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Abstract Testing amodel transformationrequires input test

models which are graphs of inter-connected objects. These

test models must conform to the transformation’sinput meta-

modeland tometa-constraintsfrom heterogeneous sources

such as well-formedness rules, transformation pre-conditions,

and test strategies. Manually specifying such models is te-

dious since models must conform to a possibly large input

metamodel such as UML and must simultaneously conform to

several meta-constraints. In this paper, we present the model

generation tool CARTIER to automatically generate test mod-

els for any given model transformation. CARTIER first con-

structs a precise specification of a transformation’s effective

input domain viameta-model pruning. CARTIER transforms

the effective input domain including knowledge from het-

erogenous sources to a common formal specification in the

language ALLOY . CARTIER solves the ALLOY model to gen-

erate test models that are guided by a test strategy. These test

models often help discover new pre-conditions for the trans-

formation. We re-generate test models once we discover all

pre-condition constraints. We qualify test models generated

using input domain coverage strategies viamutation analysis.

We show that sets of test models satisfying coverage strate-

gies give mutation scores of up to 93% vs. 70% in the case

of unguided/random generation. These scores are based on

analysis of 3200 automatically generated test models for the

representative transformation of UML class diagram models

to RDBMS models.

1 Introduction

Model transformations are core MDE components that auto-

mate important steps in software development such as refine-

ment of an input model, re-factoring to improve maintainabil-

ity or readability of the input model, aspect weaving, exoge-

nous and endogenous transformations of models, and gener-

ation of code from models. Although there is wide spread
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development of model transformations in academia and in-

dustry the validation of transformations remains a hard prob-

lem [1]. In this paper, we address the challenges in validat-

ing model transformations viablack-box automatic test data

generation. We think that black-box testing is an effective ap-

proach to validating transformations due to the diversity of

transformation languages based on graph rewriting [2], im-

perative execution (Kermeta [3]), and rule-based transforma-

tion (ATL [4]) that render language specific formal methods

and white-box testing currently impractical.

In black-box testing of model transformations we require

test modelsthat candetect bugsin the model transformation.

These models are graphs of inter-connected objects that must

conform to a meta-model and satisfy meta-constraints such

as well-formedness rules, transformation pre-conditions, and

test strategies. Manually specifying several hundred testmod-

els targeting various testing objectives is a tedious task and in

many cases impossible since the modeller may have to simul-

taneously satisfy numerous possibly inter-related constraints.

In this paper, we present the tool and framework CARTIER

for automatic test model generationbased on the general idea

of constraint satisfactionin the domain of models. CARTIER

has to address two main problems for test generation: iden-

tify a precise model of the transformation’s input domain; au-

tomatically select relevant test models in the input domain.

The first issue is related to the fact that the input domain of a

transformation is generally described with a general purpose

metamodel (e.g., UML ). However, the effective input domain,

that captures only the set of models that can be transformed,

is much smaller than the set of instances of the general pur-

pose metamodel. CARTIER can prune the metamodel in or-

der to explicitly build the sub part of the metamodel that the

transformation can manipulate. CARTIER also assists the def-

inition of pre conditions on the metamodel to make the in-

put domain more precise. Once the input domain is precisely

modelled, CARTIER can generate model from this domain.

CARTIER either generate any model without guidance or it

can use test strategies in order to have models that cover the

input domain [5].

Are the test models generated by CARTIER able to detect

bugs in a model transformation? We answer this question by

generating and comparing sets of test models using different

testing strategies. Specifically, we consider two testing strate-

gies:unguidedandinput domain coverage strategies[5]. We

usemutation analysis[6] [7] for model transformations to

compare these testing strategies. Mutation analysis serves as

atest oracleto determine the relatively adequacy of generated

test sets.

We perform experiments to generate test models using

different testing strategies and qualify them using mutation

analysis. We generate test models for the representative model

transformation ofUnified Modelling Language Class Diagram

(UMLCD) to Relational Database Management Systems

(RDBMS) models calledclass2rdbms. The mutation scores

show that input domain coverage strategies guide model gen-

eration with considerably higher bug detection abilities (93%)

compared to unguided generation (70%). These results are

based on 3200 generated test models and several hours of
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computation on a 10 machine grid of high-end servers. The

large difference in mutation scores between coverage strate-

gies and unguided generation can be attributed to the fact that

coverage strategies enforce several aspects on test modelsthat

unguided generation fail to do. For instance, coverage strate-

gies enforce injection ofinheritancein theUMLCD test mod-

els. Unguided strategies do not enforce such a requirement.

Several mutants are killed due to test models containing in-

heritance.

Thescientific contributionin this paper is based on a com-

bination of several recently published ideas. In [8], the au-

thors for the first time present CARTIER demonstrating the

possibility of automatically generating a variety of test mod-

els. In [9], the authors generate hundreds of test models using

different strategies to show that automatically generatedtest

models using partitioning strategies can indeed detect bugs.

We validate the bug detecting effectiveness of the generated

test models using mutation analysis of model transformations

[7]. However, three important questions remain:

– Question 1:How can we scale the approach to generating

test models for large input meta-models such the UML?

– Question 2:Does the model transformation pre-condition

precisely specify the input domain of a model transforma-

tion? If not, can automatically generated test models help

improve the pre-condition by presenting unforeseen and

unwanted modelling patterns?

– Question 3:Are we consistently able to generate effec-

tive test models for a given strategy using our approach?

The precise contributions of this paper address exactly

these problems. We enlist them below:

– Contribution 1: We use the recently proposedmeta-model

pruning transformation [10] to prune a large input meta-

model such as the UML to a subset called the effective

input meta-model. The effective input meta-model con-

tains only classes, properties, their dependencies relevant

the transformation under test. The often smaller effective

input meta-model is transformed to a small formal rep-

resentation in ALLOY . In contrast, transforming a large

input meta-model such as the whole of UML to ALLOY

results in a formal model that renders SAT solving infea-

sible due to the large number of signatures or facts.

– Contribution 2: We show how automatically generated

test models can help us improve a model transformation’s

pre-condition. For instance, the test models we generate

for the case study transformationclass2rdbms helps us

discover new pre-condition constraints. These pre-conditions

were not initially envisaged by the panel of world experts

in model-driven engineering who propose theclass2rdbms

as the benchmark case study at the MTIP workshop [11].

We show that automatic generation can help us rapidly

discover structures that human or even experts cannot pre-

view in advance or require several years of transformation

usage experience.

– Contribution 3: We show that CARTIER consistently gen-

erates effective test models for a given strategy. We illus-

trate consistency by demonstrating that generating multi-
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ple test models for the same test strategy does not signif-

icantly change mutation scores. These test models corre-

spond to multiple non-isomorphic solutions obtained us-

ing ALLOY ’s symmetry breaking scheme [12].

The paper is organized as follows. In Section 2 we present

the transformation testing problem and the running case study.

In Section 3, we present foundational ideas used in CARTIER.

In Section 4, we describe the CARTIER methodology for au-

tomatic test model generation. In Section 5, we present the

experimental setup for test model generation using different

strategies and discuss the results of mutation analysis. InSec-

tion 6 we present related work. We conclude in Section 7.

2 Problem Description

We present the problem of black-box testingmodel transfor-

mations. A model transformationMT(I ,O) is a program ap-

plied on a set of input modelsI to produce a set of output

modelsO as illustrated in Figure 1. The set of all input mod-

els is specified by a meta-modelMMI (For example, UMLCD

in Figure 2). The set of all output models is specified by

meta-modelMMO. The pre-condition of the model transfor-

mationpre(MT) further constrains the input domain. A post-

conditionpost(MT) limits the model transformation to pro-

ducing a subset of all possible output models. The model

transformation is developed based on a set of requirements

MTRequirements.

Model generation for black-box testing involves finding

valid input models we calltest modelsfrom the set of all input

Fig. 1 A Model Transformation

modelsI . Test models must satisfy constraints that increase

the trust in the quality of these models as test data and thus

should increase their capabilities to detect bugs in the model

transformationMT(I ,O). Bugs may also exist in the input

meta-model and its invariantsMMI or the transformation pre-

conditionpre(MT). However, in this paper we only focus on

detecting bugs in a transformation.

2.1 Transformation Case Study

Our case study is the transformation from UML Class Dia-

gram models toRDBMS models calledclass2rdbms. In this

section we briefly describeclass2rdbms and discuss why it is

a representative transformation to validate test model genera-

tion strategies.

In black-box testing we need input models that conform

to the input meta-modelMMI and transformation pre-condition

pre(MT). Therefore, we only discuss theMMI andpre(MT)

for class2rdbms and avoid discussion of the model transfor-

mation output domain. In Figure 2, we present a subset of the

UML input meta-model forclass2rdbms. The concepts and

relationships in the input meta-model are stored as anEcore

model [13] (Figure 2 (a)). The invariants on theUMLCD Ecore

model, expressed inObject Constraint Language (OCL) [14],

are shown in Figure 2 (b). TheEcore model and the invariants
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together represent the true input meta-model forclass2rdbms.

The OCL andEcore are industry standards used to develop

meta-models and specify different invariants on them.OCL

is not a domain-specific language to specify invariants. How-

ever, it is designed to formally encode natural language re-

quirements specifications independent of its domain. In [15]

the authors present some limitations ofOCL.

The input meta-modelMMI gives an initial specification

of the input domain. However, the model transformation itself

has a pre-conditionpre(MT) that test models need to satisfy

to be correctly processed. Constraints in the pre-condition for

class2rdbms include: (a) AllClass objects must have at least

one primaryProperty object (b) The type of anProperty ob-

ject can be aClass C, but finally the transitive closure of

the type ofProperty objects ofClass C must end with type

PrimitiveDataType. In our case we approximate this recursive

closure constraint by stating thatProperty object can be of

typeClass up to a depth of 3 and the 4th time it should have

a typePrimitiveDataType. This is a finitization operation to

avoid navigation in an infinite loop. (c) AClass object can-

not have anAssociation and anProperty object of the same

name (d) There are no cycles between non-persistentClass

objects.

We chooseclass2rdbms as our representative case study

to validate input selection strategies. It serves as a sufficient

case study for several reasons. The transformation is the bench-

mark proposed in the MTIP workshop at the MoDELS 2005

conference [11] to experiment and validate model transfor-

mation language features. The input domain meta-model of

UML class diagram model covers all major meta-modelling

concepts such as inheritance, composition, finite and infinite

multiplicities. The entire UML input meta-model serves as a

large input meta-model to demonstrate meta-model pruning

to an effective input meta-model containing only class dia-

gram concepts.The constraints on the UML meta-model con-

tain both first-order and higher-order constraints. There also

exists a constraint to test transitive closure properties on the

input model such as there must be no cyclic inheritance. The

class2rdbms exercises most major model transformation op-

erators such as navigation, creation, and filtering (described

in more detail in [7]) enabling us to test essential model trans-

formation features. Among the limitations theUMLCD meta-

model does not containInteger andFloat attributes. The num-

ber of classes in theUMLCD meta-model is not very high

when compared to the standard UML 2.0 specification. There

are also no inter meta-model references and arbitrary con-

tainments in the simple meta-model. However, this not really

limitation in our approach as we claim that specifying a test

model requires only a small subset of the entire meta-model

and extracting this subset via meta-model pruning is part of

our methodology.

Model generation is relatively fast but performing mu-

tation analysis is extremely time consuming. Therefore, we

perform mutation analysis onclass2rdbms to qualify trans-

formation and meta-model independent strategies for model

synthesis. If these strategies prove to be useful in the case

of class2rdbms then we recommend the use of these strate-

gies to guide model synthesis in the input domain of other
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Fig. 2 (a) Class Diagram Subset of UML Ecore Meta-model (b)OCL constraints on theEcore meta-model

model transformations as an initial test generation step. For

instance, in our experiments, we see that generation of a 15

classUMLCD models takes about 20 seconds and mutation

analysis of a set of 20 such models takes about 3 hours on

a multi-core high-end server. Generating thousands of mod-

els for different transformations takes about 10% of the time

while performing mutation analysis takes most of the time.

3 Foundations

This section presents the foundations required to explain the

CARTIER methodology for automatic test model generation

and validation presented in Section 4. First, we present the

modelling and model transformation language Kermeta in Sec-

tion 3.1. We use Kermeta to implement all model transforma-

tions including CARTIER and meta-model pruning. We de-

scribe Kermeta’s implementation of model typing in Section

3.2 which helps us perform all type conformance operations

in our approach. In Section 3.3, we present the meta-model

pruning algorithm to obtain the effective input meta-modelor

the true input domain of a model transformation. We briefly

describe CARTIER’s transformation to ALLOY and the au-

tomatic model generation mechanism in Section 3.4. Model

generation in this paper is driven by coverage criteria based

testing strategies. These testing strategies are described in

Section 3.5. Finally, the bug detecting effectiveness of test

models generated using different testing strategies is done by

mutation analysis. Mutation analysis for model transforma-

tions is described in Section 3.6.

3.1 Kermeta

Kermeta is a language for specifying meta-models, models,

and model transformations that are compliant to the Meta Ob-

ject Facility (MOF) standard [16]. The object-oriented meta-

language MOF supports the definition of meta-models in terms

of object-oriented structures (packages, classes, properties,

and operations). It also provides model-specific constructions

such as containments and associations between classes. Ker-

meta extends the MOF with animperative action language
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for specifying constraints and operational semantics for meta-

models [17]. Kermeta is built on top of EMF within the ECLIPSE

development environment. The action language of Kermeta

provides mechanisms for dynamic binding, reflection, and

exception handling. It also includes classical control struc-

tures such as blocks, conditionals, and loops. We use Kermeta

to implement all model transformations in this paper.

3.2 Model Typing

The last version of the Kermeta language integrates the no-

tion of model typing [18], which corresponds to a simple ex-

tension to object-oriented typing in a model-oriented context.

Model typing can be related to structural typing found in lan-

guages such as Scala. Indeed, a model typing is a strategy for

typing models as collections of interconnected objects while

preserving type conformance, used as a criterion of substi-

tutability.

The notion of model type conformance (or substitutabil-

ity) has been adapted and extended to model types based on

Bruce’s notion of type group matching [19]. The matching re-

lation, denoted<#, between two meta-models defines a func-

tion of the set of classes they contain according to the follow-

ing definition:

Meta-modelM’ matches another meta-modelM (de-

notedM’ <# M) iff for each classC in M, there is

one and only one corresponding class or subclassC’

in M’ such that every propertyp and operationop in

M.C matches inM’.C’ respectively with a propertyp’

and an operationop’ with parameters of the same type

as inM.C.

This definition is adapted from [18] and improved here

by relaxing two strong constraints. First, the constraint re-

lated to the name-dependent conformance on properties and

operations was relaxing by enabling their renaming. The sec-

ond constraint related to the strict structural conformance was

relaxing by extending the matching to subclasses.

Let’s illustrate model typing with two meta-modelsM

and M’ given in Figures 3 and 4. These two meta-models

have model elements that have different names and the meta-

modelM’ has additional elements compared to the meta-model

M.

C1 <# COnebecause for each propertyCOne.pof

typeD (namely,COne.nameandCOne.aCTwo), there

is a matching propertyC1.qof typeD’ (namely,C1.id

andC1.aC2), such thatD’ <# D.

Thus,C1 <# COnerequiresD’ <# D, which is true

because:

– COne.nameandC1.idare both of typeString.

– COne.aCTwois of typeCTwo andC1.aC2is of

typeC2, soC1<# COnerequiresC2<# CTwoor

that a subclass ofC2matchesCTwo. Only C3<#

CTwo is true becauseCTwo.elementandC3.elem

are both of typeString.

Thus, matching between classes may depend on the match-

ing of their related dependent classes. As a consequence, the
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dependencies involved when evaluating model type match-

ing are heavily cyclical [20]. The interested reader can findin

[20] the details of matching rules used for model types.

3.3 Meta-model Pruning

Meta-model pruning [10] is an algorithm that outputs an ef-

fective subset meta-model of a possible large input meta-

model such as the UML . The output effective meta-model

conserves a set of required types and properties (given as in-

put to meta-model pruning) and all its obligatory dependen-

cies (computed by the algorithm). The algorithm prunes ev-

ery other type and property. In the type-theoretic sense there-

sulting effective meta-model is asupertypeof the large input

meta-model. We verify the supertype property using model

typing [18]. We concisely describe the meta-model pruning

algorithm in the following paragraphs.

Given a possibly large meta-model such as UML that may

represent the input domain of a model transformation we ask

the question : Does the model transformation process mod-

els containing objects of all possible types in the input meta-

model? In several cases the answer to this question may be

no. For instance, a transformation that refactors UML models

only processes objects with types that come from concepts in

the UML class diagrams subset but not UML Activity, U ML

Statechart, or UML Use case. How do we obtain this effective

subset? This is the problem that meta-model pruning solves.

The principle behind pruning is to preserve a set of re-

quired typesTreq and and required propertiesPreq and prune

away the rest in a meta-model. The authors of [10] present

a set of rules that help determine a set of required typesTreq

and required propertiesPreq given a meta-modelMM and an

initial set of required types and properties. The initial set may

come from various sources such as manual specification or a

static analysis of a model transformationto reveal used types.

A rule in the set for example adds all super classes of a re-

quired class intoTreq. Similarly, if a class is inTreq or is a

required class then for each of its propertiesp, add p into

Preq if the lower bound for its multiplicity is> 0. Apart from

rules the algorithm contains options which allow better con-

trol of the algorithm. For example, if a class is inTreq then

we add all its sub-classes intoTreq. This optional rule is not

obligatory but may be applicable under certain circumstances

giving the user some freedom. The rules are executed where

the conditions match until no rule can be executed any longer.

The algorithm terminates for a finite meta-model because the

rules do not remove anything from the setsTreq andPreq.

Once we compute the setsTreq andPreq the algorithm sim-

ply removes the remaining types and properties to output the

effective meta-modelMMe. The effective meta-modelMMe

generated using the algorithm in [10] has some very interest-

ing characteristics. Using model typing (discussed in Section

3.2) we verify thatMMe is a supertypeof the meta-model

MM. This implies that all operations written forMMe are

valid for the large meta-modelMM.

In CARTIER, we use meta-model pruning to prune the

input meta-modelMMI to obtain the effective input meta-

modeleMMI . The effective input meta-modeleMMI contains

all the classes and properties used in the transformation un-
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Fig. 3 MetamodelM. Fig. 4 MetamodelM’ .

der test and their obligatory dependencies. For our case study

transformationclass2rdbms we prune UML with a required

set of types namelyClass, Classifier, Association, Property,

PrimitiveDataType and the top-level classModel to obtain the

effective input meta-model previously shown in Figure 2. The

pruned meta-modelUMLCD is a subset of UML and a itssu-

pertype. The supertype property implies that any transforma-

tion written for UMLCD is backward compatible with UML .

All instances ofUMLCD are instances of UML . This result al-

lows us to exclusively transformUMLCD to ALLOY and not

the whole of UML .

3.4 CARTIER Transformation toALLOY and Automatic

Model Generation

We use the tool CARTIER previously introduced in our paper

[8] to automatically generate models. We invoke CARTIER

to transform the input domain specification of a model trans-

formation to a common constraint language ALLOY . Then

CARTIER invokes the ALLOY API to obtain Boolean CNF

formulae [21], launch a SAT solver such as MiniSAT [22]

or ZChaff [23] to generate models that conform to the input

domain of a model transformation.

CARTIER transforms a model transformation’s effective

input meta-model (obtained via meta-model pruning described

in Section 3.3) expressed in the Eclipse Modelling Frame-

work [13] format called Ecore using the transformation rules

presented in [8]. Basically, classes in the effective inputmeta-

model are transformed to ALLOY signatures and implicit con-

straints such as inheritance, opposite properties, and multi-

plicity constraints are transformed to ALLOY facts. TheOCL

constraints and natural language constraints on the inputEcore

meta-model are manually transformed to ALLOY facts. These

OCL constraints are used to express meta-model invariants

and model transformation pre-conditions. We do not auto-

mateOCL to ALLOY as there are several challenges posed

by this transformation as discussed in [24]. We do not claim

that allOCL constraints can be manually/automatically trans-

formed to ALLOY for our approach to be applicable in the
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most general case.OCL and ALLOY were designed with dif-

ferent goals.OCL is used mainly to query a model and check

if certain invariants are satisfied. ALLOY facts and predicates

on the other hand enforce constraints on a model. This is in

contrast with the side-effect freeOCL. The core of ALLOY

is declarative and is based on first-order relational logic with

quantifiers whileOCL includes higher-order logic and has im-

perative constructs to call operations and messages making

some parts ofOCL more expressive. In our case study, we

have been successful in transforming all meta-constraintson

the UMLCD meta-model to ALLOY from their originalOCL

specifications. Identifying a subset ofOCL that can be auto-

matically transformed to ALLOY is anopen challenge. As an

example transformation consider the invariant for no cyclic

inheritance in Figure 2(b). The constraint is specified as the

fact in Listing 1.

f a c t n o C y c l i c I n h e r i t a n c e

{

no c : C l as s | c i n c . ˆ p a r e n t

}

Listing 1 ALLOY Fact for No Cyclic Inheritance

The generated ALLOY model for theUMLCD meta-model

is given in Appendix A. This ALLOY model only describes

the effective input domain of the transformation. Generating

model instances of the ALLOY model results inunguided and

trivial solutions. Are these trivial solution capable of detect-

ing bugs? This is the question that is answered in Section 5.

Are there better heuristics to generate test models? In the fol-

lowing Section 3.5 we illustrate how one can guide model

generation using strategies based on input domain partition-

ing.

3.5 Test Strategies

Good strategies to guide automatic model generation are re-

quired to obtain test models that detect bugs in a model trans-

formation. We define a strategy as a process that generates

ALLOY predicateswhich are constraints added to the AL-

LOY model synthesized by CARTIER as described in Section

4. This combined ALLOY model is solved and the solutions

are transformed to model instances of the input meta-model

that satisfy the predicate. We present the following strategies

to guide model generation:

– Random/Unguided Strategy:The basic form of model

generation is unguided where only the ALLOY model ob-

tained from the meta-model and transformation is used to

generate models. No extra knowledge is supplied to the

solver in order to generate models. The strategy yields an

empty ALLOY predicate as shown in Listing 2.

pred random { }

Listing 2 Empty ALLOY Predicate

– Input-domain Partition based Strategies:We guide gen-

eration of models using test criteria to combinepartitions

on domains of all properties of a meta-model (cardinality

of references or domain of primitive types for attributes).

A partition of a set of elements is a collection ofn ranges

A1,...,An such thatA1, ...,An do not overlap and the union

of all subsets forms the initial set. These subsets are called
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ranges. We use partitions of the input domain since the

number of models in the domain are infinitely many. Us-

ing partitions of the properties of a meta-model we define

two test criteria that are based on different strategies for

combining partitions of properties. Each criterion defines

a set ofmodel fragmentsfor an input meta-model. These

fragments are transformed to predicates on meta-model

properties by CARTIER. For a set of test models to cover

the input domain at least one model in the set must cover

each of these model fragments. We generate model frag-

ment predicates using the following test criteria to com-

bine partitions (cartesian product of partitions):

– AllRanges Criteria: AllRanges specifies that each range

in the partition of each property must be covered by

at least one test model.

– AllPartitions Criteria: AllPartitions specifies that the

whole partition of each property must be covered by

at least one test model.

The notion of test criteria to generate model fragments

was initially proposed in our paper [5]. The accompanying

tool called Meta-model Coverage Checker (MMCC) [5] gen-

erates model fragments using different test criteria taking any

meta-model as input. Then, the tool automatically computes

the coverage of a set of test models according to the generated

model fragments. If some fragments are not covered, then the

set of test models should be improved in order to reach a bet-

ter coverage.

In this paper, we use the model fragments generated by

MMCC for theUMLCD Ecore model (Figure 2). We use the

criteriaAllRanges andAllPartitions. For example, in Table 1,

mfAllRanges1andmfAllRanges2are model fragments gener-

ated by CARTIER using MMCC [5] for thenameproperty of

a classifier object. ThemfAllRanges1states that there must

be at least one classifier object with an empty name while

mfAllRanges2states that there must be at least one classifier

object with a non-empty name. These values for name are the

ranges for the property. The model fragments chosen using

AllRanges mfAllRanges1andmfAllRanges2define two par-

titions partition1 andpartition2. The model fragmentmfAll-

Partitions1chosen usingAllPartitions defines bothpartition1

andpartition2.

These model fragments are transformed to ALLOY predi-

cates by CARTIER. For instance, model fragmentmfAllRanges7

is transformed to the predicate in Listing 3.

pred mfAl lRanges7

{

some c : C l as s | #c . a t t r i b u t e =1

}

Listing 3 ALLOY Predicate formfAllRanges7

As mentioned in our previous paper [5] if a test set con-

tains models where all model fragments are contained in at

least one model then we say that the input domain is com-

pletely covered. However, these model fragments are gener-

ated considering only the concepts and relationships in the

Ecore model and they do not take into account the constraints

on theEcore model. Therefore, not all model fragments are

consistent with the input meta-model because the generated
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models that contain these model fragments do not satisfy the

constraints on the meta-model. CARTIER invokes the ALLOY

Table 1 Consistent Model Fragments Generated usingAllRanges

andAllPartitions Strategies

Model-Fragment Description

mfAllRanges1 AClassifier c | c.name=“”

mfAllRanges2 AClassifier c | c.name! =“”

mfAllRanges3 AClass c | c.is persistent= True

mfAllRanges4 AClass c | c.is persistent= False

mfAllRanges5 AClass c | #c.general= 0

mfAllRanges6 AClass c | #c.general= 1

mfAllRanges7 AClass c | #c.attribute= 1

mfAllRanges8 AClass c | #c.attribute> 1

mfAllRanges9 AnProperty a | a.is primary= True

mfAllRanges10 AnProperty a | a.name=“”

mfAllRanges11 AnProperty a | a.name! =“”

mfAllRanges12 AnProperty a | #a.datatype= 1

mfAllRanges13 AnAssociation as| as.name=“”

mfAllRanges14 AnAssociation as| #as.memberEnd= 0

mfAllRanges15 AnAssociation as| #as.memberEnd= 1

mfAllPartitions1 Classifiers c1,c2 | c1.name =“” and

c2.name! =“”

mfAllPartitions2 Classesc1,c2 | c1.is persistent= Trueand

c2.is persistent= False

mfAllPartitions3 Classes c1,c2 | #c1.general = 0 and

#c2.general= 1

mfAllPartitions4 Propertys a1,a2 | a1.is primary = True

anda2.is primary= False

mfAllPartitions5 Associations as1,as2 | as1.name=“” and

as2.name! =“”

Analyzer [25] to automatically check if a model containing a

model fragment and satisfying the input domain can be syn-

thesized for a general scope of number of objects. This al-

lows us todetect inconsistent model fragments. For example,

the following predicate,mfAllRanges7a, is the ALLOY rep-

resentation of a model fragment specifying that someClass

object does not have anyProperty object. CARTIER calls the

ALLOY API to execute the run statement for the predicate

mfAllRanges7aalong with the base ALLOY model to create a

model that contains up to 30 objects per class/concept/signa-

ture (see Listing 4).

pred mfAl lRange7a

{

some c : C l as s | #c . a t t r i b u t e = 0

}

run mfAl lRanges7 fo r 30

Listing 4 ALLOY Predicate and Run Command

The ALLOY analyzer yields ano solutionto the run state-

ment indicating that the model fragment is not consistent with

the input domain specification. This is because no model can

be created with this model fragment that also satisfies an in-

put domain constraint that states that everyClass must have

at least oneProperty object as shown in Listing 5.

s i g C l as s ex t en d s C l a s s i f i e r

{ . . .

a t t r i b u t e : some P r o p e r t y

. . .

}

Listing 5 Example ALLOY Signature

In Listing 5, someindicates 1..*. However, if a model

solution can be found using ALLOY we call it aconsistent
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model fragment. MMCC generates a total of 15 consistent

model fragments usingAllRanges and 5 model fragments us-

ing theAllPartitions strategy, as shown in Table 1.

3.6 Qualifying Models: Mutation Analysis for Model

Transformation Testing

We generate sets of test models using different strategies and

qualify these sets via mutation analysis [6]. Mutation analysis

involves creating a set of faulty versions ormutantsof a pro-

gram. A test set must distinguish the program output from all

the output of its mutants. In practice, faults are modelled as

a set of mutation operators where each operator represents a

class of faults. A mutation operator is applied to the program

under test to create each mutant. A mutant is killed when at

least one test model detects the pre-injected fault. It is de-

tected when program output and mutant output are different.

A test set is relatively adequate if it kills all mutants of the

original program. A mutation score is associated to the test

set to measure its effectiveness in terms of percentage of the

killed/revealed mutants.

We use the mutation analysis operators for model trans-

formations presented in our previous work [7]. These muta-

tion operators are based on three abstract operations linked to

the basic treatments in a model transformation: the navigation

of the models through the relations between the classes, the

filtering of collections of objects, the creation and the mod-

ification of the elements of the output model. Using this ba-

sis we define several mutation operators that inject faults in

model transformations:

Relation to the same class change (RSCC):The navi-

gation of one association toward a class is replaced with the

navigation of another association to the same class.

Relation to another class change (ROCC):The navi-

gation of an association toward a class is replaced with the

navigation of another association to another class.

Relation sequence modification with deletion (RSMD):

This operator removes the last step off from a navigation

which successively navigates several relations.

Relation sequence modification with addition (RSMA):

This operator does the opposite of RSMD, adding the navi-

gation of a relation to an existing navigation.

Collection filtering change with perturbation (CFCP):

The filtering criterion, which could be on a property or the

type of the classes filtered, is disturbed.

Collection filtering change with deletion (CFCD):This

operator deletes a filter on a collection; the mutant operation

returns the collection it was supposed to filter.

Collection filtering change with addition (CFCA): This

operator does the opposite of CFCD. It uses a collection and

processes an additional filtering on it.

Class compatible creation replacement (CCCR):The

creation of an object is replaced by the creation of an instance

of another class of the same inheritance tree.

Classes association creation deletion (CACD):This op-

erator deletes the creation of an association between two in-

stances.
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Classes association creation addition (CACA):This op-

erator adds a useless creation of a relation between two in-

stances.

Using these operators, we produced two hundred mutants

from theclass2rdbms model transformation with the reparti-

tion indicated in Table 2.

In general, not all mutants injected become faults as some

of them are equivalent and can never be detected. The con-

trolled experiments presented in this paper uses mutants pre-

sented in our previous work [7]. We have clearly identified

faults and equivalent mutants to study the effect of our gener-

ated test models.

4 Automatic Test Model Generation and Qualification

Methodology

We outline the methodology for test generation using CARTIER

and qualification of the generated test models via mutation

analysis in Figure 5. The methodology encapsulates all ideas

we present in Section 3 into a workflow. CARTIER is based

on technologies like Kermeta, Eclipse Modelling Framework

(Ecore), and ALLOY as shown in the figure. Concisely, the

test model generation workflow follows the steps:

1. CARTIER performs static analysis on the model transfor-

mationMT to obtain the initial set of used types and prop-

erties.

2. CARTIER performs meta-model pruning ofMMI using

these used types and properties to obtain the effective in-

put meta-modeleMMI (details in Section 3.3)

3. CARTIER transformseMMI , its invariants, the transfor-

mation pre-conditionpre(MT) and test strategy to an AL-

LOY model (details in Sections 3.4, 3.5)

4. CARTIER generates models to detect inconsistencies in

test strategy predicates. It eliminates those that are incon-

sistent witheMMI andpre(MT) (details in Section 3.5)

5. Finally, CARTIER generates sets of test models that sat-

isfy all consistent predicates representing test strategies

in a finite scope using run commands for each predicate

(details in Section 3.5). It can also generate multiple non-

isomorphic test models by soliciting ALLOY ’s symme-

try breaking scheme [12] currently applicable to the Min-

iSAT [22] SAT solver.

The generated models may lead to raising of exceptions

in the model transformationMT as its initial pre-condition

definition may not have been well defined. In the following

Section 4.1 we show how automatically generated models re-

sulted in discovery of patterns that were not foreseen by ex-

perts who original designed the transformationclass2rdbms.

After discovering pre-conditions that no longer lead to

generation of models that are raise exceptions we regener-

ate sets of test models. We qualify the sets of generated test

models via mutation analysis (see Section 3.6).

4.1 Pre-condition Improvement

The execution of a transformation helps us discover new con-

straints for the pre-conditionpre(MT) of the transformation

MT . In this sub-section we illustrate how some of the con-



Automatic Model Synthesis to Test Transformations 15

Table 2 Repartition of theclass2rdbms mutants depending on the mutation operator applied

Mutation Operator CFCA CFCD CFCP CACD CACA RSMA RSMD ROCC RSCC Total

Number of Mutants 19 18 38 11 9 72 12 12 9 200

Fig. 5 CARTIER Methodology for Automatic Test Generation and Mutation Analysis based Qualification

straints in the pre-condition of the transformationclass2rdbms

are discovered.

The discovery of a pre-condition starts with the detec-

tion of a fault during the execution of automatically gener-

ated models. The exception handling mechanism in Kermeta

allows us to detect and catch these exceptions. First, we pre-

vent the lock of the execution when a transformation runs

into infinite loop. For instance, this situation occurs whenin-

put models are navigated through a series of associations that

can create loop structure in the transformationclass2rdbms.

These loops structures can navigation through diverse con-

cepts such as inheritance trees, associations, and type of at-

tributes. The Kermeta interpreter throws anStackOverflowEr-

ror exception when it detects such a problem.

Second, we detect more complex inconsistencies when

output models produced from an automatically generated in-

put model are not in the output domain. For instance, output

models that do not satisfy the output meta-model specifica-

tion and the post-conditionpost(MT). In our case study, the

transformationclass2rdbms can produce ill-formedRDBMS

models. A typical example is when a table contains several

columns with same name. We detect these inconsistencies by

checking if output models conform to the output meta-model

(Ecore model of the meta-model with invariants) and satisfy

post-conditions of the model transformation. The Figure 6 il-

lustrates this detection. It represents an excerpt (bottompart)

of an output model produced by the original transformation

of a generated (excerpt on the top part).

Our tool isolates inconsistent output models and corre-

sponding input models. We then use a traceability mechanism

and tool such as in [26] to restrain the analysis of these mod-

els on excerpts such as the one illustrated in Figure 6. Class
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Fig. 6 Model Excerpt for Pre-condition Improvement

namedA is transformed into one table because it is persis-

tent. It redefined an association of the ClassB. Two asso-

ciations with the same nameasso1point to classes with the

same attribute/propertyatt1. Respecting the specification, the

original transformations produces a table with two columns

namedasso1att1. This does not conform to theRDBMS meta-

model and it is detected by our tool. Construction of such

models can be prevented by generating objects with differ-

ent names. We solve this inconsistency by creating a new

pre-condition constraint that protects the transformation from

executing such models. We also regenerate new models that

satisfy the new pre-condition constraints. For instance, the

faulty model excerpt in Figure 6 can help us produce a new

pre-condition that states:

In the classes of an inheritance tree, two associations with

the same name can’t point to classes that have (or their par-

ent) attributes with same names.

Several new pre-conditions were discovered for theclass2rdbms

case study. We enlist nine newly discovered ALLOY facts in

Appendix C apart from the initial set of pre-condition con-

straints as shown in Appendix B. These ALLOY facts can be

easily expressed inOCL to improve the pre-condition specifi-

cation ofclass2rdbms. The conditions may even be applica-

ble to commercial implementations ofclass2rdbms.

5 Experiments

5.1 Experimental Setup and Execution

We use the methodology in Section 4 to compare coverage

based test generation with unguided/random test model gen-

eration.
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Coverage based test strategies as previously introduced in

Section 3.5 consist of two test criteriaAllRanges andAllPar-

titions. These test criteria generate model fragments from an

effective input meta-model. A test set satisfyingAllRanges

must contain test models that contain all consistent model

fragments from theAllRanges criteria. Similarly, a test set

satisfyingAllPartitions must contain all consistent model frag-

ments generated from theAllPartitions criteria.

We generate sets of test models based on factorial exper-

imental design [27]. We consider theexact number of objects

for each classin the effective input meta-model as factors for

experimental design. A factor level is the exact number of ob-

jects of a given class in a test model. These factors help study

the effect of number of different types of objects on the muta-

tion score. For instance, we can ask questions such as whether

a large number ofAssociation objects have a correlation with

the mutation score? The large of numberAssociation objects

also indicates a highly connected UML class diagram test

model. We decide these factor levels by simple experimen-

tation such as verifying if models can be generated in reason-

able amount of time given that we need to generate thousands

of test models in a few hours. We also want to cover a com-

bination of a large number of varying factor levels. We have

8 different factor levels for the different classes in the UML

class diagram effective input meta-model as shown in Table

3. Other factors that may affect but are not considered for test

model generation are the use different SAT solvers such as

SAT4J, MiniSAT, or ZChaff, maximum time to solve, t-wise

interaction between model fragments.

TheAllRanges criteria on theUMLCD meta-model gives

15 consistent model fragments (see Table 1). We have 150

models in a set, where 10 non-isomorphic models satisfies

each different model fragment. We generate 10 non-isomorphic

models to verify that mutation scores do not drastically change

within each solution. We synthesize 8 sets of 150 models us-

ing different levels for factors as shown in Table 3 (see rows

1,2,3,4,5,6). The total number of models in these 8 sets is

1200.

The AllPartitions criteria gives 5 consistent model frag-

ments. We have 50 test models in a set, where 10 non-isomorphic

test models satisfies a different model fragment. We synthe-

size 8 sets of 50 models using factor levels shown in Table

3. The levels for factors forAllRanges andAllPartitions are

the same. Total number of models in the 8 sets is 400. The

selection of these factors at the moment is not based on a

problem-independent strategy.

We compare test sets generated usingAllRanges andAll-

Partitions with unguided test sets. For each test set of cov-

erage based strategies we generate an equal number of ran-

dom/unguided models as a reference to qualify the efficiency

of different strategies. Precisely, we have 8 sets of 150 un-

guided test models to compare withAllRanges and 8 sets of

50 unguided test models to compare withAllPartitions. We

use the factor levels in Table 3.

To summarize, we generate a total of 3200 models using

an Intel(R) CoreTM 2 Duo processor with 4GB of RAM. We

perform mutation analysis of these sets to obtain mutation

scores on a grid of 10 Intel Celeron 440 high-end computers.
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Table 4 Mutation Scores in Percentage for All Test Model Sets

Set 1 2 3 4 5 6 7 8

Unguided 150 models/set in 8 sets 68.56 69.9 68.04 70.1 70.1 68.55 69 70.1

AllRanges 150 models/set in 8 sets 88.14 92.26 81.44 85 91.23 80.4 91.23 88.14

Unguided 50 models/set in 8 sets 70.1 62.17 68.04 70.1 65.46 68.04 69.94 70.1

AllPartitions 50 models/set in 8 sets 90.72 93.3 84.53 87.62 87.62 82.98 92.78 88.66

Table 3 Factors and their Levels for Test Sets

Factors S1 S2 S3 S4 S5 S6 S7 S8

#ClassModel 1 1 1 1 1 1 1 1

#Class 5 5 15 15 5 15 5 15

#Association 5 15 5 15 5 5 15 15

#Attribute 25 25 25 25 30 30 30 30

#PrimitiveDataType 4 4 4 4 4 4 4 4

Bit-width Inte-

ger

5 5 5 5 5 5 5 5

#Models/Set

AllRanges

15 15 15 15 15 15 15 15

#Models/Set

Unguided

15 15 15 15 15 15 15 15

#Models/Set

AllPartitions

5 5 5 5 5 5 5

#Models/Set

Unguided

5 5 5 5 5 5 5

The computation time for generating 3200 models was about

3 hours and mutation analysis took about 1 week. We discuss

the results of mutation analysis in the following section.

5.2 Results and Discussion

Mutation scores forAllRanges test sets are shown in Table 4

(row 2). Mutation scores for test sets obtained usingAllParti-

tions are shown in Table 4 (row 4). We discuss the effects of

the influencing factors on the mutation score:

– The number ofClass objects andAssociation objects has

a strong correlation with the mutation score. There is an

increase in mutation score with the level of these factors.

This is true for sets from unguided and model fragments

based strategies. For instance, the lowest mutation score

using AllRanges is 80.41 %. This corresponds to set 1

where the factor levels are 1,5,5,25,4,5 (see Column for

set 1 in Table 3) and highest mutation scores are 91,24

and 92,27% where the factor levels are 1,15,5,25,4,5 and

1,5,15,25,4,5 respectively (see Columns for set 3 and set

7 in Table 3).

– We observe thatAllPartitions test sets containing only 50

models/set gives a score of maximum 93.3%. TheAll-

Partitions strategy demonstrates that knowledge from two

different partitions satisfied by one test model greatly im-

proves bug detecting efficiency. This also opens a new

research direction to explore: Finding strategies to com-
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bine model fragments to guide generation of smaller sets

of complex test models with better bug detecting effec-

tiveness.

We compare unguided test sets with model fragment guided

sets in thebox-whiskerdiagram shown in Figure 7. The box

whisker diagram is useful to visualize groups of numerical

data such as mutation scores for test sets. Each box in the

diagram is divided into lower quartile (25%), median, upper

quartile (75% and above), and largest observation and con-

tains statistically significant values. A box may also indicate

which observations, if any, might be considered outliers or

whiskers. In the box whisker diagram of Figure 7 we shown 4

boxes with whiskers for unguided sets and sets forAllRanges

andAllPartitions. The X-axis of this plot represents the strat-

egy used to select sets of test models and the Y-axis represents

the mutation score for the sets.

We make the following observations from the box-whisker

diagram:

– Both the boxes ofAllRanges andAllPartitions represent

mutation scores higher than corresponding unguided sets.

– The high median mutation scores for strategiesAllRanges

88.14% andAllPartitions 88.14% indicate that both these

strategies return consistently good test sets.

– The small size of the box forAllPartitions compared to the

AllRanges box indicates its relative convergence to good

sets of test models.

– The small set of 50 models usingAllPartitions gives mu-

tations scores equal or greater than 150 models/set using

AllRanges. This implies that it is a more efficient strategy

for test model selection. The main consequence is a re-

duced effort to write correspondingtest oracles[28] with

50 models compared to 150 models.

– Despite the generation of multiple solutions (10 solutions

for each model fragment or an empty fragment for un-

guided generation) for each strategy we see a consistent

behaviour in the mutation scores. There is no large differ-

ence in the mutation scores especially for unguided gener-

ation. The median is 69% and the mutation scores range

between 68% and 70%. TheAllRanges andAllPartitions

vary a little more in their mutation scores due to a larger

coverage of the effective input meta-model.

The freely and automatically obtained knowledge from

the input meta-model using the MMCC algorithm shows that

AllRanges andAllPartitions are successful strategies to guide

test generation. They have higher mutation scores with the

same sources of knowledge used to generate unguided test

sets. A manual analysis of the test models reveals that injec-

tion of inheritance via the parent relation in model fragments

results in higher mutation scores. Most unguided models do

not contain inheritance relationships as it is not imposed by

the meta-model.

What about the 7% of the mutants that remain alive given

that the highest mutation score is 93.3%? We note by an anal-

ysis of the live mutants that they are the same for bothAll-

Ranges and AllPartitions. There remain 19 live mutants in

a total of 200 injected mutants (with 6 equivalent mutants).

In the median case both AllRanges and AllPartitions strat-
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Fig. 7 Box-whisker Diagram to Compare Automatic Model GenerationStrategies

egy give a mutation score of 88.14%. The live mutants in the

median case are mutants not killed due to fewer objects in

models.

To consistently achieve a higher mutation score we need

more CPU speed, memory and parallelization to efficiently

generate larger test models and perform mutation analysis on

them. This extension of our work has not be been explored

in the paper. It is important for us to remark that some live

mutants can only be killed with more information about the

model transformation such as those derived from its require-

ments specification. For instance, one of the remaining live

mutant requires a test model with a class containing several

primitive type attributes such that at least one is a primaryat-

tribute. A test model that satisfies such a requirement requires

the combination of model fragments imposing the need for

several attributes in a class A, attributes of class A must have

primitive types, at least one primary attribute in the classA,

and at least one non-primary attribute in the class A. This

requirement can either be specified by manually creating a

combination of fragments or by developing a better general

test strategy to combine multiple model fragments. In another

situation, we observe that not all model fragments are consis-

tent with the input domain and hence they do not really cover

the entire meta-model. Therefore, we miss killing some mu-

tants. This information could help improve partitioning and

combination strategies to generate better test sets.

6 Related Work

We explore three main areas of related work : test criteria,

automatic test generation, and qualification of strategies.
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The first area we explore is work on test criteria in the

context of model transformations in MDE. Random genera-

tion and input domain partitioning based test criteria are two

widely studied and compared strategies in software engineer-

ing (non MDE) [29] [30] [31]. To extend such test criteria to

MDE we have presented in [5] input domain partitioning of

input meta-models in the form of model fragments. However,

there exists no experimental or theoretical study to qualify the

approach proposed in [5].

Experimental qualification of the test strategies require

techniques for automatic model generation. Model genera-

tion is more general and complex than generating integers,

floats, strings, lists, or other standard data structures such as

dealt with in the Korat tool of Chandra et al. [32]. Korat is

faster than ALLOY in generating data structures such as bi-

nary trees, lists, and heap arrays from the Java Collections

Framework but it does not consider the general case of mod-

els which are arbitrarily constrained graphs of objects. The

constraints on models makes model generation a different

problem than generating test suites for context-free grammar-

based software [33] which do not contain domain-specific

constraints.

Test models are complex graphs that must conform to an

input meta-model specification, a transformation pre-condition

and additional knowledge such as model fragments to help

detect bugs. In [34] the authors present an automated gen-

eration technique for models that conform only to the class

diagram of a meta-model specification. A similar method-

ology using graph transformation rules is presented in [35].

Generated models in both these approaches do not satisfy the

constraints on the meta-model. In [36] we present a method

to generate models given partial models by transforming the

meta-model and partial model to aConstraint Logic Program-

ming (CLP). We solve the resultingCLP to give model(s) that

conform to the input domain. However, the approach does

not add new objects to the model. We assume that the num-

ber and types of models in the partial model is sufficient for

obtaining complete models. The constraints in this system are

limited to first-order horn clause logic. In [8] we have intro-

duce a tool CARTIER based on the constraint solving system

ALLOY to resolve the issue of generating models such that

constraints over both objects and properties are satisfied si-

multaneously. In this paper we use CARTIER to systemati-

cally generate several hundred models driven by knowledge/-

constraints of model fragments [5]. Statistically relevant test

model sets are generated from a factorial experimental design

[27] [37].

The qualification of a set of test models can be based on

several criteria such as code and rule coverage for white box

testing, satisfaction of post-condition or mutation analysis for

black/grey box testing. In this paper we are interested in ob-

taining the relative adequacy of a test set using mutation anal-

ysis [6]. In previous work [7] we extend mutation analysis to

MDE by developing mutation operators for model transfor-

mation languages. We qualify our approach using a repre-

sentative transformationUMLCD models toRDBMS models

called class2rdbms implemented in the transformation lan-

guage Kermeta [3]. This transformation [11] was proposed
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in the MTIP Workshop in MoDeLs 2005 as a comprehensive

and representative case study to evaluate model transforma-

tion languages.

7 Conclusion

Black-box testing exhibits the challenging problem of de-

veloping efficient model generation strategies. In this paper

we present CARTIER, a tool to generate models conforming

to the input domain and guided by different test strategies.

First, CARTIER helps us precisely specify the input domain

of a model transformation via meta-model pruning and pre-

condition improvement. Second, we use CARTIER to gener-

ate sets of test models that compare coverage and unguided

strategies for model generation. All test sets using these strate-

gies detect faults given by their mutation scores. The compar-

ison of coverage strategies with unguided generation taught

us that both strategiesAllPartitions andAllRanges look very

promising. Coverage strategies give a maximum mutation score

of 93% compared to a maximum mutation score of 70% in the

case of unguided test sets. We observe that mutation scores do

not vary drastically despite the generation of multiple solu-

tions for the same test strategy. We conclude from our experi-

ments that theAllPartitions strategy is a promising strategy to

consistently generate a small test of test models with a good

mutation score. However, to improve efficiency of test sets

we might require effort from the test designer to obtain test

model knowledge/test strategy that take the internal model

transformation design requirements into account.

A A LLOY Model Synthesized by CARTIER

module tmp /UMLCD

open u t i l / boo lean as Bool

s i g Model

{

c l a s s i f i e r : s e t C l a s s i f i e r ,

a s s o c i a t i o n :s e t A s s o c i a t i o n

}

a b s t r a c t s i g C l a s s i f i e r

{

name : I n t

}

s i g P r i m i t i v eD a t aTy p e ex t en d s C l a s s i f i e r

{ }

s i g C l as s ex t en d s C l a s s i f i e r

{

i s p e r s i s t e n t : one Bool ,

g e n e r a l : l one Class ,

a t t r i b u t e : some P r o p e r t y

}

s i g A s s o c i a t i o n

{

name : I n t ,

memberEnd : one Class ,

ownedEnd : one C l as s

}

s i g P r o p e r t y

{

name : I n t ,

i s p r i m a r y : Bool ,

d a t a t y p e : one C l a s s i f i e r

}

/ / Meta−model c o n s t r a i n t s

/ ∗ There must be No C y c l i c I n h e r i t a n c e i n an UMLCD∗ /

f a c t n o C y c l i c I n h e r i t a n c e

{

no c : C l as s | c i n c . ˆ g e n e r a l

}

/ ∗ Al l t h e a t t r i b u t e s i n a C l as s must have un ique a t t r i b u t e names ∗ /

f a c t un iqueProper t yNames
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{

a l l c : C l as s | a l l a1 : c . a t t r i b u t e , a2 : c . a t t r i b u t e| a1 . name = a2 . namei m p l i es

a1=a2

}

/ ∗ An a t t r i b u t e o b j e c t can be co n t a i n ed by on ly one c l a s s∗ /

f a c t a t t r i b u t e C o n t a i n m e n t

{

a l l c1 : C lass , c2 : C l as s| a l l a1 : c1 . a t t r i b u t e , a2 : c2 . a t t r i b u t e| a1 = a2

i m p l i es c1=c2

}

/ ∗ There i s e x a c t l y one Model o b j e c t∗ /

f a c t oneModel

{

#Model=1

}

/ ∗ Al l C l a s s i f i e r o b j e c t s a r e co n t a i n ed i n a Model∗ /

f a c t c l a s s i f i e r C o n t a i n m e n t

{

a l l c : C l a s s i f i e r | c i n Model . c l a s s i f i e r

}

/ ∗ Al l A s s o c i a t i o n o b j e c t s a r e co n t a i n ed i n a Model∗ /

f a c t as s o c i a t i o n C o n t a i n m e n t

{

a l l a : A s s o c i a t i o n| a i n Model . a s s o c i a t i o n

}

/ ∗A C l a s s i f i e r must have a un ique name i n t h e C l as s Diagram∗ /

f a c t u n i q u eC l as s i f i e r N ame

{

a l l c1 : C l a s s i f i e r , c2 : C l a s s i f i e r | c1 . name = c2 . namei m p l i es c1=c2

}

/ ∗An a s s o c i a t i o n s have t h e same name e i t h e r t h ey a r e t h e same a ss o c i a t i o n or t h ey

have d i f f e r e n t s o u r ces∗ /

f a c t uniqeNameAssocSrc

{

a l l a1 : A s s o c i a t i o n , a2 : A s s o c i a t i o n|

a1 . name = a2 . namei m p l i es ( a1 = a2 or a1 . s r c != a2 . s r c )

}

Listing 6 ALLOY Model for UML Class Diagram

B Initial Set of Pre-conditions

/ ∗ I n i t i a l Model T r an s f o r ma t i o n Pre−c o n d i t i o n s∗ /

f a c t a t l e a s t O n e P r i m a r y P r o p e r t y

{

a l l c : C l as s | one a : c . a t t r i b u t e | a . i s p r i m a r y =True

}

f a c t n o 4 C y c l i cC l as s P r o p e r t y

{

a l l a : P r o p e r t y | a . d a t a t y p e i n C l as s i m p l i es a l l a1 : a . d a t a t y p e . a t t r i b u t e| a1 .

d a t a t y p e i n

C l as s i m p l i es a l l a2 : a . d a t a t y p e . a t t r i b u t e| a2 . d a t a t y p e i n C l as s i m p l i es a l l a3

: a . d a t a t y p e . a t t r i b u t e| a3 . d a t a t y p e

i n C l as s i m p l i es a l l a4 : a . d a t a t y p e . a t t r i b u t e| a4 . d a t a t y p e i n

P r i m i t i v eD a t aTy p e

}

f a c t noPropertyAndAssociat ionHaveSameName

{

a l l c : C l as s , as s o c : A s s o c i a t i o n|

a l l a : c . a t t r i b u t e | ( as s o c . s r c = c ) i m p l i es a . name != as s o c . name

}

f a c t n o 1 C y c l eN o n P er s i s t en t

{

a l l a : A s s o c i a t i o n | ( a . memberEnd = a . ownedEnd )i m p l i es a . ownedEnd . i sp e r s i s t e n t

= True

}

f a c t n o 2 C y c l eN o n P er s i s t en t

{

a l l a1 : A s s o c i a t i o n , a2 : A s s o c i a t i o n|

( a1 . memberEnd = a2 . ownedEndand a2 . memberEnd = a1 . s r c )i m p l i es

a1 . ownedEnd . i sp e r s i s t e n t = Trueor a2 . ownedEnd . i sp e r s i s t e n t =True

}

Listing 7 Initial pre-conditions as ALLOY facts

C Discovered Set of Pre-conditions

/ / D i scovered Model T r an s f o r ma t i o n pre−c o n d i t i o n c o n s t r a i n t s

/ ∗ 1 . At a dep th o f 4 t h e t y p e o f an a t t r i b u t e has t o be p r i m i t i v e and can n o t be

a c l a s s t y p e∗ /

f a c t n o 4 C y c l i cC l as s P r o p e r t y{

a l l a : P r o p e r t y | a . d a t a t y p e i n C l as s => a l l a1 : a . d a t a t y p e . a t t r i b u t e| a1 . d a t a t y p e

i n C l as s => a l l a2 : a . d a t a t y p e . a t t r i b u t e| a2 . d a t a t y p e i n C l as s => a l l a3 :

a . d a t a t y p e . a t t r i b u t e| a3 . d a t a t y p e i n C l as s => a l l a4 : a . d a t a t y p e . a t t r i b u t e

| a4 . d a t a t y p e i n P r i m i t i v eD a t aTy p e
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}

/ ∗ 2 . A C l as s can n o t have an a s s o c i a t i o n and an a t t r i b u t e o f t h e same name ∗ /

f a c t noAtt r ibAndAssocSameName{

a l l c : C lass , as s o c : A s s o c i a t i o n| a l l a : c . a t t r i b u t e | ( as s o c . ownedEnd == c ) =>

a . name != as s o c . name

}

/ ∗ 3 . No c y c l e s between non−p e r s i s t e n t c l a s s e s∗ /

f a c t n o 1 C y c l eN o n P er s i s t en t

{

a l l a : A s s o c i a t i o n | ( a . memberEnd == a . ownedEnd ) => a . memberEnd .

i s p e r s i s t e n t = True

}

f a c t n o 2 C y c l eN o n P er s i s t en t

{

a l l a1 : A s s o c i a t i o n , a2 : A s s o c i a t i o n| ( a1 . memberEnd == a2 . ownedEndand a2 .

memberEnd==a1 . ownedEnd ) => a1 . ownedEnd . i sp e r s i s t e n t = Trueor a2 .

ownedEnd . i s p e r s i s t e n t =True

}

/ ∗ 4 . A p e r s i s t e n t c l a s s can ’ t have an a s s o c i a t i o n t o one o f i t s ge n e r a l ∗ /

f a c t a s s o c P e r s i s t e n t C l a s s

{

a l l a : A s s o c i a t i o n | a . ownedEnd . i sp e r s i s t e n t =True i m p l i es a . memberEnd no ti n a .

ownedEnd . ˆ g e n e r a l

}

/ ∗ 5 . Unique a s s o c i a t i o n names i n a c l a s s h i e r a r c h y∗ /

f a c t un iqueAssocNames In InHer i t anceTr ee

{

a l l c : C l as s |

a l l a1 : A s s o c i a t i o n , a2 : A s s o c i a t i o n|

( a1 . ownedEnd i n c and a2 . ownedEnd i n c . ˆ g e n e r a l and a1 != a2 ) i m p l i es ( a1 . name

!= a2 . name )

}

/ ∗ 6 . A c l a s s can ’ t be t h e d a t a t y p e o f one o f i t s a t t r i b u t e s ( amoung a l l i t s

a t t r i b u t e s ∗ /

f a c t c l a s s C a n t T y p e O f A l l o f I t s P r o p e r t y

{

a l l c : C l as s | a l l a : ( c . a t t r i b u t e +c . ˆ g e n e r a l . a t t r i b u t e )| a . d a t a t y p e != c

}

/ ∗ 7 . A C l as s A which i n h e r i t s from a p e r s i s t e n t c l a s s B can ’ t have an o u t g o i n g

a s s o c i a t i o n wi th t h e same name

t h a t one a s s o c i a t i o n o f t h a t p e r s i s t e n t c l a s s B∗ /

f a c t c lass Inher i t sOutgo ingNotSameNameA ss oc

{

a l l A: C l as s | a l l B:A . ˆ g e n e r a l | B. i s p e r s i s t e n t == True i m p l i es ( no a1 :

A s s o c i a t i o n , a2 : A s s o c i a t i o n|

( a1 . ownedEnd = Aand a2 . ownedEnd=Band a1 . name=a2 . name ) )

}

/ ∗ 8 . A c l a s s A which i n h e r i t s from a p e r s i s t e n t c l a s s B can ’ t have an a t t r i b u t e

wi th t h e same name

t h a t one a t t r i b u t e o f t h a t p e r s i s t e n t c l a s s B∗ /

f a c t c l as s I n h e r i t s O u t g o i n g N o tS ameN ameA t t r i b

{

a l l A: C l as s | a l l B:A . ˆ g e n e r a l | B. i s p e r s i s t e n t == True i m p l i es ( no a1 : A.

a t t r i b u t e , a2 :B . a t t r i b u t e |

( a1 . name=a2 . name ) )

}

/ ∗ 9 . No a s s o c i a t i o n between two c l a s s e s o f an i n h e r i t a n c e t r e e∗ /

f a c t noAssocBetween Class InH ier a rchy

{

a l l a : A s s o c i a t i o n | a l l c : C l as s | ( a . ownedEnd =c i m p l i es a . memberEnd no ti n

c . ˆ g e n e r a l ) and ( a . memberEnd =ci m p l i es a . ownedEnd no t i n c . ˆ g e n e r a l )

}

Listing 8 Discovered pre-conditions as ALLOY facts
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