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Abstract

Testing remains a major challenge for model transfor-
mation development. Test models that are used as test
data for model transformations, are constrained by vari-
ous sources of knowledge that is expressed in different for-
malisms. Thus, in order to automatically generate test mod-
els it is necessary to interpret these different sources of
knowledge and combine them into a consistent set of infor-
mation that can be used for model synthesis. In this paper,
we identify sources of testing knowledge and present our
tool Cartier that usesAlloy as the first-order relational logic
language to represent combined knowledge in the form of
constraints. The constraints are solved leading to a se-
lection of qualified test models from the input domain of
a model transformation. We illustrate our approach using
theUnified Modeling Language Class Diagram to Relational
Database Management Systems transformation as a run-
ning example.

1. Introduction

Model Driven Engineering(MDE) is grounded on the
idea of representing models of software systems at differ-
ent levels of abstraction using various modelling languages.
Programs that automatically manipulate models are called
model transformations. These transformations can auto-
mate important steps in a development process such as re-
finement towards a more concrete model, re-factoring to im-
prove maintainability or readability of the design, etc. Thus
it is crucial to develop efficient techniques to validate the
transformations so that they are robust enough to handle the
processing of a variety of models in their lifetime of use.

In this paper we are interested in testing model transfor-
mations in order to validate them. Testing of model trans-
formations consists in synthesising a large number of dif-
ferent input models, running the program and verifying the

result. In this work, we focus on the automatic synthesis of
input models for testing. We call these models test models.

Automatic synthesis of test models is a difficult task due
to large amount of constraints that these models have to sat-
isfy. There are two kinds of constraints that must be con-
sidered for test models: the constraints that define the licit
input models for the transformation and the constraints that
aim at selecting models with a specific testing goal. In ad-
dition to this large set of constraints, another challenge con-
sists in dealing with the heterogeneous formalisms in which
these constraints are expressed.

The solution studied in this work focuses on four types
of constraints expressed in different formalisms. Two types
of constraints define the set of licit models for the transfor-
mation: the metamodel and the pre condition. The meta-
model is specified in two parts: a structure built with the
Ecore language, and constraints on this structure expressed
in OCL. The pre-condition for the transformation is also ex-
pressed inOCL. Two types of constraints are used to select
test models among the whole set of licit models: partitions
on the input domain and test model objectives that are de-
rived from the requirements of the transformation. The par-
titions are derived from the metamodel and are composed
in model fragments according to the test criteria defined
in [10]. These fragments are expressed in a dedicated lan-
guage. Currently, there exists no particular modelling lan-
guage to specify the requirements for a transformation or
to express test model knowledge. Thus, we model them di-
rectly in Alloy, which is the underlying model language for
test model synthesis.

In this paper, we present a toolCartier that aims to com-
bine all these knowledge from multiple formalisms to guide
the automatic selection of test models from the set of all
input models. The tool transforms all knowledge to a com-
mon constraint language. The common constraint language
is first-order relational logic implemented inAlloy [13]. The
relational logic program is transformed to a boolean satisfi-
ability problem and solved using a SAT solver to generate
(select) test models.



Figure 1. A Model Transformation

The paper is organized as follows. In Section 2 we
present the details with examples of different sources of
knowledge that are necessary for generating test models.
All details and examples are based on the running exam-
ple transformation ofUnified Modeling Language Class Di-
agram (UMLCD) to Relational Database Management Sys-
tems (RDBMS), UMLCD 2 RDBMS which is also intro-
duced in Section 2. The combination of these knowledge
sources to a common constraint language is discussed in
Section 3 where we present theCartier software environ-
ment. In Section 4 we perform test model selection and
show how our method is able to generate models that qual-
ify a model transformation based on input domain cover-
age, pre-condition satisfaction and requirements coverage.
Related work is given in Section 5. We conclude in Section
6. We provide, in Appendix A, the completely transformed
Alloy model for direct execution on theAlloy analyzer.

2. Multi-formalism Knowledge for Testing
Model Transformations

We start this section with a brief description of a model
transformation. A model transformationMT(I ,O) is a pro-
gram on a set of input modelsI to give a set of output mod-
elsO as illustrated in Figure 1. The set of all input models is
specified by a meta-modelMMI . The set of all output mod-
els is specified by a meta-modelMMO. The pre-condition
of the model transformationpre(MT) constrains the set of
all input models to its subset. A post-conditionpost(MT)
limits the model transformation to producing a subset of all
possible output models. The model transformation is devel-
oped based on a set of requirementsMTRequirements.

Test model selection involves finding valid input mod-
els we calltest modelsfrom the set of all input modelsI .
These test models are valid in the sense that they belong
to the input domain of the transformation (conform to the
input meta-model). In addition to this, they are selected in
order to satisfy other constraints that increase the trust in the
quality of these models as test data and thus should increase
their capabilities to detect bugs in the model transformation
MT(I ,O).

In order to select test models, we use knowledge from

Figure 2. Simple Unified Modeling Language
Class Diagram Ecore Model

various sources and expressed in multiple formalisms.
These formalisms are discussed in the following sub-
sections. The running example we use is that of transforma-
tion fromUnified Modeling Language Class Diagram to Re-
lational Database Management Systems. This is a bench-
mark transformation proposed in the MTIP workshop at the
MoDELS 2005 conference [5]. From a utility point of view
there are several tools that serialize class diagram software
designs to databases for storing and querying code designs
with efficiency. An example of such a tool is Hibernate 3.0.

2.1 Input Meta-model

The input domain or the set of all possible inputs to a
model transformation is specified using a meta-modelMMI .
For instance, the set of all input models for the transfor-
mationUMLCD 2 RDBMS is specified using a meta-model
which is composed of anEcore model in Figure 2 and a
set of constraints inObject Constraint Language (OCL)[18]
shown in Figure 3. TheOCL constraints are expressed on
the Ecore model. Ecore [12] is the Eclipse implementa-
tion of Meta-object Facility (MOF) [17] which is anOb-
ject Management Group (OMG) standard for developing
a part of the meta-model. In the following sub-sections
we will describe theEcore model and theOCL constraints
on theEcore model for theUMLCD input domain for the
UMLCD 2 RDBMS model transformation.

2.1.1 Ecore Model

The Ecore model part of the meta-model consists ofclasses
with properties. For instance, in theUMLCD meta-model
2 we have the classesClass, ClassModel, Classifier, Asso-
ciation, andPrimitiveDataType. Each of these classes have
properties. A property can be anattributeor a referenceto
another class.



Figure 3. Important OCL Constraints on UML
Class Diagram Ecore model

An attribute has a primitive type which is eitherBoolean,
Integer, Float, or String. For instance, the classClass has
an attributeis persistent which is of typeBoolean. It also
has a referenceattrs which refers to a collection ofAttribute
objects. The number of references is constrained by amul-
tiplicity/cardinality. For instance, aClass object can be as-
sociated to 0..∗ (implying 0 tomany) Attribute objects.

Another feature of a meta-model is acontainment. For
instance,Attribute objects that are referenced by aClass ob-
jects are contained in it. This is shown using a black dia-
mond link in the class diagram. This imposes the constraint
that anAttribute object can be contained in only oneClass
object.

A class can inherit properties from parent classes. For
instance, theClass class inherits from theClassifier class.
Hence, aClass inherits the property name of type String
from Classifier. The basic data-types used in theEcore
model which are Boolean and String are obtained from the
Java library of basic type definitions.

2.1.2 OCL Constraints

TheOCL constraints on the meta-model are shown in Fig-
ure 3. OCL constraints are written when constraints can no
longer be expressed using the language ofEcore.

For instance, theNo Cyclic Inheritance constraint in the
meta-model states that the set of all parents of aClass ob-
ject cannot contain itself. Or in other words aClass cannot
inherit its own properties. Such a constraint cannot be ex-
pressed using only anEcore model.

2.2 Model Transformation Pre-condition

The input meta-model first specifies the set of all in-
put models. However, the model transformation itself may

have some constraints that need to be satisfied for it to cor-
rectly process an input model. This constraint is called a
pre-condition. In this work, we consider pre conditions ex-
pressed asOCL constraints.

In the case ofUMLCD 2 RDBMS transformation we have
a pre-condition that states that every class must have at least
one attribute withis primary= true. This is necessary for
storage and indexing in the resultingRDBMS model of the
UMLCD.

The pre-condition inOCL is expressed as follows:

context Class:
inv atleastOnePrimaryAttribute:
self.attrs->select(att1|att1.is_primary)
->size()>=1

2.3 Test Model Objectives

A model transformation is developed by an engineer
with respect to a set of requirements. The tester has the
intent to check that these requirements are satisfied by the
model transformation. Testers express a set oftester’s in-
tentswhich are in correspondence with the requirements of
the model transformation.

The tester’s intents are used to developtest model objec-
tiveswhich are expressed as objects with specific properties
that must be present in the test model or asOCL constraints.
Each such objective is geared to test a particular require-
ment of the model transformation. Thetester’s intentmakes
the relation between the test model objectives and the tar-
geted requirement in the model transformation. There is no
specific language at the moment to specify the requirements
for a model transformation. Although, having a dedicated
language would be necessary for a rigourous development
of a transformation. The definition of this language is out-
side the scope of this paper. Therefore, we currently express
them directly inAlloy.

For theUMLCD 2 RDBMS transformation we list out a
set of intents of the tester and their corresponding test model
objectives in Table 1. The set of tester’s intents are general
requirements for the transformationUMLCD 2 RDBMS.
However, one may also specify application specific require-
ments with very specific attributes and classes pertaining to
a domain. We do not discuss the specification of application
specific constraints, however the expression is very similar
to the objectives presented in Table 1.

A thorough discussion about all requirements of
UMLCD 2 RDBMS is given in [5]. Each of the test model
objectives is extracted to test one of these requirements.

We useAlloy to represent the constraints presented in the
objectives. For instance, objective number 6 in Table 1 can
be written as follows:

fact testers_requirement6



No. Tester’s Intent Test Model Objective
1 Transforming attribute to a single

column with the same type
SomeClass objects with at least oneAttribute of aPrimitiveDataType

2 Transforming a class to top-level SomeClass objects with at least one non-persistentClass attribute
3 Transforming a class to top-level SomeAssociation objects with destination is a non-persistentClass ob-

ject
4 Transforming to one/more columns

created using persistent classes pri-
mary key attribute

SomeClass objects with at least one persistentClass attribute

5 Inheritance hierarchies. Only top-
most class must be transformed to a
table.

SomeClass objects with parents

6 Transforming persistent classes SomeClass objects which haveis persistent = true
7 Duplicate keys with same name Some Class objects with at least oneClass attribute with

is primary=True and same name
8 Sub-class attribute must override

parent attribute
SomeClass objects with parents with attributes having the same name
as attributes in theClass object

Table 1. Test Model Objectives and Tester’s Intents

{some c:Class|c.is_persistent=true}

2.4 Partitions on the Input Domain

Category partition testing is widely used in traditional
software testing to guarantee input domain coverage of a
function based on some partition heuristics. In previous
work [10], we have studied how category-partition testing
can be applied to model transformation testing. Given an
input meta-model (Ecore model only) for a transformation,
it is possible to define partitions on domains of all proper-
ties of a meta-model (cardinality of references or domain
of primitive types for attributes). Then, we have defined
several test criteria that are based on different strategies for
combining partitions of properties. Each criterion defines
a set ofmodel fragmentsfor an input meta-model. These
fragments are properties that must be satisfied by at least
one model in a set of test models.

We have developed a tool called MMCC (Meta-model
Coverage Checker) that can generate model fragments, ac-
cording to a particular criterion, from any meta-model. The
tool automatically computes the coverage of a set of test
models according to the generated model fragments. If
some fragments are not covered, then the set of test mod-
els should be improved in order to reach a better coverage.
The automatic generation of new models is not tackled by
MMCC.

In this paper, we use the model fragments generated
by MMCC for theUMLCD meta-model. These fragments
are shown in Figure 4 are used as additional constraints to
automatically select test models. For example, MF1 is a
model fragment that requires that there exists at least one

Figure 4. Model Fragments from UMLCD Ecore
model

test model that contains oneClassifier with an empty name
(name=“ ” ) and anotherClassifier with a non-empty name.

MMCC generated a total of 12 model fragments for the
UMLCD Ecore model.

3. Cartier Environment

The Cartier software environment is conceptualized to
develop a model transformation testing framework. In this
paper we focus on the part where we transform knowl-
edge/constraints in multiple formalisms expressed by dif-
ferent people to one common constraint language for the
purpose of selecting test models. First to summarize, we
have the following sources of knowledge:

1. Meta-model as anEcore model withOCL constraints
on theEcore model



2. Model transformation pre-condition asOCL con-
straints on theEcore model

3. Partitions of meta-model as sets of objects with prop-
erties expressed inModel Fragments language.

4. Test model objectives as sets of objects with properties
which are currently expressed asAlloy predicates/facts.
Eventually, these will be expressed in a specific test
requirements language.

The Cartier environment transforms the above knowl-
edge to a common constraint language which isAlloy [13].
Alloy is based on first-order relational logic and has well de-
fined syntax and semantics. An overview of the transforma-
tion framework forCartier framework is shown in Figure 5.
The focus of this paper is the test model selection box high-
lighted in the figure. In the Figure 5 the large ellipse rep-
resents the set of all models for all languages. The smaller
ellipse in this large set represents a subset of models that
conforms to the constraints that come from multiple sources
of testing knowledge. A solution to the relational logic pro-
gram is obtained by transforming it to a Boolean formula in
conjunctive normal form (CNF). The CNF is solved using a
satisfiability solver (SAT) solver. The result is a model that
is a point in the smaller ellipse. Execution of the transfor-
mation on this input model leads to an output model which
is again an element of the subset of all possible output mod-
els. The output model must conform to its meta-model as
shown in the Figure 5. If not, there is an error in the trans-
formation and it must be debugged.

In this paper we present algorithmic pointers to automate
the transformation from the different sources of knowledge
to Alloy, however at the time of writing most transforma-
tions are performed manually. However, ongoing research
and tool development on transformingUML models toAlloy
is discussed in [2].

In the following subsections we start with an overview
of Alloy leading to descriptions of transformations of each
source of knowledge toAlloy.

3.1 Alloy Overview

Alloy [13] [1] is a declarative modelling language based
on first-order relational logic. The elements in theAlloy
world are composed ofSignature, Relations, Facts, and
Predicates. A Signaturerepresents the types of objects in
a system. Each object of aSignaturecan be related to an
other object of the same or differentSignaturevia a Rela-
tion. TheFactsandPredicatesstate laws/constraints on the
Relations andSignatures already described.

TheAlloy language comes with an analyzer. The seman-
tics of anAlloy model is amodel instancethat satisfies the
constraints on theSignatures, Facts, andPredicates. Sev-
eral model instance (if they exist), can be obtained one after

Figure 5. Cartier Design Overview

another. A symmetry breaking rule ensures that each model
instance is significantly different in the sense of graph iso-
morphism compared to the previous instance. AnAlloy
model or a formula is first transformed to a Boolean for-
mula in conjunctive normal form(CNF). A SAT solver is
then used to solve the Boolean formula. The solution is re-
turned to a graphical representation of a model instance.

The analyzer allows the tester to specify several param-
eters to introduce more knowledge into model instances.
These are expressed as execution parameters or facts. The
parameters include something quite general such as the
scope or maximum size for each signature/type in the de-
sired model instance to the exact number of specific objects.
Constraints in the form of facts can be used to specify a
large portion of the target model instance. We use these
features ofAlloy for selection of test models.

3.2 Transformation of the Meta-model

3.2.1 Basic elements of an Ecore model

First, we discuss the transformation of anEcore model to
Alloy. TheAlloy model first starts with a module definition
and loading of basic data types. For instance, theUMLCD
Alloy model with start with:

module tmp/simpleUMLCD
open util/Boolean as Bool

The transformation of a class in theEcore model is per-
formed by transforming a class inEcore to a signaturein



Alloy. For instance, theAttribute class in the meta-model
shown in Figure 2 is transformed to the followingAlloy for-
mula:

sig Attribute {name: Natural,
is_primary : Bool,type: one Classifier}

An Ecore attribute can be transformed to anAlloy field
of type Bool, Natural or an Int. Theis primary attribute
is transformed to a fieldis primary of type Bool in Alloy.
However, thename attribute which is originally a string in
the Ecore model is transformed to a field of type Natural.
It is important to note thatAlloy does not support string and
float fields. The simple reason being the explosion of search
space due to the variety of combinations for an ASCII nat-
ural/integer representation of characters in a string for ex-
ample. The focus ofAlloy is the model structure and the
abstract design of a system. However, to emulate a string
field we use adictionary that maps a natural number to a
string or a float. The feasible and infeasible conditions of
this mapping are:

• A finite number of strings and floats can be defined

• The solver cannot modify the value of string/float for
its natural number key

• One cannot specify constraints on the string/float prop-
erties

• Equality constraint can be imposed on a natural num-
ber key for string/float

A reference to another class is transformed to anAlloy
field with one of the specifiersone, lone, or set. which
states that there can be exactly one reference, zero or one
references or a arbitrary set of references respectively. For
instance in theAlloy model, anAttribute has a fieldtype re-
lated to the signatureClassifier. Theone specifier says that
there can be exactly one type for anAttribute.

The inheritance relationship between two classes is
mapped on toAlloy usingextends. For instance,Class in-
herits fromClassifier is represented as follows:

sig Class extends Classifier {
is_persistent: one Bool,
parent : lone Class,
attrs : some Attribute}

3.2.2 Containment

The containment relationship in anEcore model cannot be
directly expressed using signatures and fields inAlloy. The
containment relationship is transformed to a fact inAlloy.
For instance, the containment ofAttributes in a Class is
given by the following fact:

fact attributeContainment {
all c1:Class, c2:Class |
all a1:c1.attrs, a2:c2.attrs
| a1==a2 => c1=c2}

3.2.3 Variable Multiplicity of References

Sometime the specifiersone,lone, ormanyare not sufficient
to describe a relationship. For an arbitrary multiplicity of
[n..m] we need to include a fact. For instance, for the sig-
nature representation ofClassModel we specify the fact that
the number of classifiers in theClassModel is between 2 and
5.

sig ClassModel {
classifier: set Classifier,
association: set Association
}
fact betweenNandMconstraint {
all c:ClassModel | #c.classifier > 2
and #c.classifier < 5}

3.2.4 OCL Constraints

OCL constraints are transformed toAlloy facts. There, are
several challenges in automating such a process. These
challenges are discussed in [2]. For instance the constraint
for no cyclic inheritance in Figure 3 results in the following
fact:

fact noCyclicInheritance {
no c: Class | c in c.ˆparent}

In Section A,the appendix, we present the complete set
of Alloy facts transformed from the originalOCL constraints.

3.3 Transformation of Model Transforma-
tion Pre-condition

The model transformation pre-condition expressed in
OCL is transformed to anAlloy fact. The pre-condition that
each class in an input model must have at least one primary
attribute is necessary for indexing is expressed in the fol-
lowing fact:

fact atleastOnePrimaryAttribute {
all c:Class| some a:c.attrs |
a.is_primary==True}

3.4 Transformation of Test Model Objec-
tives

Test model objectives are all transformed toAlloy facts
or Alloy run statements. The set of all the facts is given in



the appendix in Section A. However, one can also specify a
run command such as:

pred example() {}
run example for 20

The above run command is a generic run command
which states that the graph depth of the model instance solu-
tion is 20. However, one can even specify the exact number
of objects using theexactlyprefix after the predicate decla-
ration (examplein this case).

3.5 Transformation of Partitions

Partition knowledge in form of model fragments dis-
cussed in Section 2.4, is transformed toAlloy facts. For
instance, the partition:

Classifier(name=“ ” ) and Classifier(name=“ .+”)
is transformed to the fact:

fact partition1
{some c1:Classifier, c2:Classifier|
c1.name=0 and c2.name!=0
/*0 is null, non-zero others*/}

4 Experiments

We select test models from the input domain of
the UMLCD 2 RDBMS transformation using the differ-
ent sources of testing knowledge we have already dis-
cussed. We show the selection of fourUML Class Diagram
(UMLCD) models.

To begin, we use theAlloy analyzer to generate a model
that conforms only to theUMLCD meta-model. This is
shown in Figure 6 (a) usingUMLCD concrete syntax. The
selected test model was found in ascopeof 10. The scope
is the maximum number of objects for each type (or class)
in the meta-model. The model selection is performed up to
the limit proposed by the scope. We see that the resulting
model satisfies all meta-model constraints. However, an at-
tribute ofClass0 is not primary. This implies that it is not a
valid input toUMLCD 2 RDBMS.

TheUMLCD 2 RDBMS must get as input anUMLCD that
hasClass objects with at least one primary attribute. This
is essential for generating valid index-ableRDBMS models.
To take this issue into account we introduce the model trans-
formation pre-condition forUMLCD 2 RDBMS. The result-
ing model is shown in Figure 6 (b). The selected model
has classes with at least one primary attribute just as re-
quired by the pre-condition forUMLCD 2 RDBMS. The se-
lected model was found in a maximum scope of 20. We
note that the model now has two classesClass6 andClass7,
both of which have at least one primary attribute. This new

Sources of Test Knowledge Time(sec)
Meta-model 0.78
Meta-model + Pre-condition 7.813
Meta-model + Pre + TMO 7.97
Meta-model + Pre + MFs 10.477

Table 2. Test Model Selection Times

aspect in the test model now will allow the tester to generate
UMLCD models that can be serialized toRDBMS.

Next, we perform an experiment with test model objec-
tives. In addition to the meta-model and the model transfor-
mation pre-condition we introduce a test model objective.
We particularly want to select a test model that has some
classes withis persistent= True. This is objective 6 in the
Table 1. We select a model in a maximum scope of 20.
The resulting model is shown in Figure 6 (c). We note the
classClass5 is persistent as per the tester’s objective. The
existence of persistent classes in the test model will now
allow a tester to test the persistence implementation of the
UMLCD 2 RDBMS.

Finally, we introduce model fragment facts along with
the meta-model and pre-condition. The model that covers
the meta-model and five model fragments is shown in Fig-
ure 6 (d). The resulting model covers some of the model
fragments facts we generated from theEcore model. The
model is selected for a maximum scope of 20. The model
fragments covered ,as described in Figure 4, were MF2,
MF3, MF4, MF5. This guarantees that the equivalence
classes for property values are covered at least once by a
test model. In terms of test qualification, this increases the
trust we have in the test models, based on input domain cov-
erage.

In Table 2, we summarize the time taken (on a P4 2.6Ghz
desktop, with 1Gb RAM) to select test models. From the
table we can generally say that the more testing knowledge
we have the longer it takes to obtain test models. However,
for the price paid, the quality of test model is much higher
with more information to detect bugs in model transforma-
tions. For instance, adding a test model objective such as
at least one class withis persistent= Truemakes the test
model execute the persistence implementation in a model
transformation.

5 Related Work

Techniques for model transformation validation have
been proposed using formal verification and testing. We
focus on related work in the domain of testing model trans-
formations. In Fleurey et al. [11], the authors describe the
problem of testing model transformations and explain test
adequacy criteria for test models. There are two standard



Figure 6. (a) Model conforming to Meta-model (b)Model confo rming to Meta-model + Pre-condition
(c) Model conforming to Meta-model+ Pre-condition + Test Mo del Objective (d) Model conforming to
Meta-model + Pre-condition + Model Fragment

approaches for testing model transformations : white-box
and black-box testing.

White-box testing has been studied for model transfor-
mation testing in Kuster et al. [15]. However, the het-
erogeneity of model transformation languages makes it in-
creasingly hard to develop white box testing methodologies.
This is primarily because a testing tool needs to be con-
structed for every new language. This is extremely expen-
sive for transformations among domain specific languages.
This is one of the main reasons we choose black-box testing
as a means to large-scale testing of model transformations.

In the black-box testing of programs (including model
transformations) a set of test models are synthesized to
cover input domain and test model objectives. Model syn-
thesis is the first requirement for black-box testing. In Ehrig
et al. [9], the authors propose a graph grammar based ap-
proach to generate models that conform to a class diagram
(or Ecore model). These models do not conform to any
OCL constraints on the meta-model. Similarly, Brottier el
al. [7] present an imperative algorithm to synthesize mod-
els that conform only to theEcore model. The key issue is
to generate test models that not only conform to anEcore
model or a class diagram but several other complex con-
straints emerging from different sources such asOCL, input
domain partitions, and test model objectives.

In software testing the Korat (Chandra et al.) [6] system
for automatic testing of Java programs prunes large input
search spaces using knowledge from pre-condition predi-
cates in Java. Korat can deal with input test cases that
are bounded such as those implemented in the Java Col-
lections Framework. The Korat framework however does
not present formal semantics for its predicates. It also can-
not synthesize a constrained data structure that represents a
model conforming to a modelling language. Going beyond
standard data structures to models expressed using an arbi-
trary modelling language is the focus of our work. More-
over, selection of models for testing model transformations
poses a large-scale constraint satisfaction problem that can-
not be solved by existing nature inspired techniques such as
bacteriologic algorithms and genetic algorithms [4].

In Sen et al.[19] we propose aProlog based methodol-
ogy to combine constraints from different sources to select
test models. However,Prolog is based on first-order horn
clause logic and hence it is quantifier free (a constraint of
a set of objects cannot be specified). In response to this is-
sue we were inspired by ongoing research in transforming
UML models toAlloy as described by Kyriakos et al. [2].
Alloy is a first-order relational logic language with support
quantifiers and transitive closure. These features allow the
specification of constraints on a set of objects rather than



a specific object. As a consequence of this transformation
the same group has presented results on static analysis of
model transformation specifications (Kyriakos et al.) [3].
We outline a similar transformation fromEcore to Alloy but
our main consideration and application (ofAlloy) is the com-
bination of knowledge from several different formalism for
the purpose of selecting test models for model transforma-
tion testing.

Among other approaches to model transformation test-
ing we notably encounter mutation analysis based ap-
proaches. Graph transformations have been widely used to
design and develop model transformations. For instance,
in Darabos et al. [8], the authors present a mutation anal-
ysis based approach to test graph transformations. Graph
pattern matching is used to inject faults into graph transfor-
mation rules and a predefined test set is used to find these
faults. Another mutation analysis based technique is given
in Mottu et al. [16]. The authors discuss a set of mutation
operators for textual transformation languages. However,in
both cases the problem of defining a set of test models still
remains.

An important advantage with regard to software reliabil-
ity of test model selection could be the development of an
analog ofreliable objects[14] in MDE. The authors present
a method to embed test cases into components to make them
self-testable.

6. Conclusion

This paper proposes a novel approach for test data selec-
tion in the context of model transformation. This approach
for selection leverages different sources of knowledge that
can be produced during model transformation development
and specifically for test data generation. We combine those
different sources of knowledge into a common model that
specifies a set of constraints that should be satisfied by the
test models.

We have outlined a tool, calledCartier, that usesAlloy for
constraint resolution.Cartier allows combining one or sev-
eral sources of knowledge. The experiments show that the
knowledge from different sources such as pre-conditions,
test model objectives and partitions can all be combined to
synthesize test models.

As part of our future planning we intend to performmu-
tation analysiswith the synthesized test models. We plan
to use the mutation operators defined in Mottu et al. [16].
In particular, we would like to experiment which source of
knowledge or which combinations produce the most useful
test models in terms of error detection capabilities.
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A. Combined Alloy Model for UMLCD

module tmp/simpleUMLCD
open util/Boolean as Bool
//Meta-model Entities
sig ClassModel{classifier: set Classifier,
association: set Association}
abstract sig Classifier {name : one Natural}
sig PrimitiveDataType extends Classifier {}
sig Class extends Classifier
{is_persistent: one Bool,parent : lone Class,
attrs : some Attribute}
sig Association {name: Natural,
dest: one Class,src: one Class}
sig Attribute{name:Natural,is_primary:Bool,
type: one Classifier}
//Meta-model constraints//
fact noCyclicInheritance {no c: Class |
c in c.ˆparent}
fact uniqueAttribNames{all c:Class|all a1:c.attrs,
a2 : c.attrs |a1.name==a2.name => a1 = a2}
fact attributeContainment{all c1:Class, c2:Class|
all a1:c1.attrs, a2:c2.attrs | a1==a2 => c1=c2}
fact oneClassModel {one ClassModel}
fact classifierContainment {all c:Classifier|
c in ClassModel.classifier}
fact associationContainment {all a:Association|
a in ClassModel.association}
fact uniqueClassifierName {all c1:Classifier,
c2:Classifier | c1.name==c2.name => c1=c2}
fact uniqeNameAssocSrc {all a1:Association,
a2:Association | a1.name == a2.name =>
(a1 = a2 or a1.src != a2.src)}
//Test Model Objectives
fact testers_requirement1 {some a:Attribute|
a.type = PrimitiveDataType}
fact testers_requirement2{some a:Attribute|
a.type.is_persistent=False}
fact testers_requirement3{some a:Association|
a.dest.is_persistent = False}
fact testers_requirement4{some a:Attribute|

a.type.is_persistent=true}
fact testers_requirement5{some Class.parent}
fact testers_requirement6
{some c:Class|c.is_persistent=true}
fact testers_requirement7
{some c:Class |some a:c.attrs|a.name=c.name
and a.type=Class and a.is_primary=true}
fact testers_requirement8
{some cA:Class | some aA :cA.attrs,
pA:cA.parent.attrs|aA.name==pA.name}
/*UMLCD to RDBMS Pre-condition*/
fact atleastOnePrimaryAttribute {
all c:Class|one a:c.attrs|a.is_primary==true}
//Partition Requirements
fact partition1 {some c1:Classifier,
c2:Classifier| c1.name=0 and c2.name!=0}
fact partition3
{some c1:Class,c2:Class|c1.is_persistent=true

and c2.is_persistent = False}
fact partition4
{some c1:Class,c2:Class|
#c1.parent=0 and #c2.parent=1}
fact partition5{some c1:Class,c2:Class,c3:Class|
#c1.attrs=0 and #c2.attrs=1 and #c3.attrs>1}
fact partition6{some a1:Attribute,
a2:Attribute|a1.is_primary=true and
a2.is_primary=False}
fact partition7{some a1:Attribute,a2:Attribute|
a1.name=0 and a2.name!=0}
fact partition8{some a:Attribute|
#a.type=1 and a.name=1}
fact partition9{some a1:Association,
a2:Association|a1.name=0 and a2.name!=0}
fact partition10
{some a1:Association,a2:Association|
#a1.dest=0 and #a2.dest=1}
fact partition11{some a1:Association,
a2:Association|#a1.src=0 and #a2.src=1}
fact partition12
{some c1:ClassModel,c2:ClassModel,
c3:ClassModel|#c1.classifier=0 and
#c2.classifier=1 and #c3.classifier>1}
fact partition13{some c1:ClassModel,
c2:ClassModel,c3:ClassModel|
#c1.association=0 and #c2.association=1
and #c3.association>1} pred example() {}
run example for 20


