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Abstract result. In this work, we focus on the automatic synthesis of
input models for testing. We call these models test models.
Testing remains a major challenge for model transfor-  Automatic synthesis of test models is a difficult task due
mation development. Test models that are used as testo large amount of constraints that these models have to sat-
data for model transformations, are constrained by vari- isfy. There are two kinds of constraints that must be con-
ous sources of knowledge that is expressed in different for-sidered for test models: the constraints that define the lici
malisms. Thus, in order to automatically generate test mod- input models for the transformation and the constraints tha
els it is necessary to interpret these different sources ofaim at selecting models with a specific testing goal. In ad-
knowledge and combine them into a consistent set of infor-dition to this large set of constraints, another challerme c
mation that can be used for model synthesis. In this paper,sists in dealing with the heterogeneous formalisms in which
we identify sources of testing knowledge and present ourthese constraints are expressed.
tool Cartier that useslloy as the first-order relational logic The solution studied in this work focuses on four types
language to represent combined knowledge in the form ofof constraints expressed in different formalisms. Two g/pe
constraints. The constraints are solved leading to a se- of constraints define the set of licit models for the transfor
lection of qualified test models from the input domain of mation: the metamodel and the pre condition. The meta-
a model transformation. We illustrate our approach using model is specified in two parts: a structure built with the

theUnified Modeling Language Class Diagram to Relational Ecore language, and constraints on this structure expressed
Database Management Systems transformation as a run-  in OCL. The pre-condition for the transformation is also ex-
ning example. pressed irOCL. Two types of constraints are used to select

test models among the whole set of licit models: partitions
on the input domain and test model objectives that are de-
rived from the requirements of the transformation. The par-
titions are derived from the metamodel and are composed
in model fragments according to the test criteria defined
Model Driven EngineeringVDE) is grounded on the in [10]. These fragments are expressed in a dedicated lan-
idea of representing models of software systems at differ-guage. Currently, there exists no particular modelling lan
ent levels of abstraction using various modelling langsage guage to specify the requirements for a transformation or
Programs that automatically manipulate models are calledto express test model knowledge. Thus, we model them di-
model transformations These transformations can auto- rectly in Alloy, which is the underlying model language for
mate important steps in a development process such as retest model synthesis.
finementtowards a more concrete model, re-factoringtoim-  In this paper, we present a toDartier that aims to com-
prove maintainability or readability of the design, etcuSh  bine all these knowledge from multiple formalisms to guide
it is crucial to develop efficient techniques to validate the the automatic selection of test models from the set of all
transformations so that they are robust enough to handle thénput models. The tool transforms all knowledge to a com-
processing of a variety of models in their lifetime of use. mon constraint language. The common constraint language
In this paper we are interested in testing model transfor- is first-order relational logic implemented Adloy [13]. The
mations in order to validate them. Testing of model trans- relational logic program is transformed to a boolean satisfi
formations consists in synthesising a large number of dif- ability problem and solved using a SAT solver to generate
ferent input models, running the program and verifying the (select) test models.

1. Introduction
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The paper is organized as follows. In Section 2 we
present the details with examples of different sources of
knowledge that are necessary for generating test models.
All details and examples are based on the running exam-
ple transformation obnified Modeling Language Class Di-
agram (UMLCD) to Relational Database Management Sys-

tems (RDBMS), UMLCD_2.RDBMS which is also intro- — yarioys sources and expressed in multiple formalisms.
duced in Section 2. The combination of these knowledge These formalisms are discussed in the following sub-

sources to a common constraint language is discussed inyections. The running example we use is that of transforma-
Section 3 Whe_re we present tidartier software €NnVIroN-tjon from Unified Modeling Language Class Diagram to Re-
ment. In Section 4 we perform test model selection and | 4ional Database Management Systems. This is a bench-

show how our method is able to generate models that qualyyari transformation proposed in the MTIP workshop at the
ify @ model transformation based on input domain cover- \15pg| S 2005 conference [5]. From a utility point of view
age, pre-cono!mo_n sat_lsfac'uo_n and requwements_ CO®Rrag there are several tools that serialize class diagram sodtwa
Related work is given in Section 5. We conclude in Section designs to databases for storing and querying code designs

6. We provide, in Appendix A, the completely transformed i, efficiency. An example of such a tool is Hibernate 3.0.
Alloy model for direct execution on thiloy analyzer.

Figure 2. Simple Unified Modeling Language
Class Diagram Ecore Model

) . ) 2.1 Input Meta-model
2. Multi-formalism Knowledge for Testing

Model Transformations The input domain or the set of all possible inputs to a

model transformation is specified using a meta-madid .

We start this section with a brief description of a model For instance, the set of all input models for the transfor-
transformation. A model transformatioT (1,0) is a pro- mationUMLCD_2_RDBMS is specified using a meta-model
gram on a set of input modelgo give a set of output mod-  which is composed of aicore model in Figure 2 and a
elsOas illustrated in Figure 1. The set of all input modelsis set of constraints ibject Constraint Language (OCL)[18]
specified by a meta-mod®IM, . The set of all output mod-  shown in Figure 3. Th@®CL constraints are expressed on
els is specified by a meta-moddMo. The pre-condition  the Ecore model. Ecore [12] is the Eclipse implementa-
of the model transformatiopre(MT) constrains the set of  tion of Meta-object Facility (MOF) [17] which is anOb-
all input models to its subset. A post-conditipostMT) ject Management Group (OMG) standard for developing
limits the model transformation to producing a subset of all a part of the meta-model. In the following sub-sections
possible output models. The model transformation is devel-we will describe theEcore model and theDCL constraints
oped based on a set of requiremeavifiequirements on theEcore model for theUMLCD input domain for the

Test model selection involves finding valid input mod- UMLCD_2_.RDBMS model transformation.
els we calltest modeldrom the set of all input models
These_test model§ are valid in the sense that they belongz_l_l Ecore Modél
to the input domain of the transformation (conform to the
input meta-model). In addition to this, they are selected in The Ecore model part of the meta-model consistsdadses

order to satisfy other constraints that increase the truiste

with properties For instance, in th&/MLCD meta-model

quality of these models as test data and thus should increas2 we have the class&dass, ClassModel, Classifier, Asso-

their capabilities to detect bugs in the model transfororati
MT(I,0).
In order to select test models, we use knowledge from

ciation, andPrimitiveDataType. Each of these classes have
properties. A property can be attribute or areferenceto
another class.
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2.3 Test Model Objectives

An attribute hasgprimitivg type which is eith@wolean, A model transformation is developed by an engineer
Integer, Float, or String. For instance, the clasSlass has  ith respect to a set of requirements. The tester has the
an attributeis_persistent which is of typeBoolean. 1t also jnient to check that these requirements are satisfied by the

has a referencattrs which refers to a collection oAttribute model transformation. Testers express a seesfer's in-

objects. The number of references is constrained b - tentswhich are in correspondence with the requirements of
tiplicity/cardinality. For instance, &lass object can be as-  {he model transformation.

sociated to 0« (implying O tomany Attribute objects. The tester’s intents are used to develegt model objec-
~ Another feature of a meta-model iscantainment For - tiveswhich are expressed as objects with specific properties
instanceAttribute objects that are referenced bss ob-  that must be present in the test model o0& constraints.

jects are contained in it. This is shown using a black dia- Each such objective is geared to test a particular require-

mond link in the class diagram. This imposes the constraint ment of the model transformation. Ttester's intentmakes

that anAttribute object can be contained in only oass the relation between the test model objectives and the tar-

object. . _ _ geted requirement in the model transformation. There is no
A class can inherit properties from parent classes. Forspecific language at the moment to specify the requirements

instance, theClass class inherits from th€lassifier class. for a model transformation. Although, having a dedicated

Hence, aClass inherits the property name of type String |anguage would be necessary for a rigourous development

from Classifier. The basic data-types used in theore of a transformation. The definition of this language is out-
model which are Boolean and String are obtained from the side the scope of this paper. Therefore, we currently espres
Java library of basic type definitions. them directly inAlloy.

For theUMLCD_2_RDBMS transformation we list out a
212 OCL Constraints set of intents of the tester and their corresponding testahod

objectives in Table 1. The set of tester’s intents are génera
The OCL constraints on the meta-model are shown in Fig- requirements for the transformatiodMLCD_-2_RDBMS.
ure 3.OCL constraints are written when constraints can no However, one may also specify application specific require-

longer be expressed using the languagEaaire. ments with very specific attributes and classes pertairing t
For instance, thélo Cyclic Inheritance constraint in the ~ adomain. We do not discuss the specification of application
meta-model states that the set of all parents ofaas ob-  specific constraints, however the expression is very simila

ject cannot contain itself. Or in other word<ss cannot  to the objectives presented in Table 1.

inherit its own properties. Such a constraint cannot be ex- A thorough discussion about all requirements of

pressed using only afcore model. UMLCD_2_RDBMS is given in [5]. Each of the test model

objectives is extracted to test one of these requirements.
We useAlloy to represent the constraints presented in the

objectives. For instance, objective number 6 in Table 1 can

. ! . . be written as follows:
The input meta-model first specifies the set of all in-

put models. However, the model transformation itself may fact testers_requirement6

2.2 Model Transformation Pre-condition



No. | Tester’'sIntent Test Model Objective
1 Transforming attribute to a single SomeClass objects with at least ongttribute of a PrimitiveDataType
column with the same type
2 Transforming a class to top-level | SomeClass objects with at least one non-persisteidss attribute
3 Transforming a class to top-level | SomeAssociation objects with destination is a non-persisterdss ob-
ject
4 Transforming to one/more columnsSomeClass objects with at least one persistaiass attribute
created using persistent classes pri-
mary key attribute
5 Inheritance hierarchies. Only top-SomeClass objects with parents
most class must be transformed to a
table.
6 Transforming persistent classes | SomeClass objects which haves_persistent = true
7 Duplicate keys with same name | Some Class objects with at least oneClass attribute with
is_primary=True and same name
8 Sub-class attribute must overrideSomecClass objects with parents with attributes having the same name
parent attribute as attributes in th€lass object

Table 1. Test Model Objectives and Tester’s Intents

MF1{Classifier(name="") and Classifier(name=".+")}
MF2{Class(is_persistent = true) and Class(is_persistent = false)}
MF3{Class(parent = 0) and Class(parent = 1)}

MF4{Class(attrs = 1)and Class(attrs > 1)}

MF5 {Attribute(is_primary = true) and Attribute(is_primary = false)}
MF6 {Attribute(name="") and Attribute (name=".+")}
MF7{Attribute(type=0) and Attribute (type=1)}

MF8{Association (name="") and Association (name=".+")}
MF9{Association(dest=0) and Association(dest=1)}

{some c:Class|c.is_persistent=true}
2.4 Partitions on the Input Domain

Category patrtition testing is widely used in traditional
softw_are testing to guarantee_ |_nput dor_neyn coverage_of 8 \1F10{Association(src=0) and Association(sre = 1)}
function based on some partition heuristics. In previous mr11{classModel(classifier=1) and classModel(classifier>1)}
work [10], we have studied how category-partition testing MF12{classModel(association =1) and classModel(association >1)}
can be applied to model transformation testing. Given an
input meta-modelEcore model only) for a transformation,
it is possible to define partitions on domains of all proper-
ties of a meta-model (cardinality of references or domain
of primitive types for attributes). Then, we have defined
several test criteria that are based on different strasegie
combining partitions of properties. Each criterion defines test model that contains o@assifier with an empty name
a set ofmodel fragment$or an input meta-model. These (name="") and anothecClassifier with a non-empty name.

fragments are properties that must be satisfied by at least MMCC generated a total of 12 model fragments for the
one model in a set of test models. UMLCD Ecore model.

We have developed a tool called MMCC (Meta-model
Coverage Checker) that can generate model fragments, a
cording to a particular criterion, from any meta-model. The
tool automatically computes the coverage of a set of test
models according to the generated model fragments. If The Cartier software environment is conceptualized to
some fragments are not covered, then the set of test modédevelop a model transformation testing framework. In this
els should be improved in order to reach a better coverage paper we focus on the part where we transform knowl-
The automatic generation of new models is not tackled by edge/constraints in multiple formalisms expressed by dif-
MMCC. ferent people to one common constraint language for the

In this paper, we use the model fragments generatedpurpose of selecting test models. First to summarize, we
by MMCC for the UMLCD meta-model. These fragments have the following sources of knowledge:
are shown in Figure 4 are used as additional constraints to
automatically select test models. For example, MF1 is a 1. Meta-model as aBcore model withOCL constraints
model fragment that requires that there exists at least one  on theEcore model

Figure 4. Model Fragments from UMLCD Ecore
model

3. Cartier Environment
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The Cartier environment transforms the above knowl-

a solution input to

edge to a common constraint language whichlisy [13]. isaselected [ ;c) Transformation
Alloy is based on first-order relational logic and has well de- Test Model o
fined syntax and semantics. An overview of the transforma- orepts- °“"’.“ 0
tion framework forCartier framework is shown in Figure 5. Output Meta-model MM, (s 552

The focus of this paper is the test model selection box high- ||ciass sisgram | “moct v
lighted in the figure. In the Figure 5 the large ellipse rep- Model Transformation| *"eCies @ set of output models
resents the set of all models for all languages. The smaller

ellipse in this large set represents a subset of models that in OCL

conforms to the constraints that come from multiple sources
of testing knowledge. A solution to the relational logic pro . _ . _
gram is obtained by transforming it to a Boolean formula in Figure 5. Cartier Design Overview
conjunctive normal form (CNF). The CNF is solved using a
satisfiability solver (SAT) solver. The result is a modelttha
is a point in the smaller ellipse. Execution of the transfor-
mation on this input model leads to an output model which
is again an element of the subset of all possible output mod-
els. The output model must conform to its meta-model as
shown in the Figure 5. If not, there is an error in the trans-
formation and it must be debugged.

In this paper we present algorithmic pointers to automate
the transformation from the different sources of knowledge
to Alloy, however at the time of writing most transforma-
tions are performed manually. However, ongoing research
and tool development on transformiogylL models toAlloy
is discussed in [2].

In the following subsections we start with an overview
of Alloy leading to descriptions of transformations of each
source of knowledge talloy.

another. A symmetry breaking rule ensures that each model
instance is significantly different in the sense of graph iso
morphism compared to the previous instance. MAloy
model or a formula is first transformed to a Boolean for-
mula in conjunctive normal fornfCNF). A SAT solver is
then used to solve the Boolean formula. The solution is re-
turned to a graphical representation of a model instance.
The analyzer allows the tester to specify several param-
eters to introduce more knowledge into model instances.
These are expressed as execution parameters or facts. The
parameters include something quite general such as the
scope or maximum size for each signature/type in the de-
sired model instance to the exact number of specific objects.
Constraints in the form of facts can be used to specify a
large portion of the target model instance. We use these
features ofalloy for selection of test models.
3.1 Alloy Overview 3.2 Transformation of the Meta-model
Alloy [13] [1] is a declarative modelling language based .
on first-order relational logic. The elements in thgoy 3.2.1 Basicelementsof an Ecore model
world are composed oSignature Relations Facts and  Fjrst, we discuss the transformation of Beore model to
Predicates A Signaturerepresents the types of objects in - ajjoy. The Alloy model first starts with a module definition
a system. Each object of ignaturecan be related to an  anq |oading of basic data types. For instance,uNeCD

other object of the same or differeStgnaturevia aRela-  ajjoy model with start with:
tion. TheFactsandPredicatesstate laws/constraints on the
Relatiors andSignature already described. module tmp/simpleUMLCD

TheAlloy language comes with an analyzer. The seman-gpen util/Boolean as Bool
tics of anAlloy model is amodel instanceghat satisfies the
constraints on th&ignatures, Facts, andPredicates. Sev- The transformation of a class in tiE&eore model is per-
eral model instance (if they exist), can be obtained one afte formed by transforming a class #core to a signaturein



Alloy. For instance, theéittribute class in the meta-model
shown in Figure 2 is transformed to the followiAdoy for-
mula:

sig Attribute {name: Natural,
is_primary : Bool,type: one Classifier}

An Ecore attribute can be transformed to atioy field
of type Bool, Natural or an Int. Thé&_primary attribute
is transformed to a fields_primary of type Bool inAlloy.
However, thename attribute which is originally a string in

the Ecore model is transformed to a field of type Natural.

It is important to note thatlloy does not support string and

fact attributeContainment {
all cl:Class, c2:Class |
all al:cl.attrs, a2:c2.attrs
| al==a2 => cl=c2}

3.2.3 Variable Multiplicity of References

Sometime the specifiemelone or manyare not sufficient

to describe a relationship. For an arbitrary multiplicity o
[n..m] we need to include a fact. For instance, for the sig-
nature representation GfassModel we specify the fact that

float fields. The simple reason being the explosion of searchth® number of classifiers in tti@assModel is between 2 and
space due to the variety of combinations for an ASCII nat- 5.

ural/integer representation of characters in a string for e
ample. The focus oAlloy is the model structure and the

sig ClassModel {
classifier: set Classifier,

abstract design of a system. However, to emulate a Stringassociation' set Association

field we use aictionary that maps a natural number to a
string or a float. The feasible and infeasible conditions of

this mapping are:

¢ A finite number of strings and floats can be defined

fact betweenNandMconstraint {
all c:ClassModel | #c.classifier > 2
and #c.classifier < 5}

e The solver cannot modify the value of string/float for 324 OCL Consraints

its natural number key

OCL constraints are transformed #dloy facts. There, are

* One cannot specify constraints on the string/float prop- seyeral challenges in automating such a process. These

erties

challenges are discussed in [2]. For instance the constrain

e Equality constraint can be imposed on a natural num- for no cyclic inheritance in Figure 3 results in the followin

ber key for string/float

A reference to another class is transformed toAtioy
field with one of the specifiersne, lone, or set. which

states that there can be exactly one reference, zero or one
references or a arbitrary set of references respectivaly. F

instance in theAlloy model, anAttribute has a fieldype re-
lated to the signatur€lassifier. Theone specifier says that
there can be exactly one type for atribute.

The inheritance relationship between two classes is

mapped on tAlloy usingextends For instanceClass in-
herits fromClassifier is represented as follows:

sig Class extends Classifier {
is_persistent: one Bool,
parent : lone Class,

attrs : some Attribute}

3.2.2 Containment

The containment relationship in &@tore model cannot be
directly expressed using signatures and fieldalioy. The
containment relationship is transformed to a faciiiy.
For instance, the containment aftributes in a Class is
given by the following fact:

fact:

fact noCycliclnheritance {
no c: Class | ¢ in c."parent}

In Section A,the appendix, we present the complete set
of Alloy facts transformed from the origin@ICL constraints.

3.3 Transformation of Model Transforma-
tion Pre-condition

The model transformation pre-condition expressed in
OCL is transformed to aAlloy fact. The pre-condition that
each class in an input model must have at least one primary
attribute is necessary for indexing is expressed in the fol-
lowing fact:

fact atleastOnePrimaryAttribute {
all c:Class| some a:c.attrs |
a.is_primary==True}

3.4 Transformation of Test Model Objec-
tives

Test model objectives are all transformedatitoy facts
or Alloy run statements. The set of all the facts is given in



the appendix in Section A. However, one can also specify a Sources of Test Knowledge Time(sec)

run command such as: Meta-model 0.78
Meta-model + Pre-condition 7.813

pred example() {} Meta-model + Pre + TMO 7.97

run example for 20 Meta-model + Pre + MFs 10.477

The above run command is a generic run command
which states that the graph depth of the model instance solu-
tion is 20. However, one can even specify the exact number
of objects using thexactlyprefix after the predicate decla- aspectin the test model now will allow the tester to generate

Table 2. Test Model Selection Times

ration Examplan this case). UMLCD models that can be serializedRDBMS.
Next, we perform an experiment with test model objec-
3.5 Transformation of Partitions tives. In addition to the meta-model and the model transfor-

mation pre-condition we introduce a test model objective.
Partition knowledge in form of model fragments dis- e particularly want to select a test model that has some
cussed in Section 2.4, is transformedAtoy facts. For classes withis_persistent= True This is objective 6 in the

instance, the partition: Table 1. We select a model in a maximum scope of 20.
Classifiefname="") and Classifiginame=".+") The resulting model is shown in Figure 6 (c). We note the
is transformed to the fact: classClass5 is persistent as per the tester’'s objective. The

existence of persistent classes in the test model will now
fact partitionl allow a tester to test the persistence implementation of the

{some cl:Classifier, c2:Classifier| UMLCD_2_RDBMS.

cl.name=0 and c2.name!=0 Finally, we introduce model fragment facts along with

%0 is null, non-zero others*/} the meta-model and pre-condition. The model that covers

the meta-model and five model fragments is shown in Fig-
ure 6 (d). The resulting model covers some of the model
fragments facts we generated from theore model. The
} . model is selected for a maximum scope of 20. The model
We select test models from the input domain of fagments covered ,as described in Figure 4, were MF2,
the UMLCD_2_RDBMS transformation using the differ- MF3, MF4, MF5. This guarantees that the equivalence
ent sources of testing knoyvledge we have aI_ready dis-classes for property values are covered at least once by a
cussed. We show the selection of faML Class Diagram  est model. In terms of test qualification, this increases th

4 Experiments

(UMLCD) models. trust we have in the test models, based on input domain cov-
To begin, we use thalloy analyzer to generate a model grage,
that conforms only to th&/MLCD meta-model. This is In Table 2, we summarize the time taken (on a P4 2.6Ghz

shown in Figure 6 (&) usingMLCD concrete syntax. The  geskiop, with 1Gb RAM) to select test models. From the
selected test model was found irseopeof 10. The scope  taple we can generally say that the more testing knowledge
is the maximum number of objects for each type (or class) e have the longer it takes to obtain test models. However,
in the meta-model. The model selection is performed up 10 for the price paid, the quality of test model is much higher
the limit proposed by the scope. We see that the resultingyyith more information to detect bugs in model transforma-
model satisfies all meta-model constraints. However, an at-jons. For instance adding a test model objective such as
tribute ofClass0 is not primary. This implies thatitis nota 4t |east one class witls_persistent= True makes the test

valid input toUMLCD_2 RDBMS. . model execute the persistence implementation in a model
TheUMLCD_2_RDBMS must get as input adMLCD that transformation.

hasClass objects with at least one primary attribute. This

is essential for generating valid index-aBBBMS models.

To take this issue into account we introduce the model trans-2  Related Work

formation pre-condition fouMLCD_2_RDBMS. The result-

ing model is shown in Figure 6 (b). The selected model  Techniques for model transformation validation have

has classes with at least one primary attribute just as re-been proposed using formal verification and testing. We
quired by the pre-condition fasMLCD_2_RDBMS. The se- focus on related work in the domain of testing model trans-

lected model was found in a maximum scope of 20. We formations. In Fleurey et al. [11], the authors describe the
note that the model now has two classésss6 andClass?, problem of testing model transformations and explain test
both of which have at least one primary attribute. This new adequacy criteria for test models. There are two standard
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approaches for testing model transformations : white-box In software testing the Korat (Chandra et al.) [6] system
and black-box testing. for automatic testing of Java programs prunes large input
White-box testing has been studied for model transfor- search spaces using knowledge from pre-condition predi-
mation testing in Kuster et al. [15]. However, the het- cates in Java. Korat can deal with input test cases that
erogeneity of model transformation languages makes it in- are bounded such as those implemented in the Java Col-
creasingly hard to develop white box testing methodolagies lections Framework. The Korat framework however does
This is primarily because a testing tool needs to be con-nNot present formal semantics for its predicates. It alse can
structed for every new |anguage_ This is extreme|y expen- not Synthesize a constrained data structure that repseaent
sive for transformations among domain specific languages.model conforming to a modelling language. Going beyond
This is one of the main reasons we choose black-box testingstandard data structures to models expressed using an arbi-
as a means to large-scale testing of model transformations.trary modelling language is the focus of our work. More-
In the black-box testing of programs (including model over, selection of models fortestlr]g quel transformation
transformations) a set of test models are synthesized toPCSES alarge-scale constraint satisfaction problem drat ¢
cover input domain and test model objectives. Model syn- NOt b€ solved by existing nature inspired techniques such as
thesis is the first requirement for black-box testing. Inighr Pacteriologic algorithms and genetic algorithms [4].
et al. [9], the authors propose a graph grammar based ap- In Sen et al.[19] we proposeRxrolog based methodol-
proach to generate models that conform to a class diagranogy to combine constraints from different sources to select
(or Ecore model). These models do not conform to any test models. HoweveRrolog is based on first-order horn
OCL constraints on the meta-model. Similarly, Brottier el clause logic and hence it is quantifier free (a constraint of
al. [7] present an imperative algorithm to synthesize mod- a set of objects cannot be specified). In response to this is-
els that conform only to thEcore model. The key issue is  sue we were inspired by ongoing research in transforming
to generate test models that not only conform tcEaore UML models toAlloy as described by Kyriakos et al. [2].
model or a class diagram but several other complex con-Alloy is a first-order relational logic language with support
straints emerging from different sources suclogs., input quantifiers and transitive closure. These features all@v th
domain partitions, and test model objectives. specification of constraints on a set of objects rather than
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A. Combined Alloy Model for UMLCD

module tmp/simpleUMLCD

open util/Boolean as Bool

/IMeta-model Entities

sig ClassModel{classifier: set Classifier,
association: set Association}

abstract sig Classifier {name : one Natural}
sig PrimitiveDataType extends Classifier {}
sig Class extends Classifier

{is_persistent: one Bool,parent : lone Class,
attrs : some Attribute}

sig Association {name: Natural,

dest: one Class,src: one Class}

sig Attribute{name:Natural,is_primary:Bool,
type: one Classifier}

/IMeta-model constraints//

fact noCyclicinheritance {no c: Class |

¢ in c."parent}

fact uniqueAttribNames{all c:Class|all al:c.attrs,
a2 : cattrs |al.name==a2.name => al = a2}
fact attributeContainment{all cl:Class, c2:Class|
all al:icl.attrs, a2:c2.attrs | al==a2 => cl=c2}
fact oneClassModel {one ClassModel}

fact classifierContainment {all c:Classifier|

¢ in ClassModel.classifier}

fact associationContainment {all a:Association|
a in ClassModel.association}

fact uniqueClassifierName {all c1:Classifier,
c2:Classifier | cl.name==c2.name => cl=c2}
fact unigeNameAssocSrc {all al:Association,
a2:Association | al.name == a2.name =>
(@l = a2 or al.src = a2.src)}

/ITest Model Objectives

fact testers_requirementl {some a:Attribute|
a.type = PrimitiveDataType}

fact testers_requirement2{some a:Attribute|
atype.is_persistent=False}

fact testers_requirement3{some a:Association|
a.dest.is_persistent = False}

fact testers_requirement4{some a:Attribute|

FUMLCD to RDBMS Pre-condition*/

fact atleastOnePrimaryAttribute {

all c:Class|one a:c.attrs|a.is_primary==true}
[IPartition Requirements

fact partitionl {some cl:Classifier,
c2:Classifier] cl.name=0 and c2.name!=0}
fact partition3

{some cl:Class,c2:Class|cl.is_persistent=true
and c2.is_persistent = False}

fact partition4

{some cl:Class,c2:Class|

#cl.parent=0 and #c2.parent=1}

fact partition5{some c1:Class,c2:Class,c3:Class|
#cl.attrs=0 and #c2.attrs=1 and #c3.attrs>1}
fact partition6{some al:Attribute,
az:Attribute|al.is_primary=true and
a2.is_primary=False}

fact partition7{some al:Attribute,a2:Attribute|
al.name=0 and a2.name!=0}

fact partition8{some a:Attribute|

#a.type=1 and a.name=1}

fact partition9{some al:Association,
a2:Associationjal.name=0 and a2.name!=0}
fact partition10

{some al:Association,a2:Association|
#al.dest=0 and #a2.dest=1}

fact partition11{some al:Association,
a2:Associationj#al.src=0 and #a2.src=1}
fact partition12

{some c1.ClassModel,c2:ClassModel,
c3:ClassModel|#c1.classifier=0 and
#c2.classifier=1 and #c3.classifier>1}

fact partition13{some cl:ClassModel,
c2:ClassModel,c3:ClassModel|
#cl.association=0 and #c2.association=1
and #c3.association>1} pred example() {}
run example for 20



