
ACADEMIC STUDIES - NATIONAL JOURNAL OF JYOTI RESEARCH ACADEMY 1

1. Introduction
An information in a real-world problem is mathematically
modeled as a linear or a nonlinear equation/inequality. For
example, the physical information, viz., three mangos, four
oranges, and six bananas cost Rs. 13 can be modeled as
3x1 + 4x2 + 6x3 = 13, where x1, x2, x3 are the costs of one mango,
one orange, and one banana, respectively. A man needs at least
75 gm of protein and 90 gm of fat daily. The protein and fat
contents (in gm/unit) are respectively 7, 10 for cheese, 6, 0 for
fish, 0, 28 for margarine. This information gives rise to the
mathematical model, that yields the proteins and fats from the
foregoing food items, 7x1 + 6x2 + 0x3 ≥ 75, 10x1 + 28x2 ≥ 90,
where x1, x2, x3 are the number of units of cheese, that of fish, and
that of margarine, respectively. Since we have well-developed
theory of equations and we are more knowledgeable about
properties of linear equations than those for linear inequalities,
we often convert the inequalities into equations by using
additional variables and then attempt to solve, i.e., compute
the values of x1, x2, x3.

Corresponding author. Tel. +1 321 674 7714; fax: +1 321 674 7412.
E-mail addresses: sksen@fit.edu (S.K. Sen), sagar.sen@cs.mcgill.ca
(Sagar Sen)
Dr. S.K. Sen, Department of Mathematical Sciences, Florida
Institute of Technology, 150 West University Boulevard,
Melbourne,Florida 32901-6975, USA.

Mr. Sagar Sen, Modeling, Simulation and Design Laboratory School
of Computer Science, McGill University, McConnell Engineering
Building, Room 202, 3480 University Street, Montreal, Quebec,
Canada H3A 2A7

Linear Systems: Relook, Concise Algorithms, and Matlab Programs

Dr. S.K. Sen and Sagar Sen

Abstract

A linear system consists of linear equations Ax = b and/or linear inequalities Ax ≤ b, where A is
an m × n known matrix and b is a known m × 1 vector. A and b could be real or complex with
no sign restriction on their elements. Other possible inequalities, viz., ><≠≥ or,,, could also be
there in each of the systems. Such systems happen to be mathematical models of numerous real-
world problems and have been dealt with by numerous people over decades. Yet the search/
research still continues. Presented here are some useful linear problems/systems and their solutions.
Inversion-free as well as inversion-based O(mn2) procedures that include computing least-squares
and minimum-norm least-squares solutions are described. The former procedure provides us the
information whether the system is consistent (contradiction-free) or not as well as the rank
(physical information content) of A. Also described are (i) rectifying in O(n2) operations an
already computed inverse of a matrix whose elements in a column were wrongly keyed in or
needed to be modified, (ii) computing the Moore-Penrose inverse (p – inverse) of a matrix using
optimal iterative schemes, and (iii) determining the p – inverse of the matrix obtained when a
column is removed from the p – inverse of the original matrix. Included are a concise mathematically
direct heuristic algorithm to solve a linear program (LP) and a method for testing optimality of a
given solution of an LP. Inserted are several concerned Matlab programs for quick verification of
the algorithms. Discussed are the possibilities of semi-numerical (numerical and symbolic)
computation where division by zero/a too small number in an intermediate step could occur.

Keywords: Heuristic algorithm for linear programs, inversion-free algorithm, linear systems,
Moore-Penrose inverse, optimal iterative schemes, semi-numerical computations.

A system of linear equations Ax = b, where the numerically
known matrix A is m× n, the numerically unknown column
vector x is n× 1 (to be computed), and the numerically known
column vector b is m× 1. Linear equations may have infinite
number of solutions1 or just one (unique) solution or no solution.
For example, the equations 3x1+4x2+6x3=13, 2x1+3x2+7x3=12
will have infinite number of solutions. Two of these solutions
(in rupees) are [x1 x2 x3]

t = [1 1 1]t and [x1 x2 x3]
t = [2 1/10 11/

10]t, where t denotes the transpose. It can be seen that a linear
combination of these two solutions, viz., α 1 [1 1 1]t +
α 2[2 1/10 11/10]t = [5/3 2/5 16/15]t, where α 1 = 1/3 (an
arbitrary value) and α 2 = 1 – α 1 = 2/3 is also a solution
implying infinity of solutions. If we now consider the linear
system 3x1 + 4x2 + 6x3 = 13, 2x1 + 3x2 + 7x3 = 12, 1x1 + 5x2 + 8x3 = 14,
then we have the unique solution, viz., [x1 x2 x3]

t = [1 1 1]t. If
we now consider the equations 3x1 + 4x2 + 6x3 = 13, 2x1 + 3x2

+ 7x3 = 12, 5x1 + 7x2 + 13x3 = 25, then we will have infinity
of solutions since the last equation is a linearly dependent
(redundant) equation and adds no additional information

ASNJJRAASNJJRAASNJJRAASNJJRAASNJJRAAcademic Studies - National Journal of Jyoti Research Academy
Feb 2007, Vol. 1(1), 1-8

Research Publication and Development Cell
Jyoti Nivas College (Autonomous)

sksen
Highlight

sksen
Inserted Text
, "Insert a comma"

sksen
Cross-Out

sksen
Replacement Text
3 "Replace the crossed-out subscript
 2 by 3."

sksen
Highlight

2 LINEAR SYSTEMS: RELOOK, CONCISE ALGORITHMS, AND MATLAB PROGRAMS

to the system of equations (knowledge of facts). We may and
we should as well prune/weed out the last equation without
any loss of information. However, if we consider the equations
3x1 + 4x2 + 6x3 = 13, 2x1 + 3x2 + 7x3 = 12, 5x1 + 7x2 + 13x3 = 26,
then we will have no solution, i.e., we will never be able to
find the values of x1 x2 x3 so that all the three equations in the
system are satisfied (simultaneously). If the first two equations
are correct then the third (last) equation is definitely wrong
in the same context, i.e., the information contradicts or,
equivalently, is inconsistent. We must correct the wrong
equation before we attempt a solution. One may view
geometrically the system involving the hyperplanes of
dimension2 up to 2 and get a better feel about what is actually
happening.

In all natural processes/computations, inconsistency/
contradiction is completely unknown. It could, however,
happen not due to nature’s fault3 but due to human error/
mistake as well as due to limitation in devices for measuring
quantities. We have not known any measuring device -
electronic, optical, or non-electronic/non-optical - that can
give an accuracy more than 0.005%. If the inconsistency
(contradiction) is too pronounced then we should certainly
check the model against the concerned physical problem
and correct the errors/mistakes4 before we attempt to solve
the problem. On the other hand, consistency does not
necessarily imply that the model is without mistake. A
consistent system with mistakes will represent a model which
is not the intended one. Hence one needs to check against
such mistakes and eliminate them.

The subject involving numerous variations of linear systems
that include linear optimization and large sparse/dense linear
systems is too vast. So we limit ourselves to a few physically
concise algorithms which are not so commonly seen in most
textbooks (as of now) and which can be easily implemented in
a Matlab programming language.5

In Sec. 2, we present the general solution of the linear system
Ax = b, the related generalized matrix inverses (g-inverses), and
optimal iterative O(mn2) algorithms for the p-inverse (also called
the pseudo-inverse or the Moore-Penrose inverse or the
minimum norm least squares inverse) [1-4] along with a relative
error bound. The error tells us the quality of the result while the
computational complexity O(mn2) provides us the
computational cost in obtaining the result. In Sec. 3, we describe
an inversion free algorithm that checks the correctness
(consistency) of the linear system Ax = b, (could prune redundant
rows (equations)), obtains rank of the matrix A, and finally a
(minimum norm) solution vector with a relative error bound.
By allowing A := At A, b := Atb, the inversion-free algorithm
provides us the least-squares solution since At Ax = Atb is always
consistent irrespective of whether Ax = b is consistent or not.
Sec. 4 embodies the computation of Bc

–1 from the matrices B
and B–1, where Bc = B with c-th column changed. Also included
in this section a procedure to compute the p-inverse Ak

+ from

the matrix Ak+1 and its p-inverse A+
k+1, where Ak = Ak+1without

c-th column. Sec. 5 includes a concise mathematically direct
O(n3) heuristic algorithm to solve a linear program (LP) [9] and
a method for testing optimality of a given solution of an LP
[14]. Also included in this section a discussion on the possibility
of using semi-numerical computation when division by 0 in an
intermediate step of a method could occur although the given
numerical problem is well-posed with respect to several other
methods. Sec. 6 comprises conclusions.

2. General solution of Ax = b and optimal
iterative schemes

General solution of Ax = b A g-inverse X = A– of the given
m× n matrix A is any matrix that satisfies the condition AXA =
A. If the matrix A is nonsingular (necessarily implying m = n)
then only X = A– = A–1 is unique, else there are infinity of A–s
that will satisfy the condition AXA = A. The elements of A can
be real or complex. The general form of the solution of the
consistent system Ax = b is x = A–b + (I – A–A)z, where I is the
unit matrix of order n and z is an arbitrary n – column vector.
For singular/(non-square) rectangular A, there will be infinity
of solutions, each of which will satisfy the system Ax = b if it is
consistent (else none of the infinity of x’s will satisfy the Ax = b).
For the computation of A–, use Gauss reduction type method or
rank-augmented LU – algorithm [4. 5] or simply use one of
following iterative algorithms [4, 6] that compute the p-inverse
A+ which is one of infinite possible A–’s. If the vector b happens
to be zero (homogeneous system Ax = 0) then the general form
of the solution is x = (I – A– A)z. Observe that Ax = 0 is ever
consistent.

The minimum norm least squares inverse, i.e., p-inverse X = A+

of the given m × n matrix is the matrix A that satisfies the
conditions AXA = A, XAX = X, (AX)t = AX, (XA)t = XA and
is unique. The p-inverse A+ gives the minimum norm least
squares solution (unique) x = A+b of the system Ax = b, where
both the norms6 ||||,| bAxx − are the smallest. Observe that b
≠ 0 (null column vector); for if b = 0 then the system is ever
consistent. Here the system Ax = b may be consistent or
inconsistent. Observe that if Ax = b is consistent then || bAx −
will be 0 else it will never be 0, i.e., the minimum norm least
squares solution will never satisfy Ax = b if it is inconsistent
(implying b ≠ 0) but the solution will only satisfy the two
conditions. ||x = smallest (smallest norn condition), || bAx − =
smallest (least – squares condition). This solution is extremely
important in solving numerous real world problems. If the matrix
A is nonsingular then A+ = A–1 always. A+ always exists for any
matrix A while A–1 only exists for nonsingular matrix A.

Iterative schemes for the p-inverse A+ We provide here just two
schemes, viz., the quadratic and the cubic schemes. The
quadratic/cubic schemes have been shown to be
computationally most economical [4, 6] for the m× n matrix A.
It can be seen that the best accuracy subject to the precision of
computation is obtainable in these schemes unlike a

sksen
Highlight

sksen
Highlight

sksen
Highlight

sksen
Highlight

sksen
Inserted Text
 is "Insert the word is"

sksen
Inserted Text
is "Insert the word is"

sksen
Highlight

sksen
Highlight

sksen
Highlight

sksen
Inserted Text
| "Insert vertical bar. There should be
 two vertical bars on both sides
 instead of just one to
 denote norms"

sksen
Inserted Text
| "Insert a vertical bar. There should
 be two vertical bars instead on just
 one."

sksen
Highlight
| "Insert one more vertical bar."

sksen
Highlight
| "Insert one more vertical bar."

sksen
Highlight

sksen
Highlight

sksen
Highlight

sksen
Highlight

sksen
Highlight

sksen
Highlight
| "Insert one more vertical bar."

sksen
Highlight

sksen
Inserted Text
| "Insert one more vertical bar."

sksen
Inserted Text
| "Insert one more vertical bar."

sksen
Inserted Text
| "Insert one more vertical bar."

sksen
Inserted Text
| "Insert one more vertical bar."

sksen
Inserted Text
| "Insert one more vertical bar."

sksen
Highlight

sksen
Highlight

sksen
Highlight

sksen
Highlight

sksen
Highlight

sksen
Inserted Text
, "Insert a comma."

sksen
Inserted Text
, "Insert a comma."

sksen
Highlight

sksen
Highlight

sksen
Inserted Text
' "Insert an apostrophe just before
 the letter s."

sksen
Inserted Text
| "Insert one more vertical bar."

ACADEMIC STUDIES - NATIONAL JOURNAL OF JYOTI RESEARCH ACADEMY 3

mathematically non-iterative (direct) method. Let tr denote
trace. The trace of the square matrix X is the sum of its diagonal
elements. If









−

=
34

72
X

then tr X = 2 + (–3) = –1. Also let I be an m× n unit matrix.

The quadratic scheme

Step 1. Compute
)(

0 t

t

AAtr

A
X = .

Note One may compute tr(AtA) instead of tr(AAt) as both are
same. However, if m > n then compute preferably tr(AtA) since
the dimension of AtA will be smaller. Observe that the two
matrices AAt, AtA are both symmetric and diagonal elements
are all nonnegative (A has real elements).

Step 2. Compute Xk+1 = Xk (2I – AXk)

for k = 0, 1, 2, Λ.... till
4

1

1 105.0
||||

|||| −

+

+ ×≤
−

k

kk

X

XX
 .

Note The matrix Xk+1 upon satisfaction of the foregoing inequality
will be A+ correct up to 4 significant digits.

The cubic scheme is exactly the same as the quadratic scheme
except that

Xk+1 = Xk (3I – AXk (3I – AXk))

instead of Xk+1 = Xk (2I – AXk) in Step 2.

Both the foregoing fixed-point schemes will always converge
for any matrix - real or complex, square or rectangular, singular
or nonsingular. For other higher order schemes as well as the
linear scheme, refer [4, 6]. So the number of iterations may be
kept sufficiently large, say, 1000. The accuracy desired will
automatically decide/determine the number of iterations used
(see the following Matlab programs).

A Matlab program for the quadratic scheme is

[m,n]=size(A); I=eye(m);

X=A’/trace(A*A’); for k=1:1000, X1=X*(2*I-A*X);

if norm(X1-X)/norm(X1)<=0.5*10^-4,break;else X=X1, end;
end;

‘No. of iterations in quadratic scheme is’, k,

‘The p-inverse of the matrix A is’, X1,

Save the program (M file) in pinverseq and then type the
following command in Matlab command window.

A=[2 7;4 -3];pinverseq

if the p-inverse of









−

=
34

72
A

is desired. Observe that since the matrix A is nonsingular, its p-
inverse will be the true inverse correct up to four significant
digits. The Matlab produces the number of iterations k = 7 and
the p-inverse of the matrix A as

 X1= 0.0882 0.2059
 0.1176 -0.0588

The default option (format short) for Matlab is printing/
outputting only four decimal places although the computation
is carried out with at least 14 digits. The only other option is
format long which needs to be entered at the Matlab command
window before executing the program

A=[2 7;4 -3]; pinverseq

That is, if we enter

format long; A=[2 7;4 -3]; pinverseq

then Matlab will produce 14 decimal digits for each element of
the p-inverse.

Matlab program for the cubic scheme is

[m,n]=size(A);I=eye(m);

X=A’/trace(A*A’);for k=1:1000, X1=X*(3*I-A*X*(3*I-
A*X));

if norm(X1-X)/norm(X1)<=0.5*10^-4,break; else X=X1,
end; end;

‘No. of iterations in cubic scheme is’,k,

‘The p-inverse of the matrix A is’, X1,

Save the program in pinversec and then type the command

format long; A=[2 7;4 -3];pinversec

in the Matlab command window. This will produce the number
of iterations k=5 and the p-inverse A+= X1, where

X1 = 0.08823529411765 0.20588235294118

0.11764705882353 -0.05882352941176

If the right-hand side vector b = [9 1]t then the solution of the
system Ax = b is given by x = A+b. The Matlab commands (typed
in the command window) and the output are

format long;

Ap= [0.08823529411765 0.20588235294118;

0.11764705882353 -0.05882352941176];

b=[9 1]’;x=Ap*b

and

x = 1.00000000000003

 1.00000000000001

If b = 0 (null column vector) then the solution will be x = 0 (null
column vector).

sksen
Cross-Out
"Cross out the marked character."

sksen
Highlight

sksen
Cross-Out

sksen
Replacement Text
n "Replace the crossed out letter
 m by the letter n."

sksen
Highlight

4 LINEAR SYSTEMS: RELOOK, CONCISE ALGORITHMS, AND MATLAB PROGRAMS

If, in the singular consistent system Ax = b,









=

144
72

A , 







=

18
9

b

then no. of iterations in quadratic scheme is k = 1

The p-inverse of the matrix A is A+ = X1, where

X1 = 0.00754716981132 0.01509433962264

 0.02641509433962 0.05283018867925

and the minimum norm least-squares solution vector is

x = 0.33962264150943

 1.18867924528302

It can be easily verified that the equation Ax = b is satisfied.
There is an infinity of solutions. Another solution is x = [1 1]t

which is clearly not the minimum norm (i.e., ||x = smallest)
solution.

If, on the other hand, we have the inconsistent system Ax = b,









=

144
72

A , 







=

17
9

b

and issue the Matlab commands A=[2 7; 4 14]; b=[9 17]’;
pinverseq; x=X1*b then no. of iterations in quadratic scheme
is k = 1

The p-inverse of the matrix A is the same as the foregoing X1
and the minimum-norm least-squares solution
x = [0.32452830188679 1.13584905660377]t. This solution
x as well as any other vector will never satisfy the foregoing
inconsistent (contradictory) system. If we compute Ax, it will
be [8.60000000000000 17.20000000000000]t instead of
[9 17]t.

3. Inversion-free algorithms for Ax = b
(a) Mathematical C-LINSOLVER The O(mn2) physically concise
algorithm MATHEMATICAL C-LINSOLVER [7, 8, 9, 10] for
consistent linear system Ax = b is as follows. Let ai

t be the i - th
row of A. Then ai is the column vector, i.e., the i – th row (of A)
written as the column. In-built in the algorithm is obtained
without explicitly computing the minimum-norm least-squares
inverse A+ as well as the rank r of A.

(* MATHEMATICAL C-LINSOLVER *)

P = I; x = 0; r = 0; for i := 1 to m do begin EQN (ai, bi, P, x);
r := r + c end

procedure EQN(a, b, P,x); (* solves one equation atx = b *)

begin c :=0; u := Pa; v := ||u||2; s :=b - atx;

if v ≠ 0 then begin P :=P - uut/v; x:=x + su/v; c :=1 end else if s ≠ 0
then Ax = b is inconsistent (contradictory) and terminate end;

Computational C-LINSOLVER Since the numerical zero in a
floating-point arithmetic is not the same as the mathematical
zero [13], replace, in MATHEMATICAL C-LINSOLVER,

v ≠ 0 and s ≠ 0 by av 4105.0 −×≥ , bs 4105.0 −×≥

respectively to obtain COMPUTATIONAL C-LINSOLVER for
four significant digit accuracy, where

)(/||
1 1

mnaa
m

i

m

j
ij 












= ∑∑

= =
, mbb

m

i
i /||

1
∑

=

=

(b) The mathematical NC-LINSOLVER It is the concise linear
system solver for near-consistent system. If the system is too
inconsistent, then it is necessary to reexamine the physical model
and the derived mathematical model to find out the real cause
for excessive inconsistency (contradiction) and rectify the errors/
mistakes. It is not advisable to proceed solving (in the least
squares sense) such highly inconsistent systems since the resulting
(least-squares or minimum norm least-squares) solution may
convey a wrong message to the physical world. We present a
mathematical version of the NC-LINSOLVER as well as its
computational version with a Matlab program for ready use
(just by copying and pasting).

It is a modified version of C-LINSOLVER, which provides a
solution of the consistent system closest (in the sense of the
minimum variation/modification of the right-hand side vector
b componentwise as needed by the modified version) to the
given near-consistent/inconsistent system Ax = b along with a
relative error-bound of the solution for the inconsistent system.
On completion of the execution of NC-LINSOLVER, we obtain
a solution x for the consistent system Ax = b + ∆∆∆∆∆b, the projection
operator (matrix) P = I - A+A that provides a solution Pz (where
z is an arbitrary (null or non-null) vector) of the homogeneous
linear system Ax = 0. Further, we obtain the rank r of A and ∆∆∆∆∆b
of the modification of b. ∆∆∆∆∆b¹ ≠ 0, for, equivalently, ∆bi ≠ 0 for
some i tells us that the given Ax = b is inconsistent. The
inconsistency index inci = || ∆ ∆ ∆ ∆ ∆b || / || A, b|| as well as a relative
error err = || b - Ax || / || x || of the solution x are also produced.
|| A, b || denotes a norm (e.g., the Euclidean norm) of the
augmented matrix (A, b).

(* MATHEMATICAL NC-LINSOLVER*)

 P := I; x := 0; ∆∆∆∆∆b := 0; r := 0;

(* abar =)(/||
1 1

mnaa
m

i

n

j
ij 












= ∑∑

= =

,

bbar = mbb
m

i
i /||

1
∑

=

= *)

(* abar and bbar are exactly the same as mentioned and not
needed in this version.*)

for i := 1 to m do

begin

u := Pai; v := || u ||2; s := bi - ai
tx; c :=0; if v=0 and s ≠ 0

then begin print ‘Ax=b is strictly inconsistent’;

sksen
Inserted Text
P "Insert the upper case letter P with
 a blank after it."

sksen
Cross-Out

sksen
Inserted Text
"Cross out subscript i."

sksen
Highlight

sksen
Highlight

sksen
Inserted Text
| "Insert one more vertical bar."

sksen
Inserted Text
| "Insert one more vertical bar."

sksen
Cross-Out

sksen
Replacement Text
n "Replace the crossed out
 letter m by the letter n."

sksen
Highlight

sksen
Inserted Text
| "Insert one more vertical bar."

sksen
Highlight

sksen
Inserted Text
| "Insert one more vertical bar."

sksen
Highlight

ACADEMIC STUDIES - NATIONAL JOURNAL OF JYOTI RESEARCH ACADEMY 5

∆bi :=-s; bi :=bi+∆bi; s :=0; end else

if v=0 and s=0 then ∆bi :=0;

if v≠0 then begin x := x + us/v; P := P - uut/v; c := 1; ∆bi := 0
end; r := r + c

end;

inci:= || ∆∆∆∆∆b || / || A,b ||; err:= || b - Ax || / || x||;

print A, b, ∆∆∆∆∆b, x, P, r, inci, err;

The computational NC-LINSOLVER The following
modifications in the foregoing mathematical NC-LINSOLVER
give us the computational version.

• Remove (* and *) from the very first comment so that abar
and bbar are computed.

• Replace v=0 by v ≤ 0.5 × 10-4abar, v ≠ 0 by v≥0.5 × 10-

4abar, s = 0 by |s| ≤ 0.5 × 10-4bbar, and s ≠ 0 by |s|≥ 0.5 ×
10-4bbar

Computational NC-LINSOLVER (Matlab program) The
following program is self-explanatory.

function[] = nclinsolver1(A,b); [m, n] = size(A);
%NC-LINSOLVER: Near-consistent Linear System Solver
‘The matrix A and vector b of the system Ax=b are’, A,b,
P = eye(n); sd = 0; x(1:n) = 0; x = x’; delb(1:m) = 0;
delb = delb’; bo = b; r = 0;
abar = 0; for i = 1:m, for j = 1:n, abar = abar+abs(A(i,j));
end; end; abar = abar/(m*n);
bbar = 0; for i = 1:m, bbar = bbar+abs(b(i)); end;
bbar = bbar/m;
for i = 1:m
u = P*A(i,:)’; v = norm(u)^2; s = b(i) -A(i,:)*x; c = 0;
if v< = .00005*abar & abs(s) > = .00005*bbar, delb(i) = -s;
sd = -s; b(i) = b(i) +delb(i); s = 0;
elseif v< = .00005*abar & abs(s)< = .00005*bbar; delb(i)
= 0; end;
if v> = .00005*abar, x = x+u*s/v; P = P-u*u’/v; c = 1;
delb(i) = 0; end; r = r+c;
end;
if abs(sd)>.00005*(abar+bbar)*0.5, ‘The system Ax = b is
inconsistent.’, end;
inci = norm(delb)/norm([A,b]); err = norm(bo-A*x)/norm(x);
‘The projection operator P = (I - A+A) is’, P,
‘The rank of the matrix A is’, r,
‘The inconsistency index is’, inci,
‘Modification in vector b, i.e., Db is’, delb,
‘Vector b of the nearest consistent system is’, b,
‘Solution vector of the nearest consistent system is’, x,
‘Error in the solution vector x is’, err

 Issuing the Matlab command

>> A = [1 2 3;4 5 6]; b = [6 15]’; nclinsolver1(A,b)

we obtain the following result. The matrix A and vector b of
the system Ax =b as well as the projection operator P=I–A+A are

.
15

6
,

654

321








=








= bA

P =
















−
−−

−

1667.03333.01667.0

3333.06667.03333.0

1667.03333.01667.0

The rank of the matrix A is r = 2.

The inconsistency index is inci = 0.

Modification in vector b, i.e., Db is delb = [0 0]t.

Vector b of the nearest consistent system is b = [6 15]t .

Solution vector of the nearest consistent system is

x = [1.0000 1.0000 1.0000]t.

Error in the solution vector x is err = 1.0256e-015.

If we now issue the Matlab command

>> A = [1 2 3;4 5 6; 7 8 9]; b = [6 15 25]’; nclinsolver1(A,b)

then we get the following solution.

The matrix A and vector b of the system Ax = b are
















=
















=

25
15
6

,
987
654
321

bA

The system Ax = b is inconsistent.
The projection operator P = I – A+A is the same as the foregoing
P .
The rank of the matrix A is r = 2
The inconsistency index is inci = 0.0299
Modification in vector b, i.e., Db is delb = [0 0 –1]t

Vector of the nearest consistent system is b = [6 15 24]t

Solution vector of the nearest consistent system is x = [1 1 1]t.
Error in the solution vector x is err = 0.5774.

To obtain a least squares solution of an inconsistent system using
the NC-LINSOLVER just allow A := AtA, b := Atb, the inversion-
free algorithm provides us the least-squares solution since AtAx
= Atb is always consistent irrespective of whether Ax = b is
consistent or not. However, too inconsistent (contradictory)
system needs to be reexamined for possible mistakes and
corrected before using the solver. We will certainly get correct
least-squares solution, but such a solution may not be useful for
a real world problem.

4. Inverse of a column-modified/column-omitted
matrix in O(n2) operations

Column-modified matrix inverse We present here a concise O(n2)
algorithm [4, 14] to compute Bc

–1 from the given nonsingular

sksen
Highlight

sksen
Inserted Text
| "Insert one more vertical bar."

sksen
Inserted Text
| "Insert one more vertical bar."

sksen
Highlight

sksen
Inserted Text
| "Insert one more vertical bar."

6 LINEAR SYSTEMS: RELOOK, CONCISE ALGORITHMS, AND MATLAB PROGRAMS

matrix B and B–1, where Bc = B with c-th column changed. Let bc

= c-th column of Bc and the vector ei = [0 0Λ 1Λ 0]t, where
ei has all the elements 0 except the i -th element which is 1.

Step 1 Compute []tc
c

c
n

c
c

cc
c

c
c

c bB αααα−αα−=ξ=α − /...//, 21
1 .

Step 2 Compute [] 1
21

1 . −− ΛξΛ= BeeeB nc .

The algorithm needs n2 additions and n2 multiplications.
Having computed the inverse of the matrix B (needing O(n3)
operations), if we discover that some element(s) in a column of
B have been wrongly entered or need to be changed then without
recomputing the inverse of the changed matrix we can compute
the inverse using much less number of operations. For example,
if n=1000 then we would be needing O(106) operations instead
of O(109) operations. This is roughly 1000 times less
computations.

The Matlab program The columnmodifiedinverse Matlab program
is as follows.

%c = column of B that has been changed; bc = c-th column
of Bc.

n = size(B); B(:, c) = bc; Bc=B; alpc = inv(B)*bc;
zi = -alpc./alpc(c);

I = eye(n); I(:, c) = zi; Bcinv = I*inv(B),

In the Matlab command window, if we write the command

>>B = [1 2 3; 4 5 6; 7 8 8], bc = [3 5 10]’, c = 3,
columnmodifiedinverse

then we get
















=
















=

10

5

3

,

887

654

321

bcB , c = 3

















−−
−

−−
=

3333.06667.03333.0

7778.02222.15556.0

5556.04444.01111.1

Bcinv

Column-omitted matrix p-inverse. Yet another concise O(n2)
algorithm [4] to compute Ak

+ from known Ak+1, A
+

k+1is as follows.
Here the matrix Ak+1 is any matrix (rectangular, square, singular,
or non-singular). Let Ak = Ak+1 without c-th column, A+

k+1-c =
A+

k+1 without c-th row, ac = c-th column of Ak+1, and bc
t = c-th

row of A+
k+1. Then

Step 1 Compute the scalar r = 1 – bc
tac and then

t
ccckckk baA

r
AA)(

1
11

+
−+

+
−+

+ +=

The Matlab program for the foregoing algorithm is, naming
Ak as A, Ak+1 as A1, Ak

+ as Ap, A+
k+1 , as A1p,

[m, n]=size(A1); A1p=pinv(A1);
% A1, A1p, c are assumed to have been supplied, although
A1p is computed.
A=A1(:,1:c-1); A(:,c:n-1)=A1(:,c+1:n),
A1mcp(1:c-1,:)=A1p(1:c-1,:);

A1mcp(c:n-1,:)=A1p(c+1:n,:);
ac=A1(:, c), bct=A1p(c,:), r=1-bct*ac,
Ap=A1mcp+(1/r)*(A1mcp*ac)*bct,

Issuing the Matlab command

c=2; A1=[1 2 3 4;5 6 7 8;9 10 11 12], columnomittedpinverse

we get

,

10

6

2

,

12119

875

431

,

1211109

8765

4321

1
















=
















=
















= acAA

[] 7000.,0792.00333.01458.0 =−−= rbct

















−

−−
=

1012.00952.02917.0

0060.00238.00417.0

2202.01190.04583.0

Ap

5. Direct heuristic algorithm for lp and optimality
test of a given solution of lp

A concise mathematically direct heuristic algorithm [9] to solve
the linear program (lp) Min ctx subject to Ax = b, x ≥ 0 (null
column vector), where A is an m × n matrix, b is an m column
vector, is as follows. Let I be the unit matrix of order n and A+

the Moore-Penrose inverse.

Step 1 Compute H = A+A, d = A+b, c’ = (I – H)c,









>= 0':
'

min i
t

i
k c

c

d
s .

Step 2 Compute x = d – (I – H)c × sk

Step 3 Remove that xi which becomes 0, corresponding column
of A, and element of c and repeat Steps 1 and 2 until no c’i > 0.
(Keep track of the positive elements of x using an index set).

A Matlab program named as lpsolverheuristic1 is as follows

%A=[-3 3 1 0;2 4 0 1], b=[6 12]’, c=[4 -5 0 0]’, %To be
supplied
[m, n]=size(A); is=1:n; cd=1;
while sum(abs(cd))>0.5*10^-8,
I=eye(n); Ap=pinv(A); H=Ap*A, d=Ap*b, cd=(I-H)*c,
for i=1:n,
if cd(i)>0, s(i)=d(i)/cd(i);else s(i)=500;%large value for s(i)
end; end; s1=s(1:n), [sk, k]=min(s1),
if sk==500,’Soln vector x=’,x, ‘Index set is=’, is,
‘Index set specifies which elements of x have the values in x-
vector’,
else
x=d-(I-H)*c*sk, is0=is(1:k-1); is0(k:n-1)=is(k+1:n);
is=is0,

sksen
Cross-Out

sksen
Replacement Text
. . . "Replace the crossed out character
 by three dots."

sksen
Cross-Out

sksen
Replacement Text
. . . "Replace the crossed character by
 three dots."

sksen
Cross-Out

sksen
Replacement Text
. . . "Replace the two dots by three
 dots."

sksen
Cross-Out

sksen
Replacement Text
. . . "Replace the crossed out
 character by three dots."

sksen
Cross-Out

sksen
Replacement Text
. . . "Replace the crossed out
 character by three dots."

ACADEMIC STUDIES - NATIONAL JOURNAL OF JYOTI RESEARCH ACADEMY 7

A0=A(:,1:k-1); A0(:,k:n-1)=A(:,k+1:n); A=A0,
c0=c(1:k-1); c0(k:n-1)=c(k+1:n);c=c0, n=n-1;
end; end;

If we now issue the command

>> A = [-3 3 1 0;2 4 0 1], b = [6 12]’, c = [4 -5 0 0]’,
lpsolverheuristic1

we get the solution of the LP Min ct x subject to Ax = b, x ≥ 0 ,
where

[]tcbA 0054,
12

6
,

1042

0133
−=








=







−
=

as x = [x1 x2]
t = [0.6667 2.6667]t.

This noniterative polynomial-time heuristic algorithm is useful
in many lps since even if it fails to produce the optimal solution,
it gives one close to it and thus can be a good starting feasible
solution. Practically all the interior-point as well as exterior-
point methods for linear optimization start the solution procedure
from a known feasible solution. The optimal objective function
value produced by this heuristic solution is either close to the
actual optimal value of the objective function or often the
actual optimal value of the objective function.

Testing optimality of a given solution of an LP Let the linear program
(lp) be Min ct x subject to Ax = b, x ≥ 0 . Let pj = j – th non-basic
vector in A. Also, let B be the basis. Then [14]

Step 1 Compute yt = ct
BB

–1 (row vector), zj –cj = ytpj – cj (scalar)

Step 2 If all zj –cj ≤ 0 then the solution is optimal else see pp.
254-55 of [14].

It is rather easy to check whether a given solution of a linear
system is correct or not. It is, however, not so obvious to check
whether a given solution of an lp is correct or not.

Semi-numerical computation We have rarely thought about the
possibility of non-numerical (symbolic) computation mixed
with the numerical ones when we proceed solving a pure
numerical problem. It is interesting to note that sometimes
symbolic computations embedded inside numerical
computations are capable of obviating the problem of division
by 0 and thus could be useful. For example, we know that the
numerical LU decomposition of a non-singular numerical matrix
will fail when a leading/trailing minor (whose order is at least 1
less than that of the matrix) vanishes. Under these circumstances,
one can use rank-augmented LU-decomposition [5] which is
completely numerical. Alternatively, one may use a symbol x
and carry out semi-numerical (a combination of numerical and
non-numerical) computation and then allow 0→x (in the
limit). In any other situation/method, similar computational
procedure could be devised. However, in most programming
languages such as the Fortran meant for numerical computation,
such a non-numerical computation may be cumbersome (more
involved in the implementation aspects) and thus may not be
very attractive.

6. Conclusions
We have just provided here a few physically concise algorithms
for linear systems with their computational complexities for
ready use by a reader/researcher who has Matlab software. The
proofs are omitted either because these are available in the cited
literature or are not too hard. The NC-LINSOLVER in Sec. 3
can be easily modified to include pruning of linearly dependent
rows of the matrix as these rows do not contribute to the
information content of the linear system. This pruning can be
just an integral part of the NC-LINSOLVER. It will reduce the
size of the augmented matrix (A, b) of the system Ax = b to a
significant extent. Consequently we would need less storage
space as well as significantly less amount of computation resulting
in less error. There are many physical problems whose
mathematical models are partial/ordinary differential equations.
Many of these models involve large linear systems often in a
specific structure such as the tri-diagonal form and a sparse form.
Such a structure can be exploited by appropriately modifying
the foregoing algorithms so that the storage as well as
computations are highly reduced. Besides, a parallel
implementation of the algorithms is not hard. Taking the
structural advantage and implementing the algorithms on a
parallel machine, are however, significant innovative
programming as well as mathematical activities. One may pursue
such activities producing excellent numerical algorithms that
can solve truly large problems with competitive quality of the
results and computational complexity.

End Notes
1 By ‘solution’ we mean the values of the variables (elements) of

the unknown solution vector when substituted in all the given
equations will satisfy all the equations.

2 We, the human beings, can visualize things up to three dimensions
and not beyond three although to solve real-world problems we
need to consider very high dimensional hyperspace (space
bounded by hyperplanes). One dimensional hyperplane is a straight
line starting from – ∞ going to ∞. Zero dimensional hyperplane is
a point while two dimensional hyperplane is a plane extended
from –∞ to ∞, and so on. It is interesting to note that we can
think of two mutually perpendicular straight lines as in Euclidean
geometry. We can also imagine three mutually perpendicular lines.
Can we imagine four mutually perpendicular lines? The answer is
‘no’ for a common human being. It appears that an ant has
maximum two dimensional sense. If a sugar granule is dropped in
front of the crawling ant, it would appear to it a miracle as the
granule comes from above (through the third dimension). Nothing
was there in front of it while all of a sudden the granule appeared!

3 Nature knows no fault. Nature follows all natural laws (known to
us or not) perfectly and there exists no disorder (chaos). It is only
our limitation in our capabilities/knowledge, we have developed
the theory of chaos just to get some kind of forecast/solution of
the extremely highly sensitive problems. Slightest change in initial
conditions in these problems may cause enormous change in the
forecast/solution. Consequently, the probability of forecast (for
example, the forecast of the path of a cyclone/hurricane) to be
correct is often very low.

8 LINEAR SYSTEMS: RELOOK, CONCISE ALGORITHMS, AND MATLAB PROGRAMS

4 While the age-old proverb, viz., To err is human was valid in the
whole of past, is valid today, and will remain valid over the whole
of future. Here err means mistake and human implies all living
beings including human beings. It is impossible to find a living
being who can say that he/she never commits a mistake. Another
relevant proverb is Not to err is computer. Here computer implies
modern computer which is nonliving.

5 Matlab is a very high level user-friendly programming language
meant for scientists and engineers. Its usage needs no formal
programming knowledge.

6 Out of several possible norms [4] we use/compute the Euclidean
norm. The Euclidean norm of the matrix

∑∑
==

==
n

j

m

i
ij ijaAisaA

1

2

1

||||][.

Similarly, the Euclidean norm of the vector x is || x || = .

References
1. V. Lakshmikantham, S.K. Sen, G.W. Howell, Vectors versus

matrices: p-inversion, cryptographic applications, and vector
implementation, Neural Parallel Sci. Comput. 4 (1996) 129–
140.

2. C.R. Rao, S.K. Mitra, Generalized Inverse of Matrices and Its
Application, Wiley, New York, 1971.

3. G. Golub, W. Kahan, Calculating the singular values and the
pseudo-inverse of a matrix, SIAM J. Numer. Anal. B-2 (1965)
205–224.

4. E.V. Krishnamurthy, S.K. Sen, Numerical Algorithms:
Computations in Science and Engineering, Affiliated East-West
Press, New Delhi, 2001.

5. S.K. Sen, E.V. Krishnamurthy, Rank-augmented LU-algorithm
for computing generalized matrix inverses, IEEE Trans. Comput.
C-23 (1974), 199-201.

6. S.K. Sen, S.S. Prabhu, Optimal iterative schemes for computing
Moore–Penrose matrix inverse, Internat. J. Systems Sci. 8 (1976)
748–753.

7. E.A. Lord, V.Ch. Venkaiah, S.K. Sen, A concise algorithm to
solve under-/over-determined linear systems, Simulation 54 (1990)
239–240.

8. E.A. Lord, V.Ch. Venkaiah, S.K. Sen, A shrinking polytope
method for linear programming, Neural Parallel Sci. Comput. 4
(1996) 325–340.

9. V. Lakshmikantham, S.K. Sen, M.K. Jain, A. Ramful, O(n3)
noniterative heuristic algorithm for linear programs with error-
free implementation, Applied Mathematics and Computation
110(2000) 53-81.

10. S.K. Sen, H. Agarwal, Sagar Sen, Chemical equation balancing:
An integer programming approach, Mathematical and Computer
Modelling, 44(2006) 678-691.

11. E.H. Moore, On the reciprocal of the general algebraic matrix
(abs.), Bull. Amer. Math. Soc. 26 (1920) 394–395.

12. R. Penrose, A generalized inverse for matrices, Proc. Chemb.
Phil. Soc. 51 (1955) 406–413.

13. V. Lakshmikantham, S.K. Sen, Computational Error and
Complexity in Science and Engineering, Elsevier, Amsterdam,
2005.

14. H.A. Taha, Operations Research: An Introduction, Macmillan,
New York, 1989.

sksen
Highlight

sksen
Inserted Text
square-root of the sum of squares of all the elements of X

 "Insert this text immediately after
 equal to sign."

sksen
Cross-Out

sksen
Replacement Text
The "Replace the two words
 While the by one word
 The."

sksen
Highlight

