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Abstract Testing anodel transformationequires inputtest formation. We re-generate test models once we discover all
models which are graphs of inter-connected objects. Thespre-condition constraints. We qualify test models gerserat
test models must conform to the transformationfsut meta-  using input domain coverage strategiesmiatation analysis
modeland tometa-constraintfrom heterogeneous sources We show that sets of test models satisfying coverage strate-
such as well-formednessrules, transformation pre-ciomdif ~ gies give mutation scores of up to 93% vs. 70% in the case
and test strategies. Manually specifying such models is teef unguided/random generation. These scores are based on
dious since models must conform to a possibly large inputanalysis of 3200 automatically generated test models or th
metamodel such asMlL and must simultaneously conformto representative transformation ofMu class diagram models

several meta-constraints. In this paper, we present thelmodto RDBMS models.

generation tool @GRTIER to automatically generate test mod-

els for any given model transformationARTIER first con-

structs a precise specification of a transformation’s &éffec 1 Introduction

input domain viameta-model pruningCARTIER transforms .
P P o Model transformations are core MDE components that auto-

the effective input domain including knowledge from het- . . i
mate important steps in software development such as refine-

erogenous sources to a common formal specification in the . . . T
ment of an input model, re-factoring to improve maintaitabi

language ALOY . CARTIER solves the ALOY modelto gen- ity or readability of the input model, aspect weaving, exoge

erate test models that are guided by a test strategy. Thaise tenous and endogenous transformations of models, and gener-

models often help discover new pre-conditions for the trans .. . .
P P ation of code from models. Although there is wide spread
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development of model transformations in academia and inis much smaller than the set of instances of the general pur-
dustry the validation of transformations remains a hardbpro pose metamodel. ARTIER can prune the metamodel in or-
lem [1]. In this paper, we address the challenges in validatder to explicitly build the sub part of the metamodel that the
ing model transformations vialack-box automatic test data transformation can manipulateA€TIER also assists the def-
generationWe think that black-box testing is an effective ap- inition of pre conditions on the metamodel to make the in-
proach to validating transformations due to the diversity o put domain more precise. Once the input domain is precisely
transformation languages based on graph rewriting [2], im-modelled, @QRTIER can generate model from this domain.
perative execution (Kermeta [3]), and rule-based tramséer  CARTIER either generate any model without guidance or it
tion (ATL [4]) that render language specific formal methods can use test strategies in order to have models that cover the
and white-box testing currently impractical. input domain [5].

In black-box testing of model transformations we require  Are the test models generated by®&rIER able to detect
test modelshat candetect bugén the model transformation. bugs in a model transformation? We answer this question by
These models are graphs of inter-connected objects that mugenerating and comparing sets of test models using differen
conform to a meta-model and satisfy meta-constraints suckesting strategies. Specifically, we consider two testiraje-
as well-formedness rules, transformation pre-conditiand  gies:unguidedandinput domain coverage strategifs]. We
test strategies. Manually specifying several hundrednest-  use mutation analysig6] [7] for model transformations to
els targeting various testing objectives is a tedious tagkia ~ compare these testing strategies. Mutation analysis sase
many cases impossible since the modeller may have to simuktest oraclgo determine the relatively adequacy of generated
taneously satisfy numerous possibly inter-related caimgs.  test sets.

In this paper, we present the tool and framewoARCIER We perform experiments to generate test models using
for automatic test model generatibased on the general idea different testing strategies and qualify them using matati
of constraint satisfactiom the domain of models. &RTIER analysis. We generate test models for the representatigelmo
has to address two main problems for test generation: identransformation ofUnified Modelling Language Class Diagram
tify a precise model of the transformation’s input domaim; a (UMLCD) to Relational Database Management Systems
tomatically select relevant test models in the input domain (RDBMS) models callectlass2rdbms. The mutation scores
The first issue is related to the fact that the input domain of ashow that input domain coverage strategies guide model gen-
transformation is generally described with a general psepo eration with considerably higher bug detection abiliti@3%)
metamodel (e.g., ML). However, the effective input domain, compared to unguided generation (70%). These results are

that captures only the set of models that can be transformedhased on 3200 generated test models and several hours of
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computation on a 10 machine grid of high-end servers. The

The precise contributions of this paper address exactly

large difference in mutation scores between coverageestrat these problems. We enlist them below:

gies and unguided generation can be attributed to the fatct th

coverage strategies enforce several aspects on test ntivatels
unguided generation fail to do. For instance, coveragéestra

gies enforce injection ahheritancein the UMLCD test mod-

els. Unguided strategies do not enforce such a requirement.

Several mutants are killed due to test models containing in-

heritance.

Thescientific contributionn this paper is based on a com-
bination of several recently published ideas. In [8], the au
thors for the first time presentARTIER demonstrating the
possibility of automatically generating a variety of testan
els. In [9], the authors generate hundreds of test modelgusi

different strategies to show that automatically genersast

models using partitioning strategies can indeed detecs.bug

We validate the bug detecting effectiveness of the gengrate

test models using mutation analysis of model transformatio

[7]. However, three important questions remain:

— Question 1:How can we scale the approach to generating

test models for large input meta-models such tha @

— Question 2:Does the model transformation pre-condition
precisely specify the input domain of a model transforma-
tion? If not, can automatically generated test models help
improve the pre-condition by presenting unforeseen and
unwanted modelling patterns?

— Question 3:Are we consistently able to generate effec-

tive test models for a given strategy using our approach?

— Contribution 1: We use the recently proposettta-model

pruningtransformation [10] to prune a large input meta-
model such as the ML to a subset called the effective
input meta-model. The effective input meta-model con-
tains only classes, properties, their dependencies raleva
the transformation under test. The often smaller effective
input meta-model is transformed to a small formal rep-
resentation in ALOY. In contrast, transforming a large
input meta-model such as the whole ofiU to ALLOY
results in a formal model that renders SAT solving infea-
sible due to the large number of signatures or facts.
Contribution 2: We show how automatically generated
test models can help us improve a model transformation’s
pre-condition. For instance, the test models we generate
for the case study transformatietass2rdbms helps us
discover new pre-condition constraints. These pre-canit
were not initially envisaged by the panel of world experts
in model-driven engineering who propose thess2rdoms

as the benchmark case study at the MTIP workshop [11].
We show that automatic generation can help us rapidly
discover structures that human or even experts cannot pre-
view in advance or require several years of transformation
usage experience.

Contribution 3: We show that @RTIER consistently gen-
erates effective test models for a given strategy. We illus-

trate consistency by demonstrating that generating multi-
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ple test models for the same test strategy does not signif-  MIMj speciles input M Trequiremens MMOSpeciﬁesoutput
model set  used to develop

model set
icantly change mutation scores. These test models corr(:} pre(MT) MT(|,O) post(MT) @

spond to multiple non-isomorphic solutions obtained us-

ing ALLOY's symmetry breaking scheme [12]. Fig. 1 A Model Transformation

The paper is organized as follows. In Section 2 we preseninodelsl. Test models must satisfy constraints that increase
the transformation testing problem and the running caslystu the trust in the quality of these models as test data and thus
In Section 3, we present foundational ideas useddRTWER.  should increase their capabilities to detect bugs in theahod
In Section 4, we describe theaBTIER methodology for au-  transformationMT (I,0). Bugs may also exist in the input
tomatic test model generation. In Section 5, we present theéneta-model and its invariank$M, or the transformation pre-
experimental setup for test model generation using diffiere conditionpre(MT ). However, in this paper we only focus on
strategies and discuss the results of mutation analysgedn  detecting bugs in a transformation.
tion 6 we present related work. We conclude in Section 7.

2.1 Transformation Case Study

2 Problem Description
Our case study is the transformation fronmU Class Dia-

We present the problem of black-box testmgdel transfor-  gram models tRDBMS models callectlass2rdbms. In this
mations A model transformatioMT (I, O) is a program ap-  section we briefly describgass2rdbms and discuss why it is
plied on a set of input modelsto produce a set of output a representative transformation to validate test modedigen
modelsO as illustrated in Figure 1. The set of all input mod- tion strategies.
elsis specified by a meta-modéM, (For example, UMLCD In black-box testing we need input models that conform
in Figure 2). The set of all output models is specified byto the input meta-mod&lM, and transformation pre-condition
meta-modeMMo. The pre-condition of the model transfor- pre(MT). Therefore, we only discuss thé&M, andpre(MT)
mationpre(MT) further constrains the input domain. A post- for class2rdbms and avoid discussion of the model transfor-
conditionpos{MT) limits the model transformation to pro- mation output domain. In Figure 2, we present a subset of the
ducing a subset of all possible output models. The modeUmL input meta-model foclass2rdbms. The concepts and
transformation is developed based on a set of requirementglationships in the input meta-model are stored aEamne
MTRrequirements model [13] (Figure 2 (a)). The invariants on thBILCD Ecore
Model generation for black-box testing involves finding model, expressed i@bject Constraint Language (OCL) [14],

valid input models we catkst modelérom the set of all input  are shown in Figure 2 (b). Thecore model and the invariants
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together represent the true input meta-modetigrs2rdbms. UmL class diagram model covers all major meta-modelling
The OCL andEcore are industry standards used to developconcepts such as inheritance, composition, finite and fafini
meta-models and specify different invariants on th@aL multiplicities. The entire WL input meta-model serves as a
is not a domain-specific language to specify invariants. How large input meta-model to demonstrate meta-model pruning
ever, it is designed to formally encode natural language reto an effective input meta-model containing only class dia-
quirements specifications independent of its domain. Ih [15 gram concepts.The constraints on th@lUmeta-model con-
the authors present some limitationsaxtL. tain both first-order and higher-order constraints. Thése a
The input meta-modeéVIM,; gives an initial specification €Xists a constraint to test transitive closure propertiethe
of the input domain. However, the model transformatiorifitse input model such as there must be no cyclic inheritance. The
has a pre-conditiopre(MT) that test models need to satisfy class2rdbms exercises most major model transformation op-
to be correctly processed. Constraints in the pre-contlitio ~ erators such as navigation, creation, and filtering (dieedri
class2rdbms include: (a) AllClass objects must have at least in more detail in [7]) enabling us to test essential modelgra
one primaryProperty object (b) The type of aRroperty ob-  formation features. Among the limitations th&ILCD meta-
ject can be aClass C, but finally the transitive closure of model does not containteger andFloat attributes. The num-
the type ofProperty objects ofClass C must end with type  ber of classes in th&yMLCD meta-model is not very high
PrimitiveDataType. In our case we approximate this recursive When compared to the standarsU 2.0 specification. There
closure constraint by stating thRtoperty object can be of —are also no inter meta-model references and arbitrary con-
typeClass up to a depth of 3 and the 4th time it should have tainments in the simple meta-model. However, this notyeall
a typePrimitiveDataType. This is a finitization operation to limitation in our approach as we claim that specifying a test
avoid navigation in an infinite loop. (c) &lass object can-  model requires only a small subset of the entire meta-model
not have amssociation and anProperty object of the same ~ and extracting this subset via meta-model pruning is part of

name (d) There are no cycles between non-persistiass ~ our methodology.

objects. Model generation is relatively fast but performing mu-
We chooselass2rdbms as our representative case study tation analysis is extremely time consuming. Therefore, we
to validate input selection strategies. It serves as a gritic  perform mutation analysis otlass2rdbms to qualify trans-
case study for several reasons. The transformationis tighbe formation and meta-model independent strategies for model
mark proposed in the MTIP workshop at the MoDELS 2005 synthesis. If these strategies prove to be useful in the case
conference [11] to experiment and validate model transfor-of class2rdbms then we recommend the use of these strate-

mation language features. The input domain meta-model ofjies to guide model synthesis in the input domain of other
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Class diagram subset of Samples of OCL Invariants
UML Meta-model
Property datatype |  Classifier context Class
is_primary: Boolean 1" name: String inv noCyclicInheritance:
name: String not self.allGenerals()->includes(self)
. A classifier |+

inv uniqueAttributesName:
self.attribute->forAll(att1, att2 |
att] .name=att2.name implies att1=att2)

1..x | attribute

gene )
0.1 Class

is_persistent: Boolean 0 context Model

inv uniqueClassifierNames:
self.classifier->forAll(c1, c2 |
cl.name=c2.name implies c1=c2)

memberEnd| 1

-

ownedEnd

PrimitiveDataType

inv uniqueClassAssociationSourceName :
Association self.packagedElement->forAll(ass1, ass2 |
. assl.name=ass2.name implies
(assl=ass2 or assl.src != ass2.src))

(2) (b)

name: String JElement

Fig. 2 (a) Class Diagram Subset ofMll Ecore Meta-model (b)OCL constraints on th&core meta-model

model transformations as an initial test generation step. F the true input domain of a model transformation. We briefly
instance, in our experiments, we see that generation of a 18escribe @GRTIER’s transformation to ALoy and the au-
classUMLCD models takes about 20 seconds and mutatiortomatic model generation mechanism in Section 3.4. Model
analysis of a set of 20 such models takes about 3 hours ogeneration in this paper is driven by coverage criteria thase
a multi-core high-end server. Generating thousands of modtesting strategies. These testing strategies are deddiribe
els for different transformations takes about 10% of theetim Section 3.5. Finally, the bug detecting effectiveness sof te
while performing mutation analysis takes most of the time. models generated using different testing strategies is dgn
mutation analysis. Mutation analysis for model transforma

3 Foundations tions is described in Section 3.6.

This section presents the foundations required to expihen t

CARTIER methodology for automatic test model generations'1 Kermeta

and validation presented in Section 4. First, we present th&ermeta is a language for specifying meta-models, models,
modelling and model transformation language Kermeta in Seand model transformations that are compliant to the Meta Ob-
tion 3.1. We use Kermeta to implement all model transformaject Facility (MOF) standard [16]. The object-oriented met
tions including QRTIER and meta-model pruning. We de- language MOF supports the definition of meta-models in terms
scribe Kermeta’s implementation of model typing in Section of object-oriented structures (packages, classes, pieper
3.2 which helps us perform all type conformance operationsand operations). It also provides model-specific condonst

in our approach. In Section 3.3, we present the meta-modeduch as containments and associations between classes. Ker

pruning algorithm to obtain the effective input meta-mamtel meta extends the MOF with amperative action language
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for specifying constraints and operational semantics fetam and an operatioap’ with parameters of the same type
models [17]. Kermeta is built on top of EMF within thecEIPSE as inM.C.

development environment. The action language of Kermeta _ o )
This definition is adapted from [18] and improved here

provides mechanisms for dynamic binding, reflection, and ) _ _ )
by relaxing two strong constraints. First, the constra@t r

exception handling. It also includes classical contralitr )
lated to the name-dependent conformance on properties and

tures such as blocks, conditionals, and loops. We use Karmet _ ) ) _ _
operations was relaxing by enabling their renaming. The sec

to implement all model transformations in this paper. ) )
ond constraint related to the strict structural conforneamas
relaxing by extending the matching to subclasses.
3.2 Model Typing . . .
Let’s illustrate model typing with two meta-modeld
. . and M’ given in Figures 3 and 4. These two meta-models
The last version of the Kermeta language integrates the no-

. . : . have model elements that have different names and the meta-
tion of model typing [18], which corresponds to a simple ex-

. . . N . modelM’ has additional elements compared to the meta-model
tension to object-oriented typing in a model-oriented et

Model typing can be related to structural typing found irn-lan M

guages such as Scala. Indeed, a model typing is a strategy for C1 <# COnebecause for each proper§One.pof
typing models as collections of interconnected objectdevhi typeD (namely,COne.namandCOne.aCTw} there
preserving type conformance, used as a criterion of substi- js a matching propertg1.qof typeD’ (namely,C1.id
tutability. andC1.aC3, such thaD’ <#D.

The notion of model type conformance (or substitutabil-

ity) has been adapted and extended to model types based on Thus,C1 <# COnerequiresD’ <# D, which is true

Bruce’s notion of type group matching [19]. The matchingre-  pecause:

lation, denoteck#, between two meta-models defines a func- — COne.namandCl.idare both of typeString
tion of the set of classes they contain according to theviello — COne.aCTwads of type CTwoand C1.aC2is of
ing definition: typeC2, soC1 <# COnerequireC2 <# CTwoor

that a subclass d€2 matche<CTwa Only C3 <#
Meta-modelM’ matches another meta-modél(de-

. . . CTwois true becaus€Two.elemenandC3.elem
notedM’ <# M) iff for each classC in M, there is

) are both of typestring
one and only one corresponding class or subdliss
in M’ such that every property and operatiorop in Thus, matching between classes may depend on the match-

M.C matches irM’.C’ respectively with a property’ ing of their related dependent classes. As a consequerce, th
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dependencies involved when evaluating model type matcha set of rules that help determine a set of required tjipgs

ing are heavily cyclical [20]. The interested reader caniind and required propertid3eq given a meta-modeéM and an

[20] the details of matching rules used for model types. initial set of required types and properties. The initidlrsay
come from various sources such as manual specification or a

3.3 Meta-model Pruning static analysis of a model transformatitmreveal used types.

Meta-model pruning [10] is an algorithm that outputs an ef-A rule in the set for example adds all super classes of a re-
fective subset meta-model of a possible large input metaduired class intdlreq. Similarly, if a class is inlreq or is a
model such as the L. The output effective meta-model required class then for each of its propertgsadd p into
conserves a set of required types and properties (given as iffteq if the lower bound for its multiplicity is> 0. Apart from
put to meta-model pruning) and all its obligatory dependenﬂ“es the algorithm contains options which allow better-con
cies (computed by the algorithm). The algorithm prunes ev-rol of the algorithm. For example, if a class isTrq then
ery other type and property. In the type-theoretic sensesthe  We add all its sub-classes infeyq. This optional rule is not
sulting effective meta-model issupertypeof the large input ~ ©bligatory but may be applicable under certain circumstanc
meta-model. We verify the supertype property using mode@iving the user some freedom. The rules are executed where
typing [18]. We concisely describe the meta-model pruningthe conditions match until no rule can be executed any longer
algorithm in the following paragraphs. The algorithm terminates for a finite meta-model because the
Given a possibly large meta-model such asilthatmay ~ rules do not remove anything from the s@ig; andPreq.
represent the input domain of a model transformation we ask ~ Once we compute the sefigq andPreq the algorithm sim-
the question : Does the model transformation process modply removes the remaining types and properties to output the
els containing objects of all possible types in the inputanet effective meta-modeMMe. The effective meta-mod@liMe
model? In several cases the answer to this question may H@enerated using the algorithm in [10] has some very interest
no. For instance, a transformation that refactoks_.Unodels  ing characteristics. Using model typing (discussed iniSact
only processes objects with types that come from concepts id-2) we verify thatMMe is a supertypeof the meta-model
the UML class diagrams subset but nomU Activity, UmL ~ MM. This implies that all operations written fdM, are
Statechart, or ML Use case. How do we obtain this effective valid for the large meta-mod&iM.
subset? This is the problem that meta-model pruning solves. In CARTIER, we use meta-model pruning to prune the
The principle behind pruning is to preserve a set of re-input meta-modeMM,; to obtain the effective input meta-
quired typesTieq and and required properti®q and prune  modeleMM, . The effective input meta-modeMM, contains

away the rest in a meta-model. The authors of [10] presenall the classes and properties used in the transformatien un
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Hc2
’—Zlk 0..1| aC2
E CTwo Hcs
= element : Elnt = elem : Eint
0.1 myct
aCTwo 0.1
E c4 0.* H c1
: own * =id: EString
H cone
= name : EString 0..1| parent
Fig. 3 MetamodelM. Fig. 4 MetamodelM’.

der test and their obligatory dependencies. For our cadg stu formulae [21], launch a SAT solver such as MiniSAT [22]
transformatiorclass2rdbms we prune UWiL with a required  or ZChaff [23] to generate models that conform to the input
set of types namelglass, Classifier, Association, Property, domain of a model transformation.

PrimitiveDataType and the top-level clagdodel to obtain the - .
CARTIER transforms a model transformation’s effective

effective input meta-model previously shown in Figure 2eTh . . . . .
P P y ¢ input meta-model (obtained via meta-model pruning desdrib

runed meta-modeIMLCD is a subset of ML and a itssu- | . . . .
P in Section 3.3) expressed in the Eclipse Modelling Frame-

ertype The supertype property implies that any transforma-
pertyp PErype property imp y work [13] format called Ecore using the transformation sule

tion written for UMLCD is backward compatible with WL. . . . _
presented in [8]. Basically, classes in the effective inpata-

All instances ofUMLCD are instances of ML. This result al- . L
model are transformed tolAoY signatures and implicit con-

lows us to exclusively transfortdMLCD to ALLOY and not . . . . .
straints such as inheritance, opposite properties, and-mul

the whole of UML. - .
plicity constraints are transformed ta.2ov facts. TheOCL
constraints and natural language constraints on the Eqou

3.4 CARTIER Transformation toALLOY and Automatic
meta-model are manually transformed tol®dY facts. These

Model Generation

OCL constraints are used to express meta-model invariants
We use the tool ERTIER previously introduced in our paper and model transformation pre-conditions. We do not auto-
[8] to automatically generate models. We invokeRZIER mate OCL to ALLOY as there are several challenges posed
to transform the input domain specification of a model trans-by this transformation as discussed in [24]. We do not claim

formation to a common constraint languagel®y. Then  that allOCL constraints can be manually/automatically trans-

CARTIER invokes the ALoOY API to obtain Boolean CNF formed to ALLOY for our approach to be applicable in the
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most general cas@CL and ALLOY were designed with dif- generation using strategies based on input domain partitio

ferent goalsOCL is used mainly to query a model and check ing.
if certain invariants are satisfied.LAOY facts and predicates
on the other hand enforce constraints on a model. This is i3.5 Test Strategies

contrast with the side-effect fre@CL. The core of ALoY
Good strategies to guide automatic model generation are re-

is declarative and is based on first-order relational logth w
quired to obtain test models that detect bugs in a model{rans

quantifiers whiledCL includes higher-order logic and has im-
formation. We define a strategy as a process that generates

perative constructs to call operations and messages making
ALLOY predicateswhich are constraints added to the A

some parts oDCL more expressive. In our case study, we
Loy model synthesized by ARTIER as described in Section

have been successful in transforming all meta-constraimts
4. This combined ALoy model is solved and the solutions

the UMLCD meta-model to ALoy from their originalOCL
are transformed to model instances of the input meta-model

specifications. Identifying a subset ©CL that can be auto-
that satisfy the predicate. We present the following stjiete

matically transformed to ALOY is anopen challengeAs an
to guide model generation:

example transformation consider the invariant for no cycli

inheritance in Figure 2(b). The constraint is specified as th Random/Unguided Strategy:The basic form of model

factin Listing 1 generation is unguided where only thely model ob-

tained from the meta-model and transformation is used to

fact noCycliclnheritance

{

no c: Class| c in c.”parent

}

generate models. No extra knowledge is supplied to the

solver in order to generate models. The strategy yields an

empty ALLOY predicate as shown in Listing 2.
Listing 1 ALLoy Fact for No Cyclic Inheritance

pred random { }

Listing 2 Empty ALLOY Predicate
The generated ALOY model for theUMLCD meta-model

is given in Appendix A. This ALoy model only describes - Input-domain Partition based Strategies:We guide gen-

the effective input domain of the transformation. Genegati
model instances of thelAoy model results ilnguided and
trivial solutions Are these trivial solution capable of detect-
ing bugs? This is the question that is answered in Section 5.
Are there better heuristics to generate test models? Irothe f

lowing Section 3.5 we illustrate how one can guide model

eration of models using test criteria to combpaatitions
on domains of all properties of a meta-model (cardinality
of references or domain of primitive types for attributes).
A partition of a set of elements is a collectionmfanges
Aq,...,An such thayq, ..

.,An do not overlap and the union

of all subsets forms the initial set. These subsets aretcalle
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ranges We use partitions of the input domain since the  In this paper, we use the model fragments generated by
number of models in the domain are infinitely many. Us- MMCC for the UMLCD Ecore model (Figure 2). We use the
ing partitions of the properties of a meta-model we definecriteria AllIRanges andAllPartitions. For example, in Table 1,
two test criteria that are based on different strategies fomfAllRangeshndmfAllRanges2re model fragments gener-
combining partitions of properties. Each criterion definesated by Q\RTIER using MMCC [5] for thenameproperty of
a set ofmodel fragmentfor an input meta-model. These a classifier object. ThenfAllRangesstates that there must
fragments are transformed to predicates on meta-moddde at least one classifier object with an empty name while
properties by GRTIER. For a set of test models to cover mfAllRangesatates that there must be at least one classifier
the input domain at least one model in the set must coveobject with a non-empty name. These values for name are the
each of these model fragments. We generate model fraganges for the property. The model fragments chosen using
ment predicates using the following test criteria to com-AllRanges mfAllIRangesland mfAllRanges2iefine two par-
bine partitions (cartesian product of partitions): titions partition1 andpartition2. The model fragmennfAll-
— AlIRanges Criteria: AllRanges specifies that each rang®artitions1chosen usingllPartitions defines bottpartition1
in the partition of each property must be covered by andpartition2.
at least one test model. These model fragments are transformed ta @y predi-
— AllPartitions Criteria: AllPartitions specifies thatthe  cates by @RTIER. For instance, model fragmemfAllRanges7

whole partition of each property must be covered by s transformed to the predicate in Listing 3.

at least one test model. pred mfAllRanges?
{

some c : Class | #c.attribute=1

}

Listing 3 ALLoY Predicate fomfAllRanges7
The notion of test criteria to generate model fragments

was initially proposed in our paper [5]. The accompanying  As mentioned in our previous paper [5] if a test set con-

tool called Meta-model Coverage Checker (MMCC) [5] gen- tains models where all model fragments are contained in at
erates model fragments using different test criteria tgkimy  least one model then we say that the input domain is com-
meta-model as input. Then, the tool automatically computepletely covered. However, these model fragments are gener-
the coverage of a set of test models according to the gederatated considering only the concepts and relationships in the
model fragments. If some fragments are not covered, then thEcore model and they do not take into account the constraints
set of test models should be improved in order to reach a betsn theEcore model. Therefore, not all model fragments are

ter coverage. consistent with the input meta-model because the generated
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models that contain these model fragments do not satisfy th&nalyzer [25] to automatically check if a model containing a

constraints on the meta-modelaRTIER invokes the ALOY

Table 1 Consistent Model Fragments Generated ugifiBanges

andAllPartitions Strategies

Model-Fragment

Description

mfAllRanges1
mfAllIRanges2
mfAllIRanges3
mfAllRanges4
mfAllIRanges5
mfAllIRanges6
mfAllRanges?
mfAllIRanges8
mfAllIRanges9
mfAllIRanges10
mfAllIRanges11
mfAllIRanges12
mfAllRanges13
mfAllRanges14
mfAllIRanges15

mfAllPartitions1

mfAllPartitions2

mfAllPartitions3

mfAllPartitions4

mfAllPartitions5

wn

AClassifier ¢ | c.name=

AClassifier ¢ | c.name ="’

AClass c | c.is_persistent= True

AClass c| c.is_persistent= False

AClass c | #c.general=0

AClass c | #c.general=1

AClass c| #c.attribute= 1

AClass c | #c.attribute > 1

AnProperty a| a.is_primary = True

ArProperty a | a.name=""

ArProperty a | a.name ="’

ArProperty a | #a.datatype= 1

ArAssociation as| asname=""
AnAssociation as| #asmemberEnd= 0
AnAssociation as| #asmemberEnd= 1

Classifiers c1,c2 | cl.name =" and

c2.name ="

Classescl, c2 | cl.is_persistent= Trueand

c2.is_persistent= False

Classes cl1,c2 | #cl.general = 0 and

#c2.general=1

Propertys al,a2 | al.is_primary = True

anda2.is_primary = False

Associations asl,a<? | asl.name="" and

ax2.name =""

model fragment and satisfying the input domain can be syn-
thesized for a general scope of number of objects. This al-
lows us todetect inconsistent model fragmerfisr example,
the following predicatemfAllRanges7ais the ALLOY rep-
resentation of a model fragment specifying that s@tess
object does not have amyroperty object. ARTIER calls the
ALLOY API to execute the run statement for the predicate
mfAllRanges7along with the base ALoY model to create a
model that contains up to 30 objects per class/concepésign

ture (see Listing 4).

pred mfAllRange7a

{

some c:Class | #c.attribute = 0

}

run mfAllRanges7 for 30

Listing 4 ALLoY Predicate and Run Command

The ALLOY analyzer yields ao solutionto the run state-
ment indicating that the model fragmentis not consistettt wi
the input domain specification. This is because no model can
be created with this model fragment that also satisfies an in-
put domain constraint that states that evelyss must have

at least oné@roperty object as shown in Listing 5.

sig Class extends Classifier
...

attribute : some Property

Listing 5 Example A.LOY Signature

In Listing 5, someindicates 1..*. However, if a model

solution can be found usinglAoy we call it aconsistent
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model fragmentMMCC generates a total of 15 consistent Relation to the same class change (RSCCThe navi-
model fragments usingliRanges and 5 model fragments us- gation of one association toward a class is replaced with the

ing theAllPartitions strategy, as shown in Table 1. navigation of another association to the same class.

Relation to another class change (ROCC)The navi-
3.6 Qualifying Models: Mutation Analysis for Model
gation of an association toward a class is replaced with the
Transformation Testing
navigation of another association to another class.

We generate sets of test models using different strategis a
Relation sequence modification with deletion (RSMD):

qualify these sets via mutation analysis [6]. Mutation gsial
This operator removes the last step off from a navigation

involves creating a set of faulty versionsmutantsof a pro- _ _ _ _
which successively navigates several relations.

gram. A test set must distinguish the program output from all

) ) Relation sequence modification with addition (RSMA):
the output of its mutants. In practice, faults are modelled a

. This operator does the opposite of RSMD, adding the navi-
a set of mutation operators where each operator represents a

) ) ) gation of a relation to an existing navigation.
class of faults. A mutation operator is applied to the progra

under test to create each mutant. A mutant is killed when at ~ Collection filtering change with perturbation (CFCP):
least one test model detects the pre-injected fault. It is deThe filtering criterion, which could be on a property or the
tected when program output and mutant output are differenttype of the classes filtered, is disturbed.

A test set is relatively adequate if it kills all mutants oéth Collection filtering change with deletion (CFCD): This

original program. A mutation score is associated to the tesbperator deletes a filter on a collection; the mutant opamati

set to measure its effectiveness in terms of percentageeof th. . ,.s the collection it was supposed to filter

killed/revealed mutants.
Collection filtering change with addition (CFCA): This
We use the mutation analysis operators for model trans-
operator does the opposite of CFCD. It uses a collection and
formations presented in our previous work [7]. These muta-
processes an additional filtering on it.
tion operators are based on three abstract operationsllioke

the basic treatments in a model transformation: the navigat Class compatible creation replacement (CCCR)The

of the models through the relations between the classes, thcereatlon of an objectis replaced by the creation of an irestan

. . . . of another class of the same inheritance tree.
filtering of collections of objects, the creation and the mod
ification of the elements of the output model. Using this ba-  Classes association creation deletion (CACDThis op-

sis we define several mutation operators that inject fanlts i erator deletes the creation of an association between two in

model transformations: stances.
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Classes association creation addition (CACA)This op- 3.
erator adds a useless creation of a relation between two in-
stances.

Using these operators, we produced two hundred mutantgt.
from theclass2rdbms model transformation with the reparti-
tion indicated in Table 2.

In general, not all mutants injected become faults as someb.

of them are equivalent and can never be detected. The con-

Sagar Sen, Jean-Marie Mottu, Benoit Baudry

CARTIER transformseMM,, its invariants, the transfor-
mation pre-conditiopre(MT ) and test strategy to antA

Loy model (details in Sections 3.4, 3.5)

CARTIER generates models to detect inconsistencies in
test strategy predicates. It eliminates those that arainco
sistent witheMM, and pre(MT) (details in Section 3.5)
Finally, CARTIER generates sets of test models that sat-

isfy all consistent predicates representing test strasegi

trolled experiments presented in this paper uses mutaets pr  in a finite scope using run commands for each predicate

sented in our previous work [7]. We have clearly identified  (details in Section 3.5). It can also generate multiple non-

faults and equivalent mutants to study the effect of our gene  isomorphic test models by solicitinglAoy’s symme-

ated test models. try breaking scheme [12] currently applicable to the Min-

iISAT [22] SAT solver.

4 Automatic Test Model Generation and Qualification o ]
The generated models may lead to raising of exceptions

Methodolo
& in the model transformatioMT as its initial pre-condition

We outline the methodology for test generation USIRRQER definition may not have been well defined. In the following

and qualification of the generated test models via mutationSectlon 4.1 we show how automatically generated models re-

analysis in Figure 5. The methodology encapsulates allsideasulted in discovery of patterns that were not foreseen by ex-

we present in Section 3 into a workflowAGTIER is based perts who original designed the transformatitass2rdbms.

on technologies like Kermeta, Eclipse Modelling Framework Aiter discovering pre-conditions that no longer lead to

(Ecore), and ALLOY as shown in the figure. Concisely, the generation of models that are raise exceptions we regener-

test model generation workflow follows the steps: ate sets of test models. We qualify the sets of generated test

models via mutation analysis (see Section 3.6).
1. CARTIER performs static analysis on the model transfor-

mationMT to obtain the initial set of used types and prop-
4.1 Pre-condition Improvement

erties.
2. CARTIER performs meta-model pruning &M, using  The execution of a transformation helps us discover new con-
these used types and properties to obtain the effective instraints for the pre-conditiopre(MT) of the transformation

put meta-mode¢MM, (details in Section 3.3) MT. In this sub-section we illustrate how some of the con-
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Table 2 Repartition of theclass2rdbms mutants depending on the mutation operator applied

Mutation Operator CFCA CFCD CFCP CACD CACA RSMA RSMD ROCC RSCC Total

Number of Mutants 19 18 38 11 9 72 12 12 9 200

Heterogenous Sources of Knowledge
Input meta-model (in Ecore) Model transformation

c Y o Search Strategy S
Finite Scope Parameters MM, (contains invariants) pre-copnrcell(trlo]% Eq.: Test Coverage Criteria
E.! Cartierglp 2 &cni B!
Inconsisteny R Pre- diti N
Aﬁ:;“n';‘::el Detection ‘ Model Synthesis ":::::er:‘:: *u,ﬂ\!.nvokes/uses
Q
Model Transformation
All Models (MT)

invokes/uses .

Mutation| Mutation
Analysis | “Scores

Fig. 5 CARTIER Methodology for Automatic Test Generation and Mutation Kes based Qualification

straints in the pre-condition of the transformatitass2rdbms ~ put model are not in the output domain. For instance, output
are discovered. models that do not satisfy the output meta-model specifica-
The discovery of a pre-condition starts with the detec-tion and the post-conditiopos{MT). In our case study, the
tion of a fault during the execution of automatically gener- transformatiorclass2rdoms can produce ill-forme®kRDBMS
ated models. The exception handling mechanism in Kermetaodels. A typical example is when a table contains several
allows us to detect and catch these exceptions. First, we preolumns with same name. We detect these inconsistencies by
vent the lock of the execution when a transformation runschecking if output models conform to the output meta-model
into infinite loop. For instance, this situation occurs witen ~ (Ecore model of the meta-model with invariants) and satisfy
put models are navigated through a series of associatians thpost-conditions of the model transformation. The Figure 6 i
can create loop structure in the transformatiass2rdbms. lustrates this detection. It represents an excerpt (bopiart)
These loops structures can navigation through diverse corgf an output model produced by the original transformation
cepts such as inheritance trees, associations, and tyge of @f a generated (excerpt on the top part).
tributes. The Kermeta interpreter throwsStackOverflowEr- Our tool isolates inconsistent output models and corre-
ror exception when it detects such a problem. sponding input models. We then use a traceability mechanism
Second, we detect more complex inconsistencies wheand tool such as in [26] to restrain the analysis of these mod-

output models produced from an automatically generated inels on excerpts such as the one illustrated in Figure 6. Class
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uClass  |ownedEnd memberEnd ::Class atibute | Attribute
» .
name: B ::Association "I name: C "\ is_primary: true
is_persistent : false name: assol is_persistent : false name: att1 datatype
general zPrimitiveType}
name: String
::Class jownedEnd memberEnd ::Class attribute | Attribute /Gatatype
- .
e iati L N
name: A s:Association name: D is_primary: true
is_persistent : true name: assol is_persistent : false name: att1
::Table
name: A
g T~ oo
::Column ::Column

name: assol_att1 name: assol_att1
type : String type : String

Fig. 6 Model Excerpt for Pre-condition Improvement

namedA is transformed into one table because it is persis- Inthe classes of an inheritance tree, two associations with
tent. It redefined an association of the Cl&sTwo asso- the same name can't point to classes that have (or their par-
ciations with the same nanassolpoint to classes with the ent) attributes with same names

same attribute/propergttl. Respecting the specification, the Several new pre-conditions were discovered forcthgs2rdbms
original transformations produces a table with two columnscase study. We enlist nine newly discovered Ay facts in
namedassolattl. This does not conformto ttRDBMS meta-  Appendix C apart from the initial set of pre-condition con-
model and it is detected by our tool. Construction of suchstraints as shown in Appendix B. Theselby facts can be
models can be prevented by generating objects with differeasily expressed i@CL to improve the pre-condition specifi-
ent names. We solve this inconsistency by creating a neweation ofclass2rdbms. The conditions may even be applica-
pre-condition constraint that protects the transfornmeftiom ble to commercial implementations diss2rdbms.

executing such models. We also regenerate new models that

satisfy the new pre-condition constraints. For instante, t ° EXperiments

faulty model excerpt in Figure 6 can help us produce a nevg Experimental Setup and Execution

pre-condition that states:
We use the methodology in Section 4 to compare coverage

based test generation with unguided/random test model gen-

eration.
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Coverage based test strategies as previously introduced in  The AllRanges criteria on theUMLCD meta-model gives
Section 3.5 consist of two test critediRanges andAllPar- 15 consistent model fragments (see Table 1). We have 150
titions. These test criteria generate model fragments from amodels in a set, where 10 non-isomorphic models satisfies
effective input meta-model. A test set satisfyiaiRanges each different model fragment. We generate 10 non-isoniorph
must contain test models that contain all consistent modeinodels to verify that mutation scores do not drasticallyngjea
fragments from theallRanges criteria. Similarly, a test set within each solution. We synthesize 8 sets of 150 models us-
satisfyingAllPartitions must contain all consistent model frag- ing different levels for factors as shown in Table 3 (see rows

ments generated from thdiPartitions criteria. 1,2,3,4,5,6). The total number of models in these 8 sets is

We generate sets of test models based on factorial expei’-zoo-
imental design [27]. We consider tegact number of objects The AllPartitions criteria gives 5 consistent model frag-
for each classn the effective input meta-model as factors for ments. We have 50 test models in a set, where 10 non-isoneorphi
experimental design. A factor level is the exact number ef ob test models satisfies a different model fragment. We synthe-
jects of a given class in a test model. These factors helystudsize 8 sets of 50 models using factor levels shown in Table
the effect of number of different types of objects on the muta 3. The levels for factors foAllRanges and AllPartitions are
tion score. For instance, we can ask questions such as wheth&@e same. Total number of models in the 8 sets is 400. The
a large number ohssociation objects have a correlation with ~ selection of these factors at the moment is not based on a
the mutation score? The large of numbesociation objects ~ Problem-independent strategy.
also indicates a highly connectedvU class diagram test We compare test sets generated ugitiganges andAll-
model. We decide these factor levels by simple experimenPartitions with unguided test sets. For each test set of cov-
tation such as verifying if models can be generated in reasorerage based strategies we generate an equal number of ran-
able amount of time given that we need to generate thousandm/unguided models as a reference to qualify the efficiency
of test models in a few hours. We also want to cover a com-of different strategies. Precisely, we have 8 sets of 150 un-
bination of a large number of varying factor levels. We haveguided test models to compare wiliRanges and 8 sets of
8 different factor levels for the different classes in theiU 50 unguided test models to compare withPartitions. We
class diagram effective input meta-model as shown in Tableise the factor levels in Table 3.
3. Other factors that may affect but are not considered &ir te To summarize, we generate a total of 3200 models using
model generation are the use different SAT solvers such aan Intel(R) CoréM 2 Duo processor with 4GB of RAM. We
SAT4J, MiniSAT, or ZChaff, maximum time to solve, t-wise perform mutation analysis of these sets to obtain mutation

interaction between model fragments. scores on a grid of 10 Intel Celeron 440 high-end computers.
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Table 4 Mutation Scores in Percentage for All Test Model Sets
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Set 1 2

Unguided 150 models/setin 8 sets 68.56 69.9

AllRanges 150 models/setin 8 sets 88.14 92.26

Unguided 50 models/setin 8 sets  70.1 62.17

AllPartitions 50 models/set in 8 sets 90.72 93.3

68.04 70.1

68.04 70.1 70.1 68.55 69 70.1

81.44 85 91.23 80.4 91.23 88.14

65.46 68.04 69.94 70.1

8453 87.62 87.62 8298 92.78 88.66

Table 3 Factors and their Levels for Test Sets

Factors S1 S2 S3 S4 S5 S6 S7 S8
#ClassModel 1 1 1 1 1 1 1

#Class 5 5 15 15 5 15 5 15
#Association 5 15 5 15 5 5 15 15
#Attribute 25 25 25 25 30 30 30 30

#PrimitiveDataType 4 4 4 4 4 4 4 4

Bit-width Inte- 5 5 5 5 5 5 5 5
ger

#Models/Set 15 15 15 15 15 15 15 15
AllRanges

#Models/Set 15 15 15 15 15 15 15 15
Unguided

#Models/Set 5 5 5 5 5 5 5
AllPartitions

#Models/Set 5 5 5 5 5 5 5
Unguided

The computation time for generating 3200 models was about

3 hours and mutation analysis took about 1 week. We discuss

the results of mutation analysis in the following section.

5.2 Results and Discussion

Mutation scores foAllRanges test sets are shown in Table 4
(row 2). Mutation scores for test sets obtained ugitigarti-
tions are shown in Table 4 (row 4). We discuss the effects of

the influencing factors on the mutation score:

— The number ofClass objects andissociation objects has

a strong correlation with the mutation score. There is an
increase in mutation score with the level of these factors.
This is true for sets from unguided and model fragments
based strategies. For instance, the lowest mutation score
using AllRanges is 80.41 %. This corresponds to set 1
where the factor levels are 1,5,5,25,4,5 (see Column for
set 1 in Table 3) and highest mutation scores are 91,24
and 92,27% where the factor levels are 1,15,5,25,4,5 and
1,5,15,25,4,5 respectively (see Columns for set 3 and set

7 in Table 3).

— We observe thatllPartitions test sets containing only 50

models/set gives a score of maximum 93.3%. Rile
Partitions strategy demonstrates that knowledge from two
different partitions satisfied by one test model greatly im-
proves bug detecting efficiency. This also opens a new

research direction to explore: Finding strategies to com-
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bine model fragments to guide generation of smaller sets  AllRanges. This implies that it is a more efficient strategy
of complex test models with better bug detecting effec-  for test model selection. The main consequence is a re-
tiveness. duced effort to write correspondirnigst oracle§28] with

50 models compared to 150 models.
We compare unguided test sets with model fragment guided
— Despite the generation of multiple solutions (10 solutions

sets in thebox-whiskerdiagram shown in Figure 7. The box

for each model fragment or an empty fragment for un-
whisker diagram is useful to visualize groups of numerical

guided generation) for each strategy we see a consistent
data such as mutation scores for test sets. Each box in the

behaviour in the mutation scores. There is no large differ-
diagram is divided into lower quartile (25%), median, upper

ence in the mutation scores especially for unguided gener-
quartile (75% and above), and largest observation and con-

ation. The median is 69% and the mutation scores range
tains statistically significant values. A box may also iradé

between 68% and 70%. ThdlRanges and AllPartitions
which observations, if any, might be considered outliers or

vary a little more in their mutation scores due to a larger
whiskers. In the box whisker diagram of Figure 7 we shown 4

coverage of the effective input meta-model.
boxes with whiskers for unguided sets and setafiRanges

. _ The freely and automatically obtained knowledge from
andAllPartitions. The X-axis of this plot represents the strat-

_ the input meta-model using the MMCC algorithm shows that
egy used to select sets of test models and the Y-axis repisesen

AllRanges andAllPartitions are successful strategies to guide
the mutation score for the sets.

test generation. They have higher mutation scores with the
We make the following observations from the box-whisker
same sources of knowledge used to generate unguided test
diagram:
sets. A manual analysis of the test models reveals that-injec
— Both the boxes ofAlIRanges and AllPartitions represent  tion of inheritance via the parent relation in model fragtsen
mutation scores higher than corresponding unguided setsesults in higher mutation scores. Most unguided models do
— The high median mutation scores for strategi#®anges not contain inheritance relationships as it is not imposgd b
88.14% andhllPartitions 88.14% indicate that both these the meta-model.
strategies return consistently good test sets. What about the 7% of the mutants that remain alive given
— The small size of the box faxlPartitions compared to the  that the highest mutation score is 93.3%? We note by an anal-
AllRanges box indicates its relative convergence to good ysis of the live mutants that they are the same for bdth
sets of test models. Ranges and AllPartitions. There remain 19 live mutants in

— The small set of 50 models usirgiPartitions gives mu-  a total of 200 injected mutants (with 6 equivalent mutants).

tations scores equal or greater than 150 models/set using the median case both AllRanges and AllPartitions strat-
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100%
95%
10/
I 93,30% I:F|92’27%
90%
88,14% 88,14%

85% -
) 82,99%
o
& 80% 80,41%
c
k]
8 75%
S
=

70,10%
70% - 70,10% 9
o Q6199% 69,95%
68,04%
65%
62,18% 3rd quartile —max
60% median =min
1st quartile
55% -
Random AllPartitions(50/8) Random(150/8) AllRanges(150/8)
(50 models/set in 8 sets) Strategy

Fig. 7 Box-whisker Diagram to Compare Automatic Model GeneraBorategies

egy give a mutation score of 88.14%. The live mutants in theseveral attributes in a class A, attributes of class A mugt ha
median case are mutants not killed due to fewer objects irprimitive types, at least one primary attribute in the class
models. and at least one non-primary attribute in the class A. This
requirement can either be specified by manually creating a
To consistently achieve a higher mutation score we needompination of fragments or by developing a better general
more CPU speed, memory and parallelization to efficientlyie strategy to combine multiple model fragments. In agoth
generate larger test models and perform mutation analpsis Og;tation, we observe that not all model fragments are eensi
them. This extension of our work has not be been exploredgn with the input domain and hence they do not really cover
in the paper. It is important for us to remark that some live e entire meta-model. Therefore, we miss killing some mu-

mutants can only be killed with more information about the 5nts  This information could help improve partitioningdan

model transformation such as those derived from its require;,mpination strategies to generate better test sets.

ments specification. For instance, one of the remaining live

mutant requires a test model with a class containing several
6 Related Work

primitive type attributes such that at least one is a prinadry

tribute. A test model that satisfies such arequirementregui We explore three main areas of related work : test criteria,

the combination of model fragments imposing the need forautomatic test generation, and qualification of strategies
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The first area we explore is work on test criteria in the Generated models in both these approaches do not satisfy the
context of model transformations in MDE. Random genera-constraints on the meta-model. In [36] we present a method
tion and input domain partitioning based test criteriaa@ t to generate models given partial models by transforming the
widely studied and compared strategies in software enginee meta-model and partial model tacCanstraint Logic Program-
ing (non MDE) [29] [30] [31]. To extend such test criteria to ming (CLP). We solve the resultingLP to give model(s) that
MDE we have presented in [5] input domain partitioning of conform to the input domain. However, the approach does
input meta-models in the form of model fragments. However,not add new objects to the model. We assume that the num-
there exists no experimental or theoretical study to qutié  ber and types of models in the partial model is sufficient for
approach proposed in [5]. obtaining complete models. The constraints in this system a

Experimental qualification of the test strategies requirelimited to first-order horn clause logic. In [8] we have intro
techniques for automatic model generation. Model generaduce a tool GRTIER based on the constraint solving system
tion is more general and complex than generating integersALLOY to resolve the issue of generating models such that
floats, strings, lists, or other standard data structurels as  constraints over both objects and properties are satisfied s
dealt with in the Korat tool of Chandra et al. [32]. Korat is multaneously. In this paper we USARTIER to systemati-
faster than ALOY in generating data structures such as bi-cally generate several hundred models driven by knowledge/
nary trees, lists, and heap arrays from the Java Collectiongonstraints of model fragments [5]. Statistically relevast
Framework but it does not consider the general case of modnodel sets are generated from a factorial experimentajdesi
els which are arbitrarily constrained graphs of objectse Th [27] [37].
constraints on models makes model generation a different The qualification of a set of test models can be based on
problem than generating test suites for context-free gramm several criteria such as code and rule coverage for white box
based software [33] which do not contain domain-specifictesting, satisfaction of post-condition or mutation asayor
constraints. black/grey box testing. In this paper we are interested in ob

Test models are complex graphs that must conform to anaining the relative adequacy of a test set using mutatiaf an
input meta-model specification, a transformation pre-@&rd  ysis [6]. In previous work [7] we extend mutation analysis to
and additional knowledge such as model fragments to helIDE by developing mutation operators for model transfor-
detect bugs. In [34] the authors present an automated gemnation languages. We qualify our approach using a repre-
eration technique for models that conform only to the classsentative transformatiodMLCD models toRDBMS models
diagram of a meta-model specification. A similar method-called class2rdbms implemented in the transformation lan-

ology using graph transformation rules is presented in.[35] guage Kermeta [3]. This transformation [11] was proposed
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in the MTIP Workshop in MoDeLs 2005 as a comprehensiveA ALLoy Model Synthesized by Q\RTIER

and representative case study to evaluate model transforma

tion languages.

7 Conclusion

Black-box testing exhibits the challenging problem of de-
veloping efficient model generation strategies. In thisguap
we present @GRTIER, a tool to generate models conforming
to the input domain and guided by different test strategies
First, CARTIER helps us precisely specify the input domain
of a model transformation via meta-model pruning and pre
condition improvement. Second, we userZIER to gener-
ate sets of test models that compare coverage and unguid
strategies for model generation. All test sets using thteates
gies detect faults given by their mutation scores. The campa
ison of coverage strategies with unguided generation taug
us that both strategiesiPartitions and AllRanges look very
promising. Coverage strategies give a maximum mutatioresg
of 93% compared to a maximum mutation score of 70% in th
case of unguided test sets. We observe that mutation samres
not vary drastically despite the generation of multipleusol
tions for the same test strategy. We conclude from our expe
ments that thallPartitions strategy is a promising strategy to
consistently generate a small test of test models with a goc
mutation score. However, to improve efficiency of test set
we might require effort from the test designer to obtain tes

model knowledge/test strategy that take the internal mod

transformation design requirements into account.

module tmp/UMLCD

open util/boolean as Bool

sig Model

{

classifier : set Classifier,

association set Association

abstract sig Classifier

name : Int

Ssig PrimitiveDataType extends Classifier

1

sig Class extends Classifier

{

is_persistent:one Bool,
general :lone Class,
attribute

ed
i

: some Property

sig Association

{
h name: Int,
memberEnd : one Class,

ownedEnd : one Class

9

ESig Property

{

dname: Int,
is_.primary : Bool,
datatype:one Classifier

}

|

/I Meta—model constraints

K
nd
fact noCycliclnheritance

St

There must be No Cyclic Inheritance in an UMLED

no c: Class| c in c."general

t

EJ All the attributes in a Class must have unique attribute namé

fact uniquePropertyNames
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all c:Class | all al: c.attribute, a2: c.attribute] al.name = a2.namémplies

al=a2

I+ An attribute object can be contained by only one class

fact attributeContainment

{

all cl:Class, c2:Class| all al: cl.attribute , a2 : c2.attributd al = a2

implies cl=c2

I+ There is exactly one Model object/

fact oneModel

{

#Model=1

/«All Classifier objects are contained in a Model

fact classifierContainment

{

all c:Classifier | ¢ in Model.classifier

/«All Association objects are contained in a Model

fact associationContainment

{

all a:Association a in Model. association

}
/«A Classifier must have a unique name in the Class Diagfam

fact uniqueClassifierName

{

all cl:Classifier, c2:Classifier|cl.name = c2.namemplies cl=c2

/xAn associations have the same name either they are the sansocdation or they

have different sources/

fact unigeNameAssocSrc
{
all al:Association, a2:Association

al.name = a2.nameémplies (al = a2 or al.src != a2.src)
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/+Initial Model Transformation Preconditions«/

fact atleastOnePrimaryProperty

{

all c:Class | one a:c.attribute | a.is.primary =True

fact no4CyclicClassProperty

{
all a:Property | a.datatypein Class implies all al:a.datatype. attributel al.
datatypein
Class implies all a2:a.datatype. attribute] a2.datatypein Class implies all a3
ra.datatype. attributea3. datatype
in Class implies all a4:a.datatype.attribute] a4.datatypein
PrimitiveDataType
}

fact noPropertyAndAssociationHaveSameName

all c:Class , assoc :Association

all a:c.attribute | (assoc.src = c)implies a.name != assoc.name

fact nolCycleNonPersistent

{
all a: Association | (a.memberEnd = a.ownedEnd)mplies a.ownedEnd. ispersistent

= True

fact no2CycleNonPersistent

{
all al: Association, a2:Association|
(al.memberEnd = a2.ownedEndnd a2.memberEnd = al.src)mplies
al.ownedEnd. ispersistent = Trueor a2.ownedEnd.ispersistent=True
}

Listing 7 Initial pre-conditions as ALoy facts

C Discovered Set of Pre-conditions

Listing 6 ALLOY Model for UmL Class Diagram

B Initial Set of Pre-conditions

I/ Discovered Model Transformation preondition constraints

I+ 1. At a depth of 4 the type of an attribute has to be primitive dapannot be

a class type/

fact no4CyclicClassProperty
all a:Property | a.datatypein Class > all al:a.datatype.attributeal.datatype|
in Class > all a2:a.datatype.attributea2.datatypein Class > all a3:

a.datatype.attributga3. datatypein Class > all a4:a.datatype.attribute|

|a4.datatypein PrimitiveDataType



24

/+ 2. A Class cannot have an association and an attribute of thmesnamex/

fact noAttribAndAssocSameNanfe
all c:Class, assoc:Association all a : c.attribute | (assoc.ownedEnd == c)>=

a.name != assoc.name

/+ 3. No cycles between nompersistent classest/

fact nolCycleNonPersistent

{
all a: Association | (a.memberEnd == a.ownedEnd)>=a.memberEnd .

is_persistent= True

fact no2CycleNonPersistent

{
all al: Association, a2:Association (al.memberEnd == a2.ownedEnand a2.
memberEnd==al.ownedEnd )>=al.ownedEnd . ispersistent= Trueor a2.
ownedEnd . ispersistent=True
}

I« 4. A persistent class can’'t have an association to one of itengral =/

fact assocPersistentClass

{

all a:Association | a.ownedEnd. ispersistent=Trueimplies a.memberEnd notin a.

ownedEnd ." general

I+ 5. Unique association names in a class hierarchy

fact unigueAssocNameslininHeritanceTree

{
all c:Class |
all al:Association, a2:Association
(al.ownedEndin c and a2.ownedEndin c.”generaland al!=a2) implies (al.name
I=a2.name)
}

/+ 6. A class can’'t be the datatype of one of its attributes (amwpuall its

attributes «/

fact classCantTypeOfAllofitsProperty

Sagar Sen, Jean-Marie Mottu, Benoit Baudry

all c:Class | all a: (c.attribute+c.”general. attribute) a.datatype !=c

I+ 7. A Class A which inherits from a persistent class B can’'t baan outgoing
association with the same name

that one association of that persistent classB

fact classinheritsOutgoingNotSameNameAssoc
{
all A:Class | all B:A."general | B.is_persistent == Trueimplies (no al:
Association, a2:Association|
(al.ownedEnd = Aand a2.ownedEnd=Band al.name=a2.name))

}

I+ 8. A class A which inherits from a persistent class B can’t bBaan attribute
with the same name

that one attribute of that persistent class 8

fact classinheritsOutgoingNotSameNameAttrib
{
all A:Class | all B:A."general | B.is_persistent == Trueimplies (no al: A.
attribute , a2:B. attribute|
(al.name=a2.name))

}

/+ 9. No association between two classes of an inheritance trde

fact noAssocBetweenClassinHierarchy
{
all a : Association | all c: Class | (a.ownedEnd =cimplies a.memberEnd notin

c."general)and (a.memberEnd =cimplies a.ownedEnd notin c.” general)

Listing 8 Discovered pre-conditions asLAoY facts
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