kermeta can load, save, and manipulate
models conforming to different metamodels at the same time.Therefore, CARTIER, written
in Kermeta, transforms knowledge from various models to facts in the target language ALLOY .
This contribution addresses challenge 3 of Section 1.4 and is published in our papers [138] [103].
Contribution 1.4. In the framework we present a metamodel pruning algorithm [141] that uses
a set of required types and properties to generate an effective metamodel from large input meta-
model. The effective metamodel is often very small and can beeasily transformed to ALLOY

as a tractable constraint satisfaction problem. This contribution addresses part of challenge 2 of
Section 1.4 and presented in the paper [141].
Contribution 1.5. The framework contains facilities to assign finite bounds tothe number of ob-
jects for each type in the model. It also transforms the solutions from the SAT solver in ALLOY

called ALLOY instancesback to high-level model conforming to a metamodel. The generation
of models conforming to heterogeneous sources of knowledgehelps determine inconsistencies
between them if any. A selection of inconsistent sources of knowledge is made and either mod-
ified or eliminated from the specification of the effective modelling domain. This contribution
addresses challenges 4 and 5 of Section 1.4 and is published in articles [138] and [140].
Contribution 1.6. We validate models generated for their effectiveness usingthe framework by
performing the following experiments:

• Test model generation for model transformation testing :We generate thousands of
models for a representative transformation. We use mutation analysis [107] to demon-
strate that test models generated usingpartitioning strategycan detect 93% of the bugs
compared to arbitrary generation 70%. We show that the partitioning strategy is not af-
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fected by various biases such as dependence on the solver in ALLOY . The experimental
study is published in [139] and journal version of the paper [128] has been submitted.

• Partial model completion in domain-specific model editors:We use our framework to
generate recommendations to complete partial models in themodel editor AToM3 [67].
We illustrate that our framework can automatically complete partial models in a model
editor. The experiments show that this can be done for small examples within reasonable
time limits. This work is published in [131], [140].

This contribution addresses challenge 6 of Section 1.4.

1.6.2 Contributions in Automatic Effective Product Discovery

Contribution 2.1. We present a comprehensive framework for generation of effective products
in a Software Product Line specified by a feature diagram. Theframework is embodied in the
tool AVISHKAR. The framework contains the transformation of a feature diagram to a constraint
satisfaction problem in ALLOY . The framework invokes a solver on the ALLOY model to auto-
matically generate products conforming to the feature diagram. This contribution summarizes
the answer to all challenges in Section 1.4 for a modelling domain specified by a feature diagram.
Contribution 2.2. Given a set of feature selections (available/not available) the framework uses
ALLOY to detect if a product can be created such that these feature selections satisfy feature
diagram constraints. A constraint for instance states thatfeaturesf1 exists in the product, while
f2 should not exist. Iff2 is a mandatory feature then AVISHKAR uses ALLOY to detect that the
constraint is invalid. This contribution addresses challenge 5 of Section 1.4.
Contribution 2.3. Scalable generation of test products from a feature diagram Feature dia-
grams have been transformed to constraint satisfaction problems for testing a software product
line. For instance, Cohen et. al.[42] have applied combinatorial interaction testing to systemat-
ically select configurations/products from a feature diagram. They consider various algorithms
in order to compute configurations that satisfy pair-wise and t-wise criteria [41]. The constraints
imposed due to feature relationships in a feature model are solved by calling SAT solvers such
as ZChaff [159]. However, their approach is not very scalable when we consider large feature
diagrams. Our framework containsdivide-and-composestrategies to split the problem of test
product generation satisfyingT−wiseinto sub-problems. The tool AVISHKAR solves the sub-
problems and merges the results into a small set of products that contain all valid tuples required
by theT−wisecriteria. This mechanism renders our methodology to be a scalable approach to
generate products in a software product line. This contribution addresses challenge 4 of Section
1.4.
Contribution 2.4. Validation of Effectiveness of Test Products: There is a need to perform
experiments that qualify the products generated using our framework. We perform experiments
to generate products for a transaction processing feature diagram AspectOPTIMA. We show
that redundancyin T −wise tuples is introduced in the products due to divide-and-compose
strategies. In on-going work we perform experiments to generate different configurations of a
dynamic web-service orchestration. We demonstrate that the QoS of a web-service varies with
different configurations of the web-service. These variable QoS analysis experiments help us
define an effective methodology to set robust contractual agreements for dynamic web service.
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The above contributions have resulted in various articles.The basic transformation for
AVISHKAR and its validation is published in [120]. The paper [14] on variability modeling
and QoS analysis of web service orchestrations has been accepted. The paper [80] has been
submitted to apply the product discovery tool AVISHKAR to analysis of varying QoS in alarge
web service orchestration.

1.7 Thesis Organization

The thesis contains 6 chapters including the introduction.The next 5 chapters are organized as
follows:

• Chapter 2, we introduce the context of MDE and the state of theart in automatic effective
model discovery in a modelling domain.

• Chapter 3, we present automatic effective model discovery in the domain specified by a
metamodel.

• Chapter 4, presents empirical validation of the framework for model discovery. In partic-
ular, we focus on two application domains for validation: (a) test model generation for a
model transformation (b) partial model completion in the model editor AToM3

• Chapter 5, we describe the framework for automatic test product discovery in a software
product line. We empirically validate the framework for theredundancy in the generated
products.

• Chapter 6, we summarize our work and present perspectives for future research. We
briefly describe ongoing work on analysis of variable QoS in adynamic web service.
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Chapter 2

Context and State of the Art

This chapter describes the context and state of art for automatic discovery of effective models
in a modelling domain. In Section 2.1, we describeModel Driven Engineering(MDE) which
provides the philosophy and tools to specify modelling domains and transformations between
them. We describe the creation or specification of two modelling domains (a)Metamodelsfor
modelling languages in Section 2.2 (b)Feature diagramsfor products in a Software Product Line
in Section 2.3. Models in a modelling domain are transformedusing the model transformation
language Kermeta to the formal specification language ALLOY . In Section 2.4, we present
Kermeta and its important features such as extensibility using aspectsand model typing. In
Section 2.5, we describe the formal specification language ALLOY .

After describing the context and technological foundations needed for this thesis we present
the state of the art in the proposed scientific contributions. In Section 2.6, we present the state
of the art in various aspects of automatic discovery for the modelling domain specified by a
metamodel. In Section 2.6.1, we present related work on identifying an effective modelling
domain. In this thesis we perform mode discovery experiments in test model generation and
partial model completion in model editors. We present the related work for test model generation
in Section 2.6.3 and partial model completion in model editors in Section 2.6.4.

In Section 2.7, we present the state of the art in test productdiscovery in the modelling
domain specified by a feature diagram for SPLs. We perform product discovery experiments in
analyzing the variability in QoS of dynamic web services.

2.1 Model-driven Engineering

MDE [110] is a philosophy and a set of tools to help simplify and accelerate complex software
development. The simplification in development is achievedby exalting the creation of software
from the level of programs to first class artifacts calledmodels. Models are graphs of inter-
connected objects in amodelling domain. Different models in a domain are created using a
common set of domain-specific/problem-specific concepts and relationships. For instance, the
well-known general purpose modelling language UML [116] is used to create various high-
level models of software design using concepts in UML class diagrams. These UML models
contain only objects of UML concepts/types. UML models are at a higher level of abstraction
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with respect to code in a general-purpose programming language such as Java where use of the
language pervades all aspects of software development. MDEprescribes that a domain expert
should find it easier to reason in his problem domain using models instead of directly writing
code. Are models simply data structures or can they be transformed, evolved, or executed? The
MDE answer to this question is amodel transformation. Model transformations help transform
high-level or domain-specific models to other models or executable code in a language such
as Java. The automation offered by model transformations such as a code generator ultimately
helps accelerate software development.

We set ourselves the specific goal of automatic discovery of models in a modelling domain.
This goal solicits answers to two important questions in MDE:

1. How to specify a modelling domain and create models in it?

2. How do we transform models from one modelling domain to another?

Thefirst question is addressed in this paragraph. The specification of a modelling domain
consists of a set of concepts, relationships between concepts, and some invariants on the struc-
tural relationship between objects. For instance, ametamodelspecifies the modelling domain of
all models in a modelling language. For instance, the UML metamodel specifies infinite UML

models. Metamodels can be created in the EMFEcoreformat to specify the modelling domain
of a modelling language. Similarly, the modelling domain ofall products in a SPL is specified by
a feature diagram. Models in a modelling domain can be instantiated by (a) Creating objects of
concepts specified in a modelling domain specification (b) Assigning properties to these objects
to build relationships. The models must also satisfy a set ofinvariants on their structure. The
Object Constraint Language (OCL) is often used to specify structural invariants on models ina
modelling domain. The EMF provides the set of software toolsto specify modelling domains,
create models within these domains, and validate these models against invariants. Detailed de-
scription of the modelling domain for metamodels is given inSection 2.2 while in Section 2.3
we present the specification for feature diagrams.

Thesecond questionis addressed in this paragraph. Once, we create the specification of a
modelling domain and models within them we see the need to transform these models. Models
can be transformed within the same modelling domain or between modelling domains. Model
transformation [142] languages such as the imperative Kermeta [82] [108], rule-based ATL [76]
[75] [3], graph grammar based AToM3 [67], Viatra [156] transform models. Model transfor-
mation languages are expected to conform to the Query-View-Transformation (QVT) standard
[75]. Different types of model transformations can be created using these languages as classified
in [44]. Model transformations may transform models withinthe same language (endogenous
transformations), between different languages (exogenous transformations) and even realize the
classical view of generating executable code from a high-level model. In this thesis, we use the
Kermeta model transformation language which we describe inSection 2.4.
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Figure 2.1: Set-theoretic View of a Modelling Domain specified by a Metamodel

2.2 Metamodel Specification of a Modelling Domain

In Figure 2.1, we present a set-theoretic view of the modelling domain specified by a metamodel.
The metamodelMM specifies a possibly infinite set of models in amodelling language. The
metamodelMM itself is a model in the set of all metamodels. The set ofall metamodelsis
specified by ameta-meta modelling language. The meta-meta modelling language allows the
specification of concepts and relationships between them. Historically, the Entity-Relationship
diagram (ER Diagram) [36] has been one of the most popular meta-meta level languages used
to specifydatabase schemasfor databases in various domains. In MDE, the Class Diagram
and its dialects [9] are widely used to specify a metamodel. The EMF standardized the ECORE

modelling language to specify metamodels. A natural question is how can one specify the meta-
meta modelling language? The answer is that meta-meta modelling languages are expressive
enough to specify themselves. For instance, in Figure 2.2 wepresent the metamodel for ECORE

in ECORE itself. This property of a meta-metamodelling language is known asboot strapping.
The metamodel for ECORE is a model in the set of all metamodels. We do not go into the details
of describing the ECOREmetamodel which is given detail in [58]. We illustrate the specification
of a metamodel using ECORE in the following section.

2.2.1 Specification of a Metamodel

TheEcore metamodel in Figure 2.2 presents the various concepts one can use to specify meta-
models. Most notably, instances of classesEClass, EReference, EAttribute, EEnum, EOperation,
andEParameterare used to specify metamodels. For convenience, we remove the prefixE and
use the familiar names class, property (for reference or attribute), enumeration, operation, and
parameter in the text. We describe the specification of a simple language to representHierarchi-
cal Finite State Machine (HFSM) using ECORE. The metamodel forHFSM is shown in Figure
2.3. One possible sequence of steps to specify a metamodel isthe following:

1. Specification of Class and Enumeration Types: Classes and enumerations in a meta-
model are created. For instance, we create the classes HFSM,Transition, AbstractState,
and State. One may do this concretely using either the ECORE tree editor available in
EMF or using an ECOREdiagram editor available with tools such as TopCASED [54].
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Figure 2.2: ECOREMetamodel
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2. Specification of Class Hierarchy: Some classes inherit references and attributes from
other classes. For instance, we create the inheritance hierarchy for classes State and Com-
posite that inherit from the class AbstractState. ECORE allows specification of multiple
and multilevel inheritance where a class can inherit reference from several classes.

3. Specification of Properties: Properties which include references and attributes are in-
serted into classes. For instance, the event property in Transition is a primitive attribute of
String type. Similarly, the property incomingTransition of class AbstractState is a refer-
ence of type Transition. An ECOREeditor can be used to insert attributes into a class and
create references from a class to other classes.

4. Specializing Properties: There are several ways to add more meaning to a property. Some
of the important characteristics of a property are:

• Composite Property: A composite property of type Class B owned by a Class A
implies that A is a possible container for objects of class B.If an object of class B
is contained in Class A then it cannot be contained by other classes. For instance,
the composite property HFSM.states indicated by the black diamond implies that all
objects of type AbstractState are contained in exactly one HFSM object.

• Opposite or Bi-directional Property: The opposite or bi-directional property bind
two objects using the same relationship. For instance, Transition.target and Abstract-
State.incomingTransition are opposite properties. Any object of type Transition that
refers to a target State object will enforce that the target State object has an incoming
Transition object.

• Multiplicity of a Property: A property can have variable multiplicity or cardinality
indicating the size of an attribute or the number of references. For instance, the
property Composite.ownedState has the multiplicity 0..*.

5. Specification of Operations: Operations are included in a class to specify the opera-
tional or denotational semantics for a model or a part of it. For instance, the operation
HFSM.run() executes theHFSM. An operation may be code in a general purpose language
such as Java a high-level state chart model, or a model of computation.

2.2.2 Object Constraint Language to Specify Metamodel Constraints

The specification of a metamodel is a starting point to describe concepts and their relationships
in a modelling language. It also includes some implicit constraints such as inheritance, spe-
cialization of properties. However, a metamodel is still limited in its use to specify constraints
on the content and structure of models in a modelling language. Some constraints are better ex-
pressed in a textual constraint language, We specify constraints on a metamodel using theObject
Constraint Language (OCL) [114]. TheOCL is anObject Management Group(OMG) standard
to specify side-effect free constraints on models conforming to a metamodel. The entireOCL
specification is available in [114].
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Figure 2.3: Hierarchical Finite State Machine Metamodel

We may specify constraints on theHFSM modelling language inOCL. For instance, the con-
straint thatthere must be only one initial statein a HFSM model is expressed inOCL as:-

context State inv:
State.allInstances()→ select(s|s.isInitial = True)→ size() = 1

Dissecting theOCL constraint we observe that a constraint is specified within acontext. In
this constraint the context is the class State. The constraints first creates a temporary subset, say
I , of the set of of all objects/instances of the State class. The subsetI contains State object with
the property isInitial set toTrue. Further, the constraint states that the size of the subset must be
equal to one. Overall, the constraint checks if the model contains exactly one initial State object.
This constraint isside effect freewhich means it does not enforce any property on the model.

In general,OCL language statements are constructed in four parts:

1. A contextthat defines the limited situation in which the statement is valid

2. A propertythat represents some characteristics of the context (e.g.,if the context is a class,
a property might be an attribute)

3. An operation(e.g., arithmetic, set-oriented) that manipulates or qualifies a property, and

4. Keywords(e.g., if, then, else, and, or, not, implies) that are used tospecify conditional
expressions.

OCL is also used a navigation language for models that conform toa metamodel.

2.2.3 Models in the Modelling Domain

The metamodel specification of a modelling domain allow the instantiation or creation of models
in it. Using ECOREone may create instances of classes in a metamodel.
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Figure 2.4: Examples ofHFSM models

Some examples of valid models in theHFSM modelling language are shown in Figure 2.4.
The models are shown in their concrete syntax. All models arecreated using objects of theHFSM
metamodel and satisfyOCL constraints on theHFSM metamodel. For instance, all models satisfy
the constraint that there must a path from any state to a final state, all models have exactly one
initial state and at least one final state.

2.3 Feature Diagram Specification of a Modelling Domain

In Figure 2.5, we present the set-theoretic view of the modelling domain specified by afeature
diagram. A feature diagramFD specifies a set ofproductsin a Software Product Line. For
instance, software on different Nokia phones are differentinstances of the same product line of
mobile software adapted to different hardware configurations.

The feature diagram itself is a model in the set of all possible feature diagrams. The set
of all feature diagrams is specified using thefeature diagram modelling language. The feature
diagram modelling language allows creation of a feature diagram containing various product
line features and their inter-dependencies. The feature diagram modelling language is specified
using a metamodel. We describe this metamodel in Section 2.3.1. We describe the creation
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Figure 2.5: The Modelling Domain of a Feature Diagram

of a feature diagram as an instance of this metamodel in Section 2.3.2. In Section 2.3.3, we
demonstrate how products are instantiated from the featurediagram.

2.3.1 The Feature Diagram Modelling Language

Variability being at the heart of the software product line appraoch, the community came up
with several ways fo documenting SPL variability either in the form of UML profiles [162, 63]
or domain specific languages [154, 77]. In particular, Feature Diagrams1 are widespread due to
their simplicity and conciseness. However, since their original definition, a plethora of feature
modeling notations have been proposed ([43, 61, 78] to name afew). Indeed, feature models
can be considered as a product line of notations sharing commonalities and exposing differences
which are not always explicitly defined.

In such a context, there is a risk of being dependent of a particular feature modeling no-
tation both raising the issue of its selection and unnecessarily restricts the applicability of our
approach. Fortunately, Schobbens et al. [136, 134] performed a formal analysis of the existing
feature modeling notations. To do so, they developed a pivotabstract syntax called Free Fea-
ture Diagrams (FFDs) used to map any feature modeling construct found in existing notations
in order to reason formally on the syntax and semantics of these notations. The universal nature
of FFDs makes it suitable for various applications; we used it to reason on variability [62] and
to support product derivation in a model-driven way [119]. In order to process feature models,
we derived in [119] an EMF metamodel from FFD’s abstract syntax. We recall this formaliza-
tion here since it will serve as the main foundation to specify our coverage strategies as well as
quality metrics of the generated configurations.

FFDs are defined in terms of a parametric structure whose parameters serve to characterize
each FD notation variant.GT (Graph Type) is a boolean parameter indicating whether the
considered notation is a Direct Acyclic Graph (DAG) or a tree. NT (Node Type) is the set
of boolean operators available for this FD notation. These operators are of the formopk with
k∈ N denoting the number of children nodes on which they apply to.Considered operators are
andk (mandatory nodes),xork (alternative nodes)ork (true if any of its child nodes is selected),
optk (optional nodes). Finallyvp(i.. j)k (i ∈ N and j ∈ N∪∗) is true if at leasti and at most
j of its k nodes are selected. Existing other boolean operators can usually be expressed with

1we also use the term "Feature Models" interchangeably with "Feature Diagrams"
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vp. The union ofvp(i.. j)k is calledcard. GCT (Graphical Constraint Type) is the set of binary
boolean functions that can be expressed graphically. A typical example is the “requires” between
two features. Finally,TCL (Textual Constraint Language) tells if and how boolean constraints
defined over the set of FD nodes can be defined. With the help of these sets, a generic abstract
syntax for FDs is given. A FD is then composed of the followingelements:

• A set of nodesN, which is further decomposed into a set of primitive nodesP (which have
a direct interest for the product). Other nodes are used for decomposition purposes. A
special root node,r represents the top of the decomposition,

• A function λ : N 7→ NT that labels each node with a boolean operator,

• A setDE∈N×N of decomposition edges. As FDs are directed, noden1,n2∈N,(n1,n2)∈
DE will be notedn1→ n2 where n1 is theparentand n2 thechild,

• A setCE∈ N×GCT×N of constraint edges,

• A setφ ∈ TCL

A FD has also some well-formedness rules to be valid: only root (r) has no parent; a FD is
acyclic; if GT = true the graph is a tree; the arity of boolean operators must be respected.

These constructs were used to build an ECORE based metamodel depicted in Figure 2.6.
The metamodel is proposed in the paper [119] . Its constitution was driven by simplicity and
pragmatism.FeatureDiagramis the root class of the metamodel. This class has an attribute
graphTypeTreecorresponding to the booleanGT (Graph Type) presented previously. It also
contains a list of features (class Feature) corresponding to the set of nodes N . The special root
noder is identified by the reference root fromFeatureDiagramto Feature. The authors of [119]
keep all base operators (because they are simple and widely used) rather than using exclusively
card like operators. In the metamodel, these operators are subtype of the abstract class Operator,
and each feature (class Feature) contains 0 or 1 operator (that corresponds to the function?).
The class Feature also contains a list of edges (class Edge) allowing the construction of the set
DE of decomposition edges. The setCE of constraint edges is represented in the metamodel
by the classConstraintEdgeand they are contained by the class FeatureDiagram. EachCon-
straintEdgecontains either aRequireconstraint or aMutexconstraint. Primary feature nodes
are related to UML models (see below) defining the core assetsinvolved in the realization of
these features. In the metamodel, a primary feature is related to UML models by the composite
association between the class Feature and the class Model. Finally, well-formedness rules (Fea-
ture Modeling Constraints) have been implemented in terms of constraints boolean constraints
on theFD.

2.3.2 Specification of a Feature Diagram

The feature modelling language described in the previous section can be used to create anFD
representing a Software Product Line. For instance, we present the AspectOPTIMAFD in
Figure 2.7. TheFD for AspectOPTIMA contains 19 features allowing maximum of 219 config-
urations whenFD constraints are neglected.
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Figure 2.6: The Feature Diagram Metamodel

2.3.3 Products in the Modelling Domain of a Feature Diagram

A feature diagram models the domain of a finite number of products. AProductcorresponds to
a selection of features in theFD such that it satisfies all restrictions in theFD. For instance, we
present three different products in Figure 2.8 for the AspectOPTIMA FD in Figure 2.7.

2.4 Modelling and Model Transformation Language: Kermeta

In this thesis, we use Kermeta as the common language to both represent modelling domains
and to express transformations between them. This section briefly describes Kermeta and some
of the its important features used in the implementation of CARTIER and AVISHKAR.

Kermeta is a language for specifying metamodels, models, and model transformations that
are compliant to the Meta Object Facility (MOF) standard [115]. The object-oriented meta-
language MOF supports the definition of metamodels in terms of object-oriented structures
(packages, classes, properties, and operations). It also provides model-specific constructions
such as containments and associations between classes. Kermeta extends the MOF with an im-
perative action language for specifying constraints and operational semantics for metamodels
[108]. Kermeta is built on top of EMF within the ECLIPSE development environment. The ac-
tion language of Kermeta provides mechanisms for dynamic binding, reflection, and exception
handling. It also includes classical control structures such as blocks, conditionals, and loops.

2.4.1 Aspect-weaving in Kermeta

The first key feature of Kermeta is its ability to extend an existing metamodel with constraints,
new structural elements (meta-classes, classes, properties, and operations), and functionalities
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Figure 2.8: Three Products from the AspectOPTIMA feature diagram
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defined with other languages using theaspectkeyword. This keyword permits the composi-
tion of corresponding code within the underlying metamodelas if it were a native element of
the metamodel. This feature offers more flexibility to developers by enabling them to easily
manipulate and reuse existing metamodels.

The static composition operator “require" allows defining various aspects in separate units
and integrating them automatically into the metamodel. Thecomposition is performed statically
and the composed metamodel is type-checked to ensure the safe integration of all units. This
mechanism can be compared to theopen class paradigm[38].

Open classes in Kermeta are used to organize “cross-cutting" concerns separately from their
metamodel, a key feature of aspect-oriented programming [84]. Thanks to this composition
operator, Kermeta remains a kernel platform and safely integrates all concerns around a meta-
model.

Kermeta offers expressions very similar to Object Constraint Language (OCL) expressions
[114]. In particular, Kermeta includes lexical closures similar to OCL iterators on collections
such as each, collect, select, or detect.

Moreover, Kermeta also allows the direct importation and evaluation of OCL constraints.
Pre-conditions and post-conditions can be defined for operations and invariants on classes.

Kermeta and its framework remain dedicated to model processing but provide an easy inte-
gration with other languages. Kermeta also allows importing Java classes to use services such as
file input/output or network communications, which are not available in the Kermeta framework.
It is also very useful, for instance, to make models communicate with existing Java applications.

In this thesis, we have made considerable use of aspect-weaving to weave properties and
operations into metamodels with the goal of creating model transformations between modelling
domains. For instance, we weave a reference to an input metamodel element into the output
metamodel. Consequently, we weave an operation into the output metamodel that helps create
an output model element using information from this reference. This direct referencing due to
aspect-weaving eliminates the need to create intermediatedata structures such as dynamic hash
tables commonly used in compilers.

2.4.2 Model Typing with Kermeta

In Kermeta metamodels are also model types from a type-theoretic point of view. In this thesis,
we solicit the use of model typing to check type conformance between metamodels before and
after a transformation.

Model typing corresponds to a simple extension to object-oriented typing in a model-oriented
context [146]. A model typing is a strategy for typing modelsas collections of interconnected
objects. Model typing permits the detection of type errors early in the design process of model
transformation. Moreover, it allows more flexible reuse of model transformations across various
metamodels, while preserving type safety [146]. Type safety is guaranteed by type conformance,
used as a criterion of substitutability.

The notion of model type conformance (or substitutability)has been adapted and extended
to model types based on Bruce’s notion of type groups and typegroup matching [30]. The
matching relation, denoted<#, between two metamodels defines a function of the set of classes
they contain according to the following definition:
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MetamodelM’ matches another metamodelM (denotedM’ <# M) iff for each class
C in M, there is one and only one corresponding classC’ in M’ such that every
propertyp and operationop in M.C matches inM’.C’ respectively with a property
p’ and an operationop’ with parameters of the same type as inM.C.

This definition is adapted from [146] and improved here by relaxing the constraint related to
the name-dependent conformance on properties and operations.

Let’s illustrate model typing with two metamodelsM andM’ given in Figures 2.9 and 2.10.
These two metamodels have properties and references that have different names. The metamodel
M’ has additional elements compared to the metamodelM.

C1 <# COnebecause for each propertyCOne.pof type D (namely,COne.name
andCOne.aCTwo), there is a matching propertyC1.qof typeD’ (namely,C1.idand
C1.aC2), such thatD’ <# D.

Thus,C1<# COnerequiresD’ <# D:

• COne.nameandC1.id are both of typeString.

• COne.aCTwois of type CTwoand C1.aC2 is of type C2, so C1 <# COne
requiresC2 <# CTwo. And, C2 <# CTwois true becauseCTwo.elementand
C2.elemare both of typeString.

Thus, matching between classes may depend on the matching oftheir related dependent
classes. As a consequence, the dependencies involved when evaluating model type matching
are heavily cyclical [145]. The interested reader can find the details of matching rules used for
model types in [145].

Figure 2.9: MetamodelM. Figure 2.10: MetamodelM’ .
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2.5 Formal Specification Language: ALLOY

In this thesis, we transform the specification a modelling domain and heterogeneous sources of
knowledge toconstraint satisfaction problem. The constraint satisfaction problem is expressed
in the formal specification language: ALLOY [72] [71].

ALLOY is a structural modelling language based onfirst-order relational logic . ALLOY

was originally conceived by Daniel Jackson and developed bythe Software Design Group at
MIT. A LLOY is conceived to specify and analyze the conceptual design ofan object-oriented
software system. Analysis includes generation of instances of a design to detect for example
abnormal and generating counterexamples for assertions onthe design. The analysis helps detect
design flaws.

In this thesis, we use ALLOY as a target language to specify a modelling domain and hetero-
geneous sources of knowledge as aconstraint satisfaction problem(CSP). An ALLOY instance
or solution is a model that satisfies the CSP. We obtain these instances bysolving the ALLOY

model in afinite scopeThe scope of an instance is the limit on its size. Generation of instance
of models in ALLOY is based on the hypothesis that finite and small models are useful in most
real-world applications.

A CSP in ALLOY model consists of the following importantparagraphs:
module HFSM
open u t i l / boo lean as Bool
/ / A l loy S i g n a t u r e s
one s i g HFSM
{

s t a t e s :s e t A b s t r a c t S t a t e ,
c u r r e n t S t a t e : l one A b s t r a c t S t a t e ,
t r a n s i t i o n s : s e t T r a n s i t i o n

}

a b s t r a c t s i g A b s t r a c t S t a t e
{

l a b e l : I n t ,
o u t g o i n g T r a n s i t i o n : s e t T r a n s i t i o n ,
i n c o m i n g T r a n s i t i o n : s e t T r a n s i t i o n ,
c o n t a i n e r : l one Composi te ,
h f sm Cu r r en t S t a t e :one HFSM,
h f sm S t a t es : one HFSM

}

s i g T r a n s i t i o n
{

ev en t : I n t ,
t a r g e t : one A b s t r a c t S t a t e ,
so u r ce : one A b s t r a c t S t a t e ,
h f s m T r a n s i t i o n s :one HFSM

}

s i g S t a t e ex t en d s A b s t r a c t S t a t e
{

i s F i n a l : one Bool ,
i s I n i t i a l : one Bool

}

s i g Composi te ex t en d s A b s t r a c t S t a t e
{

ownedSta tes : s e t A b s t r a c t S t a t e
}

Listing 2.1: Signatures forHFSM metamodel

/ / Example A l loy F ac t s

/ / The HFSM must c o n t a i n e x a c t l y one i n i t i a l s t a t e
f a c t e x a c t l y O n e I n i t i a l S t a t e
{

one s : S t a t e | s . i s I n i t i a l == True
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}
/ / The HFSM must c o n t a i n a t l e a s t one f i n a l s t a t e
f a c t a t l e a s t O n e F i n a l S t a t e
{

some s : S t a t e | s . i s F i n a l == True
}
/ / There i s e x a c t l y one HFSM o b j e c t
f a c t exactlyOneHFSM
{

one HFSM
}
/ / A l l A b s t r a c t S t a t e s have un ique l a b e l s
f a c t A b s t r a c t S t a t e _ l a b e l _ u n i q u e
{

a l l s1 : A b s t r a c t S t a t e , s2 : A b s t r a c t S t a t e | s1 != s2=>s1 . l a b e l != s2 . l a b e l
}

/ / A Composi te S t a t e Cannot Conta in I t s e l f
f a c t c o m p o s i t e C a n n o t C o n t a i n I t s e l f
{

a l l c1 : Composi te , c2 : Composi te | c1 = c2 => c2 n o ti n c1 . ownedSta tesand c1 n o t i n c2 . ownedSta tes
}

Listing 2.2: Facts forHFSM metamodel

/ / A l l Composi te S t a t e s i n t h e Model must c o n t a i n a t l e a s t 2 owned S t a t e s
pred Ex am p l eP r ed i ca t e
{

a l l c : Composi te | # c . ownedSta tes > 2
}

Listing 2.3: An Example Predicate

/ / Example 1
run Ex am p l eP r ed i ca t ef o r 10

/ / Example 2
run Ex am p l eP r ed i ca t ef o r e x a c t l y 3 S t a t e , e x a c t l y 1 Composi te , 1 HFSM, 5 T r a n s i t i o n

Listing 2.4: Example Run Commands

• Signatures and Fields:A signatureis used to model a concept or a class of objects in
ALLOY . A signature containsfields that represent properties of concepts. For instance,
we may model the classes in theHFSM metamodel (see Figure 2.3) as ALLOY signatures
with fields as shown in Listing 2.1. A signature can be an abstract signature such as
AbstracState. Only objects or instances of signatures are present a solution to an ALLOY

model. A field in a signature can have a multiplicity one, lone(0 or 1), or it can be a
set. It also has a type which refers to a primitive signature such as Integer or another
signature in the ALLOY model. For instance, the field incomingTransition in the signature
AbstractState is a set of signature type Transition. The field isFinal of signature State has a
multiplicity one and is of type Bool. The signature Bool for Boolean is defined in another
module imported using an open declaration.

• Facts: Facts are constraints on signatures and fields in the declarative ALLOY model.
A fact must always hold true. For instance, we may express some facts on theHFSM
metamodel as shown in the Listing 2.2. A fact often contains expressions that specify a
constraint on sets of objects using quantifiers such asall (∀), some(∃), one, andnone. For
instance, the fact Abstract_label_unique states that for any two states s1 and s2, if s1 is
not s2 then their labels are different hence enforcing the unique label constraint.
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• Predicates:Predicates in ALLOY are constraints that need not always hold true like facts.
They may be satisfied by selection by the modeller with the signatures and the facts.
Predicates may be used to model knowledge from various sources as constraints in the
ALLOY model. For instance, the predicate in Listing 2.3 states that all composite states in
theHFSM must contain at least 2 states. The predicate is not a fact that must be true for
all HFSM models but a constraint that represents a specific objectiveor requirement.

• Run Command: We may try to satisfy a predicate in an ALLOY model by attempting to
generate instances in a finite scope. The ALLOY run command is used describe the finite
scope of the solution size. For instance, the first example inListing 2.4, attempts to obtain
anHFSM instance up to a scope of 10. This implies that every there maybe a maximum
of 10 instances for each signature. The second example in Listing 2.4 presents qualifiers
for the scope of each signature. For instance, the qualifierexactly3 State enforces all
instances to contain exactly 3 States.

An ALLOY model is transformed to a relational model in the relationalmodel finder KodKod
[53]. At relational level of abstraction the model structure is comprised of primitive entities
calledatomsandrelations that define the relationship between atoms. All signatures represent
the set of atoms. All fields, facts, and predicates representrelations between atoms.

An atom is a primitive entity that is:

• Indivisible: It can’t be broken down into smaller parts

• Immutable: Its properties don’t change over time; and

• Uninterpreted: It doesn’t have any built-in properties, the way numbers dofor instance.

A relation is a set of tuples where each tuple is a sequence of atoms. ALLOY is based on
first-order logic and hence relations cannot contain other relations. The number of atoms in
a relation is itsarity. A relation can be unary, binary, ternary or can contain moreatoms. A
relation with three or more atoms is called amulti-relation. For instance, the ternary relation
State ={(State0),(State2),(State3)} represents 3 State atoms.
In ALLOY logic the basic entity is arelation. Even an atom is represented as a singleton set in
relation tuple.

Relations represent the structure of graphs of objects in MDE. For instance, the isInitial
property in theHFSM metamodel (see Figure 2.3) may be modelled as a relation
isInitial={ (State0,False),(State1,True), (State2,False)}.

Restrictions or constraints on structure in ALLOY is expressed as disallowed relations be-
tween atoms. ALLOY provides several operators to express constraints on relations including
set operators, logical operators, and most notably relational operators such as the dot operator
(for navigating structure), quantification operators (to specify constraints on a set of atoms), and
multiplicity constraints.

To obtain a solution to the relational model the ALLOY specification is transformed using
KodKod [53] to a Boolean Conjunctive Normal Form (CNF) formula. The resulting satisfaction
problem is solved using a Boolean Satisfiability (SAT) solver such as MiniSAT [112] or ZChaff
[159].
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2.6 State of the Art in Model Discovery in a Modelling Language

Automatic model discovery in a modelling domain has many components. Previous work has
proposed problems and solutions to one or more of these components. In this section we present
related work for the following components of automatic model discovery:

• Effective Modelling Domain Identification

• Generation of Models in a Modelling Domain

Further, we present the state of the art in validating automatic model discovery for two
application domains:

• Experiments in Test Model Generation

• Experiments in Partial Model Completion in a Model Editor

2.6.1 Related Work for Effective Modelling Domain Identification

There has always been a need to define the effective modellingdomain for a given objective in
MDE. This is true especially in the case of using large General Purpose Modelling Languages
(GPMLs) such as UML . In this section we present related work that deal with the problem of
obtaining and using the effective modelling domain.

Consider a fundamental task in MDE: Creating a model in a model editor such as in the
Eclipse [58] environment. A popular editor for UML models is TOPCASED [54]. The tool
can be used to create UML models such as class diagrams, state machines, activity diagrams,
and use-case diagrams. If a modeller chooses to create classdiagrams the tool presents the
user with modelling elements for class diagrams such as classes and associations but not UML

state machine modelling elements such as states and transitions. Therefore, the tool inherently
prevents the modeller from using an unnecessary part of the UML meta-model. Thehard-coded
user interface in TOPCASED in fact presents the modeller with an effective modelling domain.

Model transformations on GPMLs such as UML are built for specific tasks and can pro-
cess only a sub-domain of its huge input domain. To filter the input to a model transformation
pre-conditions[142] are specified in a constraint language such asObject Constraint Language
(OCL) [114] [93]. Graph transformation based model transformation languages specify pre-
conditions to apply a graph rewriting rule on a left-hand side model pattern [147].

In the paper [144] Solberg et al. present the issue of navigating the meta-muddle notably the
UML meta-model. They propose the development of Query/Extraction tools that allow devel-
opers to query the metamodel and to extract specified views from the metamodel. These tools
should be capable of extracting simple derived relationships between concepts and more com-
plex views that consist of derived relationships among manyconcepts. They mention the need
to extract such views for different applications such as to define the domain of a model transfor-
mation and extracting a smaller metamodel from the conceptsused in a model. Meta-modelling
tools such as those developed by Xactium [96] and Adaptive Software [1] possess some of these
abilities. The authors of [144] propose the use ofaspectsto extract such views. However, the
authors do not elaborate on the objectives behind generating such views.
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In this thesis, we present a technique called metamodel pruning [8] [141] that extracts the ef-
fective metamodel from an input metamodel. The effective metamodel contains on the required
classes and properties and their obligatory dependencies.

2.6.2 Related Work for Generation of Models in a Modelling Domain

We classify generation of models in a modelling domain as (a)Generation by construction (b)
Generation by solving constraints.

Approaches for generation by construction aim to create correct models by incrementally
constructing them. We review two such approaches. In Brottier et. al. [29], the authors attempt
to incrementally generate models conforming to a metamodelusing model fragments. However,
a number of the models are rejected as they do not satisfy constraints on the metamodel. A very
similar approach in [52] makes use of graph grammar rules to incrementally construct models.
This approach for generating instances also suffers from the same problem of not being able to
satisfy metamodel constraints.

Approaches for generation by constraint satisfaction aim to generate whole models that sat-
isfy constraintsall at once. In [130], the authors present a transformation for a partial model to
a constraint satisfaction problem in PROLOG. The metamodelused to express the partial model
is also transformed to a set of PROLOG constraints. The authors use PROLOG to automatically
complete the partial model. However, PROLOG does not allow expression of constraints on sets
of objects. Therefore, there is always a need for a partial model that defines the exact number
of objects in the model. The metamodel constraints are transformed to low-level PROLOG con-
straints on the variables in the model. In [70], transform UML models that are very similar to
metamodels to PROLOG for verification. Both approaches use PROLOG which lacks the ability
to specify constraints on set of objects.

In this thesis, we preset CARTIER that transforms a metamodel to ALLOY . Transforma-
tion of a meta-model specification from UML to ALLOY has previously been explored in the
tool UML2ALLOY [26] [92] [25]. UML2ALLOY supports transformation from meta-model
concepts to ALLOY model concepts such as class to signature, property to signature field, oper-
ation to function, enumeration/enumeration literal to extends signature, and constraints to pred-
icates. In our approach to transforming a meta-model to an ALLOY model we keep the same
transformation format such we transform classes to signatures and properties to class fields. In
UML2A LLOY composition and aggregation are transformed first toOCL constraints and then
to ALLOY . In our tool we transform composition and aggregation in a meta-model directly to
ALLOY facts. Our, approach to transforming single inheritance isthe same as in UML2ALLOY .
Inheritance is transformed to an ALLOY signature that extends an other ALLOY signature. We
use CARTIER to also transform metamodels with multiple inheritance to ALLOY which is not
addressed by UML2ALLOY . There is no clear specification in UML2ALLOY related articles
[26] [92] [25] about transforming multiplicities to ALLOY . In our case we transform multiplic-
ity constraints to ALLOY signature fields in case of occurrence of 0, 0..1, or 0..∗ multiplicities.
If the multiplicity is variable such asa..b we synthesize an ALLOY fact constraining the size
of a set of relations. The constraints in meta-model is restricted to a small subset ofOCL as
UML2A LLOY transforms only this subset ofOCL to ALLOY . However, in CARTIER we pro-
pose the user to directly enter ALLOY predicates and facts in the ALLOY model giving the user
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the flexibility of expressing a wider range of constraints (those that have not been implemented
in UML2A LLOY ) such constraints with transitive closure which cannot be expressed directly in
OCL. We also present a method to synthesize ALLOY predicates from a partial model. This use
of partial knowledge to synthesize complete models greatlyreduces model development time.
The tool UML2ALLOY , does not support the use of partial model knowledge to help generate
models.

2.6.3 Related Work for Test Model Generation

The first application of automatic model discovery is test model generation for model transfor-
mation. We explore three main areas of related work : test criteria, automatic test generation,
and qualification of strategies.

The first area we explore is work on test criteria in the context of model transformations
in MDE. Random generation and input domain partitioning based test criteria are two widely
studied and compared strategies in software engineering (non MDE) [153] [158] [64]. To extend
such test criteria to MDE we have presented in [55] input domain partitioning of input meta-
models in the form of model fragments. However, there existsno experimental or theoretical
study to qualify the approach proposed in [55].

Experimental qualification of the test strategies require techniques for automatic model gen-
eration. Model generation is more general and complex than generating integers, floats, strings,
lists, or other standard data structures such as dealt with in the Korat tool of Chandra et al.
[28]. Korat is faster than ALLOY in generating data structures such as binary trees, lists, and
heap arrays from the Java Collections Framework but it does not consider the general case of
models which are arbitrarily constrained graphs of objects. The constraints on models makes
model generation a different problem than generating test suites for context-free grammar-based
software [98] which do not contain domain-specific constraints.

Test models are complex graphs that must conform to an input meta-model specification, a
transformation pre-condition and additional knowledge such as model fragments to help detect
bugs. As cited earlier, in [29] the authors present an automated generation technique for models
that conform only to the class diagram of a meta-model specification. A similar methodology
using graph transformation rules is presented in [52]. Generated models in both these approaches
do not satisfy the constraints on the meta-model. In [130], we present a method to generate
models given partial models by transforming the meta-modeland partial model to aConstraint
Logic Programming (CLP). We solve the resultingCLP to give model(s) that conform to the
input domain. However, the approach does not add new objectsto the model. We assume that
the number and types of models in the partial model is sufficient for obtaining complete models.
The constraints in this system are limited to first-order horn clause logic.

The qualification of a set of test models can be based on several criteria such as code and rule
coverage for white box testing, satisfaction of post-condition or mutation analysis for black/grey
box testing. In this thesis, we are interested in obtaining the relative adequacy of a test set
using mutation analysis [49]. In previous work [107] we extend mutation analysis to MDE by
developing mutation operators for model transformation languages.

In this thesis, we use CARTIER for automatic test model generation. CARTIER transforms
the input metamodel, pre-condition of a model transformation and test strategies to a constraint
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satisfaction problem in ALLOY . We solve the ALLOY model to generate test cases or models for
the transformation. We use the mutation analysis techniquefor model transformations proposed
in [107] to validate the effectiveness of the test cases in bug detection.

2.6.4 Related Work for Completion in Editors

The second application of automatic model discovery is partial model completion in a model ed-
itor. We explore existing language-directed editors that aim to use the specification of a language
domain or modelling domain to complete partial code or models.

Language-directed editors have been around for since the early 1980s. Some of the well-
cited research on language-directed editors are Mentor [50], Interlisp [149], Program Synthe-
sizer [148], Rational [16], PECAN [125], and Gandalf [65]. Most of the existing language-based
editors such as inEclipse are based onattribute grammars[59]. These systems have been widely
adopted and integrated in many editors for tasks such as syntax highlighting and syntax-directed
editing. TheopenArchitectureWare[7] framework , based on theEcore [58] meta-modelling
framework, supports automatic sentence completion already implemented in Eclipse to help
make recommendations to sentences in textual domain-specific modelling languages. These
suggestions for sentence completion are based on the textual syntax of the modelling language
and do not consider the complete consistency of the model with respect to the meta-model and
constraints of the language.

In Model Driven Engineering(MDE), models built in domain-specific model editors pose a
new challenge. The challenge is to complete a partial model specified in the model editor. This
involves the editor to use domain-specific modelling language constraints to direct the comple-
tion of the partial model. Simply put, this involves constraint solving using knowledge described
in the partial model to synthesize a model that conforms to the domain-specific modelling lan-
guage. Constraint solving for model synthesis has been well-studied in the literature such as
model design space exploration [132], partial model completion using Prolog [130] and con-
straint logic programming [89]. In [131], the authors present a model completion system in
a domain-specific editor by combining knowledge from the meta-model and the partial model
specified in the model editor to SWI-Prolog. TheProlog program is solved using a backtracking
based solver to return results to the domain-specific environment which was originally syn-
thesized byAToM3 using the meta-model. The methodology is valid for any domain-specific
modelling language in the limits of first-order Horn clause logic of SWI-Prolog. However, their
primary limitation is that the number of objects in the complete model is equal to the number of
objects in the partial model. No new objects are suggested bythe model completion system and
the user is limited to specifying only the correct number of objects in the partial model. This is
primarily due to the fact that constraints are specified at the object property level in SWI-Prolog
and not at the meta-level such as on sets of objects.

We identify the need to develop a model completion system that can automatically suggest
complete models especially forDSML meta-models containing constraints both on sets of ob-
jects and their properties. This typically involves mapping of a meta-model and constraints based
DSML specification to a mathematical formalism with tool supportthat solves constraints to give
correct instances of theDSML. Notably, such instances should contain the network of objects
(original object identities need not be preserved) specified in the partial model and additional
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objects (if required) with appropriate property values such that the complete model conforms to
its DSML. We would also like to control the maximum size or scope of thecomplete model for
practical time considerations. Transformation of meta-models expressed in UML/OCL [114] to
various formal systems is not new [47] [13] [70] [99] [11] [26] [92]. In [47] the authors present
a transformation from UML Class Diagrams to Description Logics. Their approach is theoret-
ically rigourous where a knowledge base in description logic on its variants is obtained for a
UML Class diagram and theorem provers such asFACT [69] andRACER [157] are used to ob-
tain instances by inferring from the knowledge base. They prove that the time for inference using
a description logic representation of an UML Class diagram in EXPTIME-complete. However,
their approach does not support transformation of meta-level constraints such as those expressed
in Object Constraint Language (OCL) [114] to description logic. An extension of this work
for obtaining instances in finite domain is presented in [99]. The transformation of meta-level
constraints such asOCL along with UML class diagrams to formal higher-order logic language
called Isabelle has been explored in tools such as HOL-OCL [11]. Similarly, we have seen the
transformation to constraint programming language ECLiPSE in [70]. Both, these approaches
are used primarily for verification of a UML Class Diagram instance against theUMLCD meta-
model specification. A constraint inOCL can be verified against an instance ofUMLCD but we
need the instance itself. In our pursuit to find complete models we need to automatically synthe-
size instances of a meta-model rather than verifying an arbitrary constraint against an existing
instance.

In this thesis, we use CARTIER to transform an input metamodel, metamodel constraints
and partial model to a constraint satisfaction problem in ALLOY [71]. We solve the ALLOY

model to generate one or more recommendations to complete the partial model such that it
contains all elements of the partial model and conforms to the metamodel and its constraints.
The recommendations are brought back as high-level models in the model editor.

2.7 State of the Art in Product Discovery

In this thesis, we develop product discovery in a SPL for generation of test products. We present
the related work below.

2.7.1 Related Work in SPL Test Generation

Our work deals with software-engineering specific dimensions of SPL testing: (1) scalability of
test cases generation, (2) reduction of the resulting test cases set (both in terms of size of the test
suite and redundancies) and (3) usability for the testers.

Concerning test generation for PL (1), McGregor [100] and Tevanlinna [150] propose a well-
structured overview of the main challenges for testing product lines. A major one is obviously
the exponential growth of possible products. The idea of using combinatorial testing for PL
test selection is not new and has been initially proposed by Cohen et. al. [42, 41]. Combina-
torial interaction testing (CIT) [39]. [90] led to the definition of pairwise testing, and then its
generalization to t-wise testing. Cohen et. al. have applied CIT to systematically select con-
figurations/products [42] that should be tested. They consider various algorithms in order to
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compute configurations that satisfy pair-wise and t-wise criteria [41]. The constraints imposed
due to feature relationships in a feature model are solved bycalling SAT solvers such as ZChaff
[159]. However this approach is mainly theoretical and manual. Our work goes along the same
lines but deals with scalability of the test generation, noting that CIT+SAT approaches do not
scale directly with real-case feature diagrams, such as theAspectOPTIMA PL example.

Concerning test minimization for PL (2), to limit repeated testing efforts, a possible solu-
tion is to produce template system test cases, common to the whole product line and that can
be adapted to each product. Nebut et al. [109] proposed a model-based approach to derive test
objectives for the whole system. In [133], Scheidemann defined a method minimizing the set
of configurations to verify the whole software product line.The author exploits the commonali-
ties in order to minimize the verification effort required for requirements that pertain to several
configurations. However, this approach does not take into account constraints between features
which limits the applicability of the approach (see [41]). In the same vein, [160] propose a
method to generate test plans covering user-specified portions of the huge number of possible
configurations of a component-based software system.

Concerning the last point (3), we choose a model driven technique to automatically map
a feature diagram into an Alloy input format. The user of the approach can thus manipulate
directly feature digram and transform them directly in Alloy. A formalization for feature models
in Alloy can be found in [124], but is not dedicated to testingand feature diagrams have to be
written by hand. Uzuncoava et al. [152] use Alloy to generatea test suite incrementally from
the specification of a product, directly modeled as alloy formulas. The interesting point in this
work is that tests are reused from one product to another in a cumulative way. Our work focuses
on testing the SPL as whole rather than individual products.Indeed, these techniques of SPL
testing are complementary, our method focusing on automated selection of products, which can
then be individually tested.

Usability is also a question of analysis algorithms and casetools to manipulate and reason
about feature models [20, 102]. Benavides et al. have developed FAMA [21] a generic open-
source framework supporting various kinds of analyses. Minimal test-set computation is not part
of them but our EMF/Eclipse based T-wise toolset can be integrated easily to it. Furthermore,
our variability metamodel is generic and has been successfully applied/reused for product line
derivation [119] and variability weaving [105].
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Chapter 3

Automatic Effective Model Discovery

In the context of Model-driven Engineering (MDE), we use first-class software artifacts called
modelsto build complex software systems. A model is a graph of inter-connected objects con-
structed using a modelling language. For instance, the well-knownUnified Modelling Language
(UML ) [116] is used to create models of various aspects of object-oriented software systems.
The models include requirements specification using UML use case diagrams, software struc-
ture using UML class diagrams and behavior using UML activity and/or UML state machine
diagrams. The set of all models specified by a modelling language is themodelling domainof
the modelling language.

A modelling language can be very expressive and often allowsthe creation of an infinite
number of models. The UML is one such example of a very large and expressive modelling
language. The UML consists of 246 concepts with a number of properties. Infinite possible
objects of these concepts can be inter-connected in a virtually infinite number of ways in models
of the UML . This implies that the modelling domain of UML is an infinite set of models. Are all
the models in a modelling domain useful oreffectivefor a given set of objectives? The answer is
no. Not all models one can construct in a modelling language are useful oreffectivegiven a set
of objectives. There is a need for knowledge from heterogenous sources to ensure the creation
of an award-winning oreffective model.

Heterogenous sources of knowledge that can restrict the creation of models to effective mod-
els can come from different domain experts, expressed in different languages and possibly devel-
oped at different times. For example, a source based on common-sense knowledge about a mod-
elling domain is a set of well-formedness rules for models. Atextual constraint language such as
theObject Constraint Language (OCL) [114] is often used to specify such well-formedness rules.
An OCL invariant on the UML state machine models enforces that a state machine containsat
least one final state. This invariant satisfies one of the requirements for correct termination of a
state machine’s execution. Other sources of knowledge may include partially specified models,
test criteria for creation of a model for testing, a pre-condition of a model transformation that
executes the model as its input and many others depending on the objective for creating the ef-
fective model. The restrictions imposed by heterogenous sources of knowledge on a modelling
domain virtually leads to the notion of a subset of models in amodelling domain called the
effective modelling domain. The effective modelling domain is most likely to contain effective
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models for a given set of objectives.
The creation of models in the effective modelling domain presents a pitfall. Manually cre-

ating effective models is very tedious or sometimes impossible as the modeller must simulta-
neously satisfy constraints from a number of sources. The magnitude of the problem becomes
even more evident when we need to manually create thousands of models with an objective such
as testing a model transformation. Can we partially or fullyautomate the process ofgenerating
or discoveringeffective models? This is the question that intrigues us.

We present a framework and methodology forautomatic effective model discoveryin a mod-
elling domain. The framework is embodied in a model-driven tool CARTIER [138] [6]. The
methodology is based on the general idea that an effective modelling domain can be transformed
to aconstraint satisfaction problem(CSP). Solving the constraints satisfaction problem givesus
models in the effective modelling domain. However, this general idea entails a number of chal-
lenges. The three most important challenges are:
Challenge 1:Representing the modelling domain ofvery large modellinglanguages such as the
UML as a CSP may result in a very large CSP that cannot be solved in areasonable amount of
time.
Challenge 2:Knowledge from heterogenous sources are often specified in different languages.
It is therefore a challenge toautomatically transformthem to constraints in a common CSP lan-
guage where modelling domain constructs may be expressed very differently.
Challenge 3:The solutions of a CSP may not be in the form of models of the initial modelling
language. There is a need toautomatically transform CSP solutions back to modelsin the mod-
elling language.

Our methodology addresses these challenges in the following principal steps:

1. We automatically prune an input modelling language to obtain its effective subset

2. We transform heterogenous sources of knowledge including the pruned modelling lan-
guage to a common CSP in the formal specification language ALLOY [71]

3. We solve the ALLOY model within finite bounds and automatically transform the solutions
(if they exist) back as models of the input modelling language

We describe the methodology in more detail along the chapterusing the running case study
of generating models for the UML modelling language.

We organize the chapter as follows. In Section 3.1 we presentthe overall framework and
methodology. In Section 3.2, we present the software embodiment CARTIER of our framework.
We present the running case study of UML in Section 3.3. The first step of effective mod-
elling domain identification via metamodel pruning is presented in Section 3.4. We describe
the transformation of a basic metamodel with single inheritance to ALLOY in Section 3.5. A
more complicated transformation metamodels with multipleinheritance to ALLOY is described
in Section 3.6. In Section 3.7, present how we handle transformation of metamodel invariants to
ALLOY . We discuss automatic model generation by solving the final ALLOY model in Section
3.9. We summarize the contents of the chapter in Section 3.12.
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Figure 3.1: A Framework for Automatic Effective Model Discovery

3.1 Automatic Effective Model Discovery Framework

The framework for automatic effective model discovery is shown in Figure 3.1. The inputs
to the framework include knowledge from heterogeneous sources to help specify theeffective
modelling domain. We can divide the sources of knowledge toprimary sourcesanddomain-
specific sources. The general methodology followed in the framework is presented in Section
3.1.3.

3.1.1 Primary Sources of Knowledge

The primary sources of knowledge are:

• Input metamodel is the specification of an input modelling language. It specifies a mod-
elling domain which is the set ofall modelsin a modelling language. The input metamodel
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consists of a set of types (class with properties, enumeration, primitive) to instantiate ob-
jects. The industry standard framework for specifying an input metamodel is theEclipse
Modeling Framework (EMF) [58]. The input metamodel itself is stored as an instance of
the ECOREmetamodel.

• Metamodel Invariants/Constraints are expressed on an input metamodel using a textual
constraint language such asObject Constraint Language (OCL) [114]. These constraints
encode restrictions that cannot be specified using a diagrammatic ECOREmodel.

3.1.2 Domain-specific Sources of Knowledge

A number of domain-specific sources of knowledge may also help define the effective modelling
domain. We present some of them below:

• Required types and propertiesin the input metamodel. The set of required types and
properties help extract a subset of the input metamodel for effective model discovery.
There can be many possible sources for the set of required types and properties:

– Static analysis of a model transformation gives a set of types and properties in the
input metamodel actually manipulated by the transformation.

– A set of models conforming to the input metamodel is another source of required
types and properties. Visiting the models in the set gives usa set of types and prop-
erties used in the metamodel. A typical real-world example of this could be in a
classroom setting for object-oriented design using UML . The professor can point
out to students the required types and properties he used to create UML by visiting
every object of a set of models automatically.

• Partial Model is a partially specified model using the input metamodel. Forinstance, a
graphical model editor allows an user to create models in a modelling language such as
UML state machines. An incomplete model in the editor is a partial model in the UML

state machine language. The partial model may not respect all metamodel constraints of
UML . Therefore, a partial model is often expressed as an instance of arelaxed version of
the input metamodel.

• Test Coverage Strategieshelp define and generatemodel fragments[55] that cover a wide
range of structural aspects in the input metamodel. For instance, an input domain partition
based strategy helps generate model fragments that cover partitions on all types and prop-
erties of the input metamodel. These model fragments help define an effective modelling
domain forcoverage-based testingof a model transformation. All test models that sat-
isfy a coverage strategy contain the model fragments generated from the strategy. Model
fragments are expressed in a modelling language that permits specification of ranges on
properties of an input metamodel.

• Transformation Pre-condition is a set of invariants on the metamodel that is specific to a
model transformation. A model transformation often may notbe designed to transform all
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models specified by its input metamodel. For instance, the transformation from class dia-
gram models to entity relationship diagram models [22] require that all classes in the input
class diagram have at least one primary attribute. TheOCL [114] is often used to express
pre-conditions. Generating test models requires the test models to satisfy transformation
pre-conditions.

3.1.3 Methodology

The methodology for automatic effective model discovery uses the inputs presented above and
can be divided in three principal steps:

1. Effective Metamodel Identification: We identify the effective metamodel from the input
metamodel via a technique known asmetamodel pruning[141]. Briefly, the metamodel
pruning algorithm extracts a subset of the input metamodel known as the effective meta-
model. The effective metamodel contains the set of requiredtypes and properties provided
as input and all its obligatory dependencies. We present metamodel pruning in Section 3.4.

2. Transformation of Effective Modelling Domain to A LLOY : Knowledge from hetero-
geneous sources including the effective metamodel are transformed to a constraints model
in the formal specification language ALLOY [71]. We briefly describe ALLOY in Chapter
2, Section 2.5. We describe the transformation in Sections 3.5, 3.5, 3.6, 3.7.

3. Model Generation by solving the ALLOY Model: We solve the ALLOY model to obtain
solutions that satisfy the constraints in the ALLOY model. The solutions are transformed
to models that conform to the input metamodel. In Section 3.9, we describe the process
of model generation from the ALLOY model.

3.2 Software Embodiment: Cartier

We implement our framework for automatic model discovery (shown in Figure 3.1 and described
in Section 3.1) in model-driven tool CARTIER. The tool was first presented in [138] and a
prototype is available at [6]. It is named afterJacques Cartier, a french discovery and explorer
from St. Malo, credited with the earliest exploration of Canadian in-lands. The construction
of CARTIER has been motivated by a number of requirements as enlisted inSection 3.2.1. We
describe technical aspects of CARTIER that address its requirements in Section 3.2.2.

3.2.1 Requirements for CARTIER

This section presents a number of high-level considerations that emerge while considering the
implementation of a tool forautomatic model discoverysuch as CARTIER.

Conformance to Industry Standards for Modelling

The widely-accepted industry standard for modelling and modeling language design is theEclipse
Modeling Framework (EMF) [32] initially developed by IBM. The metamodel of a modelling
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language is often available as anEcore model of the EMF. One of the primary objectives for
CARTIER is to discover or generate models that conform to a metamodelavailable in theEcore
format. CARTIER must be able to manipulate and transform all or most relevantaspects of the
Ecore metamodels.

Sophisticated Model Manipulation and Transformation

The framework for automatic model discovery, proposed in Section 3.1, requires the imple-
mentation of a wide range of model manipulation algorithms for pruning and transformation to
ALLOY . CARTIER must solicit the use of a model transformation language thatsupports the
following important operations on models (and metamodels):

1. Scalability in loading, transforming, and saving very large metamodels and models

2. Navigation of models and creating/removing model elements

3. Support model typing to check type conformance between metamodels. We use model
typing to check type conformance between the original and a pruned effective metamodel.

4. Support for invariants to express metamodel invariants and model transformation pre-
conditions

5. Inter-operability with the high-level programming language Java. This will facilitate exe-
cution of ALLOY models

6. A model transformation language that can simultaneouslymanipulate models in heteroge-
nous modelling languages

Metamodel for ALLOY

The tool must transform the effective modelling domain to a constraints model such as an AL-
LOY model. The transformation can be classified as amany-to-one exogenous transformation
between models in modelling languages for heterogeneous sources to a model in ALLOY . There-
fore, there is a need to create an output metamodel representing the ALLOY grammar.

3.2.2 CARTIER Technical Overview

CARTIER thrives within the context of MDE is built upon theEclipse Modeling Framework
(EMF) [32]. CARTIER is developed in Kermeta [82] [108] an executable (meta-)modelling and
model transformation language developed by the TRISKELL group in INRIA, Rennes, France.

The first step in CARTIER is to obtain an effective modelling domain or a smaller effective
metamodel from an input metamodel via metamodel pruning [141]. The metamodel pruning
algorithm solicits large metamodel loading/saving and sophisticated model transformation oper-
ators provided by Kermeta. The effective metamodel is a subset of the input metamodel from a
set-theoretic point of view and supertype of the input metamodel from a type-theoretic point of
view. We use model typing [145] (see Chapter 2, Section 2.4.2) to ensure this type conformance
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between the effective metamodel and input metamodel. The type conformance implies thatall
instancesof the effective model are instances of the input metamodel therefore preserving back-
ward compatibility. Further,all operations and transformationson the effective metamodel are
compatible with the possibly large input metamodel such as UML . We take note of the great
advantage of pruning while dealing with large metamodels such as the UML which cannot be
readily handled by a constraint solver such as ALLOY (see next paragraph). The advantage being
the capability of model typing to ensure compatibility withan industry standard. Model typing
is only supported in Kermeta at the time of writing making it the prime choice for the pruning
transformation.

The core of CARTIER is a transformation from heterogenous sources of knowledgeinclud-
ing the effective metamodel to the formal specification language ALLOY . This amounts to a
many-to-one exogenousmodel transformation. Kermeta supports the construction of such model
transformations. The heterogeneous sources of knowledge are models expressed as instances of
different Ecore metamodels that can be efficiently handled by Kermeta. The target language is
ALLOY [71] which is implemented in Java. To bring everything within the context of model
transformation between modelling languages we created a metamodel for ALLOY conforming
to theEcore standard. The ALLOY Ecore metamodel is available for download at [2]. CARTIER

navigates and extracts knowledge from the sources to createa declarative model in the language
ALLOY using a Kermeta model transformation.

CARTIER must solve the ALLOY model to obtain solutions that can serve as a source of
information to create model instances of the input metamodel. This calls for inter-operability
with Java as the ALLOY API is in Java. Kermeta allows calling the Java API to solve the
ALLOY model using relevant parameters and a SAT solver of choice such as MiniSAT [112],
ZChaff [159]. The ALLOY solutions must be transformed back to model instances of theinput
metamodel. We present a transformation ALLOY 2EMF in Java that transforms the ALLOY

solutions back to model instances of ALLOY .

3.2.3 CARTIER Architecture

In Figure 3.2, we present the overall architecture of CARTIER. The architecture implements
a number of model transformations as indicated by several numeric prefixes. We enlist the
important steps in the architecture below:

1. Metamodel pruning (indicated as transformation 1 in Figure 3.2) transforms an input meta-
modelMMin to the effective metamodeleMMin containing the required types and prop-
erties and their obligatory dependencies. The pruning algorithm is described in Section
3.4.

2. If the effective metamodeleMMin contains multiple inheritance we apply the transforma-
tion (indicated as transformation 3 in Figure 3.2) that flattens the effective metamodel to a
base ALLOY modelA with single inheritance. This transformation is describedin Section
3.6. If the effective metamodel contains only single inheritance CARTIER executes the ba-
sic transformation (indicated as transformation 2 in Figure 3.2) to obtain the base ALLOY

modelA. This transformation is described in Section 3.5.
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Figure 3.3: Bird’s Eye View of the UML Metamodel

3. Domain-specific sources such as the partial modelp, model fragments areautomatically
transformed to ALLOY predicates using transformations 4, 5 in Figure 3.2.

4. Arbitrary textual constraintsC or domain-specific knowledge such as the pre-condition of
a model transformation are currentlymanuallytransformed to ALLOY predicates.

5. CARTIER generates a conjunction ALLOY predicate of the set of all ALLOY predicates
and a corresponding run command to solve the predicate. The conjunction predicate is
combined with the base ALLOY modelA to give a final ALLOY modelAF . This is per-
formed in transformation 6 as shown in Figure 3.2. The details of this transformation is
presented in Section 3.9.

6. CARTIER invokes KodKod from the ALLOY API to transform the final ALLOY model
AF to a Boolean satisfaction (SAT) problem as shown in transformation 7 from Figure
3.2. This transformation already exists in the ALLOY API and is not implemented in
CARTIER. CARTIER invokes a SAT solver such as ZChaff [159], or MiniSAT [112] to
generate ALLOY instances.

7. The ALLOY instances are transformed to EMF models conforming to the input metamodel
MMin. This is depicted in transformation 8 of Figure 3.2. This transformation described
in Section 3.9.3.

3.3 Running Case Study : The UML

We use the UML as a running case study to describe automatic model discovery. We present a
bird’s eye view of the UML metamodel in Figure 3.3.

We believe that UML is a convincing case study to illustrate our approach for model discov-
ery. There are a number of reasons to choose UML as a running case study:
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• Industry Standard Metamodel: The UML is a widely accepted industry standard for
software structure and behavior design and code generation. A number of model transfor-
mations have been expressed using UML as the input domain. Automatic model discovery
of models in the domain of UML clearly demonstrates the applicability of our approach to
real-world problems.

• Very Large and Complex Metamodel:The UML metamodel consists of 246 classes and
583 properties and incorporates complex metamodel patterns such as multiple containers
for a class, multiple inheritance between classes, and extensive use of opposite properties
in metamodels.

• Provokes use of Sophisticated Model Transformation:The complex structure of UML

solicits the use of sophisticated model transformation operators in transformations be-
tween UML to other languages such as theRelational Database Management Systems
(RDBMS) [22]. Automatic generation of test models that discover bugs in such transfor-
mations is of key interest to us.

• Illustrates the benefits of Metamodel Pruning and Model Typing: The large size of
UML helps us demonstrates the benefits of metamodel pruning to extract a subset of UML

and demonstrating type conformance of the pruned metamodelwith the UML . The type
conformance demonstrates that instance and operations on the subset of UML preserve
backward-compatibility with UML itself.

• Can UML be saved?A political question that we wish to address with this case study
is the growing debate about the large size of UML . Critics state that UML is evolving
to become very and large incomprehensible for software development. However, they
also mention that the notion of general purpose modelling languages such as UML is
necessary to maintain backward compatibility and inter-operability for users. We want
to demonstrate with our approach that metamodel pruning andmodel typing help work
around the problem of the large size by extracting only relevant subsets of the UML for
applications such as model discovery. All the while stayingcompatible with the UML

standard.

3.4 Effective Modeling Domain Identification: Metamodel Pruning

We present ametamodel pruning algorithmthat takes as input a large metamodel and a set of
required classes and properties, to generate a targeteffective metamodel. The effective meta-
model contains the required set of classes and properties. The termpruning refers to removal
of unnecessary classes and properties. From a graph-theoretic point of view, given a large input
graph (large input metamodel) the algorithm removes or prunes unnecessary nodes (classes and
properties) to produce a smaller graph (effective metamodel). The algorithm determines if a
class or property is unnecessary based on a set of rules and options. One such rule is removal
of properties with lower bound multiplicity 0 and who’s typeis not a required type. We demon-
strate using the notion of model typing that the generated effective metamodel, a subset of the
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large metamodel from a set-theoretic point of view, is asuper-type, from a type-theoretic point
of view, of the large input metamodel. This means that all programs written using the effective
metamodel can also be executed for models of the original large metamodel. The pruning pro-
cess preserves the meta-class names and meta-property names from the large input metamodel in
the effective metamodel. This also implies that all instances (models) of the effective metamodel
are also instances of the initial large input metamodel. Allmodels of the effective metamodel
are exchangeable across tools that use the large input metamodel as a standard. The extracted
effective metamodel is very much like a transient DSML with necessary concepts for a problem
domain at a given time.

3.4.1 Important Definitions

We present some general definitions we use to describe the pruning algorithm.
Definition 3: A metamodel MMis a 3-tupleMM := (T,P, Inv), whereT is a finite set of class,
primitive, and enumeration types,P is a set of properties,Inv is a finite set of invariants. We
specify the modelling domain of amodelling languageusing a metamodel. We use theEcore
standard to represent a metamodel [32].
Definition 4: A primitive type bis an element in the set of primitives:b∈ {String,
Integer,Boolean}.
Definition 5: An enumeration type eis a 2-tuplee := (name,L), wherenameis aString identi-
fier, L is a finite set of enumerated literals.
Definition 6: A class type cis a 4-tuplec := (name,Pc,Super, isAbstract,containers), where
nameis aString identifier,Pc is a finite set of properties of classc, classc inherits properties of
classes in the finite of classesSuper, isAbstractis aBooleanthat determines ifc is abstract and
containersis the set of all possible containing classes for the instances ofc.
Type Operations: The operations on types used in this algorithm are: (a)t.isInstanceO f(X)
that returns true ift is of typeX or inherits fromX. (b) t.allSuperClasses(), if
t.isInstanceO f(Class), returns the set of all its super classest.Superincluding the super classes
of its super classes and so on (multi-level) (c)t.allContainers() returns all possible containers
for a class type.
Definition 7: A property pis a 7-tuplep := (name,oC, type, lower,upper,opposite,
isComposite), wherenameis a String identifier, oC is a reference to the owning class type,
type is a reference to the property type,lower is a positive integer for the lower bound of the
multiplicity, upper is the a positive integer for the upper bound of the multiplicity, oppositeis
a reference to an opposite property if any, andisCompositedetermines if the objects referenced
by p are composite (No other properties can contain these objects).
Property Operations: The operation on properties in this algorithm isp.isConstrained() which
returnstrue if constrained by any invarianti such thatp∈ i.PI . This is checked for all invariants
i ∈MM.Inv.
Definition 8: An invariant I is a 3-tuplec := (TI ,PI ,Expression), whereTI is the set of types
used in the invariantI andPI is the set of properties used inI . An Expressionis a function ofTI

andPI that has a boolean value. TheExpressionis often specified in a constraint language such
asOCL [114].
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Note: Throughout the section, we use therelational dot-operatorto identify an element of a
tuple. For example, we want to refer to the set of all types in ametamodel we use the expression
MM.T,or MM.P to refer to the set of all properties. Also, we do not consideruser-defined
metamodeloperationsor its argument signatures in our approach.

3.4.2 Metamodel Pruning Algorithm

This section describes themetamodel pruning algorithmto transform an input metamodel to a
pruned target metamodel. We acknowledge the fact there can be an entire family of pruning
algorithms that can be used to prune a large metamodel to givevarious effective metamodels.
We present aconservativemetamodel pruning algorithm to generate effective metamodels. Our
initial motivation to develop the algorithm was to help scale a formal method for test model
generation [138] in the case of large input metamodels. Therefore, given a set of required classes
and properties the rationale for designing the algorithm was to remove a maximum number
of classes and properties facilitating us to scale a formal method to solve constraints from a
relatively small input metamodel. The set of required classes and properties are inputs that can
come from either static analysis of a transformation, an example model, an objective function,
or can be manually specified. Given these initial inputs we automatically identify mandatory
dependent classes and properties in the metamodel and remove the rest. For instance, we remove
all properties which have a multiplicity 0..* and with a typenot in the set of required class
types. However, we also add some flexibility to the pruning algorithm. We provide options
such as those that preserve properties (and their class type) in a required class even if they have
a multiplicity 0..*. In our opinion, no matter how you chooseto design a pruning algorithm
the final output effective metamodel should be a supertype ofthe large input metamodel. The
pruning algorithm must also preserve identical meta-concept names such that all instances of the
effective metamodel are instances of the large input metamodel. These final requirements ensure
backward compatibility of the effective metamodel with respect to the large input metamodel.

Algorithm Overview

In Figure 3.4, we present an overview of the metamodel pruning algorithm. The inputs to the
algorithm are: (1) A source metamodelMMs = MMlarge which is also a large metamodel such as
the metamodel for UML with about 246 Classes and 583 properties (inEcore format) (2) A set
of required classesCreq (3) A set of required propertiesPreq, and (4) A boolean array consisting
of parameters to make the algorithm flexible for different pruning options.

The set of required classesCreq and propertiesPreq can be obtained from various sources as
shown in Figure 3.4: (a) A static analysis of a model transformation can reveal which classes
and properties are used by a transformation (b) The sets can be directly specified by the user
(c) A test objective such as a set of partitions of the metamodel [55] is a specified on different
properties which can be source for the setPreq. (d) A model itself uses objects of different
classes. These classes and their properties can be the sources forCreq andPreq.

The output of the algorithm is a pruned effective metamodelMMt = MMe f f ectivethat con-
tains all classes inCreq, all properties inPreq and their associated dependencies. Some of the
dependencies are mandatory such as all super classes of a class and some are optional such as
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Figure 3.4: The Meta-model Pruning Algorithm Overview

properties with multiplicity 0..* and whose class type is not in Creq. A set of parameters allow
us to control the inclusion of these optional properties or classes in order to give various effec-
tive metamodels for different applications. The output metamodelMMe f f ectiveis a subset and a
super-type ofMMs.

The Algorithm

The metamodel pruning algorithm (shown in Algorithm 1) has four inputs: (a) A source meta-
modelMMs (b) Initial set of required typesTreq (c) Initial set of required propertiesPreq (d) The
top-level container class typeCtop. (e) Parameterwhich is a Boolean array. Each element in
the array corresponds to an option to add classes or properties to the required set of classes and
properties. We consider three such options giving us aParametervector of size 3.

The output of the algorithm is the pruned target metamodelMMt . We briefly go through the
working of the algorithm. The target metamodelMMt is initialized with the source metamodel
MMs. The algorithm is divided into three main phases: (1) Computing set of all required types
Treq in the metamodel ,(2) Set of all required propertiesPreq in the metamodel (3) Removing all
types and properties not that are not inTreq andPreq

The first phase of the algorithm involves the computation of the entire set of required types
Treq. The initial setTreq is passed as a parameter to the algorithm. We add the top-level container
classCtop of MMs to the set of required typesTreq as shown in Step 2. In Step 3, we add the
types of all required propertiesPreq to the set of required typesTreq. In Step 4, we add types
of all mandatory properties toTreq. Types of all properties withlower bound greater than zero
are added to the set of required typesTreq (Step 4.1). Similarly, if a property is constrained
by an invariant inMM.Inv then its type is included inTreq as shown in Step 4.2. If a property
has an opposite type then we include the type of the opposite property toTreq in Step 4.3. The
algorithm provides three options to add types of propertieswith lower multiplicity zero and
are of type Class, PrimitiveType, and Enumeration respectively. The inclusion of these types is
depicted in Steps 4.4, 4.5, and 4.6. The truth values elements of theParameterarray determine if
these options are used. These options are only examples of making the algorithm flexible. The
Parameterarray and the options can be extended with general and user-specific requirements
for generating effective metamodels. After obtainingTreq we add all its super classes across all
levels to the setTreq as shown in Step 5.

The second phase of the algorithm consists of computing the set of all required properties
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Required Properties Required Types
Property : Type Class
memberEnd : Class Association
general : Class Package
ownedEnd : Class Property
classifier : Package PrimitiveType
datatype : Property
attribute : Class
packagedElement : Package

Table 3.1: Required UML Types and Properties in the Transformationclass2rdbms

Preq. Inclusion of mandatory properties are depicted from Step 6.1 through Step 6.5. In Step
6.1, we add all properties whose type are inTreq to Preq. In Step 6.2 we add all properties whose
owning class are inTreq to Preq. In Step 6.3, we add properties with lower multiplicity greater
than zero toPreq. If a property is constrained by a constraint inMM.Inv we add it toPreq as
depicted in Step 6.4. We add the opposite property of a required property toPreq. Finally, based
on the options specified in theParameterarray, the algorithm adds properties toPreq with lower
multiplicity zero and other characteristics.

In the third phase of the algorithm we remove types and properties fromMMt . In Step 7, we
remove all properties that are not inPreq (Step 7.1) and all properties who’s types are not inTreq

(Step 7.2). In Step 8, we remove all types not inTreq. The result is an effective metamodel in
MMt. In Chapter 2, Section 2.4.2, we presentmodel typingfor metamodels to show thatMMt is
a super-type ofMMs. As a result, any program written withMMt can be executed using models
of MMs.

3.4.3 Illustration on UML Case Study

We prune the UML metamodel based on a set of required types and properties using the pruning
algorithm. The source for the set of required types and properties is the static analysis of a model
transformation between UML class diagrams andRelational Database Management Systems
models described in [22]. We enlist the set of required typesand properties in Table 3.1.

The pruned UML metamodel contains 26 Classes and 65 Properties which is drastically
smaller than the original 246 Classes and 583 Properties. Wealso verify using model typing
(see Chapter 2, Section 2.4.2) that the pruned UML is a supertype of UML . This implies that
any model created as an instance of the pruned UML is also an instance of the original UML .
Any operation or model transformation written for UML is also applicable to UML . The pruned
metamodel is an effective metamodel of UML that will be used as an example for the subsequent
sections.

3.4.4 Validity and Complexity of the Algorithm

The metamodel pruning algorithm by construction generatesan effective metamodel that is a
supertypeof the large input metamodel. Does the algorithm generate a supertype effective meta-
model for any input metamodel and set of required types and properties? We need to answer
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Algorithm 1 metamodelPruning(MMs, Treq, Preq, Ctop, Parameter)

1. Initialize target meta-modelMMt

MMt ←MMs

2. Add top-level class into the set of required types
Treq← Treq∪Ctop

3. Add types of required properties to set of required types
Preq.each{p|Treq← Treq∪ p.type}
4. Add types of obligatory properties
MMt .P.each{p|
4.1 (p.lower> 0) =⇒ {Treq← Treq∪ p.type}
4.2 (p.isConstrained(MMt .Inv)) =⇒ {Treq← Treq∪ p.type}
4.3 (p.opposite! = Void) =⇒ {Treq← Treq∪ p.opposite.type}
Option 1: Property of type Class with lower bound 0
if Parameter[0] == True then

4.4(p.lower== 0and p.type.isInstanceO f(Class)) =⇒ {Treq← Treq∪ p.type}
end if
Option 2: Property of type PrimitiveType with lower bound 0
if Parameter[1] == True then

4.5(p.lower== 0and p.type.isInstanceO f(PrimitiveType)) =⇒ {Treq← Treq∪ p.type}
end if
Option 3: Property of type Enumeration with lower bound 0
if Parameter[2] == True then

4.6(p.lower== 0and p.type.isInstanceO f(Enumeration)) =⇒ {Treq← Treq∪ p.type}}
end if
5. Add all multi-level super classes of all classes inTreq

MMt .T.each{t | t.isInstanceO f(Class) =⇒ t.allSuperClasses.each{s|Treq← Treq∪s}}
6. Add all required properties to Preq

MMt .P.each{p|
6.1 (p.type∈ Treq) =⇒ {Preq← Preq∪ p}
6.2 (p.oC∈ Treq) =⇒ {Preq← Preq∪ p}
6.3 (p.lower> 0) =⇒ Preq← Preq∪ p}
6.4 (p.isConstrained(MMt .Inv)) =⇒ {Preq← Preq∪ p}
6.5 (p.opposite! = Void) =⇒ Preq← Preq∪ p.opposite}
Option 1: Property of type Class with lower bound 0
if Parameter[0] == True then

6.6(p.lower== 0and p.type.isInstanceO f(Class)) =⇒ {Preq← Preq∪ p}
end if
Option 2: Property of type PrimitiveType with lower bound 0
if Parameter[1] == True then

6.7(p.lower== 0and p.type.isInstanceO f(PrimitiveType)) =⇒ {Preq← Preq∪ p}
end if
Option 3: Property of type Enumeration with lower bound 0
if Parameter[2] == True then

6.8(p.lower== 0and p.type.isInstanceO f(Enumeration)) =⇒ {Preq← Preq∪ p}}
end if
7. Remove Properties
MMt .P.each{p|
7.1 p /∈ Preq =⇒ (t.P← t.P− p)
}
8. Remove Types
MMt .T.each{t|t /∈ Treq =⇒ MMt .T←MMt.T− t}
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Figure 3.5: Bird’s Eye View of UML Pruned With 26 Classes and 65 Properties
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to answer this question to ensure that the algorithm is returns a super type for all possible input
metamodels.

To answer this question we need to verify that eachpruning operatortakes as input a meta-
model and returns asupertypemetamodel as output. In our algorithm, each removal or pruning
operator satisfies this requirement. For example in Figure 3.6 we illustrate the operator to re-
move a property with multiplicity 0..* of a property with a not required type. Specifically, we
show that in the UML metamodel the propertyclientDependencyof NamedElement may be re-
moved when Dependency is not one of the required classes in Figure 3.6 (a). The resulting
effective UML metamodel is supertype of the UML metamodel.

Similarly, we verify that all removal/pruning operators inour algorithm give a supertype as
output. Therefore, by thelaw of transitivityexecuting the pruning operators in sequence always
gives a supertype as the output.

The metamodel pruning algorithm haslinear time complexity. The algorithm traverses the
metamodel three times. The metamodel is usually a graph datastructure but anEcore metamodel
enforces a containment relationship for all types. This means that a metamodel may be traversed
like a tree. If a metamodel hasP properties (leaf elements) then a depth-first traversal has
complexityO(P). The second traversal requires identification of dependentof properties and
types. Finally, the third traversal removes or prunes the properties and types that are not required.
Therefore, in general the time complexity of the algorithm isO(3P). However, if the metamodel
containsE enumerations then the complexity becomesO(3P+E).

Thespace complexityof the metamodel pruning algorithm corresponds to the length longest
pathfrom the root of a metamodel to its root. This corresponds to the path from the root class to
the property node in the last class of the containment hierarchy of a metamodel. The depth-first
algorithm stores this path in memory each time it traverses abranch in the metamodel.
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<PrimitiveType>

An existing definition of a primitive type is loaded.

<PrimitiveType> can be String, Boolean or Integer. Alloy supports in-built notions of String, 
Integer, and Boolean. In this thesis, we use the in-built versions for Integer and Boolean. We 
use Integer for all occurrences of String for performance reasons in this thesis.

Alloy Paragraph

open <location>/<PrimitiveType> as <PrimitiveType>

Metamodel Element

Figure 3.7: Transformation of Primitive Types

3.5 Transformation Metamodel with Single Inheritance to ALLOY

In the previous section we obtain a concise and effective metamodelMMe f f ectivefrom the input
metamodelMMin. We now describe the transformation of the effective metamodel MMe f f ective

to ALLOY . For convenience, we denote the effective metamodel as justmetamodelMM.

A metamodel MMis a 3-tupleMM := (T,P, Inv), whereT is a finite set of class, primitive,
and enumeration types,P is a set of properties,Inv is a finite set of invariants. We use an
example-driven approach to explain the transformation of each of these metamodel elements in
the following paragraphs. In this section, we consider the simplest form of transformation where
the metamodel contains onlysingle inheritanceand not multiple inheritance.

3.5.1 Transformation of a Primitive Type to ALLOY

Primitive Type Rule 1 (PTR1): We transform a primitive type such asBoolean, Integer, and
String by loading in-built ALLOY modules containing specifications ofBoolean andInteger. At
the time of implementing the transformation we created an ALLOY model ofString. The com-
plete ALLOY string specification may be downloaded at the site [5]. However, generating strings
using ALLOY is computationally expensive. Our focus is model generation with emphasis on fa-
cilitating generation of complex structural aspects of themodel. Therefore, we make the choice
of replacing allString properties withInteger values.

3.5.2 Transformation of an Enumeration Type to ALLOY

Enumeration Type Rule 2 (ETR2): An enumeration type such asEnumerationA in Figure 3.8
is very simply and directly transformed to an ALLOY enumeration.
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Alloy Paragraph

enum EnumerationA 

{ 

   EnumLiteral1,

   EnumLiteral2,

   ...

   EnumLiteralN,

}

Metamodel Element

EnumLiteral1

EnumLiteral2

.

.

.

EnumerationN

EnumerationA

Figure 3.8: Transformation of Enumeration Type

3.5.3 Transformation of a Class Type to ALLOY

There are four specific cases in transforming a class type to ALLOY as seen in Figure 3.9. We
describe them below:

Concrete Class Type With No Inheritance Rule 3 (CCNI3): A concrete classClassA that
does not inherit from any other class is transformed to an ALLOY signature. See Figure 3.9 (a).

Abstract Class Type With No Inheritance Rule 4 (ACNI4): A abstract classClassA that does
not inherit from any other class is transformed to an abstract ALLOY signature. See Figure 3.9
(b).

Concrete Class Type With Single Inheritance Rule 5 (CCSI5):A concrete classClassA that
inherits from exactly one super classSuperClass is transformed to an ALLOY signature that ex-
tends the signature representing the super classSuperClass. See Figure 3.9 (c).

Abstract Class Type With Single Inheritance Rule 6 (ACSI6):An abstract classClassA that
inherits from exactly one super classSuperClass is transformed to an ALLOY signature that ex-
tends the signature representing the super classSuperClass. See Figure 3.9 (d).

3.5.4 Transformation of a Property to ALLOY

A property in a metamodel is either anattribute pointing to primitive type a or areferenceto
object(s) of an other class. There are six specific cases to transform properties in a metamodel
to fieldsin ALLOY signatures:
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ClassA

Alloy Paragraph

sig ClassA { ... }

Metamodel Element

ClassA 
<abstract>

SuperClass
<abstract>

ClassA

SuperClass

ClassA

abstract sig ClassA { ... }

sig ClassA extends SuperClass { ... }

abstract sig ClassA extends SuperClass { ... }

1.

2.

3.

4.

Figure 3.9: Transformation of Class Type
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Primitive Attribute with One Multiplicity Rule 7 (PAOM7): Primitive attributes such asat-
tribute1, attribute2, attribute3 with both lower and upper bound multiplicity 1 as shown in Figure
3.10 (a) are transformed to ALLOY fields with the same name. Note that the usage of primitive
types had already led to the inclusion of in-built ALLOY modules implementing the definition
of the primitive types. The attributeattribute3 of the String type is transformed to an ALLOY

Integer in this thesis to avoid extra computational cost due to generation of strings.

Primitive Attribute with At Least One Multiplicity Rule 8 (P ALOM8) : A primitive attribute
attribute1 with lower bound multiplicity 0 and upper bound multiplicity 1 is transformed to an
ALLOY field in its owning signature with thelonespecialization as shown in Figure 3.10 (b).

Primitive Attribute with Variable Multiplicity Rule 9 (PAV M9) : A primitive attributeat-
tribute1 with lower bound multiplicityaand upper bound multiplicityb, wherea≥ 0,b> a,b 6= 1
is transformed to an ALLOY field in its owning signature with thesetspecialization as shown in
Figure 3.10 (c).

Reference with One Multiplicity Rule 10 (ROM10) : A referencereference1 with lower and
upper bound multiplicities 1 is transformed to an ALLOY field in its owning signature with the
onespecialization as shown in Figure 3.10 (d).

Reference with At Least One Multiplicity Rule 11 (RLOM11) : A referencereference1 with
lower bound multiplicity 0 and upper bound multiplicity 1 istransformed to an ALLOY field in
its owning signature with thelonespecialization as shown in Figure 3.10 (e).

Reference with Variable Multiplicity Rule 12 (RVOM12) : A referencereference1 with lower
bound multiplicitya and upper bound multiplicityb, wherea≥ 0,b > a,b 6= 1 , is transformed
to an ALLOY field in its owning signature with thesetspecialization as shown in Figure 3.10 (f).

3.5.5 Transformation of Implicit Metamodel Constraints to ALLOY Facts

There are a number of constraints encoded in the input metamodel. These include constraints
due to multiplicity, opposite properties, identity properties, composite properties, and contain-
ment. These implicit constraints are automatically transformed to ALLOY facts. We describe
the transformation of each fact below:

Primitive Attribute Multiplicity Constraint Rule 13 (PAMC 13): A primitive attributeat-
tribute1 in a ClassA with a lower bound multiplicitya and an upper bound multiplicityb, where
a≥ 0,b > a,b 6= 1 results in the generation of an ALLOY fact as shown in Figure 3.11 (a). The
ALLOY fact states that for all objects of typeClassA the size of (denoted by #)ClassA.attribute1
must be≥ attribute1.lower and≤ attribute1.upper.
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attribute1: Boolean
attribute2: Integer
attribute3: String

ClassA

sig ClassA 
{ 
   attribute1: lone <PrimitiveType>
}

ClassA ClassB

attribute1: <PrimitiveType>[0..1]
ClassA

sig ClassA 
{ 
   attribute1: one Boolean,
   attribute2: one Int,
   attribute3: one String,
   (or, attribute3: one Int)
}

sig ClassA 
{ 
   attribute1: set <PrimitiveType>
}

attribute1: <PrimitiveType>[a..b]
ClassA

a..b

reference1

ClassA ClassB
0..1

reference1

ClassA ClassB
1..1

reference1

sig ClassA 
{ 
   reference1: one ClassB
}

sig ClassA 
{ 
   reference1: lone ClassB
}

sig ClassA 
{ 
   reference1: set ClassB
}

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.10: Transformation of Properties to ALLOY
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Generated Alloy ParagraphMetamodel Implicit Constraint

attribute1: <PrimitiveType> [lower..upper]
ClassA

ClassA ClassB

fact ClassA_attribute1_multiplicity
{ 
   all object : ClassA | 
                                 #object.attribute1 >= attribute1.lower
                                 and 
                                 #object.attribute1 <= attribute1.upper
}

lower..upper

reference1

(a) Attribute Multiplicity

(b) Reference Multiplicity
fact ClassA_reference1_multiplicity
{ 
   all object : ClassA | 
                                 #object.reference >= reference1.lower
                                 and 
                                 #object.reference1 <= reference1.upper
}

(c) Opposite Property

ClassA ClassB
propertyBpropertyA

fact ClassA_propertyB_ClassB_propertyA_opposite
{ 
   all object1 : ClassA, object2 : ClassB | 
                                 object2  in object1.propertyB 
                                 implies
                                 object1 in object2.propertyA
}

Condition

reference.lower > 0 and 
reference.upper >= reference.lower

Condition

propertyA.opposite = propertyB
propertyB.opposite = propertyA

(d) Identity Attribute

(e) Identity Reference

idAttribute1: <PrimitiveType>
ClassA

Condition

idAttribute1.isID = 1

Condition

idReference1.isID = 1

ClassA ClassB

idReference1

fact ClassA_idAttribute1_id
{ 
   all object1 : ClassA, object2 : ClassA | 
                    (object1.idAttribute1 == 
                     object2.idAttribute1) implies
                     object1 = object2
}

fact ClassA_idReference1_id
{ 
   all object1 : ClassA, object2 : ClassA | 
                    (object1.idReference1 == 
                     object2.idReference1) implies
                     object1 = object2
}

Figure 3.11: Transformation of Implicit Constraints in Metamodel to ALLOY Part 1
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Reference Multiplicity Constraint Rule 14 (RMC14) : A referencereference1 in a ClassA
with a lower bound multiplicitya and an upper bound multiplicityb, wherea≥ 0,b > a,b 6= 1
results in the generation of an ALLOY fact as shown in Figure 3.11 (b). The ALLOY fact states
that for all objects of typeClassA the size of (denoted by #)ClassA.reference1 must be≥ refer-
ence1.lower and≤ reference1.upper.

Opposite Property Constraint Rule 15 (OPC15) :Bi-directional references in a metamodel
are modelled using the notion ofopposite properties. For instance, in Figure 3.11 (c),ClassA.propertyB
andClassB.propertyA are opposite properties that lead to the generation of an ALLOY fact. The
fact states that for each objectobject1 of ClassA and each objectobject2 of ClassB, if object2
is in the setClassA.propertyB thenobject1 is in the setClassB.propertyA. This fact ensures the
opposite property relationship between all opposite properties in instance models of the meta-
model.

Identity Attribute Constraint Rule 16 (IAC16) : An identity attributeidAttribute1 of primitive
type in aClassA as shown in Figure 3.11 (d), is transformed to an ALLOY fact. The fact states
that for each objectobject1, object2 both ofClassA, if object1.idAttribute1 = object2.idAttribute1
, then the objectsobject1 andobject2 must be the same objects. There cannot exist two or more
instances of these objectsobject1 andobject2. The identity attribute is useful in creating objects
with one or more unique identifier attributes.

Identity Reference Constraint Rule 17 (IRC17) : An identity referenceisReference1 in a
ClassA referring toClassB as shown in Figure 3.11 (e), is transformed to an ALLOY fact. The
fact states that for each objectobject1, object2 both of ClassA, if object1.isReference1 = ob-
ject2.isReference1 , then the objectsobject1 andobject2 must be the same objects. There cannot
exist two or more instances of these objectsobject1 andobject2.

Composite Property Constraint Rule 18 (CPC18) :The composite propertyClassA.compProp
in a classClassA containing objects ofClassB is transformed to an ALLOY fact as shown in Fig-
ure 3.12 (f). The fact states that for all objectso1, o2 of ClassA and for each referencep2 and
p2 in ClassA.o1.compProp, if p2 andp2 are the same then objectso1 ando2 are the same. The
fact simply states that an object ofClassB is contained in exactly one object ofClassA.

Class Containers Constraint Rule 19 (CCC19) :Objects of a class can have many possible
containers. For instance, in Figure 3.12(g) theClassA has 3 possible containersClass1, Class2,
andClass3. The multiplicity 0..1 for referenceClassA.container1 indicates thatClass1 may or
may not be a container forClassA objects. Similarly, the multiplicities ofClassA.container2
andClassA.container3 indicate thatClass2 andClass3 are other possible containers forClassA
objects. In a model of the metamodel a givenClassA object can be contained only in one of
the three classesClass1, Class2, andClass3. This case can be extended toN possible container
classes. We generate an ALLOY fact to enforce this containment relationship between objects of
classes. The fact states that for all objectsob1, ob2, andob3 of typeClass1, Class2, andClass3
respectively, the reference toClassA is disjoint or ob1, ob2, andob3 always refer to different ob-
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(f) Composite Property Constraint

Condition

compProp.isComposite = true

ClassA ClassB

compProp

fact ClassA_compProp_composite
{ 
   all o1 : ClassA, o2 : ClassA | 
                   all p1:o1.compProp, p2 : o2.compProp |
                   p1=p2 implies o1=o2
}

Generated Alloy ParagraphMetamodel Implicit Constraint

(g) Class Containers Constraint

a..b

Class1 ClassA
fact ClassA_containers
{ 
  all o1: Class1, o2: Class2, o3:Class3 |    
       disj[o1.prop1,o2.prop2,o3.prop3]  and 
       all o:ClassA|    
(#o.container1+#o.container2+#o.container3=1)

}

Class2

ClassN

0..1

0..1

0..1

prop1

prop2

prop3

container1

container2

container3

Figure 3.12: Transformation of Implicit Constraints in Metamodel to ALLOY Part 2

jects ofClassA. The fact also states in conjunction that all objects ofClassA must be contained
in eitherClass1, Class2 or Class3 but never in more than one class.

3.6 Transforming Metamodel with Multiple Inheritance to A LLOY

The basic transformation, discussed in the previous Section 3.5, of a metamodel to ALLOY is
suitable for small metamodels with single inheritance. However, it is not appropriate for large
and complex metamodels containing several hundreds classes and properties along with complex
structure such as multiple inheritance. The UML is a notorious example of a metamodel with
several instances of multiple inheritance and a large number of classes (246) and properties
(583). The basic transformation does not handle multiple inheritance and may result in the
generation of an intractable ALLOY model when the number of classes and properties is very
high.

In this section, we consider a very general case of transforming any metamodel with multiple
inheritance to ALLOY for the purpose of model synthesis. Our transformation is based on the
following important observations:

• Given a metamodel, a modeller creates an instance model by only creating objects of
concrete classesin the metamodel.
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• All properties have either primitive values such as integer, boolean, string or refer to ob-
jects of other concrete classes.

• Even properties referring to abstract classes ultimately point to objects of concrete classes
that inherit from these abstract classes.

• A model is always an interconnected graph ofconcrete class objects.

• Abstract class objects are never created! All we need are concrete class objects and build
relationships between them.

The transformation from a large and complex metamodel with multiple inheritance to AL-
LOY is based on the observations made above. In the subsequent sections, we present the trans-
formation of a metamodel to a tractable and small ALLOY model. The ALLOY model uniquely
contains signatures for concrete classes in the metamodel.A number of ALLOY facts are gener-
ated to emulate multiple inheritance and its effects on classes and properties in ALLOY .

3.6.1 Flattening the Class Hierarchy

Before the flattening step, all primitive types detected in the metamodel are transformed to AL-
LOY open statements that load modules for primitive types such as Integer, Boolean, and String.
This process is exactly the same as described in Section 3.5 for transformation of primitive types.

The first step in the transformation involves flattening the class hierarchy in a metamodel
with multiple inheritance to a flat ALLOY model. Consider a general metamodel as shown on the
left hand side of Figure 3.13 containing several abstract classes and concrete classes. As seen on
the right hand side Figure 3.13, we transform allconcrete classesin the metamodel to signatures
in ALLOY . We also see the graphical signature hierarchy representation of the ALLOY model.
In the figure the concrete classes ConcreteClass1, ConcreteClass2,..., ConcreteClassM are trans-
formed to ALLOY signatures.Noneof the abstract superclasses SuperClass11...SuperClassN1
are transformed to ALLOY signatures. We neglect abstract super classes based on the observa-
tion that we will never need to instantiate their objects.

3.6.2 Transforming Properties to ALLOY Fields and ALLOY Facts

The second step involves the transformation all propertiesof each concrete class to ALLOY .
These properties include those what were originally owned by a concrete class and those inher-
ited from all other concrete/abstract classes. Therefore,we transform each propertyp (owned or
inherited) in each concrete classC to ALLOY . We need to deal with the following cases:

1. Owned Property p is of Primitive Type in a Concrete ClassC:

Owned propertyp is transformed to an ALLOY field fp in the ALLOY signaturesigC. This
is possible because all concrete class types and primitive types have a signature definition
in the ALLOY model after the flattening step in Section 3.6.1.
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...

SuperClassN1
<abstract>

...

ConcreteClass1

...

ConcreteClass2

...

ConcreteClassM

...

ConcreteClassN2

...
ConcreteClassNM

...

SuperClass11
<abstract>

...

SuperClass12
<abstract>

...

SuperClass1M
<abstract>

...

...

��
�
 Metamodel RHS: Generated Alloy Paragraph(s)

Alloy Signatures for Multiple Inheritance Hierarchy

sig ConcreteClass1 
{ ... }

sig ConcreteClass2 
{ .. }
...

sig ConcreteClassN2 
{ . . }

sig ConcreteClassNM
{ . . }
 
sig ConcreteClassM 
{ . . }

 Multiple Inheritance Class Hierarchy to Alloy Signatures

...

ConcreteClass1
<signature>

...

ConcreteClass2
<signature>

...

ConcreteClassM
<signature>

Graphical Representation of the Alloy Model

...

ConcreteClassN2
<signature>

...

ConcreteClassM
<signature>

Figure 3.13: Step 1: Flattening the Multiple Inheritance Hierarchy

2. Inherited Property p is of Primitive Type in a Concrete ClassC:

Propertyp is transformed to an ALLOY field in the ALLOY signature forC. This is possi-
ble because all concrete class types and primitive types have a signature definition in the
ALLOY model after the flattening step in Section 3.6.1.

3. Owned Property p of Concrete Class TypeCT in a Concrete ClassC:

Owned propertyp of a concrete class typeCT is transformed into an ALLOY field in
the signature representingC whenCT is not inherited by other classes. The process is
identical to the transformation described in Section 3.5.4. However, the concrete class
type CT of property p may be inherited by other concrete classesC1, ...CM as shown
in the LHS of Figure 3.14. We deal with the transformation in the following steps as
illustrated in Figure 3.14:

(a) If not already existing we create an abstract signature called GlobalSuperClass and
insert it into the ALLOY model. The abstract signature acts as aplaceholderfor
abstract classes and concrete classes inherited by other concrete classes in the input
metamodel.

(b) We insert the field forp into the ALLOY signature forC with the type GlobalSuper-
Class.

(c) All concrete classesC1...CM that inherit fromA now inherit from GlobalSuperClass.
The inheritance is illustrated on the RHS of Figure 3.14. Theconcrete classCT also
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...

CX

...

C

o

����
 Metamodel Pattern RHS: Generated Alloy Paragraph(s)

...

C1

...

CM

...

...

C1
<signature>

...

CM
<signature>

...

GlobalSuperClass
<abstract signature>

1. New (if not already inserted) Alloy Abstract Signature GlobalSuperClass

abstract sig GlobalSuperClass {}

2. Insert Alloy Field in ConcreteClassA of type GlobalSuperClass

sig C
{
p : GlobalSuperClass
}

3. Insert Subclass CX and C1..CM of A extends GlobalSuperClass

sig CX extends GlobalSuperClass
{ ...//Existing fields }
sig C1 extends GlobalSuperClass
{...//Existing fields }

4. New Alloy Fact to Assign a Concrete Type to a Reference
fact Invariant_C_p_subclasses
{  or C.p in C1 or ... C.p in CM }

...

Graphical Representation of Alloy Signature Hierarchy

p

...

CX
<signature>

Figure 3.14: Transforming Property of Concrete Type to ALLOY fact
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A
<abstract>
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...

C1

...

CM

...

...

C1
<signature>

...

CM
<signature>

...

GlobalSuperClass
<abstract signature>

1. New (if not already inserted) Alloy Abstract Signature GlobalSuperClass

abstract sig GlobalSuperClass {}

2. Insert Alloy Field in ConcreteClassA of type GlobalSuperClass

sig C
{
p : GlobalSuperClass
}

3. Insert Subclass C1..CM of A extends GlobalSuperClass

sig C1 extends GlobalSuperClass
{
...//Existing fields

}

4. New Alloy Fact to Assign a Concrete Type to a Reference
fact Invariant_C_p_subclasses
{
   C.p in C1 
    or 
    ...
    C.p in CM
}

...

Graphical Representation of Alloy 

Signature Hierarchy

p

Figure 3.15: Transforming Property of Abstract Type to ALLOY fact

inherits fromGlobalSuperClassif not already inheriting from it.

(d) We generate an ALLOY fact that states that the propertyp of C is in CT or in one
of the concrete subclasses ofCT namelyC1 , C2,..orCM. The fact enforces the
property to always refer toCT or concrete subclass objects ofCT.

4. Inherited Property p of Concrete Class TypeCT in a Concrete ClassC: Inherited
propertyp of a concrete class typeCT is transformed into an ALLOY field in the signature
representingC whenCT is not inherited by other classes.. The process is identicalto
the transformation described in Section 3.5.4. However, the concrete class typeCT of
property p may be inherited by other concrete classesC1, ...CM as shown in LHS of
Figure 3.14. The inherited propertyp is transformed in the same fashion as described
above for an owned property (described in Figure 3.14).

5. Owned Property p of Abstract Class TypeA in a Concrete ClassC:
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Properties of abstract type cannot be simply transformed toan ALLOY field in a signature
for C. This is becauseA is not transformed to a signature or an abstract signature inthe
ALLOY model and hencep does not have a type. Therefore, we deal with the transforma-
tion in the following steps as shown in Figure 3.15.

(a) If not already existing we create an abstract signature called GlobalSuperClass and
insert it into the ALLOY model. The abstract signature acts as aplaceholderfor ab-
stract classes and concrete classes inherited by other classes in the input metamodel.

(b) We insert the field forp into the ALLOY signature forC with the type GlobalSuper-
Class.

(c) All concrete classesC1...CM that inherit fromA now inherit from GlobalSuperClass.
The inheritance is illustrated on the RHS of Figure 3.15.

(d) We generate an ALLOY fact that states that the propertyp of C is in one of the
concrete subclasses ofA namelyC1 ,C2,..orCM. The fact enforces the property to
always refer to concrete subclass objects ofCT.

6. Inherited Property p of Abstract Class TypeA in a Concrete ClassC: Inherited prop-
erty p of a abstract class typeA is exactly equivalent to transforming an owned property
of abstract class type discussed above and illustrated in Figure 3.15. However, we may
choose to optimize this transformation.

All inherited properties may be flattened to into a concrete class signature. However, we
may alsoselect properties(attributes and references) that will be transformed to ALLOY

fields. An objective for us is to minimize the number of properties we flatten from the ab-
stract super classes to concrete classes. We use two heuristics. Given an ALLOY signature
representing a concrete class,

(a) We create ALLOY fields only for all inherited properties that cancontain objects.
There properties can contain objects of any of the concrete classes in the metamodel.
We perform the transformation to ensure that all objects have a container property
(except the top-level container class). This transformation stems from the fact that
It is mandatory that objects of all classes have a container in Ecore. Hence, the
non-root ALLOY signatures must have a container.

(b) We create ALLOY fields for all inheritedrequired propertiesfor a given application
for model generation. For instance, we preserve all properties used by a model
transformation for which we intend to generate models. Thisstep helps minimize
the size of the constraint satisfaction problem for model generation.

We illustrate the flattening of composite properties that can contain concrete class objects
in Figure 3.16 (a). There are two possibilities while flattening such properties. If a com-
posite property such ascontain1can hold concrete classes we transform the property as
an ALLOY field as shown on the RHS of Figure 3.16 (a). A composite property such
as contain2may refer to an abstract class that is inherited by several concrete classes.
In such a case, we transform the property as an ALLOY field of type GlobalSuperClass.
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...
ConcreteClass1

(b) Super Class Required Properties to Alloy Fields Alloy Fields for Primitive Attributes of an Abstract Type Super Class
sig ConcreteClass1 extends GlobalSuperClass
{
 requiredProperty1 : one <PrimitiveType>
 requiredProperty2 : lone <PrimitiveType>
 requiredProperty3 : set <PrimitiveType>
 requiredProperty5: set ConcreteClass2
 requiredProperty6: set GlobalSuperClass
}

requiredProperty1 : <PrimitiveType> [1..1]
requiredProperty2 : <PrimitiveType> [0..1]
requiredProperty3: <PrimitiveType> [a..b]
notRequiredProperty4 :  <PrimitiveType> [a..b]

SuperClass

...
ConcreteClass1

(a) Super Class Composite Properties to  Alloy Fields

Alloy Fields for Primitive Attributes of an Abstract Type Super Class
sig ConcreteClass1 extends GlobalSuperClass
{
 contains1 : set ConcreteClass2
 contains2 : set GlobalSuperClass
}

...
SuperClass1

...
ConcreteClass2

...
SuperClass2

contains1 contains2

...
ConcreteClass3

...
ConcreteClass4

...
ConcreteClass2

...
SuperClass2

requiredProperty5

requiredProperty6

...
ConcreteClass3

...
ConcreteClass4

LHS: Metamodel Pattern RHS: Generated Alloy Paragraph

Figure 3.16: Flattening Properties in the Multiple Inheritance Hierarchy

While model generation, the GlobalSuperClass is replaced by objects of concrete sub-
classes of SuperClass2. This implies that the field ConcreteClass1.contains2 can refer to
both objects of type ConcreteClass3 and ConcreteClass4.

The flattening of required properties is very similar to the flattening of composite proper-
ties with the exception that properties that are not required are not transformed as ALLOY

fields. For instance, in Figure 3.16 (b) the primitive type property notRequiredProperty4
is not transformed to an ALLOY field.

3.6.3 Transforming Implicit Constraints to A LLOY Facts

In the third step, we transform implicit constraints in a metamodel with multiple inheritance to
ALLOY . We present the transformations as follows:

Transforming Opposite Properties to ALLOY Facts

First, we consider the transformation of opposite properties to ALLOY facts. We recall that
an opposite property represents a bi-directional relationship between two classes. After the
property flattening process, an opposite property in a concrete class may refer to an abstract
class or a concrete class. An opposite property between a concrete class and an abstract class
leads to the generation of a different ALLOY fact since all abstract classes are not included in
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the ALLOY model. We illustrate this transformation in Figure 3.17.
The transformation states that if any property propertyB ofconcrete class ConcreteClassA

has an opposite property propertyA in the abstract super class SuperClassB then,

1. If ConcreteClassA.propertyB refers to any object object2 of ConcreteClass1 then Con-
creteClass1.propertyA refers to ConcreteClassA.

2. If ConcreteClassA.propertyB refers to any object object2 of ConcreteClass2 then Con-
creteClass2.propertyA refers to ConcreteClassA.

3. ...

4. If ConcreteClassA.propertyB refers to any object object2 of ConcreteClassN then Con-
creteClassN.propertyA refers to ConcreteClassA.

We generate facts for opposite properties to all possible sub-classes of the abstract super
class SuperClassB.

An opposite property between two concrete classes ConcreteClassA.propertyD and Con-
creteClassB.propertyC can be transformed in a similar way as shown in Figure 3.17. The only
difference being the generation of the additional fact for the opposite property between Con-
creteClassA and ConcreteClassB.

Transforming Composite Properties to ALLOY Facts

A composite property for each concrete class in the metamodel is transformed to an ALLOY

fact. The transformation is identical to the transformation we have already seen for composite
properties in a metamodel with single inheritance. See Section 3.5.5 for more detail.

Transforming Containers of a Class to ALLOY Facts

A concrete class can be contained by another concrete class or an abstract super class as shown
in Figure 3.18. Therefore, any object of ConcreteClassA caneither be contained by the concrete
class ConcreteClassB its subsclasses ConcreteClass11,...ConcreteClass1N or all subclasses of
abstract SuperClasB such as ConcreteClass1,...,ConcreteClassN. The Alloy fact on the RHS
of the transformation in Figure 3.18 depicts the containment constraint. All objects of Con-
creteClassA will be contained by either ConcreteClassB, ConcreteClass11, ConcreteClass1N,...
ConcreteClass1,..,or ConcreteClassN. The fact also states that an object of ConcreteClassA can
have only one containing object.

Transforming Multiplicity Constraints of a Class to A LLOY Facts

Multiplicity constraints on properties for each concrete class in the metamodel is transformed to
an ALLOY fact. The transformation is identical to the transformation we have already seen for
multiple properties in a metamodel with single inheritance. See Section 3.5.5 for more detail.
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Opposite Property Constraint

ConcreteClassA
SuperClassB
<abstract>

propertyBpropertyA

fact ConcreteClassA_propertyB_ConcreteClass1_propertyA_opposite
{ 
   all object1 : ConcreteClassA, object2 : ConcreteClass1| 
                                 object2  in object1.propertyB 
                                 implies
                                 object1 in object2.propertyA
}ConcreteClass1 ConcreteClassN...

fact ConcreteClassA_propertyB_ConcreteClassN_propertyA_opposite
{ 
   all object1 : ConcreteClassA, object2 : ConcreteClassN| 
                                 object2  in object1.propertyB 
                                 implies
                                 object1 in object2.propertyA
}

...

multilevel

ConcreteClassB
propertyD

propertyC

Condition

propertyA.opposite = propertyB
propertyB.opposite = propertyA
propertyD.opposite = propertyC
propertyC.opposite = propertyD

ConcreteClassB1 ConcreteClassBN...

multilevel

fact ConcreteClassA_propertyB_ConcreteClassB_propertyA_opposite
{ 
   all object1 : ConcreteClassA, object2 : ConcreteClassB| 
                                 object2  in object1.propertyD 
                                 implies
                                 object1 in object2.propertyC
}

fact ConcreteClassA_propertyB_ConcreteClassB1_propertyA_opposite
{ 
   all object1 : ConcreteClassA, object2 : ConcreteClassB1| 
                                 object2  in object1.propertyD
                                 implies
                                 object1 in object2.propertyC
}

...

fact ConcreteClassA_propertyB_ConcreteClassBN_propertyA_opposite
{ 
   all object1 : ConcreteClassA, object2 : ConcreteClassBN| 
                                 object2  in object1.propertyD 
                                 implies
                                 object1 in object2.propertyC
}

Facts for property of abstract type SuperClassB

Facts for property of concrete type ConcreteClassB

Figure 3.17: Transforming Opposite Properties to ALLOY Facts in Metamodel with Multiple
Inheritance
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    Class Containers Constraint

ConcreteClassB ConcreteClassA

fact ConcreteClassA_containers
{ 
  all o: ConcreteClassA | 
( o in ConcreteClassB.prop1 or 
o in ConcreteClass11.prop1 or 
o in ConcreteClass1N.prop1 or
o in ConcreteClass1.prop2  or 
o in ConcreteClassN.prop2)
and
  all o1: ConcreteClassB, o2: ConcreteClass1, 
oN:ConcreteClassN, o11: 
ConcreteClass11,..o1N:ConcreteClass1N |    
       
disj[o1.prop1,o2.prop2,oN.prop2,o11.prop1,
..o1N.propN]        
}

0..1

0..1

prop1

prop2

container1

container2SuperClassB

ConcreteClass1 ConcreteClassN...

ConcreteClass11 ConcreteClass1N...

Figure 3.18: Transforming Containers of a Concrete Class toan ALLOY Fact in Metamodel with
Multiple Inheritance

Transforming Identity Properties of a Class to ALLOY Facts

Identity properties on properties for each concrete class in the metamodel is transformed to an
ALLOY fact. The transformation is identical to the transformation we have already seen for
identity properties in a metamodel with single inheritance. See Section 3.5.5 for more detail.

3.7 Handling the Transformation of Metamodel Invariants to AL -
LOY Facts

Metamodel invariants are textual constraints on a metamodel. We express some constraints
textually due to limitations of class diagrams/Ecore model in describing constraints on the mod-
elling domain. Textual constraints are often specified using the industry standard languageOCL.
An OCL constraint is specified on a pattern of a model in a modelling language. For instance,
the constraint thatno cyclic inheritancecan exist in an UML class diagram can be represented
in OCL as shown in Listing 3.1.

c o n t e x t C l ass
i nv n o C y c l i c I n h e r i t a n c e

not s e l f . a l l G e n e r a l s ( )−> i n c l u d e s (s e l f )

Listing 3.1: An ExampleOCL Constraint

Automating the transformation of allOCL constraints to ALLOY facts is not within the scope
of this thesis. We manually transform allOCL constraints in this thesis to ALLOY facts. Devel-
opers experienced in bothOCL and ALLOY can extract the meaning of anOCL constraint and
express it as an ALLOY fact.

For example, we transform the constraint in Listing 3.1 to the ALLOY fact in Listing 3.2.



CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY 113

f a c t n o C y c l i c I n h e r i t a n c e
{

no c : C l ass | c i n c . ^ g e n e r a l
}

Listing 3.2: ALLOY fact representing No Cyclic Inheritance

The ALLOY fact usestransitive closureto enforce the constraint that no Classc exists such
that it is contained in eitherc.general or c.general.general or c.general.general.general,... and
so on. This implies that no multi-level super classes of a class can contain it thereby eliminating
the cyclic inheritance in all UML class diagram models. During the course of the thesis a number
of OCL constraints have been manually transformed to ALLOY .

3.8 Illustration of Transformation to A LLOY

We transform the effective metamodel of UML with 26 classes and 65 properties, shown in
Figure 3.5 to an ALLOY model. The resulting ALLOY model contains signatures only for the
concrete classesin the metamodel.

The generated signatures are shown in Listing 3.3.
module Ef fect iveUML

open u t i l / boo lean as Boolean

s i g G l o b a l S u p e r C l ass { }

one s i g Package ex t en d s G l o b a l S u p e r C l ass
{

packagedElement :s e t G l o b a l S u p e r C l ass , / / Packageab leElement

name :one I n t
}

s i g A s s o c i a t i o n ex t en d s G l o b a l S u p e r C l ass
{

ownedEnd :s e t P r o p e r t y ,

memberEnd:s e t P r o p e r t y ,

a t t r i b u t e :s e t P r o p e r t y ,

name :one I n t
}

s i g P r o p e r t y ex t en d s G l o b a l S u p e r C l ass
{

d a t a t y p e :one DataType ,

o w n i n g A sso c i a t i o n :one A sso c i a t i o n ,

a s s o c i a t i o n :one A sso c i a t i o n ,

name :one I n t
}

s i g Cl ass ex t en d s G l o b a l S u p e r C l ass
{

n e s t e d C l a s s i f i e r :s e t G l o b a l S u p e r C l ass , / / C l a s s i f i e r

o w n ed A t t r i b u t e :s e t P r o p e r t y ,

a t t r i b u t e :s e t P r o p e r t y ,

name :one I n t
}

s i g DataType ex t en d s G l o b a l S u p e r C l ass
{

o w n ed A t t r i b u t e :s e t P r o p e r t y ,



114 CHAPTER 3. AUTOMATIC EFFECTIVE MODEL DISCOVERY

a t t r i b u t e :s e t P r o p e r t y ,

name :one I n t
}

s i g P r i m i t i v eTy p e ex t en d s G l o b a l S u p e r C l ass
{

o w n ed A t t r i b u t e :s e t P r o p e r t y ,

a t t r i b u t e :s e t P r o p e r t y ,

name :one I n t
}

Listing 3.3: Generated ALLOY Signatures in Effective UML

Signatures for concrete classes (those that initially inherit from abstract superclasses) now
extend the abstract signature GlobalSuperClass in the ALLOY model. For instance, Associa-
tion inherits from PackageableElement in UML . Therefore, the signature Association extends
GlobalSuperClass.

Each property (owned/inherited/primitive) of a concrete classC is transformed to an ALLOY

field in the signature representingC. For instance, in Listing 3.3, the primitive propertynamein
Association is an inherited property from NamedElement that is directly transformed to a field
in the Association signature. Similarly, the propertyownedEndof Association is of a concrete
class type Property. The property is directly transformed to an ALLOY field in the Association
signature. A property may have an abstract class type in the metamodel. For instance, the
property nestedClassifierof Class is of abstract class type Classifier. There is no signature
for Classifier in the ALLOY model. Therefore, the property is transformed to an ALLOY field
of type GlobalSuperClass in the ALLOY model. We generate ALLOY facts for fields of type
GlobalSuperClass. These ALLOY facts state that the type of the field is one or more of the
signatures already in the ALLOY model. In fact these signatures represent the exact concrete
subclasses of the abstract class type. For instance, in Listing 3.4 we present two such generated
facts. The second fact states that all objects of type Class.nestedClassifier must be of type Class
or DataType, or PrimitiveType. Class, DataType, and PrimitiveType are concrete classes that
inherit from Classifier in the UML metamodel.

f a c t I n v a r i an t _ P ack ag e_ p ac k ag ed E l em e n t _ su b c l as s es
{

Package . packagedElementi n Package or Package . packagedElementi n A s s o c i a t i o n or Package . packagedElementi n Cl ass or
Package . packagedElementi n DataType or Package . packagedElementi n P r i m i t i v eTy p e

}

f a c t I n v a r i a n t _ C l a s s _ n e s t e d C l a s s i f i e r _ s u b c l a s s e s
{

C l ass . n e s t e d C l a s s i f i e ri n A s s o c i a t i o n or Cl ass . n e s t e d C l a s s i f i e ri n Cl ass or Cl ass . n e s t e d C l a s s i f i e ri n DataType or
Cl ass . n e s t e d C l a s s i f i e ri n P r i m i t i v eTy p e

}

Listing 3.4: Generated ALLOY Facts for Subclasses in Effective UML

We generate ALLOY facts for opposite properties, composite properties, and containers in
the effective UML metamodels. We present examples of these facts in Listing 3.5.

The first fact in Listing 3.5 enforces theopposite property constraintbetween two proper-
ties Association.ownedEnd and Property.owningAssociation. The fact states that if any Prop-
erty object is in the set o.ownedEnd (where o is an Association object) then o is in the set
o1.owningAssociation (where o1 is a Property object).
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The second fact enforces thecomposite property constraintfor the property Package.packagedElement.
The fact states that for each object o1, o2 of type Package, and for each property p1 in o1.packagedElement,
p2 in o2.packagedElement, if p1 is equal to p2 then the containing objects o1 and o2 are one
and the same. The constraint enforces that if packagedElement refers to an object of type Pack-
agedElement then the object can have exactly one Package container.

The third fact enforces thecontainers constraintfor the class Association. Association
objects can be contained by two different containers namelyPackage.packagedElement and
Class.nestedClassifier. The fact first states that each Association object o is either contained
by Package.packagedElement or Class.nestedClassifier. Second, the fact states that objects
contained by Package.packagedElement cannot be containedby Class.nestedClassifier and vice
versa.

/ / 1 . An Example o f a f a c t g e n e r a t e d f o r O p p o s i t e P r o p e r t y o f As s o c i a t i o n . ownedEnd and P r o p e r t y . o w n i n g A sso c i a t i o n

f a c t I n v a r i an t _ A sso c i a t i o n _ o w n e d E n d _ P r o p e r t y _ o w n i n g A s so ci a t i o n _ o p p o s i t e
{

a l l o : A sso c i a t i o n , o1 : P r o p e r t y |
( o1 i n o . ownedEnd i mp l i es o i n o1 . o w n i n g A sso c i a t i o n )

}

/ / 2 . An Example o f a f a c t g e n e r a t e d f o r Composi te P r o p e r t y Package . packagedElement

f a c t I n v a r i an t _ P ack ag e_ p ack ag ed E l em en t _ co m p o s i t e
{

a l l o1 : Package , o2 : Package |
a l l p1 : o1 . packagedElement , p2 : o2 . packagedElement | p1=p2i mp l i es o1=o2

}

/ / 3 . An Example o f a f a c t g e n e r a t e d f o r C o n t a i n e r s o f A s s o c i at i o n O b j ec t s

f a c t I n v a r i a n t _ A s s o c i a t i o n _ c o n t a i n e r s
{

a l l o : A s s o c i a t i o n | ( o i n Package . packagedElementor
o i n Cl ass . n e s t e d C l a s s i f i e r )

and

a l l o1 : Package , o2 : C l ass | d i s j [ o1 . packagedElement , o2 . n e s te d C l a s s i f i e r ]
}

Listing 3.5: Generated ALLOY Facts for Implicit Constraints in Effective UML

The entire solvable ALLOY model for the effective metamodel is available for downloadat
this site [4].

3.9 Model Generation by Solving ALLOY Model

As a consequence of the transformation steps described in the previous sections we obtain the
ALLOY model of an effective modelling domain. The ALLOY model contains a set of set signa-
tures representing the concepts and their relationships ina domain. It also contains a set of facts
that encode implicit constraints in a metamodel. In this section, we demonstrate how we can
generate models in the effective modelling domain specifiedas a constraint satisfaction problem
in ALLOY . The generation of models in ALLOY must satisfy an ALLOY predicate (which may
subsume other predicates). Objective-specific knowledge such as for test model generation may
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Figure 3.19: Some Model Fragments from effective UML metamodel

help specify such predicates or an empty predicate representing no new knowledge. In Section
3.9.1, we introduce specification of ALLOY predicates to guide generation of models in an ef-
fective modelling domain. In ALLOY solving for a predicate implies generation of models that
satisfy the predicate and all ALLOY facts. ALLOY allows generation of models within a certain
scope or within finite-bounds on the number of objects for each type. Therefore, in Section 3.9.2
we describe the specification to guide generation of models in a finite scope.

3.9.1 Specifying ALLOY Predicates to Guide Generation

Empty Alloy Predicate

If the goal is to generate models in the modelling domain specified only by the metamodel and
the invariants we do not need to guide generation with more information. Therefore, we generate
an empty ALLOY predicate as shown in Listing 3.6.
pred Unguided
{

}

Listing 3.6: Empty ALLOY Predicate

Objective-specific ALLOY Predicates

A number of objective-specific sources of knowledge may leadto generation or specification
of ALLOY predicates to guide generation with an objective. We explain the generation of such
predicates with the help of two examples.

In the first example, an objective-specific source of knowledge may be thepre-condition
of model transformation. We consider the model transformation from UML class diagrams to
Relational Database Management Systems (RDBMS) models calledclass2rdbms. For instance,
the pre-condition the transformation states that all classes in the input model must have at least
one primary attribute. The condition is necessary for indexing and may be expressed in the
predicate shown in Listing 3.7.
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/ / A l l C l asses must c o n t a i n a t l e a s t one pr imary a t t r i b u t e
pred a t l e a s t O n e P r i m a r y A t t r i b u t e
{

a l l c : C l ass | some a : c . a t t r s | a . i s _ p r i m a r y==True
}

Listing 3.7: A model transformation pre-condition in ALLOY

The propertyisPrimaryof the class Attribute is not part of the original UML specification. It
has been added to the effective UML metamodel as a new property of the classClass. Similarly,
we add the propertyis_persistentto the class Class to enable serialization of classes toRDBMS
models.

In the second example we use knowledge based on input domain partitioning to guide model
generation. Input domain partitioning [153] is a well-known source of knowledge to ensure
coverage of the input domain for software testing. Partitions of the modelling domain or the
metamodel are a source of knowledge to generate ALLOY predicates. These ALLOY predicates
ensure that the entire modelling domain is covered. In previous work, Franck et. al. [55] extract
partitions of an input metamodel known asmodel fragments. For instance, the following model
fragment states that the model to be generated must contain at least one "Classifier" object with
an empty name attribute and a "Classifier" object with non-empty name.

Classifier(name=“ ” ) and Classifier(name=“ .+”)
The model fragment can be transformed to an ALLOY predicate as shown in Listing 3.8.

pred modelFragment
{

some c1 : C l a s s i f i e r , c2 : C l a s s i f i e r | c1 . name=0and c2 . name !=0
}

Listing 3.8: Model Fragment ALLOY Predicate

In Figure 3.19, we present some of the important model fragments generated from the effec-
tive UML metamodel.

3.9.2 Specifying ALLOY Run Commands with Finite Bounds

A run commandtells ALLOY to search for an instance of a predicate. We may specify a scope
that bounds the size of the instances of the ALLOY model. The basic run command in shown in
Listing 3.9. The command attempts to generate an instance that satisfies the predicateexample
in the finite scope of 20.

/ / A Basic Run Command
pred example ( ) {}

run example f o r 20

Listing 3.9: Basic ALLOY Run Command

We can go a step further and control the generation of models with variable scope for each
signature. The scope for integer and sequences may be specified as well. For instance, a scope of
5 int implies an instance can contain integers between−25and25. Similarly, 5 seqimplies that
an instance can contain sequences up to a size of 5. The Listing 3.10 illustrates a run command
with variable scope.
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/ / A V a r i a b l e Scope Run Command
pred example ( ) {}

run example f o r 1 Package , 5 Class , 5 A sso c i a t i o n , 3 P r i m i t i v eD a t aTyp e , . . .5 i n t , 5 seq

Listing 3.10: ALLOY Run Command with Variable Scope

If known in advance, we may also specify the exact scope for a signature as shown in Listing
3.11.

/ / A V a r i a b l e Scope Run Command
pred example ( ) {}

run example f o r 1 Package , e x a c t l y 5 Class , 5 A sso c i a t i o n , e x a c t l y 3 P r i m i t iv eD a t aTyp e , . . . 5 i n t , 5 seq

Listing 3.11: ALLOY Run Command with Exact Scopes

3.9.3 ALLOY Instances to EMF models

The ALLOY instances generated are in the form of atoms and relations between atoms. They
need to be transformed back to models that conform to a metamodel. This transformation is
rather straightforward as the ALLOY instances have a structure very similar to objects with
properties. CARTIER contains a Java module that traverses the ALLOY instance and instantiates
objects with properties of the inputEcore metamodel. The ALLOY instance acts as a source of
information to recreate a valid model of the input metamodel.

3.10 Illustrative Examples: Generation UML Class Diagram Mod-
els

We generate models from the input domain of theclass2rdbms transformation using the different
sources knowledge discussed in Section 3.9.1. We show the selection of 4 UML Class Diagram
(UMLCD) models.

To begin, we use the ALLOY analyzer to generate a model that conforms only to the effective
UMLCD meta-model. This is shown in Figure 3.20 (a) usingUMLCD concrete syntax. The
selected test model was found in ascopeof 10. The scope is the maximum number of objects for
each type (or class) in the meta-model. The model selection is performed up to the limit proposed
by the scope. We see that the resulting model satisfies all meta-model constraints. However, an
attribute ofClass0 is not primary. This implies that it is not a valid input toclass2rdbms.

The second generated model must containClass objects with at least one primary attribute
which is a pre-condition for transforming UML class diagrams to indexableRDBMS models.
The model is shown in Figure 3.20 (b). The selected model has classes with at least one primary
attribute just as required by the pre-condition. The selected model was found in a maximum
scope of 20. We note that the model now has two classesClass6 andClass7, both of which have
at least one primary attribute.

Third, we generate a model that has some classes withis_persistent= Truewhich is trans-
formation test specific objective. We generate a model in a maximum scope of 20. The resulting
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Figure 3.20: (a) Model conforming to Meta-model (b)Model conforming to Meta-model + Pre-
condition (c) Model conforming to Meta-model+ Pre-condition + Test Model Objective (d)
Model conforming to Meta-model + Pre-condition + Model Fragment
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Sources of Knowledge Time(sec)
Meta-model Only 0.78
Meta-model + Pre-condition 7.813
Meta-model + Pre-condition + Test Model Objective7.97
Meta-model + Pre-condition + Model Fragments 10.477

Table 3.2: Test Model Selection Times

model is shown in Figure 3.20 (c). We note the classClass5 is persistent as per the objective.
RDBMS models generated from such an input model is

Finally, we introduce model fragment facts along with the meta-model and pre-condition.
The model that covers the meta-model and 5 model fragments isshown in Figure 3.20 (d). The
resulting model covers some of the model fragments facts we generated from theEcore model.
The model is selected for a maximum scope of 20. The model fragments covered ,as described
in Figure 3.19, were MF2, MF3, MF4, MF5. This guarantees thatthe equivalence classes for
property values are covered at least once by a test model. In terms of test qualification, this
increases the trust we have in the test models, based on inputdomain coverage.

In Table 3.2, we summarize the time taken (on a P4 2.6Ghz desktop, with 1Gb RAM) to
generate models. From the table we can generally say that more knowledge we have the longer
it takes to generate models.

3.11 Validity and Complexity of Transformation to A LLOY

We need to validate the transformation from a metamodel and its invariants to an ALLOY model.
Therefore, we ask the question:Are all solutions of theALLOY model in the modelling domain
specified by the metamodel and constraints from heterogenous sources?. We may answer this
by generating all possible solutions of the ALLOY model in a finite scope and checking if each
model conforms to the metamodel. However, generating all possible models is computationally
expensive. Therefore, can be generate an effective subset of all possible models? In Chapter 4,
we perform model generation experiments that cover the modelling domain using partitioning
strategies. We demonstrate that all effectives models generated conform to the input metamodel.

The transformation from an effective modelling domain to ALLOY has linear time com-
plexity. The transformation involves 2 passes for transforming themetamodel and 1 pass for
transforming implicit constraints in a metamodel such as composite properties, opposite proper-
ties, etc. to ALLOY facts. Therefore, the time complexity isO(3∗N) whereN is the number of
concepts (total number of classes and properties) in the input metamodel.

3.12 Summary

In this chapter we present three important steps in automatic model discovery. The first step is
the metamodel pruning algorithm which is used to obtain the effective metamodel given an input
metamodel. We illustrate pruning on UML , a very large input metamodel, to obtain an effective
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metamodel that represents the class diagram subset of UML . The second step is the transfor-
mation of heterogeneous sources of knowledge including theeffective metamodel, metamodel
invariants, partial model and possibly several domain-specific sources to a common constraint
model in ALLOY . We demonstrate the transformation of the class diagram subset of UML and
other sources of knowledge such as a simple partial model andmodel fragments for test models
to ALLOY . In the third and the final step we illustrate the generation of models that conform to
various sources of knowledge. In particular, we illustratetest model generation and partial model
completion for UML class diagrams. In the next chapter, we present experimentsillustrating the
application of automatic model discovery.
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Chapter 4

Experiments in Effective Model
Discovery

In this chapter, we present two domain-specific experimentsthat apply and validate automatic
effective model discovery already described in Chapter 3.

1. The first application is to synthesize thousands of modelsto test a model transformation
using testing specific knowledge known asinput domain coverage criteria|. We qualify
the effectiveness or bug detecting ability of these models via mutation analysis[107].

2. The second application is to generate model completion recommendations for apartial
model. The partial model is specified in a domain-specific model editor.

The chapter is organized as follows. In Section 4.1, we describe the model transformation
testing application. We present model discovery as model completion in a model editor in Sec-
tion 4.2.

4.1 Automatic Model Synthesis for Model Transformation Testing

Model transformations are core MDE components that automate important steps in software
development such as refinement of an input model, re-factoring to improve maintainability or
readability of the input model, aspect weaving, exogenous and endogenous transformations of
models, and generation of code from models. Although there is wide spread development of
model transformations in academia and industry the validation of transformations remains a
hard problem [19]. In this study, we address the challenges in validating model transformations
via black-box automatic test data generation. We think that black-box testing is an effective
approach to validating transformations due to the diversity of transformation languages based
on graph rewriting [17] (AToM3 [67]), imperative execution (Kermeta [108]), and rule-based
transformation (ATL [75]) that render language specific formal methods and white-box testing
currently impractical.

In black-box testing of model transformations we requiretest modelsthat candetect bugs
in the model transformation. These models are graphs of inter-connected objects that must con-
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form to a meta-model and satisfy meta-constraints such as well-formedness rules, transformation
pre-conditions, and test strategies. Manually specifyingseveral hundred test models targeting
various testing objectives is a tedious task and in many cases impossible since the modeller may
have to simultaneously satisfy numerous possibly inter-related constraints.

In this section, we apply our automatic model discovery framework CARTIER previously
discussed in Chapter 3 toautomatic test model generation. CARTIER has to address two main
problems for test generation: identify a precise model of the transformation’s input domain;
automatically select relevant test models in the input domain. The first issue is related to the
fact that the input domain of a transformation is generally described with a general purpose
metamodel (e.g., UML ). However, the effective input domain, that captures only the set of
models that can be transformed, is much smaller than the set of instances of the general purpose
metamodel. CARTIER can prune the metamodel in order to explicitly build a subsetof the
metamodel that the transformation can manipulate. CARTIER also assists the definition of pre
conditions on the metamodel to make the input domain more precise. Once the input domain
is precisely modelled, CARTIER can generate models in the input domain. CARTIER either
generates models without guidance or it can use test strategies in order to have models that
cover the input domain [55].

Are the test models generated by CARTIER able to detect bugs in a model transformation?
We answer this question by generating and comparing sets of test models using different testing
strategies. Specifically, we consider two testing strategies:unguidedandinput domain coverage
strategies[55]. We usemutation analysis[49] [107] for model transformations to compare these
testing strategies. Mutation analysis serves as atest oracleto determine the relatively adequacy
of generated test sets.

We perform experiments to generate test models using different testing strategies and qual-
ify them using mutation analysis. We generate test models for the representative model trans-
formation ofUnified Modelling Language Class Diagram (UMLCD) to Relational Database Man-
agement Systems (RDBMS) models calledclass2rdbms. The mutation scores show that input
domain coverage strategies guide model generation with considerably higher bug detection abil-
ities (93%) compared to unguided generation (70%). These results are based on 3200 generated
test models and several hours of computation on a 10 machine grid of high-end servers. The
large difference in mutation scores between coverage strategies and unguided generation can
be attributed to the fact that coverage strategies enforce several aspects on test models that un-
guided generation fail to do. For instance, coverage strategies enforce injection ofinheritance
in the UMLCD test models. Unguided strategies do not enforce such a requirement. Several
mutants are killed due to test models containing inheritance.

Thescientific contributionin this section addresses three important questions:

• Question 1: How can we scale the approach to generating test models for large input
meta-models such the UML?

• Question 2: Does the model transformation pre-condition precisely specify the input
domain of a model transformation? If not, can automaticallygenerated test models help
improve the pre-condition by presenting unforeseen and unwanted modelling patterns?
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• Question 3:Are we consistently able to generate effective test models for a given strategy
using our approach?

The precise contributions of this section addresses exactly these problems. We enlist them
below:

• Contribution 1: We usemeta-model pruning(see Chapter 3, Section 3.4, [141]) to prune
a large input meta-model such as the UML to a subset called the effective input meta-
model. The effective input meta-model contains only classes, properties, their dependen-
cies relevant the transformation under test. The often smaller effective input meta-model
is transformed to a small formal representation in ALLOY . In contrast, transforming a
large input meta-model such as the whole of UML to ALLOY results in a formal model
that renders SAT solving intractable due to the large numberof signatures and facts.

• Contribution 2: We show how automatically generated test models can help us improve
a model transformation’s pre-condition. For instance, thetest models we generate for the
case study transformationclass2rdbms helps us discover new pre-condition constraints.
These pre-conditions were not initially envisaged by the panel of world experts in model-
driven engineering who propose theclass2rdbms as the benchmark case study at the MTIP
workshop [22]. We show that automatic generation can help usrapidly discover structures
that human or even experts cannot preview in advance or require several years of transfor-
mation usage experience.

• Contribution 3: We show that CARTIER consistently generates effective test models for
a given strategy. We illustrate consistency by demonstrating that generating multiple test
models for the same test strategy does not significantly change mutation scores. These
test models correspond to multiple non-isomorphic solutions obtained using ALLOY ’s
symmetry breaking scheme [143].

4.1.1 Problem Description

We present the problem of black-box testingmodel transformations. A model transformation
MT(I ,O) is a program applied on a set of input modelsI to produce a set of output models
O as illustrated in Figure 4.1. The set of all input models is specified by a meta-modelMMI .
The set of all output models is specified by meta-modelMMO. The pre-condition of the model
transformationpre(MT) further constrains the input domain. A post-conditionpost(MT) lim-
its the model transformation to producing a subset of all possible output models. The model
transformation is developed based on a set of requirementsMTRequirements.

Model generation for black-box testing involves finding valid input models we calltest mod-
elsfrom the set of all input modelsI . Test models must satisfy constraints that increase the trust
in the quality of these models as test data and thus should increase their capabilities to detect
bugs in the model transformationMT(I ,O). Bugs may also exist in the input meta-model and its
invariantsMMI or the transformation pre-conditionpre(MT). However, in this study we only
focus on detecting bugs in a transformation.
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Figure 4.1: A Model Transformation

4.1.2 Transformation Case Study

Our case study is the transformation from UML Class Diagram models toRDBMS models called
class2rdbms. In this section we briefly describeclass2rdbms and discuss why it is a representa-
tive transformation to validate test model generation strategies.

In black-box testing we need input models that conform to theinput meta-modelMMI and
transformation pre-conditionpre(MT). Therefore, we only discuss theMMI and pre(MT) for
class2rdbms and avoid discussion of the model transformation output domain. In Figure 4.2, we
present a subset of the UML input meta-model forclass2rdbms. The concepts and relationships
in the input meta-model are stored as anEcore model [58] (Figure 4.2 (a)). The invariants on
theUMLCD Ecore model, expressed inObject Constraint Language (OCL) [114], are shown in
Figure 4.2 (b). TheEcore model and the invariants together represent the true input meta-model
for class2rdbms. TheOCL andEcore are industry standards used to develop meta-models and
specify different invariants on them.OCL is not a domain-specific language to specify invari-
ants. However, it is designed to formally encode natural language requirements specifications
independent of its domain. In [155] the authors present somelimitations ofOCL.

The input meta-modelMMI gives an initial specification of the input domain. However,the
model transformation itself has a pre-conditionpre(MT) that test models need to satisfy to be
correctly processed. Constraints in the pre-condition forclass2rdbms include: (a) All Class
objects must have at least one primaryProperty object (b) The type of anProperty object can
be aClass C, but finally the transitive closure of the type ofProperty objects ofClass C must
end with typePrimitiveDataType. In our case we approximate this recursive closure constraint
by stating thatProperty object can be of typeClass up to a depth of 3 and the 4th time it should
have a typePrimitiveDataType. This is a finitization operation to avoid navigation in an infinite
loop. (c) A Class object cannot have anAssociation and anProperty object of the same name
(d) There are no cycles between non-persistentClass objects. These initial pre-conditions are
transformed to ALLOY and are presented in Appendix 6.5.

We chooseclass2rdbms as our representative case study to validate input selection strategies.
It serves as a sufficient case study for several reasons. The transformation is the benchmark pro-
posed in the MTIP workshop at the MoDELS 2005 conference [22]to experiment and validate
model transformation language features. The input domain meta-model of UML class diagram
model covers all major meta-modelling concepts such as inheritance, composition, finite and
infinite multiplicities. The entire UML input meta-model serves as a large input meta-model
to demonstrate meta-model pruning to an effective input meta-model containing only class dia-
gram concepts.The constraints on the UML meta-model contain both first-order and higher-order
constraints. There also exists a constraint to test transitive closure properties on the input model
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Figure 4.2: (a) Class Diagram Subset of UML Ecore Meta-model (b)OCL constraints on the
Ecore meta-model

such as there must be no cyclic inheritance. Theclass2rdbms exercises most major model trans-
formation operators such as navigation, creation, and filtering (described in more detail in [107])
enabling us to test essential model transformation features. Among the limitations theUMLCD
meta-model does not containInteger andFloat attributes. The number of classes in theUMLCD
meta-model is not very high when compared to the standard UML 2.0 specification. There are
also no inter meta-model references and arbitrary containments in the simple meta-model. How-
ever, this not really limitation in our approach as we claim that specifying a test model requires
only a small subset of the entire meta-model and extracting this subset via meta-model pruning
is part of our methodology.

Model generation is relatively fast but performing mutation analysis is extremely time con-
suming. Therefore, we perform mutation analysis onclass2rdbms to qualify transformation and
meta-model independent strategies for model synthesis. Ifthese strategies prove to be useful
in the case ofclass2rdbms then we recommend the use of these strategies to guide model syn-
thesis in the input domain of other model transformations asan initial test generation step. For
instance, in our experiments, we see that generation of a 15 classUMLCD models takes about
20 seconds and mutation analysis of a set of 20 such models takes about 3 hours on a multi-core
high-end server. Generating thousands of models for different transformations takes about 10%
of the time while performing mutation analysis takes most ofthe time.

4.1.3 Automatic Test Model Generation and Qualification Methodology

We outline the methodology for test generation using CARTIER and qualification of the gen-
erated test models via mutation analysis in Figure 4.3. Concisely, the test model generation
methodology follows the steps:
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Figure 4.3: CARTIER Methodology for Automatic Test Generation and Mutation Analysis based
Qualification

1. CARTIER performs static analysis on the model transformationMT to obtain the initial
set of used types and properties.

2. CARTIER performs metamodel pruning ofMMI using these used types and properties to
obtain the effective input metamodeleMMI (details in Chapter 3, Section 3.4)

3. CARTIER transformseMMI , its invariantsC, the transformation pre-conditionpre(MT)
and test strategy to an ALLOY model (details in Chapter 3, Sections 3.5, 3.6, 3.7).

4. CARTIER generates models to detect inconsistencies in test strategy predicates. These
test strategy predicates in ALLOY are automatically generated in the previous step and
are included in the ALLOY model. For instance, a predicate contains a model fragment
that is desirable in a test model (see Section 3.9 for more information on fragments). We
attempt to synthesize a model that satisfies the conjunctionof the predicate, the ALLOY

model representation of the metamodeleMMI , its invariantsC, andpre(MT). If we fail
to generate a model in a maximum finite scope then we eliminatethe predicate as it is
inconsistent witheMMI , its invariantsC, andpre(MT) (introduced in Section 3.9)

5. Finally, CARTIER generates sets of test models that satisfy all consistent predicates repre-
senting test strategies in a finite scope using run commands for each predicate (introduced
in Chapter 3, Section 3.9). It can also generate multiple non-isomorphic test models by
soliciting ALLOY ’s symmetry breaking scheme [143] currently applicable to the MiniSAT
[51] SAT solver.

The generated models may lead to raising of general exceptions such as memory leaks, di-
vide by zero, infinite loops in the model transformationMT as its initial pre-condition definition
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Figure 4.4: Model Excerpt for Pre-condition Improvement

may not have been well defined. In the following Section 4.1.3, we show how automatically gen-
erated models resulted in discovery of patterns that were not foreseen by experts who original
designed the transformationclass2rdbms.

After discovering pre-conditions that no longer lead to generation of models that are raise
exceptions we regenerate sets of test models. We qualify thesets of generated test models via
mutation analysis (see Section 4.1.4).

Pre-condition Improvement

The execution of a transformation helps us discover new constraints for the pre-conditionpre(MT)
of the transformationMT. In this sub-section we illustrate how some of the constraints in the
pre-condition of the transformationclass2rdbms are discovered.

The discovery of a pre-condition starts with the detection of abnormal behaviour during the
execution of automatically generated models. These may include exceptions such as memory
leaks, infinite loops, or divide by zero errors. Models not previously considered by the model
transformation specification often result in such exceptions. The exception handling mechanism
in Kermeta allows us to detect and catch these exceptions. First, we prevent the lock of the
execution when a transformation runs into infinite loop. Forinstance, this situation occurs when
input models are navigated through a series of associationsthat can create loop structure in the
transformationclass2rdbms. These loops structures can navigate through diverse concepts such
as inheritance trees, associations, and type of attributes. The Kermeta interpreter throws an
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StackOverflowError exception when it detects such a problem.
Second, we detect other inconsistencies when output modelsproduced from an automatically

generated input model are not in the output domain. The output domain specified by an output
metamodelMMO, set of invariants on itCO, and a post-conditionpost(MT). In our case study,
the transformationclass2rdbms can produce ill-formedRDBMS models outside the valid output
domain. A typical example is when a table contains several columns with same name. We detect
these inconsistencies by checking if output models conformto the output metamodel (Ecore
model of the metamodel with invariants) and satisfy post-conditions of the model transformation.
The Figure 4.4 illustrates this detection. It represents anexcerpt (bottom part) of an output model
produced by the original transformation of a generated model (excerpt on the top part).

Our tool isolates inconsistent output models and corresponding input models. We then use
a traceability mechanism and tool such as in [60] to restrainthe analysis of these models on
excerpts such as the one illustrated in Figure 4.4. Class namedA is transformed into one table
because it is persistent. It redefined an association of the ClassB. Two associations with the same
nameasso1point to classes with the same attribute/propertyatt1. Respecting the specification,
the original transformations produces a table with two columns namedasso1_att1. This does not
conform to theRDBMS metamodel and it is detected by our tool. Construction of such models
can be prevented by generating objects with different names. We solve this inconsistency by
creating a new pre-condition constraint that protects the transformation from executing such
models. We also regenerate new models that satisfy the new pre-condition constraints. For
instance, the faulty model excerpt in Figure 4.4 can help us produce a new pre-condition that
states:

In the classes of an inheritance tree, two associations withthe same name can’t point to
classes that have (or their parent) attributes with same names.

Several new pre-conditions were discovered for theclass2rdbms case study. We enlist nine
newly discovered ALLOY facts in Appendix 6.6 apart from the initial set of pre-condition con-
straints as shown in Appendix 6.5. These ALLOY facts can be easily expressed inOCL to
improve the pre-condition specification ofclass2rdbms. The conditions may even be applicable
to commercial implementations ofclass2rdbms.

4.1.4 Qualifying Models: Mutation Analysis for Model Transformation Testing

We generate sets of test models using different strategies and qualify these sets via mutation
analysis [49]. Mutation analysis involves creating a set offaulty versions ormutantsof a pro-
gram. A test set must distinguish the program output from allthe output of its mutants. In
practice, faults are modelled as a set of mutation operatorswhere each operator represents a
class of faults. A mutation operator is applied to the program under test to create each mutant.
A mutant is killed when at least one test model detects the pre-injected fault. It is detected when
program output and mutant output are different. A test set isrelatively adequate if it kills all
mutants of the original program. A mutation score is associated to the test set to measure its
effectiveness in terms of percentage of the killed/revealed mutants.

We use the mutation analysis operators for model transformations presented in our previous
work [107]. These mutation operators are based on three abstract operations linked to the basic
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Table 4.1: Repartition of theclass2rdbms mutants depending on the mutation operator applied
Mutation Operator CFCA CFCD CFCP CACD CACA RSMA RSMD ROCC RSCC Total
Number of Mutants 19 18 38 11 9 72 12 12 9 200

treatments in a model transformation: the navigation of themodels through the relations be-
tween the classes, the filtering of collections of objects, the creation and the modification of the
elements of the output model. Using this basis we define several mutation operators that inject
faults in model transformations:

Relation to the same class change (RSCC):The navigation of one association toward a
class is replaced with the navigation of another association to the same class.

Relation to another class change (ROCC):The navigation of an association toward a class
is replaced with the navigation of another association to another class.

Relation sequence modification with deletion (RSMD):This operator removes the last
step off from a navigation which successively navigates several relations.

Relation sequence modification with addition (RSMA):This operator does the opposite
of RSMD, adding the navigation of a relation to an existing navigation.

Collection filtering change with perturbation (CFCP): The filtering criterion, which could
be on a property or the type of the classes filtered, is disturbed.

Collection filtering change with deletion (CFCD): This operator deletes a filter on a col-
lection; the mutant operation returns the collection it wassupposed to filter.

Collection filtering change with addition (CFCA): This operator does the opposite of
CFCD. It uses a collection and processes an additional filtering on it.

Class compatible creation replacement (CCCR):The creation of an object is replaced by
the creation of an instance of another class of the same inheritance tree.

Classes association creation deletion (CACD):This operator deletes the creation of an
association between two instances.

Classes association creation addition (CACA):This operator adds a useless creation of a
relation between two instances.

Using these operators, we produced two hundred mutants fromtheclass2rdbms model trans-
formation with the repartition indicated in Table 4.1.

In general, not all mutants injected become faults as some ofthem are equivalent and can
never be detected. The controlled experiments presented inthis empirical study uses mutants
presented in our previous work [107]. We have clearly identified faults and equivalent mutants
to study the effect of our generated test models.

4.1.5 Test Strategies

Good strategies to guide automatic model generation are required to obtain test models that
detect bugs in a model transformation. We define a strategy asa process that generates AL-
LOY predicateswhich are constraints added to the ALLOY model synthesized by CARTIER as
described in Section 4.1.3. This combined ALLOY model is solved and the solutions are trans-
formed to model instances of the input meta-model that satisfy the predicate. We present the
following strategies to guide model generation:
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• Random/Unguided Strategy: The basic form of model generation is unguided where
only the ALLOY model obtained from the meta-model and transformation is used to gen-
erate models. No extra knowledge is supplied to the solver inorder to generate models.
The strategy yields an empty ALLOY predicate as shown in Listing 4.1.
pred random { }

Listing 4.1: Empty ALLOY Predicate

• Input-domain Partition based Strategies: We guide generation of models using test
criteria to combinepartitions on domains of all properties of a meta-model (cardinality
of references or domain of primitive types for attributes).A partition of a set of elements
is a collection ofn rangesA1,..., An such thatA1, ..., An do not overlap and the union of
all subsets forms the initial set. These subsets are calledranges. We use partitions of
the input domain since the number of models in the domain are infinitely many. Using
partitions of the properties of a meta-model we define two test criteria that are based on
different strategies for combining partitions of properties. Each criterion defines a set
of model fragmentsto cover an input meta-model. These fragments are transformed to
predicates on meta-model properties by CARTIER. For a set of test models to cover the
input domain at least one model in the set must cover each of these model fragments. We
generate model fragment predicates using the following test criteria to combine partitions
(cartesian product of partitions):

– AllRanges Criteria: AllRanges specifies that each range in the partition of each
property must be covered by at least one test model.

– AllPartitions Criteria: AllPartitions specifies that the whole partition of each prop-
erty must be covered by at least one test model.

The notion of test criteria to generate model fragments was initially proposed in the paper
[55]. The accompanying tool called Meta-model Coverage Checker (MMCC) [55] generates
model fragments using different test criteria taking any meta-model as input. Then, the tool
automatically computes the coverage of a set of test models according to the generated model
fragments. If some fragments are not covered, the set of testmodels should be improved in order
to reach a better coverage.

In this study, we use the model fragments generated by MMCC for theUMLCD Ecore model
(Figure 4.2). We use the criteriaAllRanges andAllPartitions. For example, in Table 4.2,mfAll-
Ranges1andmfAllRanges2are model fragments generated by CARTIER using MMCC [55] for
thenameproperty of a classifier object. ThemfAllRanges1states that there must be at least one
classifier object with an empty name whilemfAllRanges2states that there must be at least one
classifier object with a non-empty name. These values for name are the ranges for the property.
The model fragments chosen usingAllRanges mfAllRanges1andmfAllRanges2define two parti-
tionspartition1 andpartition2. The model fragmentmfAllPartitions1chosen usingAllPartitions
defines bothpartition1 andpartition2.

These model fragments are transformed to ALLOY predicates by CARTIER. For instance,
model fragmentmfAllRanges7is transformed to the predicate in Listing 4.2.
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pred mfAl lRanges7
{

some c : C l ass | #c . a t t r i b u t e =1
}

Listing 4.2: ALLOY Predicate formfAllRanges7

As mentioned in our previous work [55] if a test set contains models where all model frag-
ments are contained in at least one model then we say that the input domain is completely
covered. However, these model fragments are generated considering only the concepts and re-
lationships in theEcore model and they do not take into account the constraints on theEcore
model. Therefore, not all model fragments are consistent with the input meta-model because
the generated models that contain these model fragments do not satisfy the constraints on the
meta-model. CARTIER invokes the ALLOY Analyzer [72] to automatically check if a model
containing a model fragment and satisfying the input domaincan be synthesized for a general
scope of number of objects. This allows us todetect inconsistent model fragments. For exam-
ple, the following predicate,mfAllRanges7a, is the ALLOY representation of a model fragment
specifying that someClass object does not have anyProperty object. CARTIER calls the ALLOY

API to execute the run statement for the predicatemfAllRanges7aalong with the base ALLOY

model to create a model that contains up to 30 objects per class/concept/signature (see Listing
4.3).

Table 4.2: Consistent Model Fragments Generated usingAllRanges andAllPartitions Strategies
Model-Fragment Description
mfAllRanges1 AClassifier c | c.name=“”
mfAllRanges2 AClassifier c | c.name! =“”
mfAllRanges3 AClass c | c.is_persistent= True
mfAllRanges4 AClass c | c.is_persistent= False
mfAllRanges5 AClass c | #c.general= 0
mfAllRanges6 AClass c | #c.general= 1
mfAllRanges7 AClass c | #c.attribute= 1
mfAllRanges8 AClass c | #c.attribute> 1
mfAllRanges9 AnProperty a | a.is_primary= True
mfAllRanges10 AnProperty a | a.name=“”
mfAllRanges11 AnProperty a | a.name! =“”
mfAllRanges12 AnProperty a | #a.datatype= 1
mfAllRanges13 AnAssociation as| as.name=“”
mfAllRanges14 AnAssociation as| #as.memberEnd= 0
mfAllRanges15 AnAssociation as| #as.memberEnd= 1
mfAllPartitions1 Classifiers c1,c2 | c1.name=“” and c2.name! =“”
mfAllPartitions2 Classesc1,c2 | c1.is_persistent= Trueandc2.is_persistent= False
mfAllPartitions3 Classesc1,c2 | #c1.general= 0 and #c2.general= 1
mfAllPartitions4 Propertys a1,a2 | a1.is_primary= Trueanda2.is_primary= False
mfAllPartitions5 Associations as1,as2 | as1.name=“” and as2.name! =“”
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pred mfAl lRange7a
{

some c : C l ass | #c . a t t r i b u t e = 0
}

run mfAl lRanges7 f o r 30

Listing 4.3: ALLOY Predicate and Run Command

The ALLOY analyzer yields ano solutionto the run statement indicating that the model
fragment is not consistent with the input domain specification. This is because no model can be
created with this model fragment that also satisfies an inputdomain constraint that states that
everyClass must have at least oneProperty object as shown in Listing 4.4.

s i g Cl ass ex t en d s C l a s s i f i e r
{ . . .

a t t r i b u t e : some P r o p e r t y
. . .

}

Listing 4.4: Example ALLOY Signature

In Listing 4.4,someindicates 1..*. However, if a model solution can be found using ALLOY

we call it aconsistent model fragment. MMCC generates a total of 15 consistent model frag-
ments usingAllRanges and 5 model fragments using theAllPartitions strategy, as shown in Table
4.2.

4.1.6 Experiments

Experimental Setup and Execution

We use the methodology in Section 4.1.3 to compare coverage based test generation with un-
guided/random test model generation.

We generate sets of test models based on factorial experimental design [121]. We consider
the exact number of objects for each classin the effective input meta-model as factors for ex-
perimental design. A factor level is the exact number of objects of a given class in a test model.
These factors help study the effect of number of different types of objects on the mutation score.
For instance, we can ask questions such as whether a large number ofAssociation objects have
a correlation with the mutation score? The large number ofAssociation objects also indicates a
highly connected UML class diagram test model. We decide these factor levels by simple exper-
imentation such as verifying if models can be generated in reasonable amount of time given that
we need to generate thousands of test models in a few hours. Wealso want to cover a combina-
tion of a large number of varying factor levels. We have 8 different factor levels for the different
classes in the UML class diagram effective input meta-model as shown in Table 4.3. Other fac-
tors that may affect but are not considered for test model generation are the use different SAT
solvers such as SAT4J, MiniSAT, or ZChaff, maximum time to solve, t-wise interaction between
model fragments.

TheAllRanges criteria on theUMLCD meta-model gives 15 consistent model fragments (see
Table 4.2). We have 150 models in a set, where 10 non-isomorphic models satisfies each differ-
ent model fragment. We generate 10 non-isomorphic models toverify that mutation scores do
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Table 4.3: Factors and their Levels for Test Sets
Factors S1 S2 S3 S4 S5 S6 S7 S8
#ClassModel 1 1 1 1 1 1 1 1
#Class 5 5 15 15 5 15 5 15
#Association 5 15 5 15 5 5 15 15
#Attribute 25 25 25 25 30 30 30 30
#PrimitiveDataType 4 4 4 4 4 4 4 4
Bit-width Integer 5 5 5 5 5 5 5 5
#Models/Set
AllRanges

15 15 15 15 15 15 15 15

#Models/Set
Unguided

15 15 15 15 15 15 15 15

#Models/Set
AllPartitions

5 5 5 5 5 5 5

#Models/Set
Unguided

5 5 5 5 5 5 5

Table 4.4: Mutation Scores in Percentage for All Test Model Sets
Set 1 2 3 4 5 6 7 8
Unguided 150 models/set in 8 sets 68.56 69.9 68.04 70.1 70.1 68.55 69 70.1
AllRanges 150 models/set in 8 sets 88.14 92.26 81.44 85 91.23 80.4 91.23 88.14
Unguided 50 models/set in 8 sets 70.1 62.17 68.04 70.1 65.46 68.04 69.94 70.1
AllPartitions 50 models/set in 8 sets 90.72 93.3 84.53 87.62 87.62 82.98 92.78 88.66

not drastically change within each solution. We synthesize8 sets of 150 models using different
levels for factors as shown in Table 4.3 (see rows 1,2,3,4,5,6). The total number of models in
these 8 sets is 1200.

The AllPartitions criteria gives 5 consistent model fragments. We have 50 testmodels in a
set, where 10 non-isomorphic test models satisfies a different model fragment. We synthesize 8
sets of 50 models using factor levels shown in Table 4.3. The levels for factors forAllRanges
andAllPartitions are the same. Total number of models in the 8 sets is 400. The selection of
these factors at the moment is not based on a problem-independent strategy.

We compare test sets generated usingAllRanges andAllPartitions with unguided test sets.
For each test set of coverage based strategies we generate anequal number of random/unguided
models as a reference to qualify the efficiency of different strategies. Precisely, we have 8 sets
of 150 unguided test models to compare withAllRanges and 8 sets of 50 unguided test models
to compare withAllPartitions. We use the factor levels in Table 4.3.

To summarize, we generate a total of 3200 models using an Intel(R) CoreTM 2 Duo processor
with 4GB of RAM. We perform mutation analysis of these sets toobtain mutation scores on a
grid of 10 Intel Celeron 440 high-end computers. The computation time for generating 3200
models was about 3 hours and mutation analysis took about 1 week. We discuss the results of
mutation analysis in the following section.



136 CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY

Results and Discussion

Mutation scores forAllRanges test sets are shown in Table 4.4 (row 2). Mutation scores for test
sets obtained usingAllPartitions are shown in Table 4.4 (row 4). We discuss the effects of the
influencing factors on the mutation score:

• The number ofClass objects andAssociation objects are factors that have a strong correla-
tion with the mutation score. This is due to a specific characteristic of the transformation.
The transformationclass2rdbms principally transforms all persistent classes in an UML

model to tables inRDBMS and all attributes/associations to columns. Therefore, the prob-
ability of finding a fault that process classes and associations is high. We notice this
correlation due to an increase in mutation score with the level of these factors. This is true
for sets from unguided and model fragments based strategies. For instance, the lowest
mutation score usingAllRanges is 80.41 %. This corresponds to set 1 where the factor
levels are 1,5,5,25,4,5 (see Column for set 1 in Table 4.3) and highest mutation scores are
91,24 and 92,27% where the factor levels are 1,15,5,25,4,5 and 1,5,15,25,4,5 respectively
(see Columns for set 3 and set 7 in Table 4.3).

• We observe thatAllPartitions test sets containing only 50 models/set gives a score of max-
imum 93.3%. TheAllPartitions strategy demonstrates that knowledge from two different
partitions satisfied by one test model greatly improves bug detecting efficiency. This also
opens a new research direction to explore: Finding strategies to combine model fragments
to guide generation of smaller sets of complex test models with better bug detecting ef-
fectiveness.

We compare unguided test sets with model fragment guided sets in thebox-whiskerdiagram
shown in Figure 4.5. The box whisker diagram is useful to visualize groups of numerical data
such as mutation scores for test sets. Each box in the diagramis divided into lower quartile
(25%), median, upper quartile (75% and above), and largest observation and contains statisti-
cally significant values. A box may also indicate which observations, if any, might be considered
outliers or whiskers. In the box whisker diagram of Figure 4.5 we shown 4 boxes with whiskers
for unguided sets and sets forAllRanges andAllPartitions. The X-axis of this plot represents the
strategy used to select sets of test models and the Y-axis represents the mutation score for the
sets.

We make the following observations from the box-whisker diagram:

• Both the boxes ofAllRanges andAllPartitions represent mutation scores higher than cor-
responding unguided sets.

• The high median mutation scores for strategiesAllRanges 88.14% andAllPartitions 88.14%
indicate that both these strategies return consistently good test sets.

• The small size of the box forAllPartitions compared to theAllRanges box indicates its
relative convergence to good sets of test models.

• The small set of 50 models usingAllPartitions gives mutations scores equal or greater than
150 models/set usingAllRanges. This implies that it is a more efficient strategy for test
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Figure 4.5: Box-whisker Diagram to Compare Automatic ModelGeneration Strategies
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model selection. The main consequence is a reduced effort towrite correspondingtest
oracles[107] with 50 models compared to 150 models.

• Despite the generation of multiple solutions (10 solutionsfor each model fragment or an
empty fragment for unguided generation) for each strategy we see a consistent behaviour
in the mutation scores. There is no large difference in the mutation scores especially for
unguided generation. The median is 69% and the mutation scores range between 68% and
70%. TheAllRanges andAllPartitions vary a little more in their mutation scores due to a
larger coverage of the effective input meta-model.

The freely and automatically obtained knowledge from the input meta-model using the
MMCC algorithm shows thatAllRanges andAllPartitions are successful strategies to guide test
generation. They have higher mutation scores with the same sources of knowledge used to gener-
ate unguided test sets. A manual analysis of the test models reveals that injection of inheritance
via the parent relation in model fragments results in highermutation scores. Most unguided
models do not contain inheritance relationships as it is notimposed by the meta-model.

What about the 7% of the mutants that remain alive given that the highest mutation score is
93.3%? We note by an analysis of the live mutants that they arethe same for bothAllRanges and
AllPartitions. There remain 19 live mutants in a total of 200 injected mutants (with 6 equivalent
mutants). In the median case bothAllRanges and AllPartitions strategy give a mutation score
of 88.14%. The live mutants in the median case are mutants notkilled due to fewer objects in
models.

To consistently achieve a higher mutation score we need moreCPU speed, memory and
parallelization to efficiently generate larger test modelsand perform mutation analysis on them.
This extension of our work has not be been explored by us. It isimportant for us to remark
that some live mutants can only be killed with more information about the model transformation
such as those derived from its requirements specification. For instance, one of the remaining
live mutant requires a test model with a class containing several primitive type attributes such
that at least one is a primary attribute. A test model that satisfies such a requirement requires the
combination of model fragments imposing the need for several attributes in a class A, attributes
of class A must have primitive types, at least one primary attribute in the class A, and at least
one non-primary attribute in the class A. This requirement can either be specified by manually
creating a combination of fragments or by developing a better general test strategy to combine
multiple model fragments. In another situation, we observethat not all model fragments are
consistent with the input domain and hence they do not reallycover the entire meta-model.
Therefore, we miss killing some mutants. This information could help improve partitioning and
combination strategies to generate better test sets.

4.1.7 Conclusion for Test Generation

Black-box testing exhibits the challenging problem of developing efficient model generation
strategies. In this empirical study we use CARTIER to generate models conforming to the input
domain and guided by different test strategies. First, CARTIER helps us precisely specify the in-
put domain of a model transformation via meta-model pruningand pre-condition improvement.
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Second, we use CARTIER to generate sets of test models that compare coverage and unguided
strategies for model generation. All test sets using these strategies detect faults given by their
mutation scores. The comparison of coverage strategies with unguided generation taught us that
both strategiesAllPartitions andAllRanges look very promising. Coverage strategies give a max-
imum mutation score of 93% compared to a maximum mutation score of 70% in the case of
unguided test sets. We observe that mutation scores do not vary drastically despite the genera-
tion of multiple solutions for the same test strategy. We conclude from our experiments that the
AllPartitions strategy is a promising strategy to consistently generate asmall test of test models
with a good mutation score. However, to improve efficiency oftest sets we might require effort
from the test designer to obtain test model knowledge/test strategy that take the internal model
transformation design requirements into account.

4.2 Towards Model Completion in Domain-specific Model Editors

Documents in the form of computer programs, diagrams, chemical formulas, and markup text
can currently be edited in document editors calledstructure editors. These structure editors are
cognizant of the document’s underlying structure such as the grammatical syntax or a formal
grammar of the language. Functionally, these structure editors are syntax or language-directed
to aid the user by presenting recommendations for completion of code, text, or a diagram based
on correct possibilities prescribed by the underlying structure. This enables faster document
development with fewer errors. However, structure editorsare separately constructed for each
domain-specific language and are built mainly for grammar-based textual languages. We are
interested in the subject of extending structure editors from high-level models built using the
principles ofModel Driven Engineering(MDE) [57] where domain-specific model editors are
automatically synthesized for a variety of modelling languages.

In MDE, given a meta-model specification of a domain-specificmodelling language, soft-
ware tools can automatically generatedomain-specific model editors. For example, generative
modelling tools such asAToM3 (A Tool for Multi-formalism Meta-modelling) [48][67],GME
(Generic Modelling Environment)[12],GMF (Eclipse Graphical Modelling Framework)[79] can
synthesize a domain-specific visual model editor from a declarative specification of a domain-
specific modelling language. A declarative specification consists of a meta-model and a visu-
al/textual syntax that describes how language elements (objects and relationships) manifest in
the model editor. The designer of a model uses this model editor to construct a model on a
drawing canvas. This is analogous to using an integrated development environment (IDE) to
enter a program or a word processor to enter sentences. However, IDEs such asEclipse present
recommendations for completing a program statement when possible based on its grammar and
existing libraries [15]. Similarly,Microsoft Word presents grammatical correction recommenda-
tions if a sentence does not conform to a natural language grammar. Therefore, we ask: Can
we extrapolate similar technology or develop new technology for partial models constructed in
a model editor for a domain-specific modelling language (DSML)?

Extrapolating code completion techniques for model completion is not feasible in the general
case. The first reason is the difference between the underlying structure of code and models.
Code completion techniques use the Backus-Naur Form (BNF) grammar of a programming
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language while models are specified by a meta-model and constraints on it. Second, model
completion must consider completing the entire model as constraints can span entire models
unlike code completion which presents solutions at a program statement level. Third, in terms of
reduction in effort model completion must help reduce the effort of a modeller by automatically
satisfying all relevant language constraints since in general they may be too hard for a modeller
to resolve manually. The output of model completion must be one or many valid models that
conform to their language. This notion of reduction in effort is different from that in code
completion. Code completion presents local suggestions tocomplete navigational expressions
or concept names but it does not perform constraint satisfaction to output a valid program. In the
general case, model completion may take more time than code or sentence completion which are
almost instantaneous. Therefore, there is a need to developnew techniques for model completion
with different goals such as relaxing the exigence towards time to complete.

The major difficulty for providing completion capabilitiesin model editors is to integrate
heterogeneous sources of knowledge in the computation of the possible solutions for comple-
tion. The completion algorithm must take into account the concepts defined in the meta-model,
constraints on the concepts and the partial model built by a domain expert/user. The difficulty is
that these three sources of knowledge are obviously related(they refer to the same concepts) but
are expressed in different languages, sometimes in different files, and in most cases by different
people and at different moments in the development cycle as they are separable concerns.

In this section, we propose present a transformation from a partial model to an ALLOY [71]
[72] predicate. The generated ALLOY predicate is included in the ALLOY model generated from
the metamodel of aDSML. The transformation of a metamodel has been discussed in Chapter
3. The predicate is solved to obtain recommendations for completing the partial model in a
model editor. Our transformation from the heterogeneous sources to ALLOY is integrated in the
software toolAToM3.

Thescientific contributionin this section addresses two important questions:

• Question 1:How can we generate a complete model(s) from a partial model specification?

• Question 2: How can we integrate a model completion mechanism in a domain-specific
model editor?

The precise contributions of this section addresses exactly these problems. We enlist them
below:

• Contribution 1: First, theDSML metamodel and its invariants in transformed to a base
ALLOY [71] model using techniques already described in Chapter 3.In this section
present a transformation from a partial model to an ALLOY predicate and concatenate
it to the base ALLOY model. The predicate representing the partial model is solved in
the resulting ALLOY model to generate complete models that conform to the metamodel
specification.

• Contribution 2: We integrate this model completion mechanism into the metamodeling
environmentAToM3 such that anyDSML generated usingAToM3 by construction comes
with model completion. Users can create partial models in aDSML generated usingAToM3



CHAPTER 4. EXPERIMENTS IN EFFECTIVE MODEL DISCOVERY 141

and automatically obtain recommendations to complete themby clicking on a button. The
complete models are shown in the concrete visual syntax of the DSML.

An overview of our methodology is presented in Section 4.2.1. One of the key parts of our
methodology is the automatic synthesis of domain-specific model editors from their specification
comprising of the meta-model and visual syntax. This process is described in Section 4.2.2.
The component that will add model completion ability to the synthesized model editor is a
transformation from a partial model to an ALLOY predicate. We present this transformation
in Section 4.2.6. Once we include this transformation into the synthesis of a domain-specific
model editor we are able to synthesize domain-specific modeleditors with automatic model
completion. We describe the model completion process in Section 4.2.8. We present examples of
model completion recommendations generated for partial models in Section 4.2.9. We conclude
in Section 4.2.10.

4.2.1 Methodology for Model Completion

The development and use of a domain-specific model editor with automatic model completion
can be divided into the following phases and sub-phases:

1. Specification of a domain-specific modelling language (inAToM3)

(a) Specification of a metamodel

i. Specification of a class diagram (Ecore model)

ii. Specification of facts on the concepts in the class diagram (ALLOY facts in our
case)

(b) Specification of a visual syntax in an icon editor (available in AToM3) for concepts
in the metamodel

2. Transformation of metamodel and visual syntax to a model editor

(a) Synthesis of an editor with buttons, menus and icons

(b) Synthesis of a drawing canvas with features such as automatic layout

(c) Synthesis of a clickable widget for model completion

(d) Synthesis of a dialog box for specifying model completion parameters

3. User interaction

(a) Drawing a partial model on the canvas

(b) Editing model completion parameters

(c) Click on a button to generate complete model(s)

4. Model Completion (hidden from user)

(a) Transformation to a base ALLOY model from theEcore model
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(b) Augmenting metamodel facts with base ALLOY model

(c) Synthesis of an ALLOY predicate from partial model and augmentation to base AL-
LOY model

(d) Synthesis of run commands from the model completion parameters and augmenta-
tion to current ALLOY model

(e) Solving final ALLOY model and returning complete models as recommendations to
the model editor

The specification of a domain-specific language is usually done by alanguage designerwho
interacts with domain experts to identify the concepts, their properties and relationships in a
domain of knowledge, science or engineering. The language designer also develops a repos-
itory of constraints among the concepts and its properties.The assembly of the concepts and
relationships is expressed as anEcore model by the language designer. The constraints on the
Ecore model or class diagram (CD) are expressed in a formal constraint language. Preferably, a
constraint language that has a finite number of solutions andis decidable. In our methodology
we usefactsexpressed in the language ALLOY to represent such constraints. TheCD and the set
of constraints on it results in themetamodelof a Domain-specific Modelling Language (DSML)

A visual syntax designerspecifies a concrete visual syntax for the concepts and relationships
in the modelling language. In our methodology we use theAToM3 icon editor to specify a visual
syntax. In Section 4.2.2 we discuss in detail the specification of the modelling language for
Finite State Machines (FSM) along with a visual syntax.

Once we have all the elements (metamodel and visual syntax) necessary for a domain-
specific modelling language amodel transformation engineerdevelops a transformation to syn-
thesize a visual domain-specific model editor from these elements. The model editor consists
of buttons, menus, and a canvas. A user can select and drop objects on a drawing canvas and
connect them using relationships. The objects are manifested as icons as specified in the icon
editor for the concrete visual syntax by the visual syntax designer. The relationships are links
between these icons. In the model editor by clicking on the icon the user can edit or specify the
values of properties.

In our work, we extend this model transformation by transforming the metamodel to an
ALLOY model (see Chapter 3). The transformation also synthesizesa button widget in the
domain-specific model editor. Adomain expertor usercan click on this button resulting in the
solving of the ALLOY model augmented with ALLOY predicates synthesized from the partial
model drawn on the canvas. Recommendations as one or more complete models (if found) are
returned to the model drawing canvas. In Section 4.2.6 we present the transformation from a
partial model to ALLOY . An illustrative outline of the model completion methodology is shown
in Figure 4.6.

4.2.2 Specifying a DSML

4.2.3 Metamodel

The first step in specifying a DSML is creating a metamodel fora modelling language. The meta-
model for theFSM modelling language is presented in Figure 4.7. The classes in the metamodel
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Figure 4.6: Methodology Overview
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Figure 4.7: The Finite State Machine Metamodel

areFSM, State andTransition. The metamodel is specified using theEcore industry standard.

4.2.4 Constraints on Metamodel

The second step comprises of specifying constraints on the metamodel. We directly specify
ALLOY facts on theFSM metamodel. These ALLOY facts were manually transformed from
originalOCL constraints onFSM. In Table 4.5, we present the constraints on theFSM metamodel
in natural language and as ALLOY facts.

In the appendix we present the complete ALLOY model for theFSM modelling language.
This ALLOY model can be loaded into the ALLOY Analyzer [72] for directly obtaining valid
FSM models.

4.2.5 Visual Syntax

The final step (in specifying aDSML for synthesizing a model editor) we take is to specify the
concrete visual syntax of the class of objects in the metamodel. The visual syntax specifies what
an object looks like on a 2D canvas. An icon editor inAToM3 is used to specify the visual syntax
of the classes in the metamodel.

An icon editor is used to specify the visual syntax of metamodel concepts such as classes and
relationships. The icon forState is a circle annotated with three of its attributes (isFinal, isInitial,
and label). The connectors in the diagram are points of connection betweenState objects and
Transition objects.

The visual syntax can also by dynamically changed based on the properties of the model.
In an iconic visual modelling language such asFSM, the first step taken in specifying a visual
syntax is drawing an icon that represents a class of objects.If needed it is annotated with text
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Table 4.5: Constraints in natural language and as ALLOY facts
Constraint Name and Definition Alloy Fact
exactlyOneFSM: There must be ex-
actly oneFSM object in aFSM model fact exactlyOneFSM

{
one FSM
}

atleastOneFinalState: There must be
at least one final state in aFSM model fact at leastOneFinalState

{
some s:State|s.isFinal==True
}

exactlyOneInitialState : There must
be exactly one initial state in theFSM
model

fact exactlyOneInitialState
{
one s:State|s.isInitial==True
}

sameSourceDiffTarget : All transi-
tions with the same source must have
different target

fact sameSourceDiffTarget
{

all t1:Transition,t2:Transition|
(t1!=t2 and t1.source==t2.source) =>
t1.target!=t2.target

}

setTargetAndSource : The target of
an incoming transition to aState itself
and the source of all its outgoing tran-
sitions is the sameState

fact setTargetAndSource
{
all s:State |
s.incomingTransition.target = s and
s.outgoingTransition.source=s
}

noUnreachableStates: There can be
no unreachable states in theFSM from
an initial state. Since, its a ternary con-
straint we approximate it by stating that
a non-initial state can be reached from
an initial state up to a maximum depth
of N (N=3 is the given example).

fact noUnreachableStates
{
all s:State| (s.isInitial==False) =>
#s.incomingTransition >=1 and
(s.isInitial==True and #State > 1) =>
#s.outgoingTransition >=1 and
s.outgoingTransition.target!=s
}

uniqueStateLabels: All State objects
have unique labels fact uniqueStateLabels

{
#State>1 => all s1:State,s2:State |
s1!=s2=>s1.label != s2.label
}
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and its properties. Connectors are added to the visual object so that it can be connected to other
objects if they are related.

4.2.6 Transformation of a Partial Model

We define a partial model as a graph of objects such that: (1) The objects are instances of
classes in the modelling language metamodel (2) The partialmodel either does not conform to
the language metamodel or its invariants expressed in a textual constraint language. A complete
model on the other hand contains all the objects of the partial model and additional objects or
property value assignments in new/existing objects such that it conforms both to the metamodel
and its invariants.

A partial model, such as in Figure 4.8 (a), isautomaticallytransformed to a set of ALLOY

predicates by navigating it object by object in the canvas. We navigate all objects of a certain
type and put them together as an ALLOY predicate. We want to keep the already specified
properties for each object in the partial model but also allow for extensibility. For instance, for
all the State objects in the partial model of Figure 4.8 (a) we create an ALLOY predicate as
shown in the first predicate of Figure 4.8 (b). The ALLOY predicate states that there exists at
least oneState object s1, at least oneState object s2, at least oneState object s3, at least one
State object s4 (representing the fourState objects in the partial model), at least oneTransition
object t1, and at least oneTransition object t2 such that s1,s2,s3,s4 are not equal and t1,t2 are
not equal. The predicate also states that theTransition objects t1 and t2 are in the set of outgoing
transitions forState object s1.Transition object t1 is in the set of incoming transitions of s1. The
Transition object t2 is in the set of incoming transitions of s2. These sets are open for inclusion of
newTransition objects. These predicates preserve all knowledge coming from the partial model
while allowing the extension to relations to more objects.

We present a procedure to describe the transformation from the partial model to a set of
ALLOY predicates below:

The following represents the procedure to synthesize an ALLOY predicate from a partial model

1. We start by synthesizing the header of a partial model:

pred partialModel {

2. For all objects ofoi j of typeClassj in a partial model we synthesize an ALLOY expression:
someoi j : Classj , ... |

3. For all objects ofoi j of typeClassj and all objectsok j of typeClassj in a partial model
we synthesize an ALLOY expression:
oi j ! = ok j, each expression separated byand

4. For all defined attributesai jk of oi j we synthesize the expression:
oi j .ai jk = v, wherev is the specified value separated by commas

5. For all defined referencesr i jk of oi j we synthesize the expression:
v in oi j .r i jk , wherev is the object in the set of referred objects separated by commas
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Figure 4.8: (a) Partial Model (b) Synthesized Predicates from Partial Model

6. We finish the predicate by closing the brace.

4.2.7 Transforming ALLOY Model Completion Parameters

The user is provided with a dialog box to insertmodel completion parameters. Model completion
parameters include finite scopes such as the upper bound on the number of objects of any class,
or the upper-bound on the number of objects for each class, orthe exact number of objects
for each class, or a mixture of upper bounds and exact number of objects for different classes.
The default scope is number of objects in the partial model. An other parameter is the number
of solutions requiredS. This information is used to synthesize an ALLOY run commandthat
is finally inserted in the ALLOY model. For example, if the partial model predicate is called
partialModel1and the user states that he wants exactly one object of class A, up to 10 objects
of class B, and a scope of 5 for integers then the following runstatements is synthesized:

run partialModel1 for exactly 1 A, 10 B, 5 Int

If the number of objects in the partial model is N, then the default run command the editor
generates is:

run partialModel1 for N

4.2.8 Model Completion Process

The model completion process integrated in the domain-specific model editor takes as input the
Ecore model, augmented ALLOY facts, and a partial model drawn in the model editor synthe-
sized from the class diagram of a modelling language, and setof parameters to define the scope
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of the complete models to be synthesized. The process is invoked when a user draws a partial
model in the modelling canvas and clicks on theGenerate Completion Recommendationsbutton.

The following steps are executed during the completion process :

1. An ALLOY model (ALS) file is synthesized containing the signature definitions of the
classes in theEcore model as described in Chapter 3.

2. The modelling language facts are augmented to the ALLOY model. These facts are speci-
fied as described in Section 4.2.4.

3. The partial model drawn in the model editor canvas is transformed to a predicate as de-
scribed in Section 4.2.6 and augmented to the current ALLOY model

4. The model completion parameters are transformed to a run command (See Section 4.2.7)
and augmented to the ALLOY model giving us an adequate description for model comple-
tion.

5. The model editor invokes a solver to generate complete model recommendations for the
partial model.

It is important to note that the partial model is specified as asource of knowledge about
what objects and properties that the user wants to absolutely see in the complete model. In
the complete model we can see the intact contents of the partial model. However, the object
identifiers of the partial model are not preserved in the complete model. We also do not perform
pattern matching to identify the original partial model in the complete model, although such a
mechanism can be incorporated if needed. In the default casewe find the nearest-consistent
complete model(s) to a given partial model.

If a solution is not found the ALLOY solver returns ano solution found exceptionto AToM3

(the invoker). We show this result in a dialog box in theAToM3 environment. In our work we do
not debug a partial model to find the exact source of inconsistency. This incurs a computational
cost and time as we need to check every partial model predicate expression against the meta-
model constraints to see which characteristics of the partial model leads to an inconsistency. We
leave it to the user and depend on his/her expertise of theDSML to identify the inconsistent part
of the partial model and correct it.

4.2.9 Examples in Completion

In this section, we consider four examples of partial modelsin the FSM modelling language.
The examples are shown in Figure 4.9 (a), 4.9 (b), 4.9 (c) , 4.9(d) respectively. The synthesized
predicates for these models are shown in Figures 4.9 (e), 4.9(f) and 4.9 (g) , 4.9 (h). The example
in Figure 4.9 (a) contains only oneState object with none of the properties having been set. The
example in Figure 4.9 (b) contains twoState objects and aTransition object not connected. In
Figure 4.9 (c) we consider a more complex model with severalState andTransition objects with
some properties set and some not. Finally, in Figure 4.9 (d) we present a model containing at
least twoState objects withisInitial set to True.

We perform the model completion of these models using two methods of setting parameters
for completion:
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Figure 4.9: (a) Partial model 1, (b) Partial model 2, (c) Partial model 3, (d) Partial model 4,
(e) Predicate synthesized for Partial model 1 (f) Predicatesynthesized for Partial model 2, (g)
Predicate synthesized for Partial model 3, (f) Predicate synthesized for Partial model 4
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Figure 4.10: (a) Complete Model for Partial Model 1 (b) Complete Model for Partial Model 2
(c) Complete Model for Partial Model 3
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• Scope: Here we specify a scope as a model completion parameter. Thescope is a unique
number that defines the maximum number of objects for all concepts in the metamodel.
We choose the default scope to be 10. The corresponding ALLOY run statement generated
is:

pred partialModel {}
run partialModel for 10

ThepartialModel predicate is empty and is simply used to obtain a complete model in-
stance. We solve for up to a scope of 10 objects for each concept in the metamodel.

• Exact Number and/or Scope: Another mechanism to complete a model is to specify the
exact number of objects and/or scope for objects we expect inthe complete model.

pred partialModel {}
run partialModel for exactly 1 FSM, exactly 5 State,
exactly 10 Transition, 5 int

Here we find a solution for a partial model containing exactly1 FSM object, exactly 5
State objects, exactly 10Transition objects. Finally we set a bit-width for integers which
is 5. This means that all integers range between−25 to 25.

All the above parameters were initially set in the synthesizedAToM3 modelling environment.
The user is only exposed to the graphical syntax of the concepts in the metamodel and with
a text-box to specify the exact number of objects or a scope. The model completions were
performed on a Macbook Pro laptop with an Intel Core 2 Duo processor running at 2.6 GHz
clock speed and with 2 GB of RAM. We use the ALLOY analyzer API to invoke the SAT solver
Minisat [111] [112] from Chalmers University to solve the Boolean CNF synthesized from the
ALLOY model. The time to obtain the solutions for the four partial models for the completion
parameters is presented in Table 4.6.

We show the complete models themselves in Figure 4.10 with a scope of 10. Normally, there
is more than one solution to a model completion. We show one ofthe possible solutions. We do
not show that the complete models synthesized for the exact number of objects due to large size
of the models. However, it is interesting to note in Table 4.6that the time taken to synthesize
models with the exact number of objects specified for each class is a lot faster even though the
models are larger. This is because the additional knowledgeabout the number of objects makes
the search space of the models much smaller, therefore allowing us to obtain a solution faster.

The complete model in Figure 4.10 (a) satisfies all the metamodel constraints such that the
singleState label has a unique value 7. There is at least one final state andexactly one initial
state. In addition, the complete model contains aTransition object of theState to itself with an
event 7. This new object added to the complete model does not violate any of the knowledge
already present in the partial model.

The second complete model in Figure 4.10 (b) originally was apartial model with twoState
objects and aTransition object. The complete model now contains two finalState objects and
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Table 4.6: Model Completion Times

Partial Model Description
(I=Inconsistent)

TimeScope(s) TimeExact TimeScopeScaled TimeExactScaled

Fig. 4.9 (a) Only oneState ob-
ject with no proper-
ties specified

1.283 0.447 118.045 32.002

Fig. 4.9 (b) Two State objects
and oneTransition
object

1.289 0.496 115.994 31.488

Fig. 4.9 (c) SeveralState and
Transition objects
with some proper-
ties specified and
some not

1.315 0.575 11.4301 32.517

Fig. 4.9 (d) SeveralState and
Transition objects
with two initial
State objects

1.291 (I) 0.402 (I) 111.352 (I) 31.734 (I)

exactly one initialState object. There is also an inclusion of aTransition object in the complete
model. The synthesized model conforms to all metamodel constraints.

The third complete model in 4.10 (c) contains a complex partial model with additional ob-
jects that preserve the knowledge in the partial model. We can scale up to a model with several
hundred atoms using ALLOY to obtain results in a reasonable amount of time (for online user
interaction with the modelling environment). An atom consists of any non-divisible entity in the
ALLOY model. This includes objects and their properties connected via relations.

The fourth partial model in 4.9 (d) consisted of two initialState objects which is not permit-
ted by the metamodel constraint which states that theFSM metamodel must contain only one
initial State object. Therefore, the SAT solver was unable to find a complete model that could
take into account the partial model.

4.2.10 Conclusion of Model Completion

We present a methodology to synthesize domain-specific model editors with metamodel directed
model completion for domain-specific modelling languages.Our goal has been to provide model
editors with completion capabilities similar to text or code editors in IDEs such as Eclipse or
word processors such as Microsoft Word. A potential future application of our approach is
generation of test models from partial knowledge. ADSML user draws a partial test model
for testing a model transformation and subsequently sets model completion parameters. Then
he/she clicks on a button to generate complete test models that are valid test cases for model
transformations. Moreover, the model completions are displayed in the concrete visual syntax of
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the modelling language while evading all the details in the CNF, XML files, or other intermediate
low-level representations. This aspect of our tool helps reduce the time to develop models in the
modelling environment as the user only works in his domain language. The user does not need
to manually transform his models to a different constraint language, solve his models and return
the results to the editor anymore since the underlying modelcompletion process is hidden from
the user. After all, the goal of MDE is to leverage modelling to the highest possible level of
abstraction.

Our approach uses a modelling language metamodel , the syntax, and itsstatic semanticsin
the form of metamodel constraints to perform model completion. However, since the presented
approach is modelling language independent we do not consider dynamic semanticsoften real-
ized in a simulator for model completion. Nevertheless, we project several implications to simu-
lation as it goes hand in hand with modelling. Model simulators, such as MATLAB/Simulink for
causal block diagrams, often containhard-coded declarative constraints or program statements
that check and report on the validity of input models during simulation. For example, a causal
block diagram simulator analyzes input models to detect cycles and warns the modeller. These
statements that are integrated in simulator code come from heterogenous sources of knowledge
such as domain experience, static/dynamic analysis, and testing. This gradual inclusion of model
validity knowledge directly into simulator code makes thembulky and slow to execute. This ap-
proach also obscures the user from potentially using this knowledge to build correct models.
Extracting knowledge from simulators and developing modelling language invariants to guide
modellers to create invariant-validated models leveragesa correct by constructionphilosophy.
Further, using these invariants for automatic model completion of partial models makes the mod-
elling and simulation process less error-prone as models are first checked and then completed to
satisfy invariants before simulation.

Our lightweight approach is effective for small yet useful modelling languages. Time to
complete models by the state of the art SAT solvers for about 50 objects in the model is not
more than a few minutes forFSM. The completion time greatlydepends on the complexityof
theDSML. The time taken to obtain complete models also gives us insight about how restricted
a DSML is and how it can be relaxed.

As future work we intend to run thorough performance experiments on a specific industry
strengthDSML. Such aDSML will have a larger metamodel with a several complex constraints.
We will limit ourselves to the confines of first-order relational logic in ALLOY as the language to
express constraints. We also wish to enlist the set of detailed requirements to synthesizeDSML
modelling environments with completion. For example, an interesting factor is user interaction
time. If a complete model is not returned within a given time then the user can no longer make
developments quickly. Other aspects of model completion include completion of models when
two or more metamodels are involved, expression of partial models as invariants or constraints,
and aiding the user by helping him/her set parameters for model completion.
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Chapter 5

Automatic Effective Product Discovery

In previous chapters 3 and 4, we have seen how models can be discovered in any modelling
domain specified by a metamodel. The generic approach of generating models can be applied
to any metamodel. However, not all software systems can be economically modelled and conse-
quently discovered in a modelling language due to existenceof reliable software assets. Often,
such time-tested legacy software assets are economically viable only in their original form in-
stead of being represented as a model instance in a new modelling language. For instance, the
redevelopment / remodeling of the Linux kernel 2.6.25 is estimated to cost of a whopping 1.3
billion dollars! Therefore, we ask how do we discover usefulcombinations existing software
assets to create software ? To answer this question we present automatic discovery in a mod-
elling domain representing the variability in combining existing software assets. The variability
in combining different software assets in a software systemgives rise to a family of software
products called a Software Product Line (SPL). Thefeature diagram(FD) or feature model is a
widely used language to specify the modelling domain of a SPL. Elements in the domain of the
SPL are calledproductswhich are obtained by composing configurations of various software
assets. In this chapter, we present a methodology and tool AVISHKAR for automatic discovery
of test productsin the modelling domain of a Software Product Line.

The remainder of the chapter is structured as follows: Section 5.1 we introduce automatic
effective product discovery. In this thesis, we focus on thespecific case of test product discovery
in a SPL. The context and the problem for test product discovery is presented in Section 5.2. In
Section 5.3, we describe metrics to assess SPL test generation/discovery strategies. Section 5.4
gives an overview of the test product generation methodology and tool AVISHKAR. In Section
5.5 we present two “divide-and-compose” strategies that help scale product generation to large
SPLs. In Section 5.6 we present experiments to qualify our strategies on transaction processing
SPL case study: AspectOPTIMA. Section 5.7 draws some conclusions and outlines future work.

5.1 Introduction

The idea of automatic effective product discovery in a SPL isillustrated in Figure 5.1. As
illustrated in the figure, a feature diagramFD specifies the modelling domain for a SPL. The
modelling domain consists of a set of products.Heterogenous sources of knowledgemay
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Figure 5.1: Automatic Effective Product Discovery

further constrain the modelling domain specified by a feature diagram:

• Textual ConstraintsC are expressed on a set of features. Boolean dependency constraints
are expressed textually when they cannot be directly encoded in theFD. These constraints
specify the subsetP1⊂ P

• Partial Product p is a set of features chosen in product. The set of features mayrequire
the selection of other features to derive a complete product. The partial product specifies
the subsetP2⊂ P

• T-wise StrategySis a product generation strategy to detect faults in software product lines
[90] [120]. The large number of products specified by a feature diagram can be sampled
using a strategy such asT −wise. The objective is to generate a minimum number of
products that satisfy allT−wiseinteractions between features. TheT−wisestrategy for
a particular value ofT specifies the subsetP3⊂ P.

The intersection of all the sources of knowledge defines theeffective modelling domain. The
effective modelling domain is the set of products defined byPe f f ective← P∩P1∩P2∩P3. Can
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we automatically generate or discover models in the effective modelling domain of products?
This is thegeneral questionthat intrigues us.

In this thesis, we address this question for the specific problem of test generation for soft-
ware product lines. Our solution is embodied in the tool AVISHKAR as shown in the Figure
5.1.

Product line testing consists in deriving a set of products and in testing each product. This
raises two major issues: 1) the explosion in the number possible products; 2) the generation
of test suites for products. The first issue rises from the combinatorial growth in the number
of products with the number of features in a feature diagram.In realistic cases, the number
of possible products is too large for exhaustive testing. Therefore, the challenge is to select a
relevant subset of products for testing. The second issue isto generate test inputs for testing each
of the selected product. This can been seen as applying conventional testing techniques while
exploiting the commonalities between products to reduce the testing effort [152, 150, 100]. Here,
we focus on the first issue:How can we efficiently select a subset of products for productline
testing?

Previous work [39, 90] has identified combinatorial interaction testing (CIT) as a relevant
approach to reduce the number of products for testing. CIT isa systematic approach for sampling
large domains of test data. It is based on the observation that most of the faults are triggered
by interactions between a small numbers of variables. This has led to the definition of pairwise
(or 2-wise) testing. This technique selects the set of all combinations so that all possible pairs
of variable values are included in the set of test data. Pairwise testing has been generalized to
T-wise testing which samples the input domain to cover allT-wise combinations. In the context
of SPL testing, this consists of selecting the minimal set ofproducts in which allT-wise feature
interactions occur at least once.

Current algorithms for automatic generation ofT-wise test data sets have a limited support
in the presence of dependencies/constraints between variables. This prevents the application
of these algorithms in the context of software product linessince feature diagrams define com-
plex dependencies between variables that cannot be ignoredduring product derivation. Previous
work [42, 41] propose the use of constraint solvers in order to deal with this issue. However,
they still leave two open problems:scalability and the need for aformalismto express feature
diagrams. The former is related to the limitations of constraint solvers when the number of vari-
ables and clauses increases. Above a certain limit, solverscannot find a solution, which makes
the approach infeasible in practice. The latter problem is related to the engineering of SPLs.
Designers build feature diagrams using editors for a dedicated formalism. On the other hand,
constraint solvers manipulate clauses, usually in BooleanConjunctive Normal Form (CNF).
Both formalisms are radically different in their expressiveness and modeling intention. This is a
major barrier for the generation ofT-wise configurations from feature diagrams.

We propose an approach for automatic discovery/generationof test products that contain
all valid t-wise interactions between features. The general approachis to transform the input
feature diagram andt-wise interactions to a constraint satisfaction problem followed by solving
it. The result is a test products that satisfy the FD andt-wise criteria. However, for large feature
diagrams with several dependencies the generation oft-wise products is highly limited by the
solver. Current constraint solvers have a limit in the number of clauses ,emerging from FD and
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t-wise criteria constraints, they can solve at once. It is necessary to divide the set of clauses into
solvable subsets. We compose the solutions in the subsets toobtain a global set. In this work,
we investigate two “divide-and-compose” strategies to divide the problem ofT-wise generation
for a feature diagram into several sub problems that can be solved automatically. The solution
to each sub-problem is a set of products that cover someT-wise interactions. The union of
these sets cover all interactions, thus satisfying theT-wise criterion on the feature diagram.
However “divide-and-compose” strategies may yield a higher number of products to be tested
and redundancy amongst them which is the price for scalability. We define metrics to compare
the quality of these strategies and apply them on a concrete case study.

Our T-wise testing toolset, AVISHKAR, first transforms a given feature diagram and its inter-
actions into a set of constraints into Alloy [72, 71], a formal modeling language, based on first-
order logic, and suited forautomatic instance generation. Then it complements the Alloy model
with the definition of theT-wise criteria and applies one of the chosen strategies to produce a
suite of products forming test cases. Finally, metrics are computed giving important information
on the quality of the test suite. We extensively applied our toolset on AspectOPTIMA [86, 87]
a concrete aspect-oriented SPL devoted to transactional management.

5.2 Context and Problem

In this chapter, we focus on generating a small set of test products for a feature diagram. A
product is a valid configuration of the feature diagram that can be used as a relevant test case for
the SPL. We give a brief definition and an example of feature diagrams before describing test
case generation for them.

Feature Diagram

Feature Diagrams(FD) introduced by Kang et al. [77] compactly represent ( Figure 5.2) all the
products of an SPL in terms of features1 which can be composed. Feature diagrams have been
formalized to perform SPL analysis [18, 135, 137, 45]. In [135, 137], Schobbens et al. propose
an generic formal definition of FD which subsumes many existing FD dialects. FDs are defined
in terms of a parametric structure whose parameters serve tocharacterize each FD notation
variant.GT (Graph Type) is a boolean parameter indicates whether the considered notation is a
Direct Acyclic Graph (DAG) or a tree.NT (Node Type) is the set of boolean operators available
for this FD notation. These operators are of the formopk with k ∈ N denoting the number of
children nodes on which they apply to. Considered operatorsareandk (mandatory nodes),xork
(alternative nodes)ork (true if any of its child nodes is selected),optk (optional nodes). Finally
vp(i.. j)k (i ∈N and j ∈N∪∗) is true if at leasti and at mostj of its k nodes are selected. Existing
other boolean operators can usually be expressed withvp. GCT (Graphical Constraint Type) is
the set of binary boolean functions that can be expressed graphically. A typical example is the
“requires” between two features. Finally,TCL (Textual Constraint Language) tells if and how
we can specify boolean constraints amongst nodes. A FD is defined as follows:

1Defined by Pamela Zave as “An increment in functionality”. See
http://www.research.att.com/~pamela/faq.html

http://www.research.att.com/~pamela/faq.html
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Figure 5.2: Feature Diagram of AspectOPTIMA
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• A set of nodesN, which is further decomposed into a set of primitive nodesP (which have
a direct interest for the product). Other nodes are used for decomposition purposes. A
special root node,r represents the top of the decomposition,

• A function λ : N 7→ NT that labels each node with a boolean operator,

• A setDE∈N×N of decomposition edges. As FDs are directed, noden1,n2∈N,(n1,n2)∈
DE will be notedn1→ n2 where n1 is theparentand n2 thechild,

• A setCE∈ N×GCT×N of constraint edges,

• A setφ ∈ TCL

A FD has also some well-formedness rules to be valid: only root (r) has no parent; a FD
is acyclic; if GT = true the graph is a tree; the arity of boolean operators must be respected.
We build upon this formalization to create feature modelingenvironments supporting product
derivation [119] where we encode the AspectOPTIMA SPL feature diagram (see figure 5.2). We
implement AspectOPTIMA SPL as an aspect-oriented framework providing run-time support for
different transaction models. AspectOPTIMA has been proposed in [87, 86] as an independent
case study to evaluate aspect-oriented software development approaches, in particular aspect-
oriented modeling techniques. Once we defined the FD, we can create products (i.e a selection
of features in the FD). To bevalid, a product follows these rules: 1) The root feature has to be
in the selection, 2) The selection should evaluate to true for all operators referencing them, 3)
All contraints (graphical and textual) must be satisfied 4) For any feature that is not the root,
its parent(s) have to be in the selection. We enforce the validity of a product according to well-
formedness rules defined on our generic metamodel [119] which are automatically translated to
Alloy by our FeatureDiagram2Alloy transofrmation (see Section 5.4).

Once we introduce the notion of feature diagram and formalize it we can form our notion of
SPL testing on such an entity.

SPL Test Case

A SPL test caseis one valid product (i.e. a ) of the product line. Once this test case is generated
from a feature diagram, its behaviour has to be tested.

SPL Test Suite

A SPL Test Suiteis a set of SPL test cases.

Example

Figure 5.2 presents 3 test cases, three products which can bederived from the feature model.
These three test cases form a test suite.
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Figure 5.3: Three Test Cases
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Valid/Invalid T-tuple

A T-tuple ( wereT is a natural integer giving the number of features present intheT-tuple2) of
features is said to bevalid (respectivelyinvalid), if it is possible (respectively impossible) to de-
rive a product that contains the pair (T-tuple) while satisfying the feature diagram’s constraints.

Example

In the AspectOptima product line we have a total of 19 features. All these 19 features can
take the value true or false. Thus, we can generate 681 pairs that all pariwise combinations of
feature values. However, not all of these pairs can be part ofa product derivable from the feature
model. For example, the pair<(not Transaction), Recovering> is invalid with respect to
the AspectOptima feature diagram which specifies that the featureTransaction is mandatory.

SPL test adequacy criterion

(all-T-tuples): To determine whether a test suite is able to cover the feature model of the SPL
, we need to express test adequacy conditions. In particular, we consider the “t-wise” [90, 42]
adequacy criteria were each validT-tuple of features is required to appear in at least one test
case.

Example

The test suite presented in figure 5.2 does not satisfy our adequacy criterion since the pair (2-
tuple)<semantic classified, lockable> does not appear in any of the three test cases.

Test generation

In our context of SPL testing, test generation consists of analyzing a feature diagram in order to
generate a test suite that satisfies pairwise coverage.

Pairwise (and more generally t-wise) is a set of constraintsover a range of variables (math-
ematically defined ascovering arrays[122]). Thus it is possible to use SAT-solving technology
[53, 159, 112] to compute such arrays. In our case, variablesare the features of a given given
feature diagram. It is therefore mandatory to encode a feature diagram in first order logic so
SAT-solvers can analyze them. Thanks to feature diagram formalization, this is possible [18, 45]
and have been done for various purposes [20, 101].

5.2.1 Problem

The work in this chapter builds upon this idea: model the testgeneration problem as a set of
constraints and ask a constraint solver for solutions. In this context we tackle two issues: (1)
modelling the SPL test generation problem in order to use a constraint solver and (2) dealing

2In general we will use the term “tuple” to mention aT-tuple whent does not matter. In the special case of
pairwise, i.e. whent = 2, we denote a 2-tuple by the term “pair”.
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with the scalability limitations of SAT solvers. Our contribution on the first issue is an automatic
transformation from a feature diagram to an Alloy [71] model.

Scalability is a major issue with SAT solvers. It is known that solving a SAT formulae
on more than 2 variables in an NP-complete problem. It is alsoknown that depending on the
number of variables and the number of clauses, satisfiability or unsatisfiability is more or less
computiationally complex [104]. However, we currently don’t know how to predict the com-
putation complexity of a given problem. An empirical approach thus consists in trying to solve
the set of “constraints all-at-once”. Three things can happen: the solver returns a solution, the
solver returns an unsatisfiability verdict, the solver crashes because the problem is too complex.
In the latter case, one way to generate a test suite that covers t-wise interactions, is to decompose
the problem into simpler problems, solve them independently and merge the solutions. In the
following, we refer to this approach as “divide-and-compose” approach.

One pragmatic approach, and a naïve one, consists of runningthe solver once for eachT-
tuple that as to be covered. This iterative process is the simplest “divide-and-compose” approach
and it generates one test case for each validT-tuple in the FD. For the AspectOPTIMA SPL, we
obtain 421 test cases that satisfy pairwise and that corresponds to 421 products to be tested. The
all-pairs criterion is satisfied but with a large number of products. It also has to be noted that
only 128 different products can be instantiated from the AspectOPTIMA SPL. This indicates that
the application of “divide-and-compose”, although it might define problems that can be solved,
also introduces a large number of redundant test cases in theresulting test suite. Indeed, if it
generates 421 test cases, but there can be only 128 differenttest cases, there is an important
redundancy rate.

In general, a solution for generating a test suite with a SAT solver consists in finding a
strategy to decompose the SAT problem in smaller problems that can be automatically solved.
Also, the strategy should decompose the problem in such a waythat when the solutions to all
sub-problems are composed, the amount of redundancy in the suite is limited

Test generation strategies

In this chapter we callstrategiesthe way we “divide-and-compose”. Depending on the strategies
and its parameters we will derive more or less test cases. Before delving into the two different
strategies we will introduce in the next section metrics to evaluate them.

5.3 Metrics for Strategy Evaluation

We need efficiency and quality attributes in order to evaluate the generated SPL test cases and
compare the automatic generation strategies. The first efficiency attribute relates to the size of
the generated SPL test suite:

SPL Test suite size

The size of a test suite is defined by thenumber of SPL test casesthat a given generation strategy
computes. In the best case, we want a strategy to generate theminimal number of test cases to
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satisfy the SPL test adequacy criterion. As this optimal number is generally not known a priori,
we use the SPL test suite size as a relative measure to comparetest generation strategies.

A second efficiency attribute relates to the cost of test generation in itself. We measure this
cost as the time taken for generation.

SPL strategy time taken

We characterize the cost of a given strategy by the time it took to decompose the problem into
solvable sub-problems and the time it took to merge the partial generated solutions to a SPL test
suite.

We also evaluate the quality of the generated test cases. First, we want to appreciate the
coverage of the generated test cases with respect to the feature diagram. We measure coverage
by looking at the rate of similarity between the test cases that are generated. The intuition is that,
the more test cases are similar, the less they cover the variety of products that can be generated
from the feature diagram.

Test Case Redundancy

We definetest case redundancybetween two valid products as the ratio ofnon-compulsory
features they have in common. Bycompulsory, we mean that it comprises mandatory features
and features that are explicitly required by them. Put in other terms, for any set of features
F ⊆ N representing avalid product according to the aforementioned rules for constructing FDs
in section 5.2, we form the setCF ⊆ F:

CF = {{ fi} ∈N|∀{ f j} ∈N∧ f j 7→ fi ,

∀k∈ N,λ( f j) = andk∪

{ fl} ∈N|requires( fi , fl ) = true

Given a set of featurefi in all set of featureN in a product, the setCF is the union of the
subset of featuresf j in N such that a featuref j is a parent offi , or f j is in a binary AND relation
with fi , and the subset of featuresfl such thatfl is required by anyfi . In which requiresis a
binary boolean function (belonging toGCT) such that it returns true if there is a constraint edge
labeled as “requires” between theses two features.

Hence the redundancy ratio between two test productspi andp j is:

r(pi , p j) =
card((Fpi −CFpi)∩ (Fpj −CFpj ))

card((Fpi −CFpi)∪ (Fpj −CFpj ))

The setsCFpi andCFpj represent the compulsory sets of features for productspi and p j

while Fpi andFpj are the sets of all features in productspi and p j . This ratio equals to 1 if the
two products are the same and 0 if they have no non-compulsoryfeature in common.
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Example

Products 1 and 3 (Figure 5.2) have test case redundancy ratioof 0.88 since they differ only by
one feature out of 9 non-compulsory.

At the test suite level, we compute test case redundancy by computing the average of test
case redundancy ratio for any two (cartesian product) test cases of the suite.

As a second quality attribute, we want to assess the quality of the generated SPL test cases
with respect toT-wise interactions coverage. If we know that, by construction, each tuple ap-
pears at least once in the test suite, we also know that the generation process might lead to the
repetition of tuples an arbitrary number of times. For the SPL testers, such repetitions imply that
they will test the same interaction of features several times.

T-tuple Occurrence

This metric is the number of occurrences of a valid (T-tuple) in a test suite. LetTSbe a test
suite comprised ofpi valid cases andFpi ⊆ N be their associated features. Lett a T-tuple
(t = { fi ∈ N}). Tuple occurrence redundancy is then:

to = card(t ∈ T|t ⊆ Fpi)

5.4 Test Generation Methodology & AVISHKAR Toolset

In this section, we describe the automatic generation of test products from a feature diagram that
satisfy theT-wise SPL test adequacy criteria. Our tool AVISHKAR has been designed to support
any value ofT. The methodology consists of five key steps shown in Figure 5.4.

The generation is based on ALLOY as the underlying formalism to formally capture all
dependencies between features in a feature diagram as well as the the interactions that should be
covered by the test cases.

5.4.1 Step 1: Transforming Feature Diagrams to ALLOY

In order to generate valid test products directly from a feature diagram, we need to transform
the diagram in a model that captures constraints between features (defined in Section 5.2). The
FeatureDiagram2Alloytransformation automatically generates an ALLOY modelAF from any
feature diagramFD expressed in our generic feature diagram formalism [119].

The AF model captures all features as ALLOY signaturesand a set of ALLOY signatures
that capture all constraints and relationships between features. This model also declares two
signatures that are specific to test generation:configurationthat corresponds to a test case and
that encapsulates a set of features (listing 5.2);ProductConfiguration(listing 5.3) which will
encapsulate a set of test cases.

Example

The AspectOptima feature diagram, shown in Figure 5.2, we have 19 featuresf1, f2, ..., f19. The
transformationFeatureDiagram2Alloygenerates 19 signatures to represent these features shown
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in listing 5.1. The root featureTransactionis always mandatory indicated by the prefixonefor
the field f as shown in listing 5.2. Optional features are indicated by the prefixlone such as
featureNestedor f2 in listing 5.2.

s i g T r a n s a c t i o n {}
s i g Nested {}
s i g Recover ing {}
s i g Co n n cu r r en cy Co n t r o l S t r a t eg y {}
s i g P h y s i ca l Lo g g i n g {}
s i g TwoPhaseLocking {}
s i g O p t i m i s t i c V a l i d a t i o n {}
s i g Ch eck p o i n t i n g {}
s i g D e f e r r i n g {}
s i g OutcomeAware {}
s i g Ch eck p o i n t ab l e {}
s i g Tr ac i n g {}
s i g Contex t {}
s i g Copyable {}
s i g Tr aceab l e {}
s i g Shared {}
s i g S e m a n t i c C l a s s i f i e d {}
s i g A c c e s s C l a s s i f i e d {}
s i g Lockab le {}

Listing 5.1: Generated Signatures for Features in AspectOptima

s i g C o n f i g u r a t i o n
{
f1 : one Tr an sac t i o n , / / Mandatory
f2 : l one Nested , / / O p t i o n a l
. . .
f 19 : one Lockab le / / Mandatory
}

Listing 5.2: Generated Signature for Configuration of Features in AspectOptima

one s i g P r o d u c t C o n f i g u r a t i o n s
{

c o n f i g u r a t i o n s : s e t C o n f i g u r a t i o n
}

Listing 5.3: Generated Signature for Set of Configurations

TheFeatureDiagram2Alloytransformation generates ALLOY factsin AF .

Example

In listing 5.4, we present two ALLOY facts generated to show the mutually exclusive (XOR)
selection of featuresf6 (TwoPhaseLocking) and f7 (OptimisticValidation) given we select the
feature f4 (ConcurrencyControlStrategy). The fact must be true for all configurations.

/ / Two Phase Locking XOR O p t i m i s t i c C o n s t r a i n t 1
pred Tw o P h aseLo ck i n g _ co n s t r a i n t
{
a l l c : C o n f i g u r a t i o n |

#c . f6 ==1 i mp l i es (# c . f4 =1 and #c . f7 =0)
}

/ / Two Phase Locking XOR O p t i m i s t i c C o n s t r a i n t 2
pred O p t i m i s t i c V a l i d a t i o n _ c o n s t r a i n t
{
a l l c : C o n f i g u r a t i o n |

#c . f7 ==1 i mp l i es (# c . f4 =1 and #c . f6 =0)
}

Listing 5.4: Generated Fact for XOR
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The FeatureDiagram2Alloytransformation has been implemented as a model transforma-
tion in the Kermeta metamodeling environment [108]. Since our feature diagram formalism
is generic [119, 106] various kinds of feature diagrams can be automatically transformed. We
summarize the transformation rules in Figure 5.5. The interpretation of these rules is straightfor-
ward. The generated facts in ALLOY state boolean constraints on relevant features in the feature
diagram.

5.4.2 Step 2: Generation of Tuples

In Step 2, we automatically compute the setI of all possible tuples of features from feature dia-
gramAF and the numberT. The tuples enumerate allT-wise interactions between all selections
of features inAF.

Example

The 3-tuplet =< # f1 = 0,# f2 = 1,# f3 = 1 > for the valueT = 3 contains 3 features and their
valuations. In the tuple we state that the set of test products must contain at least one test case
that has featuresf2 and f3 and does not have f1.

The initial set of tuplesI is the set of tuples that cover all combinations ofT features taken
at a time. For example, if there areN features then the size ofI is 2NCT minus all tuples
with repetitions of the same selected feature. Each tuplet in I also has an ALLOY predicate
representation. An ALLOY predicate representation of a tuplet is t.predicate.

The tuplet =< # f1 = 0,# f2 = 1,# f3 = 1 > is shown in listing 5.5.
pred t
{

some c : C o n f i g u r a t i o n | #c . f1 =0and #c . f2 =1 and #c . f3 =1
}

Listing 5.5: Example Tuple Predicate

5.4.3 Step 3: Detection of Valid Tuples

In this third step, we use the predicates derived from each possible tuple in order to select the
valid ones according to the feature diagram. We say that a tuple is valid if it can be present in a
valid instance of the feature diagramF.

Example

Consider AspectOptima (in Figure 5.2) featuresf1:Transaction,f2:Nested, andf4:ConcurrencyControlStrategy,
The 3-tuplet =< # f1 = 0,# f2 = 1#f4 = 1> is not a valid tuple as the featuref4 required the ex-
istence of featuref1 and hence we neglect it. On the other hand, the 3-tuplet =< # f1 = 1,# f2 =
0,# f4 = 1 > is valid since all feature selections hold true forF. We determine the validity of
each such tuplet by solvingAF ∪ t.predicatefor a scope of exactly 1. This translates to solving
the ALLOY model to obtainexactly one productfor which the tuplet holds true.

For the AspectOptima case study we generate 681 tuples for pair-wise (T = 2) interactions
in the initial setI . We select 421 valid tuples in the setV.
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Figure 5.5: Feature Diagram to ALLOY Transformation
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5.4.4 Step 4: Creating and Solving Conjunctions of MultipleTuples

Once we have a set of valid tuples, we can start generating a test suite according to theT-wise
SPL adequacy criteria. Intuitively, this consists in combining all valid tuples fromV with respect
to AF in order to generate test products that cover all t-wise interactions.

Example

For pair-wise testing in the case of AspectOptima this amounts to solving a conjunction of 421
tuple predicatest1.predicate∩ t2.predicate∩ ...∩ t421.predicatefor a certain scope. The major
issue we tackle in this work is that in general, constraint solvers cannot generate the conjunction
of all valid tuples at once.

Using the “all-at-once” strategy on aspectOPTIMA, with 421valid tuples, the generation
process crashes without giving any solution after several minutes using MiniSAT [112] solver.

Hence we derived two “divide-and-compose” strategies to break down the problem of solv-
ing a conjunction of tuples to smaller subsets of conjunction of tuples. The strategies we present
areBinary SplitandIncremental Growth. Each strategy is by parameterized by intervals of val-
ues defining the scope of research for each (sub)-conjunction of tuples, the duration in which
ALLOY is authorized to solve the conjunction as well as a strategy defining how features are
picked in a tuple. We describe these strategies in more detail in section 5.5. The combination of
solutions is a test suiteTSthat covers all tuples.

5.4.5 Step 5: Analysis

In order to assess the suitability of our “divide-and-compose” strategies and compare their ability
to generate test suites, we need to compute the metrics defined in section 5.3. We compute for
each generated test suite the number of products or test cases, test case and tuple redundancy. We
performed extensive experimentation on AspectOPTIMA by generating test suite with different
scope and time values. We present consolidated results of these experiments in section 5.6.

5.5 Two strategies forT-wise SPL Test Suite Generation

As mentioned previously, to be scalable we divide the problem of solving tuples into sub-
problems, i.e. we are creating conjunctions of subsets of tuples. We solve the conjunction
of tuples in each of these subsets using the algorithm presented in Section 5.5.1. The first strat-
egy to obtain subsets of tuples,Binary Split, is discussed in Section 5.5.2. We present the second
strategy,Incremental Growth, in Section 5.5.3.

5.5.1 Solving a Conjunction of Tuples

We solve a conjunction of tuples using the Algorithm 2. We combine the Alloy modelAF with
a predicateCT(S).predicaterepresenting the conjunction of tuples in the setS= t1, t2, ..., tL.
We solve the resulting Alloy modelm using incremental scoping. We create arun commandc
starting for a scope between the minimum scopemnScand the max scopemxScope. We insert
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the commandc into m. A SAT solver such as MiniSAT [112] or ZChaff [159] is used to solve
m. We determine the durationdur = startTime−endTimefor each scope value. Ifdur exceeds
maximum durationmxDurwe stop incrementing the scope. Thesolvemethod returns theresult
of the SAT solving and the correspondingsolutionif a solution exists.

Algorithm 2 solveCT(AF ,S,mnSc,mxSc,mxDur) : Boolean,A4Solution
Let current modelm= AF ∪CT(S).predicate
scope←mnSc
result← False
dur← 0
while scope≤mxSc∧dur≤mxDurdo

Let c = “run” CT(S).namefor < scope>
m←m∪c
startTime= currentTime
solution= SATsolve(m)
if solution.isEmpty then

result← False
scope← scope+1
Remove commandc from m

end if
if !solution.isEmpty then

result← True
Break While Loop

end if
endTime← currentTime
dur← endTime−startTime

end while
Return{result,solution}

5.5.2 Binary Split

Thebinary splitalgorithm shown in Algorithm 3 is based on splitting the set of all valid tuplesV
into subsets (halves) until all subsets of tuples are solvable. We first order the set of valid tuples
based on the strategyStr. The strategy can berandomor based ondistancemeasure. In this
chapter, we consider a random ordering. ThePool is set of sets of tuples. Initially,Pool contains
the entire set of valid tuplesV. If each set of tuplesPool[i],0≤ i ≤ Pool.size in Pool is not
solvable in the given range of scopesmnScandmxScor within the maximum durationmxDur
then result is False for Pool[i]. A single value ofresult = False rendersAllResult= False.
In such a case, we select thelargest setin Pool[i] and split it into halves{H1} and{H2}. We
insert the halves{H1} and{H2} into Pool[i]. The process is repeated until all sets of tuples in
Pool can be solved given the time limits andAllResult= True. In the worst case, binary split
convergences with one tuple a set makingPool.size= V.sizeas all tuples inV are solvable.

5.5.3 Incremental Growth

The incremental growthis shown in Algorithm 4. In the algorithm we incrementally build a set
of tuples in the conjunctionCT and add it to thePool. Theselectfunction based on a strategy
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Algorithm 3 binSplit(AF ,V,mnSc,mxSc,mxDur,Str)
AllResult← True
V← order(V,Str)
Pool← {{V}}
repeat

result← False
i← 0
repeat
{result,Pool[i].solution}
← solve(AF ,Pool[i],mnSc,mxSc,mxDur)
i← i +1
AllResult← AllResult∧ result

until i == Pool.size
if AllResult== Falsethen
{L} = max(Pool)
{{H1},{H2}} = split({L},2)
Pool.add({H1})
Pool.add({H2})

end if
until AllResult= f alse
ReturnPool

Str selects a tuple inV and inserts it intoCT. The strategyStr can berandomor based on a
distancemeasure between tuples. In this paper, we consider only a random strategy for selection.
We select and remove a tuple formV and add it toCT until the conjunction cannot be solved
anymore ,i.e.,result= False. We remove the last tuple and put it back intoV. We includeCT
into Pool. In every iteration, we initialize a new conjunction of tuples until we obtain sets of
tuples inPool that contain all tuples initially inV or whenV is empty.

Algorithm 4 incGrow(AF ,V,mnScp,mxScp,mxDur,Str)
Pool← {}
repeat

CT← {}
repeat

tuple←V.select(Str)
CT.add(tuple)
{result,CT.solution}
← solve(AF ,CT,mnSc,mxSc,mxDur)
if result== Falsethen

CT.remove(tuple)
V.add(tuple)

end if
until result== False
Pool.add(CT)

until V.isEmpty
ReturnPool
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5.6 Experiments

The objective for our experiments is: To demonstrate the feasibility of “divide-and-compose”
strategies (Binary Split and Incremental Growth) and compare their efficiency with respect to test
case generation. All experiments are performed on a real-life feature model: AspectOPTIMA.
In this section we report and discuss the automatic generation of t-wise test suites for this model.

5.6.1 Experimental Setting

We automatically generate test suites with the two “divide-and-compose” strategies and compare
them according to: (a) the number of generated test cases; (b) the number of tuple occurrences
in the test suites; (c) the similarity of the products in the generated test suites. For both strategies
we have to set the values for two parameters that specify the search space: the scope and the
time limit. We vary scope over 5 values: 3, 4, 5, 6, 7; the maximum durationmxDur to find
a solution for a given conjunction of constraints is fixed at 1600ms. We generate 100 sets of
products for each scope giving us a total of 5×100 sets of products for a strategy. The reason
we generate 100 solutions is to study the variability in the solutions given that we useuniform
random orderingin binary split andrandom tuple selectionin incremental growth. Therefore,
for two strategies we have 2×5×100 sets of products or test cases. We perform our experiments
on a MacBook Pro 2007 laptop with the Intel Core 2 Duo processor and 2GB of RAM.

Before studying the results of our experiments we note that attempting “solving-all-constraints-
as-once” does not yield any solutions for the AspectOPTIMA SPL. This is true even for simple
feature models such as AspectOPTIMA that does not lead to derivation of billions of products
(like industrial product lines). On the other hand, all executions of both “divide-and-compose”
strategies generate t-wise test suites. This first observation indicates that these strategies enable
the usage of SAT solvers for the automatic generation of t-wise interactions test suites for both
simple and potentially complex feature models. This is the first main result of our study.

5.6.2 Number of Products Vs. Scope

In Figure 5.6, we present the number of products generated for different scopes, which corre-
sponds to the number of test cases in a suite. Each box and its whiskers correspond to 100 solu-
tions generated using a strategy for a given scope. On the x-axis we have scope for two strategies
: Binary Split represented bybin_scopeand Incremental Growth represented byinc_scope.

For the binary split strategy, the number of products is highfor a scope of 3 (average of 50
products), decreases towards a scope of 5 (average 18 products) and increases again towards a
scope of 7 (average of 35 products). In our experiments the scope nearest to the minimal number
of test cases is 5. For a scope of 7 we ask the solver to create 7 products per subset of tuples
(or pairs) while only 5 products suffice for the same set of tuples leading tomore products that
satisfy the same set of tuples. This is true for highly constrained SPLs such as AspectOPTIMA
where the total number of products generated does not exceeda couple of hundred. Therefore,
fewer products are sufficient to capture all t-wise interactions. For a scope too small such as 3,
binary split gives a large number of products. This comes from the coarse-grain splitting (into



174
C

H
A

P
T

E
R

5.
A

U
T

O
M

AT
IC

E
F

F
E

C
T

IV
E

P
R

O
D

U
C

T
D

IS
C

O
V

E
R

Y

120

BinarySplit Incremental

80

100

120

Upper Quartile (Q3)

max

Upper Whisker

BinarySplit Incremental

60

80

100

120

u
c
ts

Upper Quartile (Q3)

max

Upper Whisker

median (Q2)

Lower Whisker

min

BinarySplit Incremental

40

60

80

100

120

e
r
O
fP
r
o
d
u
c
ts

Upper Quartile (Q3)

max

Upper Whisker

median (Q2)

Lower Whisker

min

average

Lower Quartile (Q1)

BinarySplit Incremental

20

40

60

80

100

120

N
u
m
b
e
r
O
fP
r
o
d
u
c
ts

Upper Quartile (Q3)

max

Upper Whisker

median (Q2)

Lower Whisker

min

average

Lower Quartile (Q1)

BinarySplit Incremental

0

20

40

60

80

100

120

N
u
m
b
e
r
O
fP
r
o
d
u
c
ts

Upper Quartile (Q3)

max

Upper Whisker

median (Q2)

Lower Whisker

min

average

Lower Quartile (Q1)

BinarySplit Incremental

0

20

40

60

80

100

120

N
u
m
b
e
r
O
fP
r
o
d
u
c
ts

Upper Quartile (Q3)

max

Upper Whisker

median (Q2)

Lower Whisker

min

average

Lower Quartile (Q1)

BinarySplit Incremental

F
igure

5.6:
B

ox
P

lotfor
N

um
ber

ofP
roducts

vs.
S

cope



CHAPTER 5. AUTOMATIC EFFECTIVE PRODUCT DISCOVERY 175

halves) of the set of tuples leading to the non-optimal use of3 products to cover a maximum
number of tuples.

For the incremental growth, the general trend that is the high number of products for a scope
of 3 (average 25 products), decrease towards a scope of 5 (average 17 products), and increase
again towards a scope of 7 (average 27 products). The reasoning for this general trend is similar
to binary splitting except that incremental growth attempts to optimize the number of tuples that
can be squeezed into a product.

When comparing binary split and incremental growth, there is a notable difference in the
variability in the solutions. Binary split results in a large variability (minimum 18 products
at scope 5 to a maximum of 115 products at scope 3) in the numberof products compared to
incremental growth (minimum 16 products to a maximum of 30 products). This is reasonable
as binary split applies a coarse-grain strategy of halving sets while incremental growth applies
a selective strategy to ’squeeze in’ a maximum number of tuples into a test suite. However, in
terms of performance binary split for the AspectOPTIMA casestudy is far superior compared
to incremental growth. Binary split takes an average of 641 ms to obtain a set of products for a
scope of 3 while incremental growth takes about 14000 ms. This is primarily due to the fewer
steps (average 20) to divide in binary split compared to large number of steps (average 420) for
incremental growth. Therefore, we have a trade-off betweenthe size of the test suite and the
time to generate the suite. Both strategies are able to automatically find asmall number of test
casessatisfyingall valid pair of feature interactions.

5.6.3 Tuple Occurrence Vs. Scope

In Figure 5.7, we present a box plot showing the total occurrence of tuples for different scopes.
We know that a possible limitation ofdivide-and-composestrategies is that they can generate test
cases that cover the same tuple multiple times. This is a limitation for the testing effort, since
a redundant tuple means that the same interaction of features has to be tested several times.
The total number of valid tuples is 421 for AspectOPTIMA and hence ideally we would like
to have a minimum number of products with exactly one occurrence of a tuple. However, the
existence of mandatory features force to have multiple occurrences of some tuples in the suite.
An effective strategy for test generation is thus a strategythat limits the occurence of the same
tuple in the test suite.

For binary split, the total tuple occurrence for a scope of 3 is about 3000 on an average,
decreases to about 1400 for a scope of 5 and increases again to2500 for a scope of 7. Therefore,
a scope of 3 generates products with about 7 times the total tuple occurrence compared to the
ideal unique occurrence, scope of 5 about 3 times. We again observe that the near-optimal scope
of 5 has the least total tuple repetition.

For incremental growth, the total tuple occurrences are lower compared to binary split.

Binary split and scope 3 gives products with 1.6 times more occurrences compared to in-
cremental growth. In general, incremental growth converges to a better set of products: less
products with less occurences of tuples.

The strategy and the scope help us choose the ideal set of testcases.
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Figure 5.8: Box Plot for Test Case Redundancy

5.6.4 Test Case Redundancy

Results for test case redundancy are presented in Figure 5.8. One first observation is that the
values are similar (except for scope 3) for BinarySplit and IncrementalGrowth strategies. This
can be because both strategies are based on random ordering of tuples. Hence the coverage of the
feature diagram by SPL test cases is quite similar and its particular structure does not influence
test case redundancy between the two strategies.

We also observe that test case redundancy increases when thenumber of products decreases
for both strategies, the minimum being obtained with scope 5. This can be explained by the
fact that when the number of products decreases, the generator must “fill” each product with
more non-compulsory features in order to cover each tuple atleast once. When we give more
“freedom” to the strategies (by increasing the number of products), they have more options to
fill products with non-compulsory features and generate less test case redundancy on average.
High redundancy in a small test suite can be beneficial for test cases reuse [152]. However, high
redundancy also means similar test cases in a suite and thus less coverage of the SPL, which
might not be a good caracteristic of a test suite. ults, whichmeans it has to be tuned for
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5.6.5 Threats to Validity

This work mainly focused on the definition of twodivide-and-composestrategies and the exper-
iment was performed on only one real-world feature diagram.It is a realistic FD, in size and
complexity of the constraints between feature. However, since we evaluate our strategies only
on this one, there is an important threat toexternal validity. We cannot know how the trends
we observed for both strategies can be generalized to feature diagrams with more features or a
different topology. We are currently running similar experiments on larger feature models (and
less constrained) to assess the impact of topology on the effectiveness of our strategies and im-
plementation. We also have another threat toconstruct validity: we have developed the tools
to measure the different metrics on the test suites. Concerning the metrics themselves, they are
usual metrics to evaluate test suites (number of test cases,coverage) that we believe are relevant
for the evaluation of the proposed strategies.

5.7 Conclusion

In this chapter, we propose an approach and platform supporting the automated generation of test
cases for software product lines. Our work is motivated by concerns of scalability and usability.
With respect to the first concern, we combined combinatorialinteraction testing, as a systematic
way to sample a small set of test cases, with two “divide-and-compose” strategies. These strate-
gies address the scalability limitations of SAT solvers used to generate test cases that satisfy all
constraints captured in a feature model. Using these strategies, we are able to automatically gen-
erate sets of test cases for a medium-sized realistic SPL such as AspectOPTIMA which could not
be processed in an “all-constraints-at-once” fashion . We assessed our strategies by computing
metrics and discussed the factors that influence test case generation. We addressed usability via
model driven engineering techniques [81] to automaticallytransform generic feature diagrams
into alloy models amenable to t-wise test generation in Alloy.

We would like to extend our work along two main dimensions. The first one concerns test
generation strategies. We are currently experimenting with toolset on a crisis management sys-
tem which is characterized by a large number of optional and alternative features inducing more
than one hundred billions of possible test cases for exhaustive covering. Using the incremental
strategy we were able to reduce this number to a few hundred. We would also like to exploit
the feature model structure to reduce the number of tuples toconsider and fine-tune t-wise gen-
eration. Generated products testability is the second dimension for future work. We would like
to extend our test case generation platform with automated SPL derivation techniques such as
[119] acting as oracles. This will then form a complete SPL test methodology starting from
considering the SPL “as a whole” to individual product testing.
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Chapter 6

Conclusion and Perspectives

Model-driven engineering is leveraging the use of models inall several aspects of software de-
velopment. Research into the theories, techniques, and tools for the various parts that make up
a model driven system -models and transformations- is active and is seeing uptake in industrial
contexts. However, as MDE is advancing it is facing challenges that characterize software engi-
neering such as managing scalability, reliability and of particular interest in this thesisautomatic
discovery of effective models to facilitate test-based validation and model construction.

In order to address the challenges inautomatic model discovery, we must develop mecha-
nisms to explore and discover models in a modelling domain. Further, the models must conform
to constraints heterogenous sources of knowledge such as metamodel constraints, search strate-
gies, and partial models. How can we discover models in a modelling domain?

We address this question in the thesis by presenting a generic methodology that transforms
a modelling domain and heterogeneous sources of knowledge to a constraint satisfaction prob-
lem in the formal specification language ALLOY . We solve the constraint satisfaction problem
to discover models of interest. We specialize the generic methodology to first consider discov-
ery in a modelling domain specified by a metamodel and constrained by heterogeneous sources
of knowledge. This approach is concretely embodied in the tool CARTIER. We validate our
approach and CARTIER by performing experiments in test model generation and partial model
completion. Second, we specialize our generic methodologyfor discovery in a modelling do-
main specified by a feature diagram of a Software Product Line. An SPL allows modelling vari-
ability in software systems using legacy software assets. This proves to be better than modelling
everything from scratch in a modelling language specified bya metamodel. The methodology
is embodied in the tool AVISHKAR. We validate AVISHKAR using experiments to generate
test products for a transaction processing SPL AspectOPTIMA. Using both methodologies and
tools CARTIER and AVISHKAR we demonstrate the feasibility of automatic model discovery in
different modelling domains.

The rest of the chapter is organized as follows. In Section 6.1, we present a summary of
the different chapters in this thesis. In Section 6.2, we present ongoing work on the use of
AVISHKAR to analyze variation in QoS of web service orchestrations. Finally, in Section 6.3,
we present perspectives for future work.
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6.1 Summary and Conclusion

Chapter 2, presents the general context of MDE and the creation of modelling domains in MDE.
In particular, we discuss (a) The modelling domain specifiedby a metamodel and its constraints
in OCL and (b) The modelling domain specified by a feature diagram. The modelling domain
specification are transformed to constraint satisfaction problem (CSP) in the formal specification
language ALLOY which we describe in this chapter. The model transformationlanguage to
perform the transformation from modelling domain to ALLOY is Kermeta. We describe Kermeta,
aspect-weaving in Kermeta, and model typing in Kermeta in this chapter. The chapter presents
the state of the art in automatic model discovery with emphasis on test model generation and
partial model completion. It also presents the state of the art in automatic product discovery.

In Chapter 3, we present a framework for automatic model discovery in the modelling do-
main specified by an input metamodel. The framework is embodied in the tool CARTIER. First,
we present a metamodel pruning algorithm to extract an effective metamodel from the input
metamodel. The effective metamodel is a supertype of the input metamodel from a type-theoretic
point of view and a subset of the input metamodel from a set-theoretic point of view. Second, we
present a transformation of any metamodel or the effective metamodel to a CSP in ALLOY . The
transformation takes into account all non-trivial artifacts in a metamodel such as multiple inheri-
tance, multiplicity, containers, composite properties, opposite properties, and identity properties.
A discussion on the validity and complexity of the transformation is presented. Third, we dis-
cuss how heterogeneous sources of knowledge such asOCL constraints may be transformed to
ALLOY . Finally, we demonstrate the generation of models for the large case study of the UML

metamodel.

In Chapter 4, we present experiments to validate automatic model discovery presented in
Chapter 3. We present experiments in test model generation and partial model completion in a
model editor. First we consider test model generation wherewe use input domain partitioning
strategies to generate test models using CARTIER. These models detect 93% of the bugs in a
representative model transformation compared to only 70% for unguided generation. The rep-
resentative transformation from UML class diagrams toRDBMS models exercises most model
transformation operators. The input metamodel UML contains almost all complex metamodel
constructs and is a widely used industrial metamodel. In thesecond experiment we perform
partial model completion in a model editor. Given a partially specified model in a model editor
we use CARTIER to generate recommendations to complete partial model. We present an algo-
rithm to transform a partial model to an ALLOY predicate. We solve the predicate to generate
one or more model completions for models in theHierarchical Finite State Machine modelling
language. We present the different times taken for completion of partial models of various size.

Chapter 5, we present a framework for automatic product discovery in the modelling domain
specified by the feature diagram (FD) of a Software Product Line (SPL). The framework is
embodied in the tool AVISHKAR. We first transform a FD to a CSP in ALLOY . We solve
the resulting ALLOY model to generate products. The focus of this chapter is to discover test
products that satisfy theT-wise coverage criteria between features in the FD. Generation of test
products for large FDs using ALLOY is not tractable. We scale the use of ALLOY using divide-
and-compose strategies that can generate a close to minimalset of test products that satisfy
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T-wise coverage. A side-effect of using divide-and-composestrategies is the introduction of
redundancies of pairs in products. We presents metrics to measure these redundancies. Using
pairwise coverage we show that AVISHKAR generates test products with acceptable redundancy
for a transaction processing FD AspectOPTIMA.

6.2 Variability Modeling and QoS Analysis of Web Services (Ongo-
ing)

In ongoing work we model the variability in a composite web services orchestration using FDs.
We apply AVISHKAR to generate different possible orchestrations of a composite web service.
We analyze the consequent variation in Quality of Service (QoS) of these orchestrations using
probabilistic models of QoS. This work is described below.

Inherent choice in an ever-growing world of services is making orchestration variability
a significant aspect of a composite web service. The different ways of orchestrating atomic
services can be seen as either multiple variants of a composite service created offline or an
online composite service that reconfigures dynamically. Ineither case, we expect to observe
variation in Quality of Service (QoS) across different orchestrations. This variation in QoS must
not only take into account service variability but also the uncertainty/probabilistic nature of QoS
itself.

It is important to consider orchestration variability and its implications on composite ser-
vice behavior. For instance, not considering variability leads to misrepresentation of contractual
agreements on QoS [151]. Contractual agreements such as service level agreements (SLAs)
[117] is the industry standard to ensure QoS compliance between service providers and cus-
tomers. Usual deviations from SLAs are a result of non-incorporation of QoS variability and in
particular QoS outliers in its specification. Therefore, weneed systematic analysis of variability
in order to improve robustness of contractual SLAs.

Modeling variability in web service orchestrations and analyzing the consequent variation
in QoS is the principal subject of this work. We present a methodology to model orchestration
variability usingfeature diagrams(FDs). Feature diagrams [77] provide a graphical constraints-
based framework to specify a product-line of orchestrations. Each orchestration in the product-
line is represented as an authorized configuration of invoked/rejected atomic services. In most
cases the FD specifies a very large set of configurations making exhaustive sampling infeasible.
Instead, we sample the set of all possible configurations by systematically analyzing configura-
tions covering all valid pairwise service interactions [46]. Finally, we use probabilistic models
of QoS [129] to analyze variants of orchestrations derived from all valid configurations.

We use our methodology to investigate merits of systematically sampling the set of all con-
figurations of web service orchestrations. Random samplingof configurations, generally em-
ployed, is both ineffective and expensive because it cannotbe systematic and requires computing
QoS values for a large number of configurations. Moreover, random sampling is not easy when
FD constraints like mutual exclusion/requirement need to be satisfied. This work focuses on the
adaptation of combinatorial interaction testing (CIT) [39] to select a sample of configurations
that covers all pairwise interactions of services while satisfying all FD constraints. We use the
recently proposed scalable approach in [120] for generating these configurations. CIT is based
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on the observation that most of the faults are triggered by interactions between a small number
of variables [90]. For example, consider the output qualityof printing web pages depending on
a hypothetical combination of parameters represented in Table 6.1.

Parameters Options
Operating System Windows, Linux, Macintosh

Browser IE, Firefox, Chrome, Opera
Printer Model HP, Canon, Xerox, Epson
Printer Type Ink-Jet, Laser
Orientation Portrait, Landscape

Size A3, A4, A5, A6
Color B/W, Multicolor

Table 6.1: Examples of printing parameters requiring comparison.

An exhaustive generation of combinations of these parameter options would entail 1536
cases with many redundancies. Pairwise coverage of optional combinations would require just
17 tests, resulting in a reduction of close to 99%. The numberof exhaustive tests will increase
exponentially with addition of more parameters/options requiring an employment of efficient
sampling strategies.

Pairwise coverage test generation has been used to detect faults in software systems in prior
work [46], [39]. However, the application of these coverage-based techniques to sample config-
urations in service orchestrations is yet to be examined. This work performs such an examina-
tion through a series of experiments that aim at investigating several facets of the question: is
pairwise service interaction sampling of orchestration configurations effective for overall QoS
analysis and the consequent definition of a global SLA?

Our experiments are based on acrisis management system(CMS) case study described com-
prehensively in [85]. This work reports on the following questions:

• Is it possible to automatically sample the orchestration configurations space to select con-
figurations that cover all pairwise service interactions?

• What global QoS metrics can we infer from a pairwise sample?

• How stable is the SLA computed from a pairwise sample? This question is related to the
fact that the automatic generation of pairwise configurations is not deterministic and thus
the global contract might vary depending on the generatedsample.

• Is pairwise sampling more effective and efficient compared to exhaustive sampling of the
configuration space?

From our experimentation, we have seen that analysis of a family of configurations (and
their corresponding QoS values) can be accurately represented by a small set of configurations
satisfying pairwise interactions. Consistency of variousgenerated pairwise solutions are also
demonstrated through simulations. This comprehensive analysis of variability helps the orches-
trator understand the global QoS extremities of the composite service before negotiating a SLA
agreement. Deterioration in service quality or non-compliance of SLA standards during on-
line deployment of the service is thus prevented. Improvements in the orchestration model to
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eliminate some deviant configurations (causing excessive deterioration of end-to-end QoS) or
grouping a family of configurations with similar QoS behavior are other extensions of this tech-
nique.

Accurate offline analysis of a composite web service before its deployment is essential to
ensure non-repudiation of a SLA contract. This is necessaryto maintain optimal QoS behavior
of mission-critical services such as crisis management. Inorder to do this, the service provider
must keep in mind the probabilistic aspect of QoS parametersand the variable configurations
in a composite service. In this work, we study an analysis framework to test the QoS of an
orchestration before deployment. Further, the notion of systematic pairwise sampling procedure
has also been demonstrated, which provides a more efficient sampling of the configuration space
than exhaustive trails while still maintaining sufficient coverage. Larger FD and orchestration
models can be analyzed using the divide-and-compose approaches [120] to handle this scalabil-
ity issue. This should provide a simple, systematic and stochastically correct methodology for
pre-deployment QoS analysis of a composite service.

While this work concentrates on a particular composition offixed atomic services, a future
area of interest would be optimal compositions. The use of configurations and scenarios mod-
eled by a FD leads to a family of composite services. These, inturn, may be used to generate
many versions of the orchestrations. Further implementation of these techniques to study larger
composite orchestrations is useful for both obtaining realistic QoS bounds and product genera-
tion of families of services.

6.2.1 Related Work

The combinatorial testing framework described by Cohen et al. [39] has been applied extensively
to efficient testing for fault detection. In the work of Cohenet al. [40], this technique is extended
to software product lines with highly configurable systems.Modeling variability in SPLs using
feature models is the work of Jaring and Boschet [74] where they show that the robustness of
a SPL architecture is related to the type of variability. To ensure that constraints in the FD are
incorporated in the efficient sampling of t-wise tests, the solver proposed by Perrouin et al. [120]
is used. In [95] Larsen et al. define modal I/O automata, an extension of interface automata with
modality. These allow models of varying configurations to bedeveloped from a single produce
line while disallowing trivial implementations. Such a notion when extended to a composite
service can provide interesting configurations and versions of composite products as described
in [95].

Pre-deployment testing of SLAs has been studied by Di Penta et al. [118], where they make
use of genetic algorithms to generate test data causing SLA violations. Analysis of white and
black box approaches are provided in the paper. In [31], Bruno et al. make use of regression
testing to ensure that an evolving service maintains the functional and QoS assumptions. The
service consistency verification due to evolution is done byexecuting test suites contained in a
XML encoded facet attached to the service.

The use of probabilistic QoS and soft contracts was introduced by Rosario et. al [129] and
Bistarelli et al. [23]. Instead of using fixed hard bound values for parameters such as response
time, the authors proposed a soft contract monitoring approach to model the QoS measurement.



184 6. CONCLUSION AND PERSPECTIVES

The composite service QoS was modeled using probabilistic processes by Hwang et al. [68]
where the authors combine orchestration constructs to derive global probability distributions.

In our work, we extend these two notions to analyze the QoS of acomposite orchestration
under various configurations. The hard contract notions of end-to-end QoS are replaced by
the probability quantile based approach. This provides theservice provider the technique for
estimating composite service QoS distributions and estimating the global soft contract SLA.
Though formal analysis of end-to-end QoS has been studied inCardoso et al. [35], there are no
practical testing tools available for the service provider. The pairwise testing procedure has been
shown to outperform other testing techniques in [39]. We extend this testing tool to develop
a generic testing methodology to query end-to-end QoS of a web service. The efficacy of this
scheme is provided though experimental verification.

Related empirical studies of optimal QoS compositions makeuse of genetic programming in
Canfora et al. [34] and linear programming in Zeng et al. [161]. These are dynamic techniques
to choose the best possible atomic services and configurations keeping QoS in mind. This differs
from our work due to the assumption that the atomic services and their composition have already
been defined. The goal is to analyze the variable configurations that may result due to invocation
or non-invocation of particular web services. This is of need when atomic SLAs and their
interactions in an orchestration have already been established. Such efficient, systematic and
stochastically correct analysis provides an accurate estimate of the global QoS distributions of
composite services.

6.3 Perspectives

The ideas presented in this thesis represents a first step towards automating discovery of models
in a modelling domain. The work evokes a number of future avenues of research.

6.3.1 A Family of Metamodel Pruning Algorithms

In Chapter 3, we present the metamodel pruning algorithm to extract an effective metamodel
from an input metamodel. We show that the effective metamodel is a supertype of the input
metamodel from a type-theoretic point of view. It is also a subset of the input metamodel from
a set-theoretic point of view. The supertype property of theeffective metamodel makes itback-
ward compatiblewith the input metamodel. By backward compatibility we meanall model
transformations or operations for the effective metamodelare valid for the input metamodel.
Similarly, all models of the effective metamodel are also valid instances of the input metamodel.
This property has practical implications to the usage of large industry standard metamodels such
as the UML . Experts may extract a small and relevant subset of the UML to create models or
transformations while preserving type conformance with UML itself. Therefore, the type confor-
mance property between an effective metamodel and the largeinput metamodel leverages several
applications of the metamodel pruning algorithm. In futurework, we would like to investigate
the possibility of creating a family of metamodel pruning algorithms.

The notion of a family metamodel pruning algorithms is basedon the possibility of develop-
ing combinations of atomic pruning operators that satisfy type conformance. An atomic pruning
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operator has an input metamodel and gives an effective metamodel as output. The effective
metamodel shows type conformance with the input metamodel.A given sequence of pruning
operators on an input metamodel should give an effective metamodel as output such that it shows
type conformance with the original input metamodel. This isdue to a transitivity property of
pruning operators in a sequence. What are the different possible sequences of pruning opera-
tors? Which pruning operators are commutative? Which pruning operators in sequence show
transitivity? These are some of the questions that need explorations.

6.3.2 Transforming OCL Subset to ALLOY

In Chapter 3, we present a complete transformation of a metamodel to ALLOY implemented in
the CARTIER framework. However, not all constraints may be expressed inthe metamodel. A
textual constraint language such as theObject Constraint Language (OCL) is the industrial stan-
dard to expressed additional metamodel constraints.OCL is a side-effect language that queries a
model of a modelling language and check structural properties on the model. There are several
similarities betweenOCL and ALLOY in the way constraints are expressed. In future work, we
would like to focus on transforming a subset ofOCL to ALLOY facts or predicates. ALLOY also
has some features not yet exploited inOCL which may help concurrently improveOCL itself. In
[155], the authors presents some shortcomings ofOCL with respect to ALLOY .

6.3.3 Product Discovery Strategies based on Feature Diagram structure

In Chapter 5, we present the AVISHKAR framework to generate products that satisfy allT-wise
feature interactions in a FD. We believe that the quality of the test products and the number
of effective test products may be improved if we consider thestructural semantics of the FD
in developing new strategies. New strategies will essentially comprise of analyzing the tree
structure of the FD to obtain knowledge to generate test products. The idea is to generate test
products using knowledge that explore the FD’s product space while respecting FD constraints.
This is in contrast, toT-wise generation where a lot of feature interactions are generated that do
not satisfy the FD constraints. Only a subset of theT-wise interactions are valid and are used to
generate test products.

6.3.4 Scaling Constraint Solving using ALLOY

In most of the thesis we have used ALLOY to generate models or products. Generation using
ALLOY is based on the hypothesis that small models are often effective. We demonstrate this us-
ing experiments in test model generation. However, for product generation we make advances in
scaling ALLOY to generate products for a large FD. The idea is based on dividing the constraint
satisfaction problem and composing the results into a final set of products. This approximate
approach can handle large FDs but introduces some tuple redundancy in the generated products.
What are other ways to scale the size and number of models thatcan be generated using ALLOY

? This is a question that intrigues us. We would like to research this question in two axes: (a)
Develop divide and compose strategies to first create small models and then weave them together



186 6. CONCLUSION AND PERSPECTIVES

into larger models (b) Leverage SAT solving using parallel SAT solvers such as ManySAT [66]
in order to generate instances from a large and highly-constrained ALLOY model.
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6.4 ALLOY Model of UMLCD Synthesized by CARTIER

module tmp /UMLCD
open u t i l / boo lean as Bool

s i g Model
{

c l a s s i f i e r : s e t C l a s s i f i e r ,
a s s o c i a t i o n :s e t A s s o c i a t i o n

}

a b s t r a c t s i g C l a s s i f i e r
{

name : I n t
}

s i g P r i m i t i v eD a t aTy p e ex t en d s C l a s s i f i e r
{ }

s i g Cl ass ex t en d s C l a s s i f i e r
{

i s _ p e r s i s t e n t : one Bool ,
g e n e r a l : l one Class ,
a t t r i b u t e : some P r o p e r t y

}

s i g A s s o c i a t i o n

{
name : I n t ,
memberEnd: one Class ,
ownedEnd : one Cl ass

}

s i g P r o p e r t y
{

name : I n t ,
i s _ p r i m a r y : Bool ,
d a t a t y p e : one C l a s s i f i e r

}

/ / Meta−model c o n s t r a i n t s

/∗ There must be No Cy c l i c I n h e r i t a n c e i n an UMLCD∗ /

f a c t n o C y c l i c I n h e r i t a n c e
{

no c : C l ass | c i n c . ^ g e n e r a l
}

/∗ A l l t h e a t t r i b u t e s i n a C l ass must have un ique a t t r i b u t e names ∗ /

f a c t un iqueProper tyNames
{

a l l c : C l ass | a l l a1 : c . a t t r i b u t e , a2 : c . a t t r i b u t e | a1 . name = a2 . namei mp l i es a1=a2
}

/∗ An a t t r i b u t e o b j e c t can be c o n t a i n e d by on ly one c l a s s∗ /
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f a c t a t t r i b u t e C o n t a i n m e n t
{

a l l c1 : Class , c2 : C l ass |a l l a1 : c1 . a t t r i b u t e , a2 : c2 . a t t r i b u t e | a1 = a2i mp l i es c1=c2
}

/∗ There i s e x a c t l y one Model o b j e c t∗ /

f a c t oneModel
{

#Model=1
}

/∗ A l l C l a s s i f i e r o b j e c t s a r e c o n t a i n e d i n a Model∗ /

f a c t c l a s s i f i e r C o n t a i n m e n t
{

a l l c : C l a s s i f i e r | c i n Model . c l a s s i f i e r
}

/∗ A l l A s s o c i a t i o n o b j e c t s a r e c o n t a i n e d i n a Model∗ /

f a c t a s s o c i a t i o n C o n t a i n m e n t
{
a l l a : A s s o c i a t i o n | a i n Model . a s s o c i a t i o n
}

/∗A C l a s s i f i e r must have a un ique name i n t h e C l ass Diagram∗ /

f a c t u n i q u eC l ass i f i e r N am e
{

a l l c1 : C l a s s i f i e r , c2 : C l a s s i f i e r | c1 . name = c2 . namei mp l i es c1=c2
}

/∗An a s s o c i a t i o n s have t h e same name e i t h e r t h ey a r e t h e same a ss o c i a t i o n or t h ey have d i f f e r e n t so u r ces∗ /

f a c t uniqeNameAssocSrc
{

a l l a1 : A sso c i a t i o n , a2 : A s s o c i a t i o n |
a1 . name = a2 . namei mp l i es ( a1 = a2 or a1 . s r c != a2 . s r c )

}

Listing 6.1: ALLOY Model for UML Class Diagram

6.5 Initial Set of Pre-conditions

/∗ I n i t i a l Model T r an s f o r m a t i o n Pre−c o n d i t i o n s∗ /

f a c t a t l e a s t O n e P r i m a r y P r o p e r t y
{

a l l c : C l ass | one a : c . a t t r i b u t e | a . i s _ p r i m a r y =True
}

f a c t n o 4 C y c l i c C l a s s P r o p e r t y
{

a l l a : P r o p e r t y | a . d a t a t y p ei n Cl ass i mp l i es a l l a1 : a . d a t a t y p e . a t t r i b u t e | a1 . d a t a t y p ei n
Cl ass i mp l i es a l l a2 : a . d a t a t y p e . a t t r i b u t e | a2 . d a t a t y p ei n Cl ass i mp l i es a l l a3 : a . d a t a t y p e . a t t r i b u t e | a3 . d a t a t y p e

i n Cl ass i mp l i es a l l a4 : a . d a t a t y p e . a t t r i b u t e | a4 . d a t a t y p ei n P r i m i t i v eD a t aTy p e
}

f a c t noProper tyAndAssociat ionHaveSameName
{

a l l c : C l ass , asso c : A s s o c i a t i o n |
a l l a : c . a t t r i b u t e | ( asso c . s r c = c )i mp l i es a . name != asso c . name

}

f a c t n o 1 Cy c l eN o n P e r s i s t en t
{
a l l a : A s s o c i a t i o n | ( a . memberEnd = a . ownedEnd )i mp l i es a . ownedEnd . i s _ p e r s i s t e n t = True
}

f a c t n o 2 Cy c l eN o n P e r s i s t en t
{

a l l a1 : A sso c i a t i o n , a2 : A s s o c i a t i o n |
( a1 . memberEnd = a2 . ownedEndand a2 . memberEnd = a1 . s r c )i mp l i es
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a1 . ownedEnd . i s _ p e r s i s t e n t = Trueor a2 . ownedEnd . i s _ p e r s i s t e n t =True
}

Listing 6.2: Initial pre-conditions as ALLOY facts

6.6 Discovered Set of Pre-conditions

/ / D i sco v e r ed Model T r an s f o r m a t i o n pre−c o n d i t i o n c o n s t r a i n t s

/∗ 1 . At a depth o f 4 t h e t y p e of an a t t r i b u t e has t o be p r i m i t i v e and can n o t be a c l a s s t y p e∗ /

f a c t n o 4 C y c l i c C l a s s P r o p e r t y{
a l l a : P r o p e r t y | a . d a t a t y p ei n Cl ass => a l l a1 : a . d a t a t y p e . a t t r i b u t e | a1 . d a t a t y p ei n Cl ass => a l l a2 : a . d a t a t y p e .

a t t r i b u t e | a2 . d a t a t y p ei n Cl ass => a l l a3 : a . d a t a t y p e . a t t r i b u t e | a3 . d a t a t y p ei n Cl ass => a l l a4 : a . d a t a t y p e .
a t t r i b u t e | a4 . d a t a t y p ei n P r i m i t i v eD a t aTy p e

}

/∗ 2 . A C l ass can n o t have an a s s o c i a t i o n and an a t t r i b u t e o f t h e same name ∗ /

f a c t noAttr ibAndAssocSameName {
a l l c : Class , asso c : A s s o c i a t i o n |a l l a : c . a t t r i b u t e | ( asso c . ownedEnd == c ) => a . name != asso c . name

}

/∗ 3 . No c y c l e s between non−p e r s i s t e n t c l a s s e s∗ /

f a c t n o 1 Cy c l eN o n P e r s i s t en t
{

a l l a : A s s o c i a t i o n | ( a . memberEnd == a . ownedEnd ) => a . memberEnd . i s _ p e r s i s t e n t = True
}

f a c t n o 2 Cy c l eN o n P e r s i s t en t
{

a l l a1 : A sso c i a t i o n , a2 : A s s o c i a t i o n | ( a1 . memberEnd == a2 . ownedEnd and a2 . memberEnd==a1 . ownedEnd ) => a1 .
ownedEnd . i s _ p e r s i s t e n t = Trueor a2 . ownedEnd . i s _ p e r s i s t e n t =True

}

/∗ 4 . A p e r s i s t e n t c l a s s can ’ t have an a s s o c i a t i o n t o one of i t s ge n e r a l ∗ /

f a c t a s s o c P e r s i s t e n t C l a s s
{

a l l a : A s s o c i a t i o n | a . ownedEnd . i s _ p e r s i s t e n t =Truei mp l i es a . memberEnd n o ti n a . ownedEnd . ^ g e n e r a l
}

/∗ 5 . Unique a s s o c i a t i o n names i n a c l a s s h i e r a r c h y∗ /

f a c t u n i q u eA sso cN am es In I nHe r i tanceTree
{

a l l c : C l ass |
a l l a1 : A sso c i a t i o n , a2 : A s s o c i a t i o n |
( a1 . ownedEnd i n c and a2 . ownedEnd i n c . ^ g e n e r a l and a1 != a2 ) i mp l i es ( a1 . name != a2 . name )

}

/∗ 6 . A c l a s s can ’ t be t h e d a t a t y p e of one of i t s a t t r i b u t e s ( amoung a l l i t s a t t r i b u t e s ∗ /

f a c t c l a s s C a n t T y p e O f A l l o f I t s P r o p e r t y
{

a l l c : C l ass | a l l a : ( c . a t t r i b u t e +c . ^ g e n e r a l . a t t r i b u t e ) | a . d a t a t y p e != c
}

/∗ 7 . A C l ass A which i n h e r i t s f rom a p e r s i s t e n t c l a s s B can ’ t have an o u t g o i n g a s s o c i a t i o n wi th t h e same name
t h a t one a s s o c i a t i o n o f t h a t p e r s i s t e n t c l a s s B∗ /

f a c t c lassInher i t sOutgo ingN otSameN ameAssoc
{

a l l A: C l ass | a l l B:A. ^ g e n e r a l | B . i s _ p e r s i s t e n t == Truei mp l i es ( no a1 : A sso c i a t i o n , a2 : A s s o c i a t i o n |
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( a1 . ownedEnd = Aand a2 . ownedEnd=Band a1 . name=a2 . name ) )
}

/∗ 8 . A c l a s s A which i n h e r i t s f rom a p e r s i s t e n t c l a s s B can ’ t have an a t t r i b u t e wi th t h e same name
t h a t one a t t r i b u t e o f t h a t p e r s i s t e n t c l a s s B∗ /

f a c t c l ass I n h e r i t sO u t g o i n g N o t S am eN am eA t t r i b
{

a l l A: C l ass | a l l B:A. ^ g e n e r a l | B . i s _ p e r s i s t e n t == Truei mp l i es ( no a1 : A. a t t r i b u t e , a2 :B . a t t r i b u t e |
( a1 . name=a2 . name ) )
}

/∗ 9 . No a s s o c i a t i o n between two c l a s s e s o f an i n h e r i t a n c e t r e e∗ /

f a c t n o A sso cBe t w een C lass InH ie rar ch y
{

a l l a : A s s o c i a t i o n | a l l c : C l ass | ( a . ownedEnd =ci mp l i es a . memberEnd n o ti n c . ^ g e n e r a l ) and ( a . memberEnd =c
i mp l i es a . ownedEnd n o t i n c . ^ g e n e r a l )

}

Listing 6.3: Discovered pre-conditions as ALLOY facts

6.7 FSM ALLOY Model with Facts and Partial Model Predicates

module metamodelFSM

open u t i l / boo lean as Bool

s i g FSM
{

s t a t e s :s e t S t a t e ,
c u r r e n t S t a t e : l one S t a t e ,
t r a n s i t i o n s : s e t T r a n s i t i o n

}

s i g S t a t e
{

l a b e l : I n t ,
o u t g o i n g T r a n s i t i o n : s e t T r a n s i t i o n ,
i n c o m i n g T r a n s i t i o n : s e t T r a n s i t i o n ,
f s m C u r r e n t S t a t e :one FSM,
f s m S t a t e s : one FSM,
i s F i n a l :one Bool ,
i s I n i t i a l : one Bool

}

s i g T r a n s i t i o n
{

ev en t : I n t ,
t a r g e t : one S t a t e ,
so u r ce : one S t a t e ,
f s m T r a n s i t i o n s :one FSM

}

/ / Meta−model c o n s t r a i n t s / /

/ / Ex ac t l y one i n i t i a l s t a t e
f a c t e x a c t l y O n e I n i t i a l S t a t e
{

one s : S t a t e | s . i s I n i t i a l == True
}

/ / A t l e a s t one f i n a l s t a t e
f a c t a t l e a s t O n e F i n a l S t a t e
{

some s : S t a t e | s . i s F i n a l == True
}

/ / Ex ac t l y one HFSM
f a c t exactlyOneFSM
{

one FSM
}
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f a c t sam eS o u r ceD i f f Ta r g e t
{

a l l t 1 : T r a n s i t i o n , t 2 : T r a n s i t i o n | ( t 1 != t 2and t 1 . so u r ce == t 2 . so u r ce ) =>
t 1 . t a r g e t != t 2 . t a r g e t

}

f a c t se t Ta r g e t A n d S o u r ce
{

a l l s : S t a t e | s . i n c o m i n g T r a n s i t i o n . t a r g e t = sand
s . o u t g o i n g T r a n s i t i o n . so u r ce =s

}

f a c t n o U n r each ab l eS t a t es
{

a l l s : S t a t e | ( s . i s I n i t i a l == F a l se ) =>
a l l i n c1 : s . i n c o m i n g T r a n s i t i o n |
i n c1 . so u r ce . i s I n i t i a l = Trueor
a l l i n c2 : i n c1 . so u r ce . i n c o m i n g T r a n s i t i o n
| i n c2 . so u r ce . i s I n i t i a l = Trueor
a l l i n c3 : i n c2 . so u r ce . i n c o m i n g T r a n s i t i o n
| i n c3 . so u r ce . i s I n i t i a l = True

}

f a c t u n i q u e S t a t e L a b e l s
{

# S t a t e >1 => a l l s1 : S t a t e , s2 : S t a t e | s1 != s2 =>s1 . l a b e l != s2 . l a b e l
}

f a c t c o n t a i n m e n t S t a t e
{

S t a t e i n FSM. s t a t e s
}

f a c t c o n t a i n m e n t T r a n s i t i o n
{

T r a n s i t i o n i n FSM. t r a n s i t i o n s
}

/ / P a r t i a l Model F ac t s

/ / P a r t i a l Model 1

pred p a r t i a l M o d e l 1 _ F a c t
{

some S t a t e
}

/ / P a r t i a l Model 2

pred p a r t i a l M o d e l 2 _ F a c t
{

some s1 : S t a t e , s2 : S t a t e , t 1 : T r a n s i t i o n | s1 != s2and
t 1 i n s1 . o u t g o i n g T r a n s i t i o nand t 1 i n
s2 . i n c o m i n g T r a n s i t i o n

}

/ / P a r t i a l Model 3

pred p a r t i a l M o d e l 3 _ F a c t
{

some s1 : S t a t e , s2 : S t a t e , s3 : S t a t e , s4 : S t a t e ,
t 1 : T r a n s i t i o n , t 2 : T r a n s i t i o n |
s1 != s2 and s2 != s3 and s3 != s4 and s1 != s3 and
s1 != s4 and s2 != s4 and t 1 != t 2 and
t 1 i n s2 . i n c o m i n g T r a n s i t i o nand t 2 i n
s3 . i n c o m i n g T r a n s i t i o nand t 1 i n s1 . o u t g o i n g T r a n s i t i o n
and t 2 i n s1 . o u t g o i n g T r a n s i t i o nand
s2 . i s I n i t i a l = True and s4 . i s F i n a l = True

}

/ / P a r t i a l Model 4

pred p a r t i a l M o d e l 4 _ F a c t
{

some s1 : S t a t e , s2 : S t a t e , s3 : S t a t e , s4 : S t a t e ,
t 1 : T r a n s i t i o n , t 2 : T r a n s i t i o n |
s1 != s2 and s2 != s3 and s3 != s4 and s1 != s3 and
s1 != s4 and s2 != s4 and t 1 != t 2 and
t 1 i n s2 . i n c o m i n g T r a n s i t i o nand t 2 i n
s3 . i n c o m i n g T r a n s i t i o nand t 1 i n s1 . o u t g o i n g T r a n s i t i o n
and t 1 i n s1 . o u t g o i n g T r a n s i t i o nand
s2 . i s I n i t i a l =True and s3 . i s I n i t i a l =True
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}

run p a r t i a l M o d e l 1 _ F a c t f o r 10
run p a r t i a l M o d e l 2 _ F a c t f o r 10
run p a r t i a l M o d e l 3 _ F a c t f o r 10
run p a r t i a l M o d e l 4 _ F a c t f o r 10
run p a r t i a l M o d e l 1 _ F a c t f o r e x a c t l y 1 FSM, e x a c t l y 5 S t a t e ,
e x a c t l y 5 T r a n s i t i o n , 5 i n t
run p a r t i a l M o d e l 2 _ F a c t f o r e x a c t l y 1 FSM, e x a c t l y 5 S t a t e ,
e x a c t l y 5 T r a n s i t i o n , 5 i n t
run p a r t i a l M o d e l 3 _ F a c t f o r e x a c t l y 1 FSM, e x a c t l y 5 S t a t e ,
e x a c t l y 5 T r a n s i t i o n , 7 i n t
run p a r t i a l M o d e l 4 _ F a c t f o r e x a c t l y 1 FSM, e x a c t l y 5 S t a t e ,
e x a c t l y 5 T r a n s i t i o n , 5 i n t

Listing 6.4: ALLOY model forFSM
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