(will be inserted by the editor)

Software Tools for Technology Transfer manuscript No.

Evaluation of Kermeta for Solving Graph-based Problems

Naouel Moha, Sagar Sen, Cyril Faucher, Olivier Barais, Jean-Marc Jézéquel

IRISA / INRIA Rennes Bretagne Atlantique, e-mail: {moha, ssen, cfaucher, barais, jezequel}irisa.fr

Received: date / Revised version: date

Abstract. Kermeta is a meta-language for specifying
the structure and behavior of graphs of interconnected
objects called models. In this paper, we show that Ker-
meta is suitable for solving graph-based problems. First,
Kermeta allows the specification of generic model trans-
formations such as refactorings that we apply to differ-
ent metamodels including ECORE, Java, and UML. Sec-
ond, we demonstrate the extensibility of Kermeta to the
formal language ALLOY using an inter-language model
transformation. Kermeta uses ALLOY to generate rec-
ommendations for completing partially specified models.
Third, using a common case study we show that the Ker-
meta compiler achieves better execution time and mem-
ory performance compared to similar graph-based ap-
proaches. The three solutions proposed for graph-based
problems correspond to the first contribution of the pa-
per. The second contribution is the comparison of these

solutions with those proposed by other graph-based tools.

The evaluation of Kermeta according to the criteria of
genericity, extensibility, and performance represents the
third contribution.

Key words: MDE — Metamodelling — Model Typing
— Model Transformation — Refactoring — Performance —
Genericity — Extensibility — ALLOY

1 Introduction

Model-Driven Engineering (MDE) is a software develop-
ment methodology which focuses on models as first-class
entities. Models are graphs of objects interconnected by
bidirectional relationships defined in metamodels. MDE
aims to improve productivity of developers by maximiz-
ing compatibility between systems and platforms and
simplifying the process of design.

Kermeta has been developed as a core language for
an MDE platform. It is an executable metamodelling
language implemented on top of the ECLIPSE Modeling

Framework (EMF) within the ECLIPSE development en-
vironment.

In this paper, we present Kermeta as a suitable lan-
guage for solving graph-based problems. We focus on
three case studies proposed in the GRABATS’08 tool con-
test! that involve specific graph-based problems.

The first case study consists of applying three well
known refactorings [6] (Encapsulate Field, Move Method,
and Pull-up Method) on models of Java programs. In this
paper, we present a generalised approach to model refac-
toring that is applicable not only to Java programs but
other metamodels such as ECORE and UML. We spec-
ify the generic refactorings for various metamodels using
the notion of model typing [28], which is an extension of
object typing in the model-oriented context.

The second case study (conference scheduling) high-
lights the extensibility of Kermeta to external languages,
such as the formal language ALLOY. We present an inter-
language model transformation from Kermeta to ALLOY
to complete partial models. In the context of the case
study, we use ALLOY to generate different valid sched-
ules for an unscheduled conference.

The third case study is an AntWorld simulation de-
monstrating Kermeta performance with regard to exe-
cution time and memory usage. The Kermeta to Java /
EMF compiler provides a version of the Kermeta simu-
lation achieving better performance compared to similar
approaches based on ECLIPSE and eventually EMF.

Our contributions are threefold: (1) approaches to
solve graph-based problems involving these case studies,
(2) experiments to evaluate Kermeta in terms of generic-
ity, extensibility, and performance using these case stud-
ies, (3) and a comparison of our approaches with those
proposed by other graph-based tools.

This article is organized as follows. Section 2 intro-
duces Kermeta and highlights some of its features in-

I The GRABATS’08 tool contest was held during the 4" Inter-
national Workshop on Graph-Based Tools 2008.

2 Naouel Moha et al.: Evaluation of Kermeta for Solving Graph-based Problems

e o o G

Fig. 1. Kermeta Graphical Interface

cluding the notion of model typing. Sections 3, 4, and 5
develop each of the three criteria that characterise Ker-
meta based on the three case studies. Section 6 surveys
related work. Section 7 concludes and presents future
work.

2 Kermeta

2.1 Description

Kermeta is a language for specifying metamodels, mod-
els, and model transformations that are compliant to the
Meta Object Facility (MOF) standard [22]. The object-
oriented meta-language MOF supports the definition of
metamodels in terms of object-oriented structures (pack-
ages, classes, properties, and operations). It also pro-
vides model-specific constructions such as containments
and associations between classes. Kermeta extends the
MOF with an imperative action language for specify-
ing constraints and operational semantics for metamod-
els [20]. Kermeta is built on top of EMF within the
EcLIPsE development environment. The action language
of Kermeta provides mechanisms for dynamic binding,
reflection, and exception handling. It also includes clas-
sical control structures such as blocks, conditionals, and
loops. Figure 1 shows the Kermeta graphical interface
within ECLIPSE. It includes three views: a graphical rep-
resentation of the current metamodel, a Kermeta code
that applies transformations on the metamodel, and a
tree representation of concepts of one of the two first
views depending on the current view.

In the next paragraphs, we describe two key features
of the Kermeta language essential for the comprehension
of the paper: its ability of extension and the notion of
model typing.

2.2 Extension of Kermeta

The first key feature of Kermeta is its ability to extend
an existing metamodel with constraints, new structural
elements (meta-classes, classes, properties, and opera-
tions), and functionalities defined with other languages.

This feature offers more flexibility to developers by en-
abling them to easily manipulate and reuse existing meta-
models. The static composition operator “require” al-
lows defining these various aspects in separate units and
integrating them automatically into the metamodel. The
composition is performed statically and the composed
metamodel is type-checked to ensure the safe integra-
tion of all units. This mechanism can be compared to
the open class paradigm [5]. Open classes in Kermeta
are used to organize “cross-cutting” concerns separately
from their metamodel, a key feature of aspect-oriented
programming [12]. Thanks to this composition operator,
Kermeta remains a kernel platform and safely integrate
all concerns around a metamodel.

Kermeta offers expressions very similar to Object
Constraint Language (OCL) expressions [24]. In partic-
ular, Kermeta includes lexical closures similar to OCL
iterators on collections such as each, collect, select, or
detect. Moreover, Kermeta also allows the direct impor-
tation and evaluation of OCL constraints. Pre-conditions
and post-conditions can be defined for operations and
invariants on classes.

Kermeta and its framework remain dedicated to mo-
del processing but provide an easy integration with other
languages. Kermeta also allows importing Java classes to
use services such as file input/output or network commu-
nications, which are not available in the Kermeta frame-
work. It is also very useful, for instance, to make models
communicate with existing Java applications. An other
example of integration is the extension to ALLOY [9] as
presented in Section 4.

2.3 Model Typing

The second key feature of Kermeta is the notion of model
typing [28]. It consists of a simple extension to object-
oriented typing in a model-oriented context. A model
typing is a strategy for typing models as collections of
interconnected objects. Model typing permits the detec-
tion of type errors early in the design process of model
transformation. Moreover, it allows more flexible reuse of
model transformations across various metamodels, while
preserving type safety [28]. Type safety is guaranteed by
type conformance, a criterion of substitutability.

The notion of model type conformance (or substi-
tutability) has been adapted and extended to model
types based on Bruce’s notion of type groups and type
group matching [3]. The matching relation, denoted <#,
between two model types defines a function of the set of
object types they contain according to the following def-
inition adapted from [28]:

Model type M’ matches another M (denoted M’
<# M) iff for each object type C' in M, there is
one and only one corresponding object type C”
in M’ such that every property and operation in
M.C also occurs in M’.C” with exactly the same
signature as in M.C.

Naouel Moha et al.: Evaluation of Kermeta for Solving Graph-based Problems 3

A limitation of the model typing is the name-depen-
dent structural conformance. Indeed, only the matching
of variants of model types that have respective objects
interconnected in the same structural manner and with
identical properties and operations names is possible. To
reduce this limitation, we added two mechanisms to the
model typing: the renaming of properties/operations and
the possibility to match with other objects belonging to
the same inheritance hierarchy. The renaming consists in
specifying a new name for a property or an operation in
a specific metamodel to allow the matching. The second
mechanism consists in extending the matching to parents
and children of the current object if this one does not
match.

The following sections describe the three criteria of Ker-
meta using a common pattern. First, we describe the
problem that we propose to solve. Second, we illustrate
our approach using a case study. Third, we present some
experiments and results. Finally, we provide a compari-
son with other graph-based tools? followed by a discus-
sion.

3 Genericity

In this section, we present generic model transforma-
tions in Kermeta based on the notion of model typing.
More precisely, we specify generic refactorings for differ-
ent metamodels.

3.1 Problem Description

Refactoring has been intensively investigated in the graph
and model transformation community over the last few
years [16]. However, to the best of our knowledge, there
exists no approach to specify metamodel independent
generic transformations. In current approaches, the spec-
ification of refactorings are highly dependent on the meta-
model. Our goal is to specify generic model transforma-
tions, such as refactorings, that can be reusable on dif-
ferent metamodels. For instance, a refactoring such as
Pull-up Method (i.e., moving methods to the superclass if
these methods have same signatures on subclasses) could
be generic across any language supporting the object-
oriented notion of inheritance (UML, ECORE, Java).

3.2 Case Study: Refactoring

The refactoring case study of the GRABATS’08 tool con-
test [8] consists of applying three well known refactorings
(Encapsulate Field, Move Method, and Pull-up Method) on
models of Java programs. We generalise this case study
to the problem of specifying generic refactorings for var-
ious metamodels. We consider not only models of Java
programs but also ECORE and UML models.

2 These tools participate to the tool contest organised for the
STTT Special Section on Graph-based Tool Comparison.

TargetMM
UML Java

TargetMM

Koo 8%

Model UML Model Java

oo

Model UML

7 Refactored
Application of
/ Refactoring &

Model Java
Refactored

o Specification of 3 Adaptation with
Generic Metamodel Target Metamodels

GenericMT

2 Specification of
Generic Refactorings ena

Refactoring in
Kermeta

Fig. 2. Approach for the Specification of Generic Refactorings

We illustrate our approach for the Encapsulate Field
refactoring. We recall that the Encapsulate Field refac-
toring consists of making a public field private and pro-
viding accessors [6].

8.8 Approach: Specification of Generic Refactorings

Figure 2 illustrates the four steps of our approach for
the specification of generic refactorings. The first step
consists in specifying a generic metamodel GenericMT?,
which is a super-type of all metamodels. Then, in the
second step, we specify a refactoring in Kermeta using
GenericMT as the source metamodel. In the third step,
the target metamodels such as UML or Java are adapted
to match with the metamodel GenericMT. The target
metamodels are then subtypes of GenericMT. In the last
step, the refactoring can then be concretely applied to
all models of all target metamodels.

3.3.1 Step 1: Specification of Generic Metamodel

Our approach consists first of specifying a lightweight
metamodel that contains the minimum required classes
for specifying refactorings. The generic metamodel, called
GenericMT, given in Figure 3 has been designed to spec-
ify refactorings. GenericMT consists of concepts such as
classes, properties, operations, and parameters common
to all metamodels. We use the letter ‘g’ as a prefix in
the name of each element of the metamodel to denote the
fact that they actually play the role of formal generic pa-
rameters. The elements contained within the metamodel
GenericMT are minimum and sufficient for the specifica-
tion of the three refactorings.

3.3.2 Step 2: Specification of Generic Refactorings

In the second step, we specify refactorings based on the
generic metamodel. Listing 1 gives a Kermeta code ex-
cerpt of the refactoring Encapsulate Field based on the
metamodel GenericMT. This code checks (using precon-
ditions) if for the specified field a getter accessor does
not exists or if it exists, it is static. In the body of the op-
eration encapsulateField, it creates a getter accessor
if it did not exist yet. This code gives an insight into the
specification of refactorings in Kermeta. The interested
reader can refer to the Kermeta syntax in [11].

3 MT refers to Model Type

4 Naouel Moha et al.: Evaluation of Kermeta for Solving Graph-based Problems

gType E GClass gType
0..1] = gName : EString | 0..1
Q

gReturnType

0.
| H GOperation |
= gVisibility : EString
= gName : EString

= glsStatic : EBoolean

0.x gAttribute

|| GAttribute
= gVisibility : EString
= isAnAttribute : EBoolean
= gName : EString
= glsStatic : EBoolean

0..%, gParameter
E GParameter
L__| = isAParameter : EBoolean
= gName : EString

Fig. 3. Generic Metamodel GenericMT

mance is hard to obtain if it is not possible to distinguish
classes of the generic metamodel that have same name
attributes. We introduced a “non-matching” strategy by
adding a discriminant attribute such as isAnAttribute
in GAttribute to distinguish this class from GOperation.

Listings 2 and 3 show the adaptation of the return
type of an operation for the Java and UML target meta-
models. The adaptation for Java is quite straightfor-
ward and consists of assignments. The adaptation for
UML requires in the setter to look for a parameter with
ParameterDirectionKind.return as a value of the at-
tribute direction.

package refactor;

class Refactor <MT : GenericMT> {

operation encapsulateField (
field : MT:: GAttribute ,
fieldClass : MT:: GClass,
getterName String ,
setterName String) : Void

// Preconditions
pre getterlsStatic.NotExist is do
if fieldClass.gOperation.exists{op |

op.gName == getterName}
then
fieldClass .gOperation.detect{op |
op.gName == getterName }.glsStatic
== field .glsStatic
else
true
end
end
// Method body
is do
// Manage the getter
if not fieldClass.gOperation.exists{ op |
op.gName == getterName
} then
// No getter , so we must add it
var op : MT:: GOperation init MT:: GOperation .new
op.gName := getterName
fieldClass.gOperation.add (op)
op.gReturnType := field .gType
end
// Manage the setter and the visibility
end

}

package javaprogram ;

require ”platform:/resource/org.kermeta.refactoring/
metamodel/JavaProgram.ecore”

aspect class Operation {
property gReturnType

getter is do
result ?= self.type

javaprogram :: Class

end

setter is do
self.type := value

end

Listing 2. Kermeta Code for Java Adaptation.

package uml;
require “http://www.eclipse.org/uml2/2.1.0/UML”
aspect class Operation {
property gReturnType uml:: Class
getter is do
result ?= self.type
end
setter is do

var ret uml:: Parameter
ret := self.ownedParameter.detect{p]
p.direction == ParameterDirectionKind .return }
if ret == void then

ret := Parameter.new

self.ownedParameter .add(ret)
end
ret.type := value

Listing 1. Kermeta Code for the Encapsulate Field Refactoring.

3.3.3 Step 3: Adaptation with Target Metamodels
The third step comnsists of adapting the target meta-
models to the generic metamodel GenericMT using the
mechanism of aspects in Kermeta. The adaptation con-
sists in weaving in the target metamodel properties and
operations that match with those of the generic meta-
model. For each operation, we specify the body of the
method. For each property, we specify how to set and
get it by defining getter and setter accessors. This step
is necessary because the model typing is not sufficient for
matching metamodels that are structurally too different.
Thus, the adaptation modifies the structure of the tar-
get metamodel with additional elements, and uses the
model typing to match metamodels.

During the matching process, we match with the tar-
get metamodel not only one class of the generic meta-
model but a set of classes. Thus, the model type confor-

Listing 3. Kermeta Code for UmML Adaptation.

3.3.4 Step 4: Application of Refactoring

The last step of our approach consists of applying the
refactoring on the target metamodel as illustrated in
Listing 3 for the UML metamodel. We can notice that
the class Refactor takes as argument the metamodel
UML, which thanks to the adaptation of Listing 3 is a
subtype of the expected super-type GenericMT as speci-
fied in Listing 1. The models to refactor are loaded and
saved after refactoring in XMI files.

package refactor;
require ”"http://www.eclipse.org/uml2/2.1.0/UML"

class Main {
operation main() : Void is do

var refactor
refactor ::

refactor :: Refactor <uml::UmIMT> init
Refactor <uml:: UmIMT>.new

var nameField
var fieldClass

uml:: Property
uml:: Class

refactor.encapsulateField (nameField , fieldClass ,
"getName” , ”"setName”)

i

Listing 4. Kermeta Code for Applying the Encapsulate Field
Refactoring on the UML metamodel.

Naouel Moha et al.: Evaluation of Kermeta for Solving Graph-based Problems 5

3.4 Experiments and Results

We specify and apply three refactorings suggested in
the GRABATS’08 tool contest (Encapsulate Field, Move
Method, and Pull-up Method) on three different meta-
models (UML, ECORE, and Java Program). The meta-
models structurally differ. For example, the UML meta-
model has a hierarchical structure whereas the Java meta-
model has a flat structure (i.e., has no containers).

3.5 Comparison with Other Tools

None of the tools that participate to the contest offer the
possibility to specify generic refactorings. However, they
focus on other criteria. Tools such as FusaBa [7], PrRo-
GRES [32], and VMTS [18] focus on the user interaction
criterion. For example, VMTS provides a source code
like presentation and control flow diagrams for rewriting
rules. In Kermeta, it is also possible to visualize mod-
els and metamodels using the ECORE Diagram Editor
available in the EcLiPSE ECORE Tools plugin or graph-
ical editors generated with GMF (Graphical Modeling
Framework) plugin. JDT2MDR [19], PROGRES [32], and
FuiaBA [7] focus on the expressiveness and extensibility
criteria. JDT2MDR transforms UML models of controlled
graph transformations into executable Java code. PRO-
GRES provides imperative control structures such as con-
ditional branches and iterations. Such control structures
enhance expressiveness in specifying graph transforma-
tion rules.

3.6 Discussion

Writing adaptations can be more or less difficult depend-
ing on the developers’ knowledge of the target meta-
model. However, after adaptation, the developers can
reuse all model transformations written for the generic
metamodel. Conversely, if we write a transformation for
the generic metamodel, we can apply it on all target
metamodels.

Our approach supports model evolution. Indeed, if a
metamodel evolves but still matches with the generic
metamodel, the transformations are still valid for all
models of the new metamodel.

Our approach contributes to the development of gene-
ric tools independent of the metamodelling language. In
future work, we intend to investigate generic analyses to
compute metrics and detect patterns and anti-patterns
or inconsistencies in different metamodels.

4 Extensibility

Model transformations can extend Kermeta to external
languages and model-oriented tools with functionality
not readily available in Kermeta. In the following sub-
sections, we demonstrate extensibility of Kermeta by
presenting a transformation from metamodels in Ker-
meta to declarative specifications in the formal language
ALLOY [9].

conference [[Conference | 1.1

1.1 conference
conference| 1.1

0..* sessions

|| Session
' sessionID : EInt| 0..*| members
chair
chairs 7 [person
. 0.1 firstSlot session $1.1 "7 | = personID : Eint
0.7 | stots 0.1, lastslot ~ currentPapers 0.* s
-.___| papers 0.% 1.
[TimeSlot 0. Paper presents
2 slotiD : Eint 0.1 T paperlD : Eint
slot

0..1 0..1 pext
previous

Fig. 4. Conference Scheduling Metamodel M M_.s

4.1 Problem Description

We define a partial model as graph of objects that is
either inconsistent with the structure of its metamodel
or does not satisfy some invariants on its metamodel.
The problem we address is the automatic transformation
of a partial model into a complete model. The complete
model is a modification of the partial model such that it
becomes consistent with its metamodel and invariants.

We can automate the process of completing a par-
tial model using a constraint satisfaction language (CSL)
equipped with a solver. We name this process automatic
model completion. We want to extend Kermeta with this
capability. The extension transformation must bridge
the gap in expressiveness between Kermeta metamod-
els + invariants and the target CSL. This is an issue
because most CSLs have concise grammars and well-
defined declarative semantics as opposed to domain-spe-
cific Kermeta metamodels. Further, we must transform
low-level solutions back from constraint solvers to domain
specific complete models conforming to a Kermeta meta-
model.

4.2 Case Study: Conference Scheduling

This case study describes a modelling domain for schedul-
ing papers in different sessions of a conference. We struc-
ture the concepts of the conference scheduling problem
domain in the metamodel M M., shown in Figure 4. The
metamodel M M., consists of a conference with sessions.
Each session contains papers for presentation and a ses-
sion chair. Every paper has a presenter. All papers in
the conference must be assigned to time slots while re-
specting invariants I.s such as:

1. No simultaneous papers are presented by the same
person;

2. No presenter is chairing another session at the same
time;

3. Nobody chairs two sessions simultaneously.

A partial model containing objects of classes in M M,
is shown in Figure 5. In the partial model, we do not
assign papers to time slots rendering the invariants I.s
unsatisfied.

6 Naouel Moha et al.: Evaluation of Kermeta for Solving Graph-based Problems

T: TimeSlot

@EEEE

ID2: Person ID3: Person

(P1: Paper) (P2: Paper)(P3: Paper) | | (P4: Paper) (P5: Paper)(P6: Paper)
S1: Session S2: Session

[ID8: Person| [ID1: Person]

[ID7: Person |

ID4: Person

| (P7: Paper) (P8: Paper)(P9: Paper)

S3: Session
D5 Person ID6: Person

Fig. 5. A Partial Model p.s Without Slot Assignment

(Source Kermeta Metamodel MMy)(Target Alloy Metamodel MM)
A A

i requires irequires Partial Model
—>|Model Transformation with Inconsistencies Complete Model(s)
Kermeta2Alloy
Step1

Partial Model No

pred ConferenceModel

/*Number of objects of each signature in Partial Modelx/
#Conference=1 and #Session=3 and #Paper=9 and
#Person=8 and #TimeSlot=6 and

/*Exists some object of a signature with properties of
values in the partial modelx/

some sl: Session, s2:Session ,s3:Session |

sl.sessionlD = 10 and s2.sessionID= 20 and s3.sessionlD
=30 and

/*Similar expressions that define other objects in
partial model x*/

i

Listing 6. Alloy Predicate for pcs

(¢) Inserts a run command to solve ps in A,. The run
command states the scopes for the different objects we
expect in the complete model and for integers between
—27to 27. It obtains these scopes from the partial model.
Example: In the case study we use integers to specify
identities for sessions, papers, and people. We create the
ALLOY run command in Listing 7 and insert it into A.s.
The run command solves the predicate ConferenceModel.

[
Step4
Q;(A”W MweD;“"SAT Solver |—>- ? Instance2Model

Fig. 6. Extensibility Transformation: Kermeta to Alloy for Partial
Model Completion

4.8 Approach: Partial Model Completion

We outline our approach for automatic model comple-
tion in Figure 6. Our approach consists of the four fol-
lowing steps:

Step 1: The model transformation Kermeta2Alloy:
(a) Transforms a source Kermeta metamodel M M; to
an ALLOY model A,. It transforms M M, classes, their
properties and implicit constraints (inheritance and prop-
erty characteristics such as opposites, composition, unique-
ness, and identity) to ALLOY signatures and facts. Ezam-
ple: Listing 5 shows the ALLOY signature corresponding
to the transformation of the class Paper in M M.s and
the facts generated from implicit constraints in M M.

sig Paper

{ paperID : lone Int,
session : one Session,
presenter : one Person,
slot : one TimeSlot

i

fact Paper_containers
{ all o: Paper | o in Session.papers }

fact Session_papers_Paper_session_opposite
{ all ol : Session, 02 : Paper |02 in ol.papers implies ol
in 02.session }

Listing 5. Alloy Model for Conference Scheduling

(b) Transforms a source partial model ps to ALLOY
predicates and appends them to Ag. FExample: The par-
tial model in Figure 5 is transformed to the predicate
ConferenceM odel, partially presented in Listing 6. The
predicate states the number of objects in the partial
model. Following this, it states values for properties that
we extract from the partial model. We assign values for
all properties available in the partial model including
sessions, papers, presenters, and time slots. What re-
mains unassigned in the predicate are the properties for
Paper.slot.

run ConferenceModel for 1 Conference,6 TimeSlot, 9 Paper ,
3 Session, 8 Person, 7 int

Listing 7. Alloy Run Command to Complete Partial Model

Step 2: We insert ALLOY facts for invariants I to
the metamodel M M. These invariants are initially spec-
ified in OCL. At the moment, we manually transform
natural language or OCL constraints to ALLOY facts rep-
resenting these invariants. In future, we intend to inte-
grate an automatic transformation of a subset of OCL to
ALLOY facts into Kermeta2Alloy. Ezample: In the confer-
ence scheduling case study, one of the invariants states
that a person cannot give simultaneous presentations.
We encode both the OCL version and its ALLOY fact in
Listing 8.

//No Simulatenous Paper Presentations by a Person
//OCL Version
context Person

inv noSimultaneousPresentations:

self.presents.forAll{ pl , p2 | pl!=p2 implies pl.slot
1=p2.slot}
//Transformed Alloy Fact
fact noSimultanecousPresentations
{ all p:Person| all paperl : p.presents, paper2: p.presents

| paperl!=paper2 implies paperl.slot!=paper2.slot }

Listing 8. OCL Invariant to Alloy Fact

Step 3: We invoke the ALLOY API to transform the
ALLOY source model A4 to boolean conjunction normal
form (CNF). We solve the CNF formula using an off-the-
shelf satisfiability (SAT) solver such as ZChaff [14] or
MiniSAT [21] to obtain solution(s) (if they exist). These
solutions are dumped as ALLOY XML files. Fzample:
We present the results of executing the run statement of
Listing 7 in Section 4.4.

Step 4: We transform an ALLOY XML file represent-
ing a solution to a complete model ¢ using the transfor-
mation Alloy2Model. This complete model ¢s conforms to
the metamodel M M. Example: In this transformation
low-level relational mappings between atoms is trans-
formed to a conference model conforming to M M,.

Naouel Moha et al.: Evaluation of Kermeta for Solving Graph-based Problems 7

T: TimeSlot
RO
ID2: Person ID3: Person|:: g
(P1: Paper) (P2: Paper)(P3: Paper) | | (P4: Paper) (P5: Paper)(P6: Paper)
S1: Session S2; Session
[ID8: Person| [ID1: Person]
[ID7: Person |

ID4: Person

| (P7: Paper) (P8: Paper)(P9: Paper)

S3: Session
D5 Person ID6: Person

Fig. 7. A Complete Model ccs

4.4 Ezxperiments and Results

We name the ALLOY model we obtain for conference
scheduling A.s. We solve A.s to obtain a complete model
c.s with a valid conference schedule. We execute a run
command to solve the predicate ConferenceModel in A;.
The result of our experiment is an XMI file or a set of
XMI files or complete conference model(s) with valid
schedule(s). One of the complete models ¢, in compre-
hensible visual syntax is shown in Figure 7. The red dot-
ted arrows from papers to slots illustrate the scheduling
solution.

4.5 Comparison with other Tools

The AGG-EMT [29] tool performs scheduling using triple
graph grammars (TGG). In their approach, a paper is
assigned a time slot using TGG rules such that nega-
tive application conditions (NACs) are not violated. The
termination of the transformation process determines if
we can schedule the conference. The AGG solution is
specific to the scheduling problem while our approach is
generic and applicable to any Kermeta metamodel trans-
formable to ALLOY. However, the domain specific TGG
rules can make the scheduling process itself more effi-
cient than SAT solving.

4.6 Discussion

Our approach is generic and valid for any metamodel
and not just for the conference scheduling case study.
We present this approach in the context of automatic
model completion but we have applied this approach ear-
lier for model completion in model editors [27], and for
test model generation [26]. There has been other con-
tributions to transform high-level languages to ALLOY
such as the prototype tool UML2Alloy [1].

Kermeta supports import/export to industry stan-
dards for metamodel and metadata specification such as
EMF and XSD allowing widespread application of trans-
formations written in Kermeta. For instance, the trans-
formation to ALLOY for any metamodel makes them
amenable to formal analysis, automatic model synthe-
sis, and counter-example generation.

5 Performance

In this section, we implement in Kermeta the AntWorld
simulation and evaluate Kermeta performance with re-
gard to execution time and memory usage. We also com-
pare and discuss these performance results to those ob-
tained with similar approaches based on ECLIPSE and
eventually EMF.

5.1 Problem Description

Performance and scalability issues are often seen as a
challenge to promote model-driven tools to industry. In-
deed, although model-driven applications might offer high-
level design abstractions and reduce development time
and efforts, they might also experience scalability prob-
lem with respect to performance.

5.2 Case Study: AntWorld

The AntWorld simulation is a case study designed as a
benchmark for the comparison of graph-based tools [33].
It aims to run tools on a scalable application to eval-
uate their performance in terms of execution time and
memory usage.

The case study simulates an ant colony searching for
food around the area of the ant hill located in the center
of a grid. If an ant finds food, it drops pheromones in its
way back home. An ant that brings food into the ant hill
leads to the creation of new ants. If an ant searching for
food hits a pheromone, the ant follows the pheromone
path to the food. The simulation is divided in round and
every ant moves during a round.

Figure 8 gives the ECORE metamodel of the AntWorld
simulation. The class Ant represents an ant and contains
an attribute mode to determine whether the ant is search-
ing for food or moving back to the center. The class Map
represents the grid of nodes corresponding to the area of
food search. A map contains a set of nodes represented
by the class GridNode. Among the grid nodes, there are
two special types of nodes AxisNode and CenterNode.
The AxisNode is a node on an axis. The CenterNode cor-
responds to the node in the center of the grid. CenterNode
inherits from AxisNode because it is at the intersection
of the two axes. A GridNode is located in a given level
and might be at the border of the map. It also contains
a number of food parts and a number of pheromones.

5.8 Approach

Until recently, Kermeta applications were executed only
in an interpreted mode. To get better performance, we
have developed a Kermeta to Java/EMF compiler that
allows developers to deploy Kermeta applications as Java
/ EMF and thus, execute Kermeta applications in a com-
piled mode. The Kermeta compiler first transforms a
Kermeta model into an ECORE model and then gener-
ates an ECLIPSE plugin in Java/EMF source code. The

8 Naouel Moha et al.: Evaluation of Kermeta for Solving Graph-based Problems

_| 0..1
H GridNode 0.1
= isBorder : Boolean
next 0..1 = level : Integer 0..1 outside
E Map HdOfNodes | = food ¢ Integer
9 = id : Integer outsideGridNode
0..* | = pher : Integer 0.1
isOn 0..1
i *
gridOfAnts| O.. initialAxisNode[] AxisNode 0..1
Ant 0.1 0.1
= mode : Integer
0..1
outsideAxisNode
0..1[[CenterNode

Fig. 8. AntWorld Metamodel

resulting Java source code may be used both in ECLIPSE
application or in Java application (standalone). The Java
compiled version of an Kermeta application typically
runs faster than in interpreted mode.

5.3.1 Implementation

We implement the AntWorld simulation in Kermeta and
in particular, the local search. The transformation rules
of the AntWorld simulation are written as operations,
which are sets of expressions that specify the expected
behavior. The operations are added to the ECORE meta-
model of AntWorld by using the aspect-oriented model-
ing facilities of Kermeta. Listing 9 describes the opera-
tion antEat weaved into the class GridNode. This oper-
ation describes the behavior of an ant that arrives at a
node containing food. The ant takes a piece of food and
drops 1024 parts of pheromones. This listing shows also
a reference weaved into the class Map to add a cache of
nodes with pheromones for improving the performance
during the update of the number of pheromones on a
node.

package antworld;

require kermeta
require ”platform:/resource/AntWorld/AntWorld. ecore”

using antworld

aspect class Map {
reference gridOfPhers : bag GridNode[O0..x]

}

aspect class GridNode {

operation antEat(map : Map) is do

self.food := self.food — 1

self.pher := self.pher + 1024

// The current node is added to the cache

// when it is initialized , i.e. self.pher == 1024
if self.pher == 1024 then

map. gridOfPhers .add (self)
end

}

Listing 9. Implementation by Aspect of the Reference
grid0fPhers on the Class Map and the Operation antEat on the
Class Ant.

5.4 FEzxperiments and Results

We computed the execution time and memory usage of
the AntWorld simulation written in Kermeta and exe-

cuted in a compiled mode. These experiments were per-
formed on a laptop with an Intel Core 2 CPU T2600,
2.16GHz, and 2Go for RAM under Windows XP. We
also computed these performance tests using the version
of Kermeta on the virtual desktop infrastructure (VDI)
submitted for the tool contest to have a fair comparison
with other VDIs submitted for the tool contest.

The table 1 presents the performance results for ev-
ery 25 rounds. It gives the number of grid levels, ants,
and nodes with pheromone. It also provides the elapsed
time between every 25 rounds, the cumulative elapsed
time, and the consuming memory. The elapsed time are
given both on local and the VDI.

The memory usage of the Kermeta runtime context
is constant during the execution and independent of the
algorithm. The memory usage excludes the memory con-
sumed for the runtime context (estimated at 5246 kB).
It increases progressively with the number of rounds.

5.5 Comparison with other Tools

We compare the performance results of Kermeta with
other tools partipating in the contest. The VMTS tool
[17] is the fastest tool among all tools participating to
the tool contest because it seems to be hard coded us-
ing C++. VMTS is 53.7 times faster than Kermeta
at 500 rounds. We compare Kermeta with other tools
based on ECLIPSE or EMF like VIATRA2 [31] and EMF
TRANSFORMATION [2]. We execute the simulation using
the VDIs to have a fair comparison. Figure 9 illustrates
the results obtained with VIATRA2 and Kermeta. We
observe that Kermeta is 4.9 times faster than VIATRA2
at 500 rounds. As regards EMF TRANSFORMATION, re-
sults given during the GRABATS’08 Workshop shows
that Kermeta is 65 times faster at 100 rounds. In terms
of memory usage, Kermeta seems to be the best solution
with 10,353 kB at 500 rounds compared to VMTS with
31,404 kB (that is, a factor of 3) and 90,156 kB for Gr-
Gen [4] (a factor of 8.7). VIATRA2 consumes 145,000 kB
at 350 rounds (results directly provided by VIATRAZ2) in
comparison with 4,601 kB in Kermeta (a factor of 31,5).

5.6 Discussion

VIATRA2 is not compiled, but interpreted. The use of
a compiled version is very significant in Kermeta and
especially in the case of the AntWorld simulation. The
compiled version is 50 times faster than the interpreted
one.

The measures could have been influenced by external
elements. Indeed, we notice that running programs or
network connections can reduce from 10% to 20% the
time executions. Therefore, we compute our performance
measures by disconnecting all network connections and
closing all programs except Kermeta. However, parasite
programs may still have influenced the measures.

Naouel Moha et al.: Evaluation of Kermeta for Solving Graph-based Problems 9

Number of | Number of | Number of | Number of Nodes | Elapsed Time (ms) | Cumulative Time (ms) | Memory

Rounds Grid Levels Ants with Pheromone (Local) (VDI) | (Local) (VDI) (kB)
25 8 20 19 47 (157) 47 (157) 30
50 8 182 21 125 (226) 172 (383) 40
75 14 693 65 515 (841) 687 (1224) 131
100 18 1775 142 1313 (1785) 2000 (3009) 254
125 22 3070 277 2437 (3283) 1437 (6292) 103
150 26 4767 452 3969 (5293) 8406 (11585) 594
175 34 6415 653 5766 (7728) 14172 (19313) 907
200 40 8488 982 7562 (10148) 21734 (29461) 1241
225 48 10468 1248 9594 (12936) 31328 (42397) 1666
250 56 12598 1617 11875 (15946) 43203 (58343) 2187
275 64 14654 1882 14078 (18794) 57281 (77137) 2706
300 72 16873 2261 16141 (21476) 73422 (98613) 3323
325 79 19122 2593 18578 (24610) 92000 (123223) 3934
350 86 21444 2907 21093 (27505) 113093 (150728) 4601
375 96 23972 3235 24032 (31054) 137125 (181782) 5504
400 103 26108 3657 26656 (33835) 163781 (215617) 6294
425 111 28753 4041 29187 (35581) 192968 (251198) 7213
450 119 30986 4462 32188 (37737) 225156 (288935) 8110
475 129 33571 4939 35281 (40444) 260437 (329379) 9444
500 135 35911 5435 37781 (43319) 298218 (372698) 10353

Table 1. Performance Test Results

—+— Kermeta —e— Viatra2

w

£

®

£

IS

B 1000000
?

4 /
=

W 300000
k]

]

5

LA T SO

Number of Rounds

Fig. 9. Execution Time of Kermeta and VIATRA2 VDIs

6 Related Work

Several approaches can be adopted for writing model
transformations. Developers can use general purpose lan-
guages such as Java, C#, and C++ or dedicated rule-
based languages such as ATL [10] and the OMG QVT
standard [25]. These dedicated languages mix imper-
ative and declarative constructs. Another category of
approaches include pattern-based transformation tools
such as Aca [29], VMTS [18], VIATRAZ2 [31], and PRO-
GRES [32].

These approaches present advantages and drawbacks.
Developers who use general purpose languages benefit
from well-known languages such as Java/EMF and ded-
icated and mature development environments such as
the JDT under EcLiPSE. However, these languages are
not always suitable to specify transformations because
developers need to manage different constructs such as
tree traversals and object instantiations. This implies a
bad separation of concerns and therefore, decreases the
reuse and maintainability of transformations.

In rule-based languages, simple transformations are
easy to write because they are based on a one-to-one

mapping that specify how to map concepts from one
metamodel to another. Moreover, the declarative nature
of such languages allows developers to benefit from a
good expressive power without managing the rule de-
pendencies themselves. This expressive power occurs also
in pattern-based transformation tools. These languages
generally support built-in static analysis capabilities such
as critical pair analysis and sequential dependency anal-
ysis, which help to detect inconsistencies and implicit
dependencies in transformations [15]. However, the spec-
ification of complex transformations using a declarative
style can be complicated because there is no clear map-
ping among the concepts.

Kermeta is a domain specific language for metamod-
elling. It leverages object-oriented languages (Java, C#,
C++, ...), class diagrams, and design-by-contract to
make metamodelling easy for the seasoned object-oriented
programmers. Compared to Java, Kermeta provides model-
oriented and aspect-oriented capabilities: OCL-like lexi-
cal closures, native support of open-classes, model typing
feature, and the ability to load and save EMF models.
EMFScrIpT [30] and EPSILON [13] share some com-
mon features with Kermeta such as OCL-like lexical
closures and imperative style of programming for ma-
nipulating models. Kermeta as a model-transformation
engine raises also several drawbacks. Compared to a gen-
eral purpose language, the developer has to learn a new
language and the environment is not as mature as an
EcLipse JDT. Compared to a rule-based language, its
imperative nature forces the developer to manage lots
of concerns (tree traversal algorithms, object instanti-
ations, ...). However, the imperative style offers more
control for manipulating transformations. Finally, even
if Kermeta provides a support for model transformation
testing and a type checker, it does not provide any static
analyzer that helps designers to detect inconsistencies
in transformations. However, Kermeta still appears as a
very good trade-off between general purpose and rule-
based languages as well as efficient for large scale MDE
applications.

10 Naouel Moha et al.: Evaluation of Kermeta for Solving Graph-based Problems

7 Conclusion

In this paper, we have presented Kermeta, an executable
metamodelling language for describing the structure of
metamodels and their behavior. Kermeta serves as a gen-
eral purpose metamodelling language that helps in solv-
ing model- and graph-based problems. We highlighted
the performance, genericity, and extensibility of the Ker-
meta language through three cases studies. We showed
that Kermeta allows the specification of generic refactor-
ings, the partial model completion, and the efficient ex-
ecution of resource consuming algorithms. Future work
includes increasing the repository of refactorings on other
metamodels, automatically transforming a subset of OCL
to ALLOY, and optimizing the source code generated for
improving the performance.

Acknowledgements. We are grateful to Vincent Mahé and
Didier Vojtisek for their valuable comments on this paper
and their contribution on the implementation of the Kermeta
workbench as well as on the solutions of the case studies.

References

1. Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and
Indrakshi Ray. Uml2alloy: A challenging model transfor-
mation. In MoDFELS, pages 436-450, 2007.

2. Enrico Biermann and Claudia Ermel. Antworld simu-
lation case study modeled by emf transformation. In
Proceedings of the 4" International Workshop on Graph-
Based Tools (GraBaTs 2008), September 2008.

3. Kim B. Bruce and Joseph Vanderwaart. Semantics-
driven language design: Statically type-safe virtual types
in object-oriented languages. FElectronic Notes in Theo-
retical Computer Science, 20:50-75, 1999.

4. Sebastian Buchwald and Moritz Kroll. A grgen.net so-
lution of the antworld case for the grabats 2008 contest.
In GraBaTs, September 2008.

5. Curtis Clifton, Gary T. Leavens, Craig Chambers, and
Todd D. Millstein. Multijava: Modular open classes
and symmetric multiple dispatch for java. In Proceed-
ings of the 15" International Conference on Object-
Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA), pages 130-145, 2000.

6. Martin Fowler. Refactoring — Improving the Design of
Existing Code. Addison-Wesley, 15 edition, June 1999.

7. Fujaba. University of paderborn. http://wwwcs.uni-
paderborn.de/cs/fujaba/.

8. Berthold Hoffman, Javier Pérez, and Tom Mens. A case
study for program refactoring. In GraBaTs, September
2008.

9. Daniel Jackson. Software Abstractions: Logic, Language,
and Analysis. The MIT Press, April 2006.

10. Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan
Kurtev. Atl: A model transformation tool. Science of
Computer Programming, 72(1-2):31-39, June 2008.

11. Kermeta. http://www.kermeta.org/.

12. Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc Lo-
ingtier, and John Irwin. Aspect-oriented programming.
In Proceedings of the 11" European Conference on

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Object-Oriented Programming (ECOOP), volume 1241,
pages 220-242. Springer-Verlag, June 1997.

Dimitrios S. Kolovos, Richard F. Paige, and Fiona Po-
lack. The epsilon transformation language. In Proceed-
ings of the 1°* International Conference on Theory and
Practice of Model Transformations (ICMT 2008), vol-
ume 5063, pages 46—60. Springer, 2008.

Y. S. Mahajan and S. Malik Z. Fu. Zchaff2004: An effi-
cient sat solver. In Lecture Notes in Computer Science
SAT 2004 Special Volume LNCS 8542., pages 360-375,
2004.

Tom Mens, Gabi Taentzer, and Olga Runge. Analysing
Refactoring Dependencies using Graph Transformation.
Software and Systems Modeling (SoSyM), pages 269-285,
September 2007.

Tom Mens and Tom Tourwé. A survey of software refac-
toring. [IFEE Transactions on Software Engineering,
30(2):126-139, February 2004.

Tamas Meszaros, Istvan Madari, and Gergely Mezei.
Antworld, vmts. In GraBaTs, September 2008.

Visual Modeling and Transformation System (VMTS).
http://vmts.aut.bme.hu/.

Olaf Muliawan, Bart Du Bois, and Dirk Janssens. Refac-
toring using jdt2mdr. In GraBaTs, September 2008.
Pierre-Alain Muller, Franck Fleurey, and Jean-Marc
Jézéquel. Weaving executability into object-oriented
meta-languages. In MODFELS/UML, volume 3713, pages
264-278, Montego Bay, Jamaica, October 2005. Springer.
Niklas Een and Niklas Srensson. Minisat a sat solver
with conflict-clause minimization. In SAT, 2005.

OMG. Mof 2.0 core specification. Technical Report
formal/06-01-01, OMG, April 2006. OMG Available
Specification.

OMG. OMG Home page. http://www.omg.org, 2007.
OMG. The Object Constraint Language Specification
2.0, OMG Document: ad/03-01-07, 2007.

OMG. Mof 2.0 query/view/transformation specification.
Specification Version 1.0, Object Management Group,
April 2008.

Sagar Sen, Benoit Baudry, and Jean-Marie Mottu. On
combining mullti-formalism knowledge to select test
models for model transformaion testing. In IFEFE Inter-
national Conference on Software Testing, Lillehammer,
Norway, April 2008.

Sagar Sen, Benoit Baudry, and Hans Vangheluwe.
Domain-specific model editors with model completion.
In In Proceedings of MPM Workshop associated to MoD-
ELS’07, Nashville, TN, USA, October 2007.

Jim Steel and Jean-Marc Jézéquel. On model typing.
Journal of Software and Systems Modeling (SoSyM),
6(4):401-414, December 2007.

The Attributed Graph Grammar (AGG)
http://user.cs.tu-berlin.de/ gragra/agg/.
Christophe Tombelle and Gilles Vanwormhoudt. Dy-
namic and generic manipulation of models: From intro-
spection to scripting. In MoDFELS, volume 4199, pages
395-409, 2006.

Viatra2. Department of measurement and informa-
tion systems, budapest university of technology and eco-
nomics. http://www.eclipse.org/gmt/VIATRA2/.
Erhard Weinell. Using progres for graph-based program
refactoring. In GraBaTs, September 2008.

Albert Ziindorf. Antworld. In GraBaTs, September 2008.

System.

