
Software and System Modeling manuscript No.
(will be inserted by the editor)

Towards Reusable Model Transformations
⋆

Sagar Sen, Naouel Moha, Vincent Mahé, Benoit Baudry, Olivier Barais, Jean-Marc Jézéquel

INRIA Rennes - Bretagne Atlantique / IRISA, Université Rennes 1

Triskell Team, Campus de Beaulieu, 35042 Rennes Cedex, France

{e-mail: ssen, moha, vmahe, bbaudry, barais, jezequel}e-mail: @irisa.fr

Received: date / Revised version: date

Abstract Very often model transformations written for

an input metamodel apply to other metamodels that

share similar concepts. For example, a transformation

written to refactor Java models can be applicable to

refactoring UML class diagrams as both Java and UML

share concepts such as of classes, methods, attributes,

and inheritance. Another example is where a company

needs to economically upgrade its legacy transforma-

tions from conforming to an old metamodel to a sim-

ilar new industry standard metamodel such as the lat-

est UML. The old metamodel may either be from an

in-house DSML or an old version an industry standard

such as UML. Deriving motivation from these examples

we present an approach to make model transformations

reusable such that they function correctly across several

similar metamodels. Our approach relies on these princi-

pal steps: (1) We generate an effective input metamodel

via transformation analysis and metamodel pruning of

the input metamodel. The effective metamodel repre-

sents the true input domain of the transformation (2)

We adapt a target input metamodel by weaving it with

aspects to make it a subtype of the effective input meta-

model. The subtype property ensures that the trans-

formation can process models conforming to the target

input metamodel. We validate our approach by adapt-

ing well-known refactoring transformations (Encapsulate

Field, Move Method, and Pull Up Method) written for

an in-house DSML to three different industry standard

metamodels (Java, MOF, and UML).

Key words Adaptation, Aspect Weaving, Genericity,

Model Typing, Refactoring, Metamodel Pruning

1 Introduction

Model transformations are software artifacts that un-

derpin complex software system development in Model-

2 Sagar Sen, Naouel Moha, Vincent Mahé, Benoit Baudry, Olivier Barais, Jean-Marc Jézéquel

driven Engineering (MDE). Making model transforma-

tions reusable is the subject of this paper.

Software reuse in general has been largely investi-

gated in the last two decades by the software engineering

community [1,2]. Basili et al. [3] demonstrate the bene-

fits of software reuse on the productivity and quality in

object-oriented systems. However, reuse is a new entrant

in the MDE scenario [4]. One of the primary difficulties

in making a model transformation reusable across differ-

ent input domains is the difference in structural aspects

between commutable input metamodels. Consider an ex-

ample where model transformation reuse becomes obvi-

ous and yet is infeasible due to structural differences in

commutable input metamodels. A model transformation

to refactor models of class diagrams is possible in several

modelling languages supporting the concepts of classes,

methods, attributes, and inheritance. For instance, the

metamodels for the languages Java, MOF, and UML all

contain concepts needed to specify class diagram models.

If we emphasize the necessity for reuse then the refac-

toring transformation must be intuitively adaptable to

all three metamodels : Java, MOF, and UML as they

manipulate similar models. Hence, we ask: How do we

reuse one implementation of a model transformation for

other possibly similar modelling languages? This is the

question that intrigues us and for which we provide a

solution.

Our aim is to enable flexible reuse of model transfor-

mations across various metamodels to enhance produc-

tivity and quality in MDE. In this paper, we present an

approach to make legacy model transformations reusable

for different target input metamodels. We do not touch

the body of the legacy transformation itself but trans-

form a target input metamodel such that it becomes a

subtype of the effective subset of the input metamodel.

We call the effective subset an effective input metamodel

which represents the true input domain of the legacy

model transformation. The subtype property permits the

legacy model transformation to process pertinent mod-

els conforming to the target input metamodel. Concisely,

our approach follows these steps: (1) We automatically

obtain an effective input metamodel via metamodel prun-

ing [5]. This step drastically reduces the adaptation ef-

fort in the next step when dealing with large metamod-

els such as the UML where model transformations of-

ten use only a small subset of the entire metamodel (2)

We adapt a target input metamodel by weaving it with

structural aspects from the effective input metamodel.

We also weave accessor function for these structural as-

pects that seek information from related concepts in the

target metamodel (3) We use model typing [6] to verify

the type conformance between the woven target input

metamodel and the effective input metamodel. The wo-

ven target input metamodel must be a subtype of the

effective input metamodel (4) Replacing the original in-

put metamodel with the woven target input metamodel

at run-time allows the legacy model transformation to

process relevant input models conforming to the target

Towards Reusable Model Transformations ⋆⋆ 3

input metamodel. The scientific contribution in our ap-

proach is based on a combination of two recent ideas

namely metamodel pruning [5] and manual specification

of generic model refactorings [7]. In [7], the authors man-

ually specify a generic model transformation for hand-

made generic metamodel that is adapted to various tar-

get input metamodels. In our work we automatically

synthesize an effective input metamodel via metamodel

pruning which is in contrast to manually specifying a

generic metamodel as in [7]. Further, the effective in-

put metamodel is derived from an arbitrary input meta-

model of a legacy model transformation and not from a

domain-specific generic metamodel (for refactoring) as in

[7]. The adaptation of target input metamodels to the

effective input metamodel via aspect-weaving remains

similar to the approach in [7].

We demonstrate our approach on well known model

transformations, namely refactorings [8]. A refactoring is

a particular transformation performed on the structure

of software to make it easier to understand and cheaper

to modify without changing its observable behavior [8].

For example, the refactoring Pull Up Method consists

of moving methods to the superclass if these methods

have same signatures and/or results on subclasses [8]. We

validate our approach by performing some experiments

where three well known legacy refactorings (Encapsulate

Field, Move Method, and Pull Up Method) are adapted to

three different industrial metamodels (Java, MOF, and

UML). The legacy refactorings are written in Kermeta

which is a modelling language to specify structure and

behavior of models [9].

This article is organized as follows. In Section 2, we

describe a motivating example with arising problems.

In Section 3, we introduce foundations necessary to de-

scribe our approach. The foundations include a descrip-

tion of the executable metamodeling language, Kermeta,

highlights some of its new features including the no-

tion of model typing, and presents meta-model prun-

ing to obtain an effective input metamodel. The Sec-

tion 4 gives a general step-by-step overview of our ap-

proach. The Section 5 describes the experiments that we

performed for adapting legacy three refactoring trans-

formations (Encapsulate Field, Move Method, and Pull

Up Method) initially described for an in-house DSML

to three different industry standard metamodels (Java,

MOF, and UML). Section 6 surveys related work. Sec-

tion 7 concludes and presents future work.

2 Motivating Example

We present an example of a model transformation that

performs refactoring on an in-house DSML for modelling

software structure and behaviour. Our ultimate objec-

tive is to make this model transformation reusable and

applicable across different industry standard metamod-

els. Specifically, we describe the Pull Up Method refac-

toring transformation which we intend to use for mod-

els from three different metamodels (Java, MOF, and

UML).

4 Sagar Sen, Naouel Moha, Vincent Mahé, Benoit Baudry, Olivier Barais, Jean-Marc Jézéquel

2.1 The Pull Up Method Refactoring

The Pull Up Method refactoring consists of moving meth-

ods to the superclass when methods with identical sig-

natures and/or results are located in sibling subclasses

[8]. This refactoring aims to eliminate duplicate meth-

ods by centralizing common behavior in the superclass.

A set of preconditions must be checked before applying

the refactoring. For example, one of the preconditions

to be checked consists of verifying that the method to

be pulled up is not a constructor. Another precondition

checks that the method does not override a method of

the superclass with the same signature. A third precon-

dition consists of verifying that methods in sibling sub-

classes have the same signatures and/or results.

The example of the Pull Up Method refactoring pre-

sented in [10] of a Local Area Network (LAN) application

[11] and adapted in Figure 1 shows that the method bill

located in the classes PrintServer and Workstation is

pulled up to their superclass Node.

The Pull Up Method refactoring is written for an

in-house DSML for the INRIA team TRISKELL from

Rennes, France that contains the notions of classes, prop-

erties, inheritance, operations and several other concepts

related to contracts and verification that are not perti-

nent to refactoring. The in-house DSML does not con-

form to an industry standard metamodel such as UML.

2.2 Three Different Metamodels

Our goal is to make the refactoring reusable across three

different target input metamodels (Java, MOF, and UML),

which support the definition of object-oriented struc-

tures (classes, methods, attributes, and inheritance). The

Java metamodel described in [12] represents Java pro-

grams with some restrictions over the Java code. For

example, inner classes, anonymous classes, and generic

types are not modeled. As MOF metamodel, we con-

sider the metamodel of Kermeta [9], which is an exten-

sion of MOF [13] with an imperative action language

for specifying constraints and operational semantics of

metamodels. The UML metamodel studied in this paper

corresponds to the version 2.1.2 of the UML specifica-

tion [14]. This Java metamodel is one possible represen-

tation of Java programs; there is no standard for such

metamodel in contrast to UML and MOF metamodels.

We provide an excerpt of each of these metamodels

in Figures 2, 3, and 4. These metamodels share some

commonalities, such as the concepts of classes, methods,

attributes, parameters, and inheritance (highlighted in

grey in the figures). These concepts are necessary for the

specification of refactorings, and in particular for the Pull

Up Method refactoring. However, they are represented

differently from one metamodel to another as detailed

in the next paragraph.

Towards Reusable Model Transformations ⋆⋆ 5

Figure 1 Class Diagrams of the LAN Application Before and After the Pull Up Method Refactoring of the Method bill.

Figure 2 Subset of the Java Metamodel.

2.3 Problems

We encounter several problems if we intend to specify a

common Pull Up Method refactoring for all three meta-

models:

– The metamodel elements (such as classes, meth-

ods, attributes, and references) may have differ-

ent names. For example, the concept of attribute is

named Property in the MOF and UML metamodels

whereas in the Java metamodel, it is named Varia-

ble.

– The types of elements may be different. For ex-

ample, in the UML metamodel, the attribute visibility

of Operation is an enumeration of type VisibilityKind

whereas the same attribute in the Java metamodel is

of type String.

– There may be additional or missing elements in a

given metamodel compared to another. For example,

Class in the UML metamodel and ClassDefinition

in the MOF metamodel have several superclasses whereas

Class in the Java metamodel has only one. Another

6 Sagar Sen, Naouel Moha, Vincent Mahé, Benoit Baudry, Olivier Barais, Jean-Marc Jézéquel

Figure 3 Subset of the MOF Metamodel.

Figure 4 Subset of the UML Metamodel.

Towards Reusable Model Transformations ⋆⋆ 7

example is the ClassDefinition in MOF, which is

missing an attribute visibility compared to the

UML and Java metamodels.

– Opposites may be missing in relationships. For

example, the opposite of the reference related to the

notion of inheritance (namely, superClass in the

MOF and UML metamodels, and extends in the

Java metamodel) is missing in the three metamodels.

– The way metamodel classes are linked together

may be different from one metamodel to another.

For example, the classes Operation and Variable in

the Java metamodel are not directly accessible from

Class as opposed to the corresponding classes in the

MOF and UML metamodels.

These differences among these three metamodels make

it impossible to directly reuse a Pull Up Method refactor-

ing across all three metamodels. Hence, we are forced to

write three different implementations of the same refac-

toring transformation for each of the three metamod-

els. We address this problem with out approach In Sec-

tion 4. In the approach we make a single transformation

reusable across different metamodels without rewriting

the transformation. We only adapt different target in-

put metamodels such that they become a subtype of the

input metamodel of the transformation.

3 Foundations

This section presents the foundations required to explain

the approach presented in Section 4. We describe the

model transformation language Kermeta in Section 3.1.

We present new features of Kermeta that allow weaving

aspects into target input metamodels in Section 3.2. We

describe Kermeta’s implementation of model typing in

Section 3.3 which helps us perform all type conformance

operations in our approach. Finally, in Section 3.4 we

present the metamodel pruning algorithm to obtain the

effective input metamodel to be used in the approach.

3.1 Kermeta

Kermeta is a language for specifying metamodels, mod-

els, and model transformations that are compliant to the

Meta Object Facility (MOF) standard [13]. The object-

oriented meta-language MOF supports the definition of

metamodels in terms of object-oriented structures (pack-

ages, classes, properties, and operations). It also provides

model-specific constructions such as containments and

associations between classes. Kermeta extends the MOF

with an imperative action language for specifying con-

straints and operational semantics for metamodels [9].

Kermeta is built on top of EMF within the Eclipse

development environment. The action language of Ker-

meta provides mechanisms for dynamic binding, reflec-

tion, and exception handling. It also includes classical

control structures such as blocks, conditionals, and loops.

8 Sagar Sen, Naouel Moha, Vincent Mahé, Benoit Baudry, Olivier Barais, Jean-Marc Jézéquel

We note that Kermeta is used to specify the refactorings

used in our examples in Section 5.

3.2 New Features of Kermeta

In the current version of Kermeta, its action language

provides new features for weaving aspects, adding de-

rived properties, and specifying constraints such as in-

variants and pre-/post-conditions. Indeed, the first new

feature of Kermeta is its ability to extend an existing

metamodel with new structural elements (classes, oper-

ations, and properties) by weaving aspects (similar to

inter-type declarations in AspectJ or open-classes [15]).

This feature offers more flexibility to developers by en-

abling them to easily manipulate and reuse existing meta-

models while separating concerns. The second new key

feature is the possibility to add derived properties. A de-

rived property is a property that is derived or computed

through getter and setter accessors for simple types and

add and remove methods for collection types. The de-

rived property thus contains a body, as operations do,

and can be accessed in read/write mode. Thanks to this

feature, it is possible to figure out the value of a prop-

erty based on the values of other properties belonging to

the same class. The last new feature is the specification

of pre- and post-conditions on operations and invariants

on classes. These assertions can be directly expressed

in Kermeta or imported from OCL (Object Constraint

Language) files [16].

3.3 Model Typing

The last version of the Kermeta language integrates the

notion of model typing [6], which corresponds to a simple

extension to object-oriented typing in a model-oriented

context. Model typing can be related to structural typing

found in languages such as Scala. Indeed, a model typing

is a strategy for typing models as collections of intercon-

nected objects while preserving type conformance, used

as a criterion of substitutability.

The notion of model type conformance (or substi-

tutability) has been adapted and extended to model

types based on Bruce’s notion of type group matching

[17]. The matching relation, denoted <#, between two

metamodels defines a function of the set of classes they

contain according to the following definition:

Metamodel M’ matches another metamodel M

(denoted M’ <# M) iff for each class C in M,

there is one and only one corresponding class or

subclass C’ in M’ such that every property p and

operation op in M.C matches in M’.C’ respec-

tively with a property p’ and an operation op’

with parameters of the same type as in M.C.

This definition is adapted from [6] and improved here

by relaxing two strong constraints. First, the constraint

related to the name-dependent conformance on proper-

ties and operations was relaxing by enabling their renam-

ing. The second constraint related to the strict structural

Towards Reusable Model Transformations ⋆⋆ 9

conformance was relaxing by extending the matching to

subclasses.

Let’s illustrate model typing with two metamodels M

and M’ given in Figures 5 and 6. These two metamodels

have model elements that have different names and the

metamodel M’ has additional elements compared to the

metamodel M.

C1 <# COne because for each property COne.p

of type D (namely, COne.name and COne.aCTwo),

there is a matching property C1.q of type D’

(namely, C1.id and C1.aC2), such that D’ <#

D.

Thus, C1 <# COne requires D’ <# D, which is

true because:

– COne.name and C1.id are both of type String.

– COne.aCTwo is of type CTwo and C1.aC2

is of type C2, so C1 <# COne requires C2

<# CTwo or that a subclass of C2 matches

CTwo. Only C3 <# CTwo is true because

CTwo.element and C3.elem are both of type

String.

Thus, matching between classes may depend on the

matching of their related dependent classes. As a conse-

quence, the dependencies involved when evaluating model

type matching are heavily cyclical [18]. The interested

reader can find in [18] the details of matching rules used

for model types.

However, the model typing with the mechanisms of

renaming and inheritance is not sufficient for matching

metamodels that are structurally different. We overcome

this limitation of the model typing by weaving required

aspects as described in our approach in Section 4.

3.4 Metamodel Pruning

In our approach of Section 4 we obtain an effective input

metamodel from possibly large input metamodels such

as that of UML via metamodel pruning [5]. Metamodel

pruning conserves a set of required classes and properties

and their obligatory dependencies in a metamodel and

prunes everything else. The result is an effective meta-

model that is a supertype of the initial metamodel which

can be verified using model typing [6]. In this section we

concisely describe the metamodel pruning algorithm.

Given a possibly large metamodel such as UML that

may represent the input domain of a model transforma-

tion we ask the question : Does the model transformation

process models containing objects of all possible types in

the input metamodel? In several cases the answer to this

question may be no. For instance, a transformation that

refactors UML models only processes objects with types

that come from concepts in the UML class diagrams sub-

set but not UML Activity, UML Statechart, or UML Use

case. How do we obtain this effective subset? This is the

problem that metamodel pruning solves.

The principle behind pruning is to preserve a set of

required types Treq and and required properties Preq and

10 Sagar Sen, Naouel Moha, Vincent Mahé, Benoit Baudry, Olivier Barais, Jean-Marc Jézéquel

Figure 5 Metamodel M. Figure 6 Metamodel M’.

prune away the rest in a metamodel. The authors of

[5] present a set of rules that help determine a set of

required types Treq and required properties Preq given

a metamodel MM and an initial set of required types

and properties. The initial set may come from various

sources such as manual specification or a static analysis

of a model transformation to reveal used types. A rule in

the set for example adds all super classes of a required

class into Treq. Similarly, if a class is in Treq or is a re-

quired class then for each of its properties p, add p into

Preq if the lower bound for its multiplicity is > 0. Apart

from rules the algorithm contains options which allow

better control of the algorithm. For example, if a class

is in Treq then we add all its sub-classes into Treq. This

optional rule is not obligatory but may be applicable un-

der certain circumstances giving the user some freedom.

The rules are executed where the conditions match until

no rule can be executed any longer. The algorithm ter-

minates for a finite metamodel because the rules do not

remove anything from the sets Treq and Preq.

Once we compute the sets Treq and Preq the algo-

rithm simply removes the remaining types and proper-

ties to output the effective metamodel MMe. The effec-

tive metamodel MMe generated using the algorithm in

[5] has some very interesting characteristics. Using model

typing (discussed in Section 3.3) we verify that MMe is

a supertype of the metamodel MM . This implies that

all operations written for MMe are valid for the large

metamodel MM .

4 Approach

We present an approach to make a legacy model trans-

formation MT reusable. We outline the approach in Figure

7 and describe the steps in the approach below:

Step 1: Static Analysis of a Transformation

As shown in Figure 7 we first perform static analy-

sis on the legacy model transformation MT. The static

Towards Reusable Model Transformations ⋆⋆ 11

Figure 7 Approach for Transforming an Input Metamodel to Subtype Target Input Metamodel

analysis involves visiting each rule, each constraint, and

each statement in the model transformation to obtain

an initial set of required types Treq and a set of re-

quired properties Preq manipulated in the input meta-

model InputMM. The goal behind performing static anal-

ysis is to find the subset of concepts in the input meta-

model actually used in the transformation. We do not

go into the details of the static analysis process as it is

just classical traversal of the abstract syntax tree of an

entire program or a rule in order to check the type of

each term. If the type is present in InputMM we add it to

Treq. Similarly, we add all properties manipulated and

existing in InputMM into Preq.

Step 2: Meta-model Pruning

Using the set of required types Treq and properties

Preq we perform metamodel pruning on InputMM to ob-

tain an effective input metamodel EffectiveMM that is a

supertype of InputMM. We recall the metamodel pruning

algorithm described in Section 3.4. The algorithm gener-

ates the minimal effective input metamodel EffectiveMM

that contains the required types and properties and their

obligatory dependencies. The advantages of automati-

cally obtaining the EffectiveMM are the following:

– The EffectiveMM represents the true input domain

of the legacy model transformation MT

– The EffectiveMM containing only relevant concepts

from the InputMM drastically reduces the number of

aspect-weaving and type matching operations to be

performed in Step 4. There is often a combinatorial

explosion in the number of type comparisons given

that each concept in the target metamodel must be

compared with the input metamodel.

12 Sagar Sen, Naouel Moha, Vincent Mahé, Benoit Baudry, Olivier Barais, Jean-Marc Jézéquel

The metamodel pruning process plays a key role when

the input domain of a transformation corresponds to an

Object Management Group standard metamodel such

as the UML where the number of classes is about 243

and properties about 587. Writing adaptations for each

of these classes as we shall see in Step 3 become very

tedious and is not required when only a subset of the

input metamodel is in use.

Step 3: Aspect-weaving of Target Metamodel

We recall that in Section 3.2 we present some new

features of Kermeta. One of the new features of Kermeta

is to be able to weave aspects into metamodels. In the

third step we manually identify and weave aspects from

EffectiveMM into the TargetMM. We also weave get-

ter and setter accessor functions into TargetMM. These

accessors seek information in related concepts of the

TargetMM and assigns their values to the initially wo-

ven properties and types from EffectiveMM . We verify

the subtype property as described in Step 4. Examples

of woven aspects are given in Section 5.

Step 4: Model Type Conformance

We perform model type conformance between the ef-

fective input metamodel EffectiveMM and the target in-

put metamodel TargetMM with woven properties. The

model type matching process is described in Section 3.3.

All the types in the woven TargetMM are matched against

each type in EffectiveMM. If all types match then TargetMM

with aspects is the subtype target input metamodel:

SubTypeTargetMM. Replacing the input metamodel of

the legacy model transformation MT with SubTypeTargetMM

will allow all pertinent models conforming to the target

input metamodel to be processed by MT as shown in Fig-

ure 8. When we say pertinent models we mean all mod-

els containing objects with types conforming to the used

types in the input metamodel of MT.

5 Experiments and Discussion

We perform an experiment by applying our approach to

legacy model refactoring transformation written for an

in-house DSML to three industry standard metamod-

els Java, UML, and MOF. A step-by-step application of

our approach is described in Section 5.1. We discuss the

experiment in Section 5.2.

5.1 Application

In Step 1, we perform static analysis of refactoring model

transformations applied on an in-house DSML. The re-

sult of the static analysis is a set of required types and

required properties. The analysis reveals that required

classes in the transformation are : Class, Attribute,

Method, and Parameter. The DSML contains several

other classes for Statechart modelling, verification, and

activities. These classes and their properties are not used

by the refactoring transformation and hence the static

analysis does not reveal them. Due to space limitations

we do not show the entire DSML in the paper.

Towards Reusable Model Transformations ⋆⋆ 13

Figure 8 The Legacy Transformation used as a Generic Transformation for TargetMM

We present an example of a refactoring transforma-

tion in Listing 1 which is an excerpt of the class Refactor.

The class Refactor contains the operation pullUpMethod.

The refactoring is implemented in Kermeta 1 This oper-

ation aims to pull up the method meth from the source

class source to the target class target. This operation

contains a precondition that checks if the sibling sub-

classes have methods with the same signatures. In the

body of the operation, the method meth is added to the

methods of the target class and removed from the meth-

ods of the source class.

package r e f a c t o r ;

class Refactor<MT : EffectiveMM>

{

operation pullUpMethod (source : MT: : Class

, t a rge t : MT: : Class ,

meth : MT: :

Method) : Void

// Pre cond i t ions

pre sameS ignature InOtherSubclasse s i s do

1 The interested reader can refer to the Kermeta syntax in

[19].

t a rge t . subClasse s . f o rA l l { sub |

sub . methods . e x i s t s { op |

haveSameSignature (meth , op) }

}

end

// Operation body

i s do

t a rge t . methods . add (meth)

source . methods . remove (meth)

end

}

Listing 1 Kermeta Code for the Pull Up Method

Refactoring.

In Step 2, we perform metamodel pruning of the in-

put metamodel InputMM for the refactoring transforma-

tion. We show the resulting effective input metamodel

EffectiveMM in Figure 9. As claimed earlier the effec-

tive metamodel only contains the required types, re-

quired properties and their obligatory dependencies. The

only inputs to the metamodel pruning algorithm were

the classes Class, Attribute, Method, and Parameter.

The rest of the obligatory structure for the EffectiveMM

14 Sagar Sen, Naouel Moha, Vincent Mahé, Benoit Baudry, Olivier Barais, Jean-Marc Jézéquel

Figure 9 Effective Metamodel EffectiveMM.

metamodel is automatically conserved by the metamodel

pruning algorithm. All other irrelevant classes for state-

charts, verification, and activities are automatically re-

moved.

In Step 3, we adapt the target input metamodels to

the effective input metamodel EffectiveMM using the

new Kermeta features for weaving aspects and adding

derived properties. The adaptation consists of weaving

the target input metamodels with derived properties that

match those in the effective input metamodel. The adap-

tation requires also the weaving of opposites. The oppo-

sites are identified in Kermeta by a sharp ♯ and are com-

puted during the loading of the model. The opposites

ease the writing of adapters by adding required naviga-

tion links. The adaptation also weaves getter and set-

ter accessors that seek information in the TargetMM to

assign values to the derived properties woven in from

EffectiveMM. This step of adaptation is necessary be-

cause model typing is too restrictive for allowing a match-

ing between metamodels that are structurally too dif-

ferent. The adaptation virtually modifies the structure

of the target input metamodel with additional elements

and in the following step we use model typing to match

the metamodels. The resulting subtype target input meta-

model is SubTypeTargetMM .

Listings 2, 4, and 3 present the adaptations of the de-

rived properties superClasses and subClasses of Class

respectively for the Java, MOF, and UML target input

metamodels given respectively in Figures 2, 3, and 4.

Because of lack of space, we provide only the getter ac-

cessors of the derived properties; the setter accessors are

symmetric.

Adaptation for the Java metamodel. The derived prop-

erty superClasses corresponds to a simple access to the

Towards Reusable Model Transformations ⋆⋆ 15

property extends that is then wrapped in a Java Class.

However, for the derived property subClasses, the op-

posite inv extends of the property extends was weaved

by aspect on the class Classifier and used to get the

set of subclasses.

package java ;

require ”Java . ecore ”

aspec t class C l a s s i f i e r {

reference i nv ex t end s : C l a s s i f i e r [0 . . ∗]#

extends

reference extends : C l a s s i f i e r [0 . . 1]#

inv ex t end s

}

aspec t class Class {

property supe rC la s s e s : Class [0 . . 1]# subClasse s

getter i s do

r e s u l t := s e l f . extends

end

property subClasse s : Class [0 . . ∗]# supe rC la s s e s

getter i s do

r e s u l t := OrderedSet<java : : Class >.new

s e l f . i nv ex t end s . each{ subC | r e s u l t .

add (subC) }

end

}

Listing 2 Kermeta Code for Adapting the Java Metamodel.

Adaptation for the UML metamodel. In UML, the in-

heritance links are reified through the class Generalization.

Thus, the derived property superClasses is computed

by accessing to the class Generalization and the refer-

ence property general. As in Java and MOF, an oppo-

site inv general is specified to get the set of subclasses.

package uml ;

require ”http : //www. e c l i p s e . org/uml2 /2 . 1 . 2/UML”

aspect class C l a s s i f i e r {

reference i n v g e n e r a l : Gene ra l i z a t i on [0 . .∗]#

gene ra l

}

aspec t class Class {

property supe rC la s s e s : Class [0 . . ∗]# subClasse s

getter i s do

r e s u l t := OrderedSet<uml : : Class >.new

s e l f . g e n e r a l i z a t i o n . each{ g | r e s u l t .

add (g . g ene ra l) }

end

property subClasse s : Class [0 . . ∗]# supe rC la s s e s

getter i s do

r e s u l t := OrderedSet<uml : : Class >.new

s e l f . i n v g e n e r a l . each{ g | r e s u l t . add (

g . s p e c i f i c) }

end

}

Listing 3 Kermeta Code for Adapting the UML

Metamodel.

package kermeta ;

require kermeta

aspec t class ParameterizedType {

reference typeDe f i n i t i on : E f f e c t i v eTypeDe f i n i t i on

[1 . . 1]# in v t yp eDe f i n i t i o n

}

aspec t class Ef f e c t i v eTypeDe f i n i t i on {

reference i n v t yp eDe f i n i t i o n : ParameterizedType

[1 . . 1]# typeDe f i n i t i on

}

aspec t class Type {

reference inv superType : C l a s sDe f i n i t i o n [0 . . ∗]#

superType

}

aspec t class Cl a s sDe f i n i t i o n {

reference superType : Type [0 . . ∗]# inv superType

property supe rC la s s e s : C l a s sDe f i n i t i o n [0 . . ∗]#

subClasse s

getter i s do

r e s u l t := OrderedSet<Clas sDe f i n i t i on >.

new

s e l f . superType . each{ c |

16 Sagar Sen, Naouel Moha, Vincent Mahé, Benoit Baudry, Olivier Barais, Jean-Marc Jézéquel

var c l a z z : Class in i t Class . new

c l a z z ?= c

var c l a z zDe f : C l a s sDe f i n i t i o n

in i t Cl a s sDe f i n i t i o n . new

c l a z zDe f ?= c l a z z . t ypeDe f i n i t i on

r e s u l t . add (c l a z zDe f) }

end

property subClasse s : C l a s sDe f i n i t i o n [0 . . ∗]#

supe rC la s s e s

getter i s do

r e s u l t := OrderedSet<Clas sDe f i n i t i on >.

new

var c l a z z : Class

c l a z z ?= s e l f . i nv t ypeDe f i n i t i o n

c l a z z . inv superType . each{ superC |

r e s u l t . add (superC) }

end

}

Listing 4 Kermeta Code for Adapting the MOF

Metamodel.

Adaptation for the MOF metamodel. Due to the dis-

tinction in the MOF between Type and TypeDefinition

to handle the generic types, it is less straightforward

to compute the derived properties superClasses and

subClasses. Several opposites are required as shown in

Listing 4.

In Step 4, of our approach consists of applying the

refactoring on the target input metamodels as illustrated

in Listing 5 for the UML metamodel. We reuse the ex-

ample of the method bill in the LAN application. We

can notice that the class Refactor takes as argument

the UML metamodel, which thanks to the adaptation

of Listing 3 is now a subtype of the expected supertype

EffectiveMM as specified in Listing 1. The model typ-

ing guarantees the type conformance between the UML

metamodel and the effective input metamodel.

package r e f a c t o r ;

require ”http : //www. e c l i p s e . org /uml2 /2 . 1 . 2/UML”

class Main {

operation main () : Void i s do

var rep : EMFRepository in i t EMFRepository

. new

var model : uml : : Model

model ?= rep . getResource (” l a n app l i c a t i o n .

uml”) . one

var source : uml : : Class in i t ge tC la s s (”

Pr in tS e rve r”)

var t a rge t : uml : : Class in i t ge tC la s s (”

Node”)

var meth : uml : : Operation in i t

getOperation (” b i l l ”)

var r e f a c t o r : r e f a c t o r : : Refactor<uml : :

UmlMM>

in i t r e f a c t o r : :

Refactor<uml : :

UmlMM>.new

r e f a c t o r . pullUpMethod (source , targe t , meth

)

end

}

Listing 5 Kermeta Code for Applying the Pull Up Method

Refactoring on the UML metamodel.

5.2 Discussion

We reuse three well known refactorings (Encapsulate Field,

Move Method, and Pull Up Method [8]) on models of

the LAN application [11] conforming to three different

metamodels (Java, MOF, and UML). We were able to

successfully apply our approach on these metamodels

Towards Reusable Model Transformations ⋆⋆ 17

Figure 10 Subset of the Fourth Metamodel.

although they were structurally different. We experi-

mented also a fourth metamodel as shown in Figure

10. In this metamodel, the two classes (corresponding to

Class and Parameter in the effective input metamodel)

are unified in a same class (Type). This case introduced

an ambiguous matching with the effective input meta-

model since these classes are distinct in the latter. This

special case illustrates a limitation of our approach that

needs to be overcome and will be investigated in fu-

ture work. Thus, the only prerequisite of our approach

is that each element in the effective input metamodel

should correspond to a distinct element in the target in-

put metamodel. The approach is thus not very restrictive

since the mechanism of adaptation enables to raise the

inherent limitations of metamodels.

Our approach theoretically relies on the model typ-

ing and is feasible in practice thanks to the mechanism

of adaptation. Writing adaptations can be more or less

difficult depending on the developers’ knowledge of the

target input metamodels. However, once the adaptation

is done, the developers can reuse all model refactorings

written for the original input metamodel. Conversely, if a

developer specifies a new refactoring on the input meta-

model, it can readily be applied on all target metamodels

if adaptations are provided.

Although we show reuse of a kind of model transfor-

mations, namely refactorings, we claim its extensibility

to other endogenous model transformations. In addition,

our approach also fits well in the context of metamodel

evolution. Indeed, all model transformations written for

an old version of a given metamodel (for example, UML

1.2) can be reused for a new version (for example, UML

2.0) once the adaptation is done. Moreover, the models

do not need to be migrated from an old version to a new

one. Finally, our approach can be seen as a potential

framework for reusing arbitrary model transformations

for arbitrary metamodels.

18 Sagar Sen, Naouel Moha, Vincent Mahé, Benoit Baudry, Olivier Barais, Jean-Marc Jézéquel

6 Related Work

Reuse in MDE has not been sufficiently investigated as

compared to object-oriented (OO) programming. How-

ever, we observe some efforts in the MDE community

that are directly inherited from type-safe code reuse in

OO programming and, in particular, from generic pro-

gramming.

Generic programming is about making programs more

adaptable by making them operations across several in-

put domains [20]. This style of programming allows writ-

ing programs that differ in their parameters, which may

be either other programs, types and type constructors,

class hierarchies, or even programming paradigms [20].

Aspects [21] and open-classes [15] are powerful generic

programming techniques for adapting programs by aug-

menting their behavior in existing classes [22,23]. Other

languages that provide support for generic programming

are Haskell and Scala [24]. The use of Haskell has been

investigated [25] to specify refactorings based on high

level graph algorithms that could be generic accross a

variety of languages (XML, Pascal, Java), but its appli-

cability does not seem to go beyond a proof of concept.

Scala’s implicit conversions [26] simulate the open-class

mechanism in order to extend the behavior of existing li-

braries without actually changing them. Although Scala

is not a model-oriented language, developers can build

type-safe reusable model transformations on top of EMF

thanks to its good integration with Java. However, it

would require to write a significant amount of code and

manage relationships among generic types.

In the MDE community, Blanc et al. proposes an

architecture called Model Bus that allows the interop-

erability of a wide range of modeling services [27]. The

term ‘modeling service’ defines an operation having mod-

els as inputs and outputs such as model editing, model

transformation, and code generation. Their architecture

is based on a metamodel that ensures type compatibility

checking by describing services as software components

having precise input and output definitions. However,

the type compatibility defined in this metamodel relies

on a simple notion of model types as sets of metaclasses,

but without any notion of model type substitutability.

Other work [28,29] study the problem of generic model

transformations using a mechanism of parameterization.

However, these transformations do not apply to different

metamodels but to a set of related models.

Modularity in graph transformation systems was also

explored [30]. In this area, an interesting work was done

by Engels et al. who presented a framework for classify-

ing and defining relations between typed graph transfor-

mation systems [31]. This framework integrates a novel

notion of substitution morphism that allows to define

the semantic relation between the required and provided

interfaces of modules in a flexible way.

In this paper, we combine ideas from two recently

published papers on metamodel pruning [5] and manual

specification of generic model refactoring [7]. In [7] the

Towards Reusable Model Transformations ⋆⋆ 19

authors present an approach to manually specify generic

model transformations and in particular refactorings. A

generic metamodel is manually specified and a generic

transformation is written for the generic input meta-

model. Other target input metamodels are then adapted

to the generic metamodel to achieve genericity and reuse.

This approach is not applicable to legacy model trans-

formations where we do not use a generic metamodel but

an existing and possible large input metamodel such as

UML. Adapting a target input metamodel to this large

metamodel to make it its subtype is a very tedious task.

It sometimes requires several unnecessary adaptations as

many of the concepts may not be used in the transforma-

tion. We deal with this problem via metamodel pruning

[5] in our work to automatically obtain the effective in-

put metamodel which plays the role of the generic meta-

model. This automatic synthesis of the effective input

metamodel extends the approach in [7] to legacy model

transformation written for arbitrary input metamodels.

It also helps drastically reduce the number of required

adaptations via aspect-weaving and the time for type

matching.

7 Conclusion

In this paper, we present an approach to make model

transformations reusable across structurally different meta-

models. This approach relies on metamodel pruning, model

typing and a mechanism of adaptation based mainly on

the weaving of aspects. We illustrate our approach with

the Pull Up Method refactoring and validate it for three

different refactorings (Encapsulate Field, Move Method,

and Pull Up Method) for three different industrial meta-

models (Java, MOF, and UML) in a concrete applica-

tion. We demonstrate that our approach ensures a flexi-

ble reuse of model transformations. This approach seems

to be generalizable to other endogenous model transfor-

mations such as the computation of metrics, detection

of patterns and inconsistencies. As future work, we plan

to increase the repository of transformations adapted to

several different metamodels, in particular industry stan-

dards such as Java, MOF, and UML.

References

1. Biggerstaff, T.J., Perlis, A.J.: Software Reusability Vol-

ume I: Concepts and Models. Volume I. ACM Press,

Addison-Wesley, Reading, MA, USA (1989)

2. Mili, H., Mili, F., Mili, A.: Reusing software: Issues and

research directions. IEEE Transactions of Software En-

gineering 21(6) (1995) 528–562

3. Basili, V.R., Briand, L.C., Melo, W.L.: How reuse influ-

ences productivity in object-oriented systems. Commu-

nications of ACM 39(10) (1996) 104–116

4. Blanc, X., Ramalho, F., Robin, J.: Metamodel reuse with

mof. (2005) 661–675

5. Sen, S., Moha, N., Baudry, B., Jezequel, J.M.: Meta-

model pruning. In: Model Driven Engineering Languages

and Systems, 12th International Conference (MODELS),

Denver, CO, USA (October 4-9 2009)

20 Sagar Sen, Naouel Moha, Vincent Mahé, Benoit Baudry, Olivier Barais, Jean-Marc Jézéquel

6. Steel, J., Jézéquel, J.M.: On model typing. Journal of

Software and Systems Modeling (SoSyM) 6(4) (Decem-

ber 2007) 401–414

7. Moha, N., Mahé, V., Barais, O., Jézéquel, J.M.: Generic

model refactorings. (2009) 628–643

8. Fowler, M.: Refactoring – Improving the Design of Ex-

isting Code. 1st edn. Addison-Wesley (June 1999)

9. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving

executability into object-oriented meta-languages. In:

MODELS/UML. Volume 3713., Montego Bay, Jamaica,

Springer (October 2005) 264–278

10. Mens, T., Gorp, P.V.: A taxonomy of model transforma-

tion. Electronic Notes in Theoretical Computer Science

152 (March 2006) 125–142

11. Janssens, D., Demeyer, S., Mens, T.: Case study: Simu-

lation of a lan. Electronic Notes in Theoretical Computer

Science 72(4) (2003)

12. Hoffman, B., Pérez, J., Mens, T.: A case study for pro-

gram refactoring. In: GraBaTs. (September 2008)

13. OMG: Mof 2.0 core specification. Technical Report

formal/06-01-01, OMG (April 2006) OMG Available

Specification.

14. OMG: The uml 2.1.2 infrastructure specification. Techni-

cal Report formal/2007-11-04, OMG (April 2007) OMG

Available Specification.

15. Clifton, C., Leavens, G.T., Chambers, C., Millstein,

T.D.: Multijava: Modular open classes and symmetric

multiple dispatch for java. In: Proceedings of the 15th

International Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications (OOP-

SLA). (2000) 130–145

16. OMG: The Object Constraint Language Specification

2.0, OMG Document: ad/03-01-07 (2007)

17. Bruce, K.B., Vanderwaart, J.: Semantics-driven lan-

guage design: Statically type-safe virtual types in object-

oriented languages. Electronic Notes in Theoretical Com-

puter Science 20 (1999) 50–75

18. Steel, J.: Typage de modèles. PhD thesis, Université de

Rennes 1 (April 2007)

19. Kermeta: http://www.kermeta.org/.

20. Gibbons, J., Jeuring, J., eds.: Generic Programming,

IFIP TC2/WG2.1 Working Conference on Generic Pro-

gramming, July 11-12, 2002, Dagstuhl, Germany. In Gib-

bons, J., Jeuring, J., eds.: Generic Programming. Volume

243 of IFIP Conference Proceedings., Kluwer Academic

Publishers (2003)

21. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,

Lopes, C.V., Loingtier, J.M., Irwin, J.: Aspect-oriented

programming. In: Proceedings of the 11th European Con-

ference on Object-Oriented Programming (ECOOP).

Volume 1241., Springer-Verlag (June 1997) 220–242

22. Hannemann, J., Kiczales, G.: Design pattern implemen-

tation in java and aspectj. SIGPLAN Not. 37(11) (2002)

161–173

23. Kiczales, G., Mezini, M.: Aspect-oriented programming

and modular reasoning. In: Proceedings of the 27th inter-

national conference on Software engineering (ICSE ’05),

New York, NY, USA, ACM (2005) 49–58

24. Oliveira, B.C.D.S., Gibbons, J.: Scala for generic pro-

grammers. In Hinze, R., Syme, D., eds.: WGP ’08: Pro-

ceedings of the ACM SIGPLAN workshop on Generic

programming, New York, NY, USA, ACM (2008) 25–36

Towards Reusable Model Transformations ⋆⋆ 21

25. Lämmel, R.: Towards Generic Refactoring. In: Proceed-

ings of Third ACM SIGPLAN Workshop on Rule-Based

Programming RULE’02, Pittsburgh, USA, ACM Press

(October5 2002) 14 pages.

26. et al., M.O.: An overview of the scala programming lan-

guage. Technical Report IC/2004/64, EPFL Lausanne,

Switzerland (2004)

27. Blanc, X., Gervais, M.P., Sriplakich, P.: Model bus :

Towards the interoperability of modelling tools. In: Eu-

ropean Workshop on Model Driven Architecture: Foun-

dations and Applications (MDAFA’2004). Volume 3599

of LNCS., Springer (2004) 17–32

28. Amelunxen, C., Legros, E., Schurr, A.: Generic and re-

flective graph transformations for the checking and en-

forcement of modeling guidelines. In: Proceedings of

the 2008 IEEE Symposium on Visual Languages and

Human-Centric Computing (VLHCC’08), Washington,

DC, USA, IEEE Computer Society (2008) 211–218

29. Mnch, M.: Generic Modelling with Graph Rewriting Sys-

tems. PhD thesis, RWTH Aachen (2003) Berichte aus der

Informatik.

30. Heckel, R., Engels, G., Ehrig, H., Taentzer, G.: Clas-

sification and comparison of module concepts for graph

transformation systems. In: Handbook of graph gram-

mars and computing by graph transformation: vol. 2:

applications, languages, and tools. World Scientific Pub-

lishing, Singapore (1999) 669–689

31. Engels, G., Heckel, R., Cherchago, A.: Flexible inter-

connection of graph transformation modules. In: For-

mal Methods in Software and Systems Modeling. Volume

3393 of LNCS., Springer (2005) 38–63

