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Abstract— A methodology is presented which en-
ables the specification and synthesis of software
tools to aid in plant and controller modeling for
multi-domain (electrical, mechanical, hydraulic, and
thermal) physical systems. The methodology is based
on meta-modeling and graph rewriting. The plant
is modeled in a domain-specific formalism called
the Real World Visual Model (RWVM). Such a
model is successively transformed to an Idealized
Physical Model (IPM), to an Acausal Bond Graph
(ABG), and finally to a Causal Bond Graph (CBG).
A Modelica (www.modelica.org) model, consisting
of a Causal (algebraic and differential equation)
Block Diagram (CBD), is generated from the CBG.
All transformations are explicitly modeled using
Graph Grammars. A PID controller model, specified
in Modelica as a CBD is subsequently integrated
with the plant model. AToM3 (atom3.cs.mcgill.ca),
A Tool for Multi-formalism and Meta Modeling is
used to meta-model and synthesize visual modeling
environments for the RWVM, IPM, ABG, and CBG
formalisms as well as for transformations between
them. The entire process of modeling, transforma-
tion, and simulation is demonstrated by means of a
hoisting device example. Our methodology drastically
reduces development time (of the modeling tool an
indirectly of the domain-specific models), integrates
model checking via Bond Graph causal analysis, and
facilitates management and reuse of meta-knowledge
by explicitly modeling formalisms and transforma-
tions.

I. INTRODUCTION

Modeling of a multi-domain (electrical, mechan-

ical, hydraulic, and thermal) lumped-parameter

physical system and its controller is becoming

challenging with the increasing complexity of such

systems. Modeling techniques have come a long

way from the traditional approach of writing down

Ordinary Differential Equations (ODE) and Dif-
ferential Algebraic Equations (DAE) to the con-

struction of visual models that are modular, hierar-

chical, and more recently domain-specific, possibly

encompassing multiple formalisms. Widely used

modeling tools such as Dymola [7](based on Mod-
elica[6] ) and MATLAB Simulink/SimMechanics

[4], [5] are also based on visual languages. In these
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tools the domain-specific knowledge is hard-coded

in the formalism and is not represented explicitly

in the form of a model (meta-model). The develop-

ment effort required to craft such a tool far exceeds

that of our approach where the software for the

modeling environment is automatically synthesized

from the meta-model. In Modelica [6], the model

is specified in an object-oriented language but it

directly translates to differential-algebraic equa-

tions. In our approach, Graph Grammar [1] rules

facilitate rapid model design and transformation as

described in Section III. Model transformation is

normally coded in a textual programming language

in popular modeling tools even when the model

itself is graphical. Our approach is implemented in

the tool AToM3 [8].

II. META-MODELING

We specify the abstract syntax of modeling

formalisms using Unified Modeling Language
(UML) class diagram (CD) models called meta-

models (model of a class of models). UML CD

are in turn meta-modeled using UML CD itself

or Entity-Relationship Diagrams (ERD). This is

shown in Fig. 1. The expressive power of meta-

modeling formalisms UML CD and ERD is en-

hanced through constraints specified in the Object

Constraint Language (OCL) or Python (used in

AToM3). Constraints are set on attribute values and

relationship cardinalities depending on the formal-

ism.

We specify, using UML CD, the meta-models

for three different visual formalisms. We also use

an object-oriented textual formalism, (Modelica),

to represent models. The language itself is meta-

modeled using Backus-Naur style grammar. Fi-

nally, the simulation result models are expressed

in a Trajectory formalism. The meta-models for

visual formalisms RWVM, IPM, and BG (contains

ABG and CBG) are given in Fig. 2 (a), (b), and

(c) respectively. We synthesize a dedicated visual

modeling environment for each of these formalism

to express models of our running example, the

hoisting device. A hoisting device, as described

by Broenink [2], is a multi-domain engineered

physical system. It comprises four components:

electrical mains, electromotor, cabledrum and a
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Fig. 1. Methodology Overview

load arranged in the configuration shown in Fig. 2

(a). The electrical mains represent the electrical

domain of the hoisting device. The electromotor,

which represents the rotational mechanical domain,

converts electrical to rotational mechanical energy.

The cabledrum transforms the rotational mechan-

ical energy to linear mechanical energy to lift

the load along a rope. Therefore, the hoisting de-

vice example combines three engineering domains:

electrical, linear mechanical, and rotational me-

chanical. The roles of textual formalism ,Modelica,

and the Trajectory formalism (meta-modeled using

UML CD) to encode model behaviour are shown

in Fig. 2 (d) and (e) respectively.

III. GRAPH TRANSFORMATIONS

The transformation of models is a crucial el-

ement in all model-based endeavours. As mod-

els, meta-models, and meta-meta-models are all in

essence attributed, typed graphs, we can transform

them by means of graph rewriting. The rewriting

is specified in the form of Graph Grammar [1]

models. These are a generalization, for graphs, of

Chomsky grammars. Graph Grammars are com-

posed of an ordered collection of rules. Each rule

consists of Left Hand Side (LHS) and Right Hand

Side (RHS) graphs. Rules are evaluated against an

input graph, called the host graph. If a matching is

found between the LHS of a rule and a sub-graph

of the host graph, then the rule can be applied.

When a rule is applied, the matching subgraph

of the host graph is replaced by the RHS of the

rule. Rules can have applicability conditions, as

well as actions to be performed when the rule is

applied. Some graph rewriting systems have control

mechanisms to determine the order in which rules

are checked. We use our tool AToM3 to specify

graph grammar (GG) rules. Graph Grammars can

transform models between formalisms (specifying

denotational semantics), structurally optimize mod-

els, and also can be used to specify operational

semantics i.e., simulations. Formalism transforma-

tion rules require a source formalism meta-model,

a target formalism meta-model and the Generic

Graph formalism. The Generic Graph edges and

vertices can connect between objects of any for-

malism allowing a rule to associate related entities

of different formalisms. Objects from the source

formalism can be preserved via these generic links

to uniquely identify then position at any stage.

These source objects, relationships and generic

links can be removed using other rules leading

to a model purely in the target formalism. Rule

execution is constrained by pre-conditions. Post

actions are executed after the execution of a rule.

Rules are also used to copy/specify attributes to

a model in the target formalism. An 〈ANY〉 tag

for an object X, for instance, in the LHS indicates

that the GG rule will execute for any value of

the attribute of the object X. The 〈COPIED〉 or

〈SPECIFIED〉 tags in the RHS of a rule indicate

that some attribute from the LHS object is copied

or specified respectively to an object in RHS. Every

object in the LHS and RHS of a rule is identified by

a unique label (a positive integer is annotating the

object). We present three sets of graph grammar

rules (referred to in Fig. 1): RWVM to IPM

(RWVM 2 IPM), IPM to ABG (IPM 2 ABG), and
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4: GG: CBG_2_Modelica

5: Simulation

Point
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+current
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(e)

Meta−models

Real World Visual Modeling Formalism

Bond Graph Modeling Formalism

Modelica Object−Oriented Modeling Formalism

Trajectory Formalism

CD

Idealized Physical Modeling Formalism

CD

CD

composition : element_list 

{ public element_list | 

protected element_list | 

equation_clause | 

algorithm_clause }

 [ external [ language_specification ]

 [ external_function_call ] [ annotation ";" ]

 [ annotation ";" ] ] language_specification : STRING

BNF

CD

model ElectricalCircuit    

"A simple  electrical circuit built in bond graph technology"    

    constant Real pi=4*Modelica.Math.atan(1);   

   BondLib.Electrical.Analog.Sources.SineVoltage U0(V=10, freqHz=2500/pi);   

   BondLib.Electrical.Analog.Basic.Resistor R1(R=100);   

   BondLib.Electrical.Analog.Basic.Resistor R2(R=20);   

   BondLib.Electrical.Analog.Basic.Inductor L(L=0.0015, i0=2);   

   BondLib.Electrical.Analog.Basic.Capacitor C(C=1e−6, u0=1);   

   BondLib.Electrical.Analog.Basic.Ground G; 

equation    

   connect(U0.p, R1.p);   connect(L.p, R1.p);   

   connect(U0.n, G.p);   connect(C.n, G.p);   

   connect(R1.n, C.p);   connect(R2.p, C.p);   

   connect(L.n, G.p);   

   connect(R2.n, L.n); 

end ElectricalCircuit;  
Modelica Code

Models

Fig. 2. UML Class Diagram metamodels and Models Specified in Generated Visual Modelling Environments for (a) RWVM , (b)
IPM, (c) BG, (d) Backus-Naur grammar for Modelica and Modelica Code Model, and (e) Trajectory formalism and Simulation
output Model
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TABLE I

HOISTING DEVICE RELATED GRAPH GRAMMAR RULES FOR

TRANSFORMATION RWVM 2 IPM

Order Rule Name Description

1 Mains 2 IPM RWVM of electrical mains is
transformed toIPMM of electri-
cal mains

2 Motor 2 IPM RWVM of a motor is trans-
formed toIPMM components
of the rotational mechanical
domain

3 CableDrum 2 IPM RWVM of the cable drum is
transformed toIPMM of the ca-
bledrum

4 Load 2 IPM RWVM load is transformed
intoIPMM of load

ABG to CBG (ABG 2 CBG).

A. Graph Grammar Rules: RWVM to IPM

The Real World Visual Modeling formalism

is domain-specific. We specify the RWVM for a

hoisting device. Objects in the RWVM represent

only high-level entities that comprise a hoisting de-

vice such as electrical mains, motor, and cabledrum

based on domain knowledge and required detail.

Mapping a RWVM to an IPM can be done in one

or more ways. There is no fixed set of rules and

in general human input will be required. One such

mapping is given by four graph grammar rules in

Table I.

B. Graph Grammar Rules: IPM to ABG

There is a one-to-one transformation from an

idealized physical model to an acausal bond graph.

The set of GG rules with their execution order is

given in Table II. Specifying the transformation a

brief description of the steps is given below:

Step 1 (Identifying Efforts): The rules

identify efforts {E 2 E, RM 2 RM, RM 2 LM,

E 2 RM, LM 2 LM} insert a bond graph junction

for pertinent IPM links. A 0-junction is associated

with all E 2 {E, RM} relationships. The rules iden-

tify efforts {RM 2 LM, LM 2 LM} are for the

mechanical domain and result in the insertion of

a 1-junction. An example is given in Fig. 3 (a).

Step 2 (Finding Effort/Flow Differences): The

rules effort differences {R E, C E, I E, AC E} in-

sert a 0 to 1 junction as shown in Fig. 3 (b)

are applicable to the components in the electrical

domain. The rules flow differences {R RM FrmE,

R RM,I RM} are executed across mechanical do-

main components for which a 1 to 0 junction is

inserted. A flow difference example is shown in

Fig. 3 (d).

Step 3 (Inserting Bond Graph Elements):

After creating the initial junction structure we

insert Bond Graph elements at the appropriate

positions. The network formed by a generic link

that connects an IPM element with its associated

junction structure (created in Step 1 and 2) is

unique. This property helps in the deterministic ex-

ecution of these rules at the correct locations. The

rules insert SE E, R E, I E, GY E, TF RM 2 RM,

R RM, I RM, SE LM, I LM 1 are executed in this

step. An example, insert SE E, for the electrical

domain is given in Fig. 3 (c). Also, in Fig. 3 (h) the

example insert R RM illustrates an insertion rule

for the mechanical domain.

Step 4 (Deleting IPM Elements and Generic

Link): Now that we have the initial Bond Graph

structure we can remove the IPM elements and

the generic links using some deletion rules. The

LHS is the IPM element or connection or a generic

link and the RHS of the rule is Empty. The rules

delete E 2 E, E 2 RM, RM 2 RM, RM 2 LM,

LM 2 LM, R E, C E, I E, AC E, R RM, I RM,

AC E, TF RM 2 LM, Earth E, generic link, I LM

are executed at this step. An example is given in

Fig. 3 (d).

Step 5 (Optimizing Bond Graph): The Bond

Graph obtained in Step 4 needs to be simplified due

to extra junctions created in Steps 1 and 2 to facil-

itate the transformation. The rules optimize J J J,

S J J, J J R, J J GY, J J ES, J J TF, S R I GY,

GY R I TF are some of all possible optimizations

(see [2] for all others). Two examples are given in

Fig. 3 (e) and (f).

C. Graph Grammar Rules: ABG to CBG

Causality assignment for Bond Graphs is an

algorithmic procedure [2]. We implement causal-

ity assignment as a set of graph grammar rules.

The rules are given in Table III. The basic steps

involved are as follows.

Step 1 (Fixed Causality): Fixed causality is

assigned at the sources. An effort source (SE) has

by definition its effort variable going out as a signal

output. And hence it has an outward causal stroke.

This causality is called effort-out causality or effort

causality. Likewise, a flow source (SF) gives rise

to a flow-out causality or flow causality. The rules

FC SE 2 ZJ ,SF 2 OJ are executed in this step. An

example is given in Fig. 4 (a).

Step 2 (Constrained Causality):

Causality assignment of certain bonds imposes

a causal constraint on other bonds. For a trans-

former element one of the connected bonds has

an effort out causality, while the other has a flow

out causality. Similarly, in a gyrator element both

the incoming bond and the outgoing bonds have

the same causality i.e., either effort-out or flow-

out. An example of this type of causality constraint

is given in Fig. 4 (c). The causal condition at a
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LHS RHS Precondition:

node = LHS.nodeWithLabel(1)

return (not hasattr(node, "_E_2_E"))

Post Action:

node = LHS.nodeWithLabel(1) 

node._E_2_E = True

Specify Name : String in Junction #2

retval= "ZJ"+str(graphRewritingSystem.ZJCount) 

graphRewritingSystem.ZJCount=graphRewritingSystem.ZJCount+1 

return retval

Rule 2 (Order 2): identify_efforts_E_2_E

1
1

3

2
   <COPIED>

<SPECIFIED>

Precondition:

node = LHS.nodeWithLabel(1)) 

return not hasattr(node, "_effort_diff_R_Egenerated")

Post Action:

node = LHS.nodeWithLabel(1)) 

node._effort_diff_R_Egenerated = True

Specify Type : String in Junction #12

return "OJ"

Specify Name : String in Junction #12 

Node1 = LHS.nodeWithLabel(7)) 

Node2 = LHS.nodeWithLabel(8))

return Node1.Name.getValue()+Node2.Name.getValue()

Specify picType : Integer in Junction  #12

return 1

Specify Type : String in Junction  #15

return "ZJ"

Specify Name : String in Junction #15

Node1 = LHS.nodeWithLabel(7)) 

Node2 = LHS.nodeWithLabel(8)) 

return Node1.Name.getValue()+"−"+Node2.Name.getValue()

LHS RHS

Rule 7 (Order 7): effort_differences_R_E

1
5

     0

<ANY>
     0

<ANY>

<COPIED>

<COPIED>
<COPIED>

<COPIED>
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     1

<ANY> <SPECIFIED>

<SPECIFIED>

<COPIED>:<SPECIFIED>

<SPECIFIED>:<COPIED>

Precondition:

node = LHS.nodeWithLabel(1)) 

return not hasattr(node, "_insert_SE_E")

Post Action:

node = LHS.nodeWithLabel(1)) 

node._insert_SE_E = True

Specify Name : String in Energy_Source #7

return LHS.nodeWithLabel(1)).Name.getValue()

Specify Value : Float in Energy_Source #7 

return LHS.nodeWithLabel(1)).Value.getValue()

LHS RHS

Rule 14 (Order 14): insert_SE_E

1

3
3

4

7
8

4

5
1

5

(c)

Rule 24 (Order 24): delete_E_2_E

LHS RHS

1 Empty

(b)

(a)

(d)

Rule 40 (Order 40): optimize_J_J_J

Precondition:

siz_in=len(LHS.nodeWithLabel(2)).in_connections_) 

siz_out=len(LHS.nodeWithLabel(2)).out_connections_) 

if siz_in==1 and siz_out==1:     

    node = LHS.nodeWithLabel(2))     

    return not hasattr(node, "_optimize_J") 

else:     

    return None

Post Action:

node = LHS.nodeWithLabel(2)) 

node._optimize_J = True

LHS RHS

<COPIED>

<COPIED>

1
7

<ANY>

<ANY>
<ANY>

<ANY>

<ANY>

<ANY>

1
4

2 5
3

<COPIED>

<COPIED>

3

(f)
Rule 47 (Order 47): optimize_GY_R_I_TF

LHS RHS Precondition:

siz_in=len(LHS.nodeWithLabel(3)).in_connections_) 

siz_out=len(LHS.nodeWithLabel(3)).out_connections_) 

if siz_in==1 and siz_out==1:   

     return None 

else:    

     node = LHS.nodeWithLabel(3))   

     return not hasattr(node, "_optimize_GY_R_I_TF") 

Post Action:

node = LHS.nodeWithLabel(3)) 

node._optimize_GY_R_I_TF = True

 <ANY>:<ANY>

 <ANY>:<ANY>

1
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 <ANY>:<ANY>
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Rule 12 (Order 12): flow_differences_R_RM
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Precondition:

node = LHS.nodeWithLabel(1))

return not hasattr(node, "_flow_diff_R_RM")

Post Action:

node = LHS.nodeWithLabel(1)) 

node._flow_diff_R_RM = True

Specify Type : String in Junction #11

return "ZJ"

Specify Name : String in Junction #11 

Node1 = LHS.nodeWithLabel(6)) 

Node2 = LHS.nodeWithLabel(7)) 

return Node1.Name.getValue()+Node2.Name.getValue()

Specify picType : Integer in Junction #11

return 0
Specify picType : Integer in Junction #14

return 1  
Specify Type : String in Junction #14

return "OJ"  
Specify Name : String in Junction #14 

Node1 = LHS.nodeWithLabel(6)) 

Node2 = LHS.nodeWithLabel(7))  

return Node1.Name.getValue()+"−"+Node2.Name.getValue()  

<COPIED>

<COPIED>

<COPIED>:<SPECIFIED>

<SPECIFIED> <COPIED>

     0

<ANY>

3

4

5

7

Precondition:

node = LHS.nodeWithLabel(1)) 

return not hasattr(node, "_insert_R_RM")

Post Action:

node = LHS.nodeWithLabel(1)) 

node._insert_R_RM = True

Specify Name : String in Energy_Dissipator #19

return LHS.nodeWithLabel(1)).Name.getValue()

Specify Value : Float in Energy_Dissipator #19

return LHS.nodeWithLabel(1)).Value.getValue()

Specify Out_Type : String in J_2_ED #20 

return "R_RM"  S

Specify In_Type : String in J_2_ED #20 

return "OJ"  

Specify Type : String in J_2_ESt #20 

return "OJ_2_R_RM"

LHS RHS

Rule 19 (Order 19): insert_R_RM
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Fig. 3. Typical Graph Grammar Rules in IPM 2 ABG

LHS RHS

1 1

Specify direction : Integer in Junction #2

#Setting the strong bond 

return 1

Specify direction : Integer in ES_2_J #3

#Setting the link SE_2_ZJ to effort out causality 

return 1

    SE  : <ANY>

<ANY>  <ANY>

     0
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 <COPIED>  : <COPIED>
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Rule 6 (Order 6): CC_ZJ_2_I
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   I      :  <ANY>
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2
<COPIED> : <COPIED>

<COPIED>  <COPIED>

<COPIED>

<COPIED>

3

2

Precondition:

return LHS.nodeWithLabel(1).direction == 1

Post Action:

print "Non−preferred causality assigned, please verify

the model"

Specify direction : Integer in J_2_ESt #3

#Setting effort out causality 

return 1

Rule 1 (Order 1): FC_SE_2_ZJ

LHS RHS

Rule 11 (Order 11): CC_J_TF_J

<ANY>

<ANY>
1

2

Precondition:

return  LHS.nodeWithLabel(1).direction!=0

Specify direction : Integer in Junction #3

#Set the strong bondedness of the junction based on the input causality 

if LHS.nodeWithLabel(3).Type=="ZJ" and LHS.nodeWithLabel(5).direction==1:    

  return 1 

elif: 

   LHS.nodeWithLabel(3).Type=="OJ" and LHS.nodeWithLabel(5).direction==−1:    

   return −1 

else:       

   return 0

Specify direction : Integer in J_2_TF #4

if LHS.nodeWithLabel(1).direction==1:     

    return 1 

elif: 

    LHS.nodeWithLabel(1).direction==−1:    

    return −1

Specify direction : Integer in TF_2_J #5

#Set causality based on the input causality to the transformer 

if LHS.nodeWithLabel(4).direction==1:    

   return 1 

elif: 

   LHS.nodeWithLabel(4).direction == −1:     

   return −1

TF : <ANY>

<ANY>

<ANY>

<ANY>

4

5

3

<COPIED>
<COPIED>

1

2 TF : <COPEID>

<COPIED>

<COPIED>
<COPIED>

4

5

3

LHS RHS

3

1

Rule 21 (Order 21): PC_ZJ_2_C

     0
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    C    :  <ANY>

<ANY>  <ANY>

1

2 <COPIED> : <COPIED>

<COPIED>  <COPIED>

<COPIED>

<COPIED>

3

2

Precondition:

return LHS.nodeWithLabel(1).direction == 0

Specify direction : Integer in J_2_ESt #3

#Assign preferred  causality  

return −1

Specify direction : Integer in Junction #1

#Everything else gets an effort out causality 

return 1

LHS RHS

3

1

Precondition:

return LHS.nodeWithLabel(1).direction == 0

Specify direction : Integer in J_2_ED #3

#Assign indifferent causality to help propagate constraints 

#Rule execution may indicate model incorrectness

return −1

Specify direction : Integer in Junction #1

#Assign a causality 

return 1

Rule 25 (Order 25): IC_ZJ_2_ED

     0

<ANY>

<ANY> : <ANY>

<ANY>  <ANY>

1

2

<COPIED> : <COPIED>

<COPIED>  <COPIED>

<COPIED>

<COPIED>

3

2

(a)

(b)

(c)

LHS RHS

3

1

Rule 18 (Order 18): CC_OJ_2_OJ

     1

<ANY>

     1

 <ANY>

1

2 <COPIED>

<COPIED>

<COPIED>

<COPIED>

3

2

Precondition:

return LHS.nodeWithLabel(1).direction== −1
Specify direction : Integer in Junction #2

#Setting strong bondedness due to propagation 

return −1
Specify direction : Integer in J_2_J #3

#Setting flow out causality 

return −1

(d)

(e)

(f)

Fig. 4. Typical Graph Grammar Rules in ABG 2 CBG
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TABLE II

GRAPH GRAMMAR RULES FOR IPM 2 ABG

No. Rule Name No. Rule Name

1 delete earth 25 delete E 2 RM

2 identify efforts E 2 E 26 delete RM 2 RM

3 identify efforts RM 2 RM 27 delete RM 2 LM

4 identify efforts RM 2 LM 28 delete LM 2 LM

5 identify efforts E 2 RM 29 delete R E

6 identify efforts LM 2 LM 30 delete C E

7 effort differences R E 31 delete I E

8 effort differences C E 32 delete AC E

9 effort differences I E 33 delete R RM

10 effort differences AC E 34 delete I RM

11 flow differences R RM FrmE 35 delete AC E

12 flow differences R RM 36 delete TF RM 2 LM

13 flow differences I RM 37 delete Earth E

14 insert SE E 38 delete generic link

15 insert R E 39 delete I LM

16 insert I E 40 optimize J J J

17 insert GY E 41 optimize S J J

18 insert TF RM 2 RM 42 optimize J J R

19 insert R RM 43 optimize J J GY

20 insert R RM 1 44 optimize J J ES

21 insert I RM 45 optimize J J TF

22 insert SE LM 46 optimize S R I GY

23 insert I LM 1 47 optimize GY R I TF

24 delete E 2 E

1-junction is the dual form of the causal condi-

tion at the 0-junction. All flows are equal, thus

exactly one bond will bring in the flow, implying

that exactly one bond has the causal stroke away

from the 1-junction (see Fig.4 (d) for an example

rule). These conditions give rise to several other

causality constraints that are specified using Graph

Grammars (see the rule in Fig. 4(b)). The rules in

Table III starting with the prefix CC are executed,

in the given order, to propagate causality due

to constraints. If differential causality is assigned

due to constraint propagation, an error is reported

indicating a problem with the physical model.

Step 3 (Preferred Causality): At storage ele-

ments, the causality determines whether an inte-

gration or a differentiation occurs. Integration or

differention is performed on the flow or the effort

coming into the element. In the case of the capac-

itor the effort is integrated in physical reality. The

flow is integrated in the case of an inductor. There-

fore, integral causality is the preferred causality due

to the physics of the phenomenon. This implies that

a C-element has an effort-out causality and an I-

element has a flow-out causality as its preference.

The Graph Grammar to assign preferred causality

to the bond between a 0-junction and an inductor

is given in Fig. 4(e).

TF : TF0

2
J0

1

J1
1

J2

1
: weight

−9.8 Newton

SE

I
0.05 Henry

ESt0:
I

667 kgm2

ESt1:

I

1.0 kg
ESt2:

.

R ED0

0.5 Ohms

:
R R_bearing
1 Ohm

:

GY : GY0

5

Fee dba ck1

Ti=0 .5

k=25

He igh t

PID1

Int e g ra tor

I

Fig. 5. Multi-formalism model of Plant (Bond Graph) and
Controller (Causal Block Diagram)

Step 4 (Indifferent Causality): Indifferent

causality is assigned, when there exist no causality

constraints. For the linear resistor it does not matter

which of the port variables is the output. There

is no difference in causality if the current(flow)

is the incoming variable and the voltage (effort)

is the outgoing variable and vice versa. An ex-

ample rule is presented in Fig. 4(f). The rules

IC ZJ 2 R,OJ 2 R are finally executed in this step.

D. Simulatable Model Generation for Plant and

Controller

The plant system is now in the CBG formal-

ism. We generate Modelica models using François

Cellier’s Bond Graph library [3]. The Bond Graph

library is based on the causal block construct in

the standard Modelica language. A PID controller,

from the Modelica standard library, which is also

made of Causal Blocks, is connected to the plant

system at this level of abstraction. For our hoisting

device example we use the controller to lift the load

to a desired height by controlling input voltage. In

Fig. 5 we present a schematic that shows how the

CBG is controlled by the PID controller.

IV. SIMULATION RESULTS

The hoisting device plant model is first simu-

lated without a controller and then a controller is

attached that has the task of bringing the load to

a specific height. Realistic parameter values are

given to the components of the Bond Graph model

of the hoisting device. The electrical domain has

resistance Rel = 0.5Ω, inductance L = 0.05H ,

and the electromotor gyration has a ratio of m = 5.

In the rotational mechanical domain bearing resis-

tance is Rbearing = 1Ω, and its rotational inertia

J = 667Nm/rad. The cable drum transformer

is given the ratio n = 2. In the translational

mechanical domain the mass of the load is m =

1kg and the effort/force source due to gravity is

weight = −9.8N .

A pulsed voltage (0-110V) signal is applied as

input as shown in the upper plot of Fig. 2 (e). The
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TABLE III

GRAPH GRAMMAR RULES FOR IPM 2 ABG

No. Rule Name Description No. Rule Name Description

Fixed Causalities 13 CC OJ 2 C 1-junction to Capacitor

1 FC SE 2 ZJ Effort source to 0-junction 14 CC OJ 2 I 1-junction to Inductor

2 FC SF 2 OJ Flow source to 1-junction 15 CC OJ 2 ZJ 1-junction to 0-junction

Constrained Causalities 16 CC OJ 2 OJ 1- junction to 1-junction

3 CC ZJ 2 R 0-junction to Resistor 17 CC OJ 2 TF 1-junction to Transformer

4 CC ZJ 2 C 0-junction to Capacitor 18 CC OJ 2 GY 1-junction to Gyrator

5 CC ZJ 2 I 0-junction to inductor Preferred Causalities

6 CC ZJ 2 ZJ 0-junction to 0-junction 19 PC ZJ 2 C 0-junction to Capacitor

7 CC ZJ 2 OJ 0-junction to 1-junction 20 PC OJ 2 C 1-junction to Capacitor

8 CC ZJ 2 TF 0-junction to Transformer 21 PC ZJ 2 I 0-junction to Inductor

9 CC ZJ 2 GY 0-junction to Gyrator 22 PC OJ 2 I 1-junction to Inductor

10 CC J TF J 0/1-junction to Transformer to 0/1-
junction

Indifferent Causalities

11 CC J GY J 0/1-junction to Gyrator to 0/1-
junction

23 IC ZJ 2 R 0-junction to Resistor

12 CC OJ 2 R 1-junction to Resistor 24 IC OJ 2 R 1-junction to Resistor

Load Height

Control Input
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Fig. 6. Simulation Plots

height of the mass with respect to time is given

in the lower plot of Fig. 2 (e). We then introduce

the PID controller. The controller voltage input is

shown in Fig. 6 (c). The task of the controller is to

lift the load to a height of 25 m. The height of the

load with respect to time is shown in Fig. 6 (d).

V. CONCLUSIONS AND FUTURE WORK

We have implemented a framework to model

multi-domain physical systems and their con-

trollers. The system as such was modelled at a

domain-specific level in the RWVM formalism. A

PID controller was connected at the level of Causal

Blocks since it is a suitable representation formal-

ism. The RWVM of our running example hoisting

device is automatically transformed using graph

rewriting to a Modelica model that is simulated

using a DAE solver. Meta-modeling allows us to

synthesize domain-specific visual modelling envi-

ronments. This numerically constrains the modeler

to create only valid models therefore development

errors. Furthermore, the explicit encoding of mod-

eling knowledge as graph grammar rules (or model

transformations in general) allows the synthesis of

model transformations. This facilitates the creation

of complex domain models without re-creating an-

alytical models (such as IPM, BGs, and Modelica

code) normally constructed by hand.

In ongoing work [9] we extend our approach

by exploring the design space of domain-specific

models in pursuit of satisfying product require-

ments represented as fitness criteria. This extension

will improve the process of synthesizing physically

meaningful models directly from the requirements.
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