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ABSTRACT
Composite web services orchestrations have the dynamic
ability to choose the atomic services invoked, leading to
variations in Quality of Service (QoS) behavior. To model
such orchestration variability, we use the feature diagram
(FD). Instances of the FD leads to numerous configurations
that correspond to orchestrations of the dynamic compos-
ite service. Exhaustive exploration is impossible due to the
combinatorial explosion of the configuration space, requir-
ing efficient sampling of configurations. This is in order
to generate a compact set of QoS values to quantify the
composite services’ behavior. Efficient examination of the
exhaustive family of configurations by a sample satisfying
pairwise interactions between services is selected for this
purpose. Thus selected configurations are analyzed with a
variety of QoS metrics to generate tradeoffs. Using the moti-
vating examples of car crash crisis management and eHealth
management case studies, it is shown that such analysis gen-
erates the entire range of QoS variations. This is in conjunc-
tion with a sampling technique that results in elimination of
over 99% of configuration redundancies, while still calling all
atomic services at least once. The criteria used to evaluate
pairwise sampling include: a) ability to sample the extreme
QoS metrics of the service; b) stable behavior of the ex-
tracted samples; c) compact set of values that can quantify
QoS tradeoffs; d) comparison with random sampling. The
results provide metrics to generate families of services with
differing performance bounds and improved contractual de-
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scription of QoS metrics.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based services

1. INTRODUCTION
A composite web service is an application whose implemen-
tation calls other self-contained atomic services. A compos-
ite service orchestration specifies the interaction, manage-
ment and coordination between the involved atomic services.
Such a composite service can have dynamic runtime Quality
of Service (QoS) behavior due to a number of factors: a)
invocation / non-invocation of specific atomic services due
to unpredictable runtime behavior; b) variable atomic ser-
vices QoS; c) families of composed services that perform and
behave with considerable difference in end-to-end QoS.

Such composite service behavior deteriorates contractual agree-
ments on QoS [22]. The use of service level agreements
(SLAs) [16] is the industry standard to ensure QoS com-
pliance for both the service providers and the customers.
Habitual contractual deviations of SLAs are a result of non-
incorporation of QoS outliers and variable behavior of com-
posite services. In order to increase the robustness of con-
tractual SLAs, unpredictable behavior of composite services
must be incorporated.

As such changes in QoS metrics are a result of a number
of factors, we first examine the changes due to inclusion
/ exclusion of specific atomic services. Feature Diagrams
(FD) [10] provide a formal framework to specify authorized
variations in the configuration of the composite service. A
dynamic composite service generally has choice to config-
ure the invocation or rejection of available atomic services.
These choices have a direct consequence on the probabilistic
nature of QoS contracts [19] for the composite service. This
probabilistic view of QoS captures the variable behavior of
an included service’s QoS.

The SLA contract has to be set for all possible configura-
tions to effectively model the behavior of deployed compos-
ite services. However, the number of configurations grows
exponentially with the number of atomic services. Conse-
quently, it is not possible to develop a scalable approach
for the definition of the composite service contract based
on the exhaustive computation of QoS behavior for every



configuration. Thus, it is necessary to systematically sam-
ple the orchestration configuration space in order to analyze
the QoS of web services orchestration.

In this paper, we investigate the systematic sampling of com-
posite services configurations for the definition of a global
SLA. Random sampling of configurations, generally employed,
is both ineffective and expensive because it cannot be sys-
tematic and requires computing QoS values for a large num-
ber of configurations. This work focuses on the adaptation
of combinatorial interaction testing [5] to select a sample of
configurations that covers at least once each pairwise inter-
action of services. The pairwise interaction testing frame-
work [5] provides an efficient technique to evaluate a sample
space with minimal analysis. It is based on the observation
that most of the faults are triggered by interactions between
a small number of variables [13]. For example, consider the
car crash crisis management system case study [12] that we
will examine in this paper. With 25 optional features that
may / may not be invoked in a specific orchestration, the to-
tal number of exhaustive tests required will be 33, 554, 432.
This is an extremely large number of tests that would require
a extended time, effort and data analysis. The number of
tests satisfying pairwise interaction is just 185 reducing the
number of required tests by 99.99%.

Pairwise testing has been used to detect faults in software
systems in extensive prior research [5]. However, the ap-
plication of these combinatorial techniques to sample con-
figurations in a service orchestration is yet to be examined.
This work performs such an examination through a series
of experiments that aim at investigating the use of pairwise
interaction sampling of orchestration configurations to effec-
tively define the global SLA. This is based on a hypothesis
that composite web services’ QoS behavior mimics the cause
of faults in software systems. Changes in QoS behavior are
seen akin to the changes in interaction between “pairs” of
services invoked.

The experiments are based on two case studies which are
the car crash crisis management system (C 3MS) [12] and a
eHealth administration system. This paper reports on the
following questions:

• Q1: For large orchestrations, it is possible to efficiently
sample the behavior to generate accurate limits on QoS
variability?

• Q2: Do configurations that cover all pairwise service
interactions provide such efficient sampling stratagems?

• Q3: Are these qualitative descriptions of QoS behav-
ior useful to generate families of orchestrations with
differing SLAs?

• Q4: How stable and effective is the global SLA com-
puted from a pairwise configurations?

• Q5: Is pairwise sampling more effective and robust
when compared to random sampling of the configura-
tion space?

From our experimentation, it is shown that analysis of a fam-
ily of configurations (and their corresponding QoS values)
can be accurately represented by a sampling configurations
satisfying all pairwise interactions. The scalable approach of
generating pairwise configurations can handle large orches-
trations like C 3MS and eHealth scenarios while still sat-
isfying all valid FD constraints. On comparison with the
usually employed random sampling technique [7], pairwise
analysis is shown to provide consistently robust results. It is
also able to guarantee sufficient coverage (calling all atomic

services at least once) while providing the extreme ranges of
QoS variance. This leads to a compact set of QoS data that
gives the composite service provider accurate / robust infor-
mation to generate families of composite services. For exam-
ple, a gold family of services should provide superior output
data quality compared to say a lower costing bronze family
of services. This comprehensive analysis of variability also
helps the provider understand the global QoS extremities of
the service families before negotiating a SLA agreement. Up
to 80 seconds (C 3MS) and 30 seconds (eHealth) of median
response time ranges are demonstrated for these services.

In a recent submission [11] 1, similar methodology is used to
compare pairwise and exhaustive analysis of configuration
spaces in smaller orchestrations. In this paper, that notion
is extended to comparison with random runs of larger con-
figuration spaces (where exhaustive analysis is impossible).
This entails a scalable approach for robust pairwise interac-
tion generation that is not required for the smaller exam-
ple in [11]. The case studies (Section 5) and corresponding
experiments (Section 6) are much larger in this paper and
study the effect of not only orchestration variability, but
also choice in compatible atomic service counterparts. Cor-
respondingly, this requires further experiments on the sam-
pling robustness and comparison with random generation
(Section 6), which is not included in [11].

This paper is organized as follows. Section 2 provide founda-
tions required for our paper. These include feature diagrams
in 2.1, Orc language for orchestration in 2.2, pairwise con-
figuration generation in 2.3, sampling configurations in 2.4
and formal description of QoS metrics in 2.5. Experimental
settings are put forth in Section 3 with emphasis placed on
the response time simulations in 3.1 and pairwise genera-
tion of configurations in 3.2. The methodology followed in
this paper is briefly discussed in Section 4. The motivating
examples of car crash crisis management system in and the
eHealth administration system are explained in detail along
with FD and orchestrations in Section 5. Results for the
QoS analysis of the case studies are presented in 6. Com-
parison with respect to random generation and the stability
of pairwise analysis are shown in 6.3 and 6.4, respectively.
Further deliberation and perspectives of our analysis scheme
are presented in Section 7. Threats to the validity of the em-
pirical studies are discussed in Section 8. Related work in
literature is put forth in section 9 followed by conclusions in
section 10.

2. FOUNDATIONS
Described here are some fundamental descriptions required
to understand the rest of the paper.

2.1 Feature Diagrams
Feature Diagrams (FD) introduced by Kang et al. [10] com-
pactly represent all the products (referred to as configu-
rations in this paper) of a software product line (SPL) in
terms of features which can be composed. Feature diagrams
have been formalized to perform SPL analysis [21]. In [21],
Schobbens et al. propose a generic formal definition of FD
which subsumes many existing FD dialects. We define a FD
as follows:

• A FD consists of k features f1, f2, ..., fk

• Each feature fi may be associated with a software asset
such as an atomic service.

• Features are organized in a parent-child relationship in
a tree T . A feature with no children is called a leaf.

• A parent-child relationship between features fp and fc

are categorized as follows:
1
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– Mandatory - child feature fc is required if fp is
selected.

– Optional - child feature fc may be selected if fp

is selected.

– OR - at least one of the child-features fc1,fc2,..,fc3

of fp must be selected.

– XOR - one of the child-features fc1,fc2,..,fck of fp

must be selected.

• Cross tree relationships between two features fi and
fj in the tree T are categorized as follows:

– fi requires fj - The selection of fi in a product
implies the selection of fj .

– fi excludes fj - fi and fj cannot be part of the
same product and are mutually exclusive.

Using the FD we create and validate configurations (i.e a
selection of features in the FD) of atomic services.

2.2 Service Orchestrations using Orc
While the FD describes variable paths available in services’
interactions, it is crucial to formally describe the composite
orchestrations to avoid ambiguities during deployment. Orc
[15] serves as a simple yet powerful concurrent programming
language to describe web services orchestration behavior.

The fundamental declaration used in the Orc language is a
site. Sites can be both external or internal. The type of
a site is itself treated like a service - it is passed the types
of its arguments, and responds with a return type for those
arguments. An Orc expression represents an execution and
may call external services to publish some number of values
(possibly zero).

Orc has the following combinators that are used on vari-
ous examples as seen in [15]. The Parallel combinator F |G,
where F and G are Orc expressions, runs by executing F
and G concurrently. Whenever F or G communicates with
a service or publishes a value, F |G does so as well. The
execution of the Sequential combinator F > x > G starts
by executing F . Sequential operators may also be written
compactly as F ≫ G. Values published by copies of G are
published by the whole expression, but the values published
by F are not published by the whole expression; they are
consumed by the variable binding. If there is no response
from either of the sites, the expression does not terminate.
While the above two composition operators are for creating
threads, Orc uses the following construct to prune opera-
tions. The Pruning combinator, written F < x < G, allows
us to block a computation waiting for a result, or terminate
a computation. The execution of F < x < G starts by exe-
cuting F and G in parallel. Whenever F publishes a value,
that value is published by the entire execution. When G
publishes its first value, that value is bound to x in F , and
then the execution of G is immediately terminated. The
Otherwise combinator, written F ; G has the following exe-
cution. First, F is executed. If F completes, and has not
published any values, then G executes. If F did publish one
or more values, then G is ignored. The publications of F ; G
are those of F if F publishes, or those of G otherwise. In
the Fork-Join combinator, two processes are invoked and
run concurrently. The process waits until a response is ob-
tained from both. This may be represented as (F, G) where
the process waits for responses from both atomic services F
and G.

The FD and the orchestration cover two dimensions that
are complementary to each other. While the FD represents

the variability in the configurations, the orchestration spec-
ifies the order in which the services are called. Making use
of the terminology in [21], primitive features are “features”
that are of interest and that will be incorporated in real-
world services. On the contrary, decomposable features are
just intermediate nodes used for decomposition. It is up to
the modeler to determine such classification of features in
the FD. We extend the semantics given in [21] to ensure
compatibility of an orchestration with the feature model as
follows:

• The set of available services S are the primitive nodes
of the FD D;

• For each orchestration, the set of corresponding ser-
vices invoked (denoted N);

• N ⊆ S in a configuration;

• A model of D is a subset of its (primitive and decom-
posable) nodes;

• There must exist a model of D ([[D]]) such that [[D]]∩
S = N (a model of a FD is a subtree that is valid w.r.t.
the operators and the dependence relation).

Drawing from the real-world services and the constraints
shown in a FD, the composite service may be developed by
an orchestrator.

2.3 Configuration Generation
Combinatorial interaction testing (CIT) has been proposed
by Cohen et al. [5] to select a subset of all combinations of
variables that define the input domain of a program, while
still guaranteeing a certain level of coverage. This has led
to the definition of pairwise interaction testing, or 2-way
testing. This samples the set of all combinations in such a
way that all possible pairs of variable values are included in
the set of test data. Pairwise testing has been generalized
to t-way testing which samples the input domain to cover
all t-way combinations.

Definition. 1. Covering Array - A covering array CA
(N ; t, k, v) is a N × k array on v symbols with the property
that every N × t sub-array contains all ordered subsets of
size t from v symbols at least once.

From the definition of a covering array, the strength t of the
array is the parameter that allows achieving 2-way (pair-
wise), 3-way or t-way combinations. The k columns on this
array correspond to all the variables in the input domain.
For the generation of services configurations, k is the num-
ber of services, and v is 2 since we have only boolean vari-
ables (services may be present or absent in a configuration).
The problem of generating a minimal covering array for a
set of variables is a complex optimization problem that has
been studied in extensive prior work for example [5]. It is
important to notice that there exist very few studies that
have tackled the automatic generation of CIT in the pres-
ence of constraints between variables [6]. In order to include
properties that forbid combinations of values, CIT genera-
tion techniques have to allow the introduction of constraints
in the algorithms that generate covering arrays. We have
developed a solution to generate t-wise configurations that
satisfy all constraints modeled in a feature model [18]. This
solution is based on the Alloy analyzer and SAT solving.

As the CIT removes redundant samples, there are a myriad
of sets of configurations that satisfy all the pairwise con-
straints. So, there are many sets of pairwise configuration
solutions (referred to a samples from now on) that exist for
a particular feature diagram. The consistency of these sam-
ples of solutions must be tested to determine the accuracy
and stability in selecting pairwise combinations.



2.4 Sampling Configurations
As stated in [13], if all faults in a system can be triggered
by a combination of n or fewer parameters, then testing all
n-tuples of parameters is effectively equivalent to exhaus-
tive testing. This hypothesis is extended to web services’
QoS, effectively sampling n-tuples of services to represent
the exhaustive range of service interactions.

In order to demonstrate this, consider the set of four atomic
services (A, B, C, D) with varying response times. The
atomic services can be composed in 24 exhaustive combina-
tions. However, if we consider the service combinations in
pairs, we require fewer configurations. These can be sub-
sumed by 6 sets of configurations that cover these pairs of
interactions resulting in removal of 62.5% of redundancies.
This is shown in Table 1 where, for example, interaction
(A, B) refers to calling both service A and B while (A, ¬B)
refers to calling only A with B explicitly not invoked. Such

Pairwise Interaction Configurations
(A, B); (A, C); (A, D); (B, C); (C,D) (A, B, C, D)
(A, ¬B); (A, ¬C); (A, ¬D) (A)
(B, D); (B, ¬A); (B, ¬C); (D, ¬A) (B, D)
(C, ¬A); (C, ¬B); (C, ¬D) (C)
(D, ¬B); (D, ¬C) (A, D)
(B, ¬D) (A, B, C)

Table 1: Subsuming pairwise interactions in config-
urations.
an intuitive procedure of sampling configurations is invalu-
able for larger composite services, that may be composed
in many thousands of ways. Pairwise sampling these com-
posite services provides an accurate portrayal of overall QoS
deviation, while eliminating redundant configurations (that
have no significant contribution to the global QoS variance).

2.5 QoS Aspects of the Orchestration
The use of hard contracts to regulate QoS parameters such
as response time, availability and so on has been the norm for
most SLAs. However these take into account many outliers
that are the result of some rare deviations in QoS which
generate pessimistic SLAs. Probabilistic analysis of QoS
parameters as shown in [19] [8] provides a more realistic
study of actual web services’ behavior. The following QoS
parameters have been chosen for our study:

1. Latency / Response Time (T ) - Denotes the overall de-
lay due to the time taken by a web service to respond.
It is a discrete value that may be modeled as a long
tailed distribution incorporating some rare deviations.

2. Availability (α) - The probability that a service is ac-
tive and can respond to a service call. For a well man-
aged service, this value is generally quite high.

3. Cost (χ) - Refers to the monetary cost associated with
each invocation of a particular atomic service.

4. Data Quality (ξ) - A subjective measure of trade off
to high Cost and Response times of web services. It
measures the ”Quality”of the output of the web service
and the beneficial aspects of including a new atomic
service into the composite orchestration.

Extending these QoS parameters to an orchestration in-
volves the use of Orc combinators as described previously.
Taking two sites si and sj , the QoS parameters may be ap-
plied as shown in Table 2 depending on the Orc combinators
used. The cases of composing the service sij using the se-
quential and fork-join combinators have been considered.
The latency, cost and availability metrics for the composite
service sij are derived as shown in [4] with Max(p, q) repre-
senting the maxima of the values p and q. For the sequential
case, the latency and cost of the composite service is a sum
of the atomic services’ parameters while the availability is a

product of such parameters. Similarly, the maxima of the
atomic services’ response times contributes to the global re-
sponse time under parallel invocation.

Orc Expression sij , si ≫ sj sij , (si, sj)

Latency T (sij) = T (si) + T (sj) T (sij ) = Max(T (si), T (sj))

Cost χ(sij) = χ(si) + χ(sj) χ(sij) = χ(si) + χ(sj)

Availability α(sij) = α(si) × α(sj ) α(sij) = α(si) × α(sj)

Table 2: QoS metrics extended to Orc combinators.

3. EXPERIMENTAL SETUP
The experiments involved simulating probabilistic QoS be-
havior of atomic services and pairwise generation of config-
urations.

3.1 Simulation of QoS Distributions
The first step is simulating the probabilistic response time
distributions of each atomic web service as done in [19]. For
this, we make use of the t-location distribution fitting feature
in MATLAB as shown in Fig. 1. By varying the degrees of
freedom ν and non-centrality parameter δ in the dfittool
of MATLAB, it is possible to generate various heavy tailed
distributions that mimic the response times of web services.
These are used to simulate the response times of actually
invoked atomic services. This t-distribution fitting was used
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Figure 1: Distribution fitting of actual response
times of a web service invocation.

to generate various distributions of services’ response times
with varying parameters.

3.2 Generating a sample of pairwise configu-
rations

We transform the feature diagram to constraint satisfaction
problem model in the language Alloy as described in [18].
The features in the FD are transformed to concepts in Al-
loy called signatures. Inter-feature constraints in the FD
are transformed to Alloy facts. All pair-wise interactions
between features are transformed to Alloy predicates. The
goal of solving the Alloy model is to find the minimal set of
configurations that cover conjunctions of all valid pair-wise
predicates. The first step involves detection of all valid pairs
that conform to the FD. In the second step, we construct
conjunctions of pair-wise predicates and solve them via in-
crementally increasing the scope of the solution size. The
result is a minimal set of configurations that cover conjunc-
tions of all valid pairs. At times the SAT solver in Alloy is
not scalable for a large FD. We apply divide-and-compose
approaches as described in [18] to handle this scalability is-
sue.

While this view makes use of static invocation of an orches-
tration (based on the FD configurations), another view is
also possible. Dynamic invocation of the FD (with degraded
modes) by a changing orchestration. In this case, the dy-
namic orchestration output determines which configuration
of the FD is invoked. However, in the current implementa-
tion, we resort to static invocation of services dependent on
variables.

4. METHODOLOGY FOR EXPERIMENTA-
TION



We present a methodology designed to examine the ques-
tions that we had developed in Section 1. The following
steps summarize our methodology, with corresponding ques-
tions in brackets:

1. The modeling inputs may be specified as a 3-tuple (S,
FD, O) where:

(a) S is the set of services that can be used. In a
configuration, subsets S1, ..., SN of these services
are used.

(b) FD is the constraints for the services included in
a particular configuration.

(c) O is the set of orchestrations O1, ..., OM in a com-
posite service. These orchestrations invoke the
services S1, ..., SN according to the configuration
constraints specified by the FD.

2. The CIT with pairwise constraints satisfied is then
used to sample a set of configurations from the FD.
This represents a subset of configurations that effec-
tively cover all the exhaustive configurations in the FD
(Q1, Q2).

3. For each of the sampled configurations we compute the
QoS for orchestrations (⊂ O) invoking all atomic ser-
vices in the configuration, at least once. These include
a set of parameters to analyze tradeoff between atomic
services’ inclusion / deletion between configurations.
Probabilistic models of response time are used to pro-
vide an accurate portrayal of the services’ behavior to
be traded-off with other QoS metrics (Q3).

4. Comparisons with randomly generated configurations
and consistency over multiple sample sets are included
to experimentally study the robustness of the proposed
pairwise analysis scheme and corresponding QoS met-
rics (Q4, Q5).

5. CASE STUDIES
Described in this section are the feature diagrams and or-
chestrations of two case studies.

5.1 Car Crash Crisis Management System Case
Study

The need for crisis management systems has grown signifi-
cantly over time [12]. A crisis can range from major to catas-
trophic affecting many segments of society. Crisis manage-
ment involves identifying, assessing, and handling the crisis
situation. A crisis management system facilitates this pro-
cess by orchestrating the communication between all (dis-
tributed) parties involved in handling the crisis. The car
crash crisis management system (C 3MS) [12] includes all
the functionalities of a general crisis management systems,
and some additional features specific to car crashes such as
facilitating the rescuing of victims at the crisis scene and
the use of tow trucks to remove damaged vehicles. As de-
scribed in [12], the main goals of this system include: a)
Facilitating the rescue mission carried out by the police /
firemen and providing them with detailed information on
the location of the crash. b) Managing the dispatch of am-
bulances or other alternate emergency vehicles to transport
victims from the crisis scene to hospitals. c) Coordinating
the first-aid missions by providing relevant medical history
of identified victims by querying data bases of local hospi-
tals. d) Ushering the medical treatment process of victims
by providing important information about the crash to the
concerned workers. e) Managing the use of tow trucks to re-
move obstacles and damaged vehicles from the crisis scene.

5.1.1 Feature Diagram of Car Crash Crisis Manage-
ment System

In Figure 2, we present the Car Crash Crisis Management
System (C 3MS) FD [12]. The C 3MS FD contains several
features that are associated with software assets represented
by atomic services. For example, the Paramedic feature is
represented by the Paramedic web service. Some sets of
features like Police and PoliceMan are subsumed by a single
service Police. Constraints such as optional, requires and
mutual exclusion (XOR) are also incorporated. For example,
the GPS and GSM features are mutually exclusive while the
Doctor feature requires the PublicHospital feature.
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Figure 2: C 3MS Feature Diagram.

5.1.2 Service Orchestrations in Car Crash Crisis Man-
agement System

A host of web services may be used to represent the C 3MS .
The corresponding web services referring to the features are
shown in 3. It is assumed that the web services perform the
functions as generally specified by the nomenclature. For
example, the CommunicationManager service manages the
communication between parties while the Ambulance ser-
vice regulates ambulances to the car crash sites. These ab-
stract representation of web services do not inherently re-
quire working details and can be modified to generic speci-
fications. Their construction may be modified according to
specifications to perform/subsume other associated tasks.

Figure 3: Composite Web Service Orchestration of
the C 3MS .



CrisisManagementSystem() , CrisisType() ≫ (HumanVictims(h), Witness(w)) ≫
Area() ≫ CommunicationManager(gs,gp) ≫ InternalResource(o) ≫
(Mission(), ITOption(IT), ExternalServices(), Medical(md))

CommunicationManager(gs,gp) , (GSM(gs),GPS(gp))

InternalResource(o) , (AidMaterial(),Coordinator(),Paramedic(), Observer(o))

Mission() , (RemoveObstacle(robs),Rescue(re),Observe(ob),
Transport(tr),Investigation(in),NurseWounded(nw),SortWounded(sw))

ITOption(IT) , (su,au,db) ≫ (SurveillanceSystem(su),AuthenticationSystem(au),
DatabaseSystem(db))

ExternalServices() , (ExternalCompany(ec),GovernmentServices())

Medical(md) , (pac,ph) ≫ (PrivateAmbulance(pac),PublicHospital(ph))

ExternalCompany(ec) , tt ≫ TowTruck(tt)

GovernmentServices() , (Police(pm),Fire(fm))

PublicHospital(ph) , (hw,amb,doc) ≫ (HospitalWorker(hw),Ambulance(amb),Doctor(doc))

Table 3: Orc pseudo code of the C 3MS orchestration.

The composite service orchestration is represented succinctly
in Fig. 3 and the Orc pseudo code is presented in Table
3. They represent a family of configurations that may be
invoked. Calling the CrisisManagementSystem() service in-
vokes other services like CrisisType and InternalResource()
operations in sequence. These services, in turn, may call
other services in parallel or services, passing some parame-
ters in the process. For instance, the CommunicationMan-
ager() services calls the GPS() and GSM() services in par-
allel, while passing some parameter values for invocation of
these services. The setting of these parameter results in
the various associated configurations in the system. Opera-
tions such as mutual exclusion (MUX ) and synchronization
(Merge) may be performed using Orc constructs. Another
level of control is the global timeout value associated with
the composite service. This has to be associated with the
overall SLA of the composite service to provide optimal du-
rations for response.

5.2 eHealth Management System
The need for efficient hospital management stems has been
discussed in [20]. A hospital administration system is de-
vised to remove some of the inefficiency plaguing current
protocols such as cumbersome admission time, duplicate
data entry, redundant lab tests, ineffective treatment coordi-
nation, and billing processes. Drawing inspiration from [20]
composite health care applications are required to connect
various parties and locations. The information flows seam-
lessly across organizational and system boundaries emitting
from the use of such a centralized orchestration. This en-
hanced visibility gives everyone involved a unified view of
relevant information and gives process owners the ability to
improve existing methods and procedures. The eHealth sys-
tem can be viewed as an extension of the C 3MS medical
services to transport injured victims for speedy treatment
of injuries. Examples of the utility of healthcare applica-
tions include: a) Healthcare providers can access the medi-
cal information of a prospective patient and use ambulance
services to transfer the client to relevant healthcare facil-
ities. b) Physicians can review a patient’s medical history
even though this data resides in several systems managed by
diverse providers. c) Insurance claims and financial options
can be updated and handled in a speedy way. d) Doctors
can use a composite application to determine the appro-
priate medication for a patient, order the drug, check the
status of pharmacy approval, and monitor how the drug is
dispensed. e) Special needs of the patient such as catering
specific food items and lab tests can be coordinated in an
effective way.

5.2.1 Feature Diagram of eHealth System
Fig. 4, presents the eHealth management system FD. Sim-
ilar to the C 3MS FD, it contains several features that are
associated with software assets represented by atomic ser-
vices. Constraints such as optional, requires and mutual
exclusion (XOR) are also incorporated. Two versions of the
similar service Ambulancef and Ambulances are in mutual
exclusion. These atomic features or services can be set to
varying QoS values resulting in interesting combinations of

services.
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Figure 4: eHealth Feature Diagram.

5.2.2 Service Orchestrations of eHealth System
The web services used for the orchestration of the eHealth
system are shown in Table 4. The operations are generic
with services such as HealthRecords and InsuranceRecords
used to request relevant medical history and insurance sta-
tus of the patient, respectively. The Orc pseudo code for the

HealthEmergencySystem() , Transport() ≫ HospitalAdmit() ≫ Billing() ≫ Discharge()

Transport() , a ≫ Ambulance(a)

HospitalAdmit() , Documents() >(hf,in)> (HealthRecords(hf),
InsuranceRecords(in))≫ AdmitRoom() ≫ Treatment()

AdmitRoom() , (sr,w) ≫ (SpecialRoom(sr),Ward(w))

Treatment() , (d,t,c,p) ≫ ((Doctor(d),Testing(t), Catering(c),Pharmacy(p))

Ambulance(a) , let (Ambulancef () | Ambulances())

HealthRecords(hf) , let (HealthRecordsf () | HealthRecordss())

InsuranceRecords(in) , let (InsuranceRecordsf () | InsuranceRecordss())

SpecialRoom(sr) , let (SpecialRoomf () | SpecialRooms())

Ward(w) , let (Wardf () | Wards ())

Doctor(d) , let (Doctorf () | Doctors())

Testing(t) , let (Testingf () | Testings ())

Catering(c) , let (Cateringf () | Caterings())

Pharmacy(p) , let (Pharmacyf () | Pharmacys())

Table 4: Orc pseudo code of the eHealth orchestra-
tion.
eHealth system is presented in Table 4. The distinguishing
feature of this orchestration is the choice of services that
can be used to perform similar goals. For instance, either
one of the mutually exclusive (MUX ) services Testingf () or
Testings() services can be used to request for lab tests. How-
ever, the QoS associated with each of these services is dif-
ferent resulting in varying overall composite service QoS.

6. EXPERIMENTS ON QOS EVALUATION
The efficacy of the offline analysis procedure was tested ex-
perimentally for both the case studies.

6.1 Evaluating QoS of the Car Crash Crisis
Management System

The response time distributions for the atomic services were
randomly assigned. The settings for the range of t-distributions
in MATLAB included degrees of freedom ν for 3 to 8 and
non-centrality parameter δ from 5 to 15 seconds, respec-
tively. These values were chosen to provide diversity in
atomic response time values and can be varied according
to the service implementation. For an included service, the
individual timeout value was set to 95 percentile of the re-
sponse time distribution. The global timeout value was also
set sufficiently high (300 seconds) to allow capture of outliers
in the distribution. For each chosen configuration, 10, 000
Monte-Carlo runs on the chosen services in the orchestration
(representing a partial order of the composite service) was
run. The response time of the orchestration was collected
during each run to generate an associated distribution.



The approach presented in [18] was used to generate a min-
imal set (given the resource constraints) of configurations
that satisfy pairwise interaction. The input settings to the
configuration generator are (a) Maximum scope for Alloy
solver (b) Maximum time to solve (c) Divide-and-compose
strategy for scalable generation. The maximum scope is set
to 8 and maximum time to 2000 milli-seconds with use of in-
cremental growth strategy. Through this technique, 185 con-
figurations for the C 3MS case study were generated. The
185 configurations satisfy all valid pairwise interactions be-
tween services in the C 3MS FD that originally specify 225

configurations. All invalid pairs that do not conform to the
FD are rejected by the approach. For instance, the not in-
cluding the Mission feature in a configuration is invalid as
it is a mandatory feature.

As seen in Fig. 5, the pairwise generated configurations
cover a range of response time distributions. The distribu-
tions were sorted in increasing order of response time and
are shown. The slowest and the fastest composite services
are marked. Their median values are shown to be 113 and
201 seconds, respectively. This demonstrates the use of a
few configurations to test significant changes of about 88
seconds response time in a composite service. This answers
the questions Q1 and Q2 in Section 1, that pertain to the
efficacy of pairwise sampling to generate a range of output
QoS values.

In Fig. 5, the extreme configurations have been marked.
This is further seen in the box-plot representation in Fig.
6. On each box, the central mark is the median, the hor-
izontal edges of the box are the 25th and 75th percentiles,
the whiskers extend to the most extreme data points (not
considered outliers) and outliers plotted individually. The
boxplot captures the minima, 25, 50, 75 and 95 percentile
values of a configuration’s response time distribution. 37
of the distributions (arranged from fastest to slowest) are
provided in the box-plot representation. The median val-
ues of the extreme configurations are once again marked by
horizontal lines.
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Figure 5: Response time distributions of the 185
pairwise configurations for C 3MS .

Additional parameters such as availability of a service, the
cost entailed in calling atomic services and output data qual-
ity is also be studied in tandem. Using the combinators de-
scribed in Table 2, the QoS parameters were analyzed for
each configuration generated by the pairwise interactions.
Setting atomic service availability to 0.99 (representing ser-
vice availability in 99% of invocations) the composite avail-
ability of each configuration is shown in Fig. 7. The output
data quality ξ is related to the cost χ by the constant κ given
by ξ = χ/κ (assuming linear increase in data quality with
each atomic service invocation). The output data quality
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Figure 6: Box-plot representation of the 37 selected
pairwise configurations for C 3MS .
ξ is can also be derived exponentailly from the cost χ by
ξ = eχ/κ. For example, setting the χ = 5 units for each in-
voked atomic service, the cost of each configuration is shown
in Fig. 7. Furthermore, setting κ = 20, the linear and expo-
nentail output data quality of the configurations may also
be derived. Though simplistic in outlook (due to subjectiv-
ity of cost and data quality), this trade-off of parameters
must be taken into account. These myriad of QoS parame-
ters accurately quantify run-time behavior of the composite
service. This is necessary to evaluate to answer the ques-
tion Q3 in Section 1 referring to generation of families of
composite services.
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Figure 7: Availability, Data Quality and Cost of the
pairwise configurations of C 3MS .

6.2 Evaluating QoS of the eHealth System
The settings for the range of t-distributions in MATLAB
included degrees of freedom ν for 3 to 8 and non-centrality
parameter δ from 5 to 15 seconds, respectively. For the
faster web services (marked with the subscript f ), the δ pa-
rameter was set between 3 to 5 seconds, representing a faster
response to a service call.

Similar to the C 3MS case, 188 configurations were deemed
sufficient by the solver to satisfy all valid pairwise interac-
tions from a total set of 212 configurations. For each chosen
configuration, 10, 000 Monte-Carlo runs on the chosen ser-
vices in the orchestration was performed. The response time
of the orchestration was collected during each run to gener-
ate an associated distribution.

As seen in Fig. 8, the pairwise generated configurations
cover a range of response time distributions. The distribu-
tions were sorted in increasing order of response time and
are shown. The slowest and the fastest composite services
are marked with median values. In the case of eHealth, the
30 seconds range in response time values is due to the added
diversity of choice in choosing a fast or slow atomic service.
This further answers the questions Q1 and Q2 in Section 1.
Using the combinators described in Table 2, the QoS pa-
rameters were analyzed for each configuration generated by
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Figure 8: Response time distributions of the 188
pairwise configurations for eHealth.

the pairwise interactions. Setting atomic service availabil-
ity to 0.99 the composite availability each configuration is
shown in Fig. 9. The cost of the service is varied depending
on the faster or slower service used. A faster service (with
subscript f ) is set double the cost of its slower (with sub-
script s) counterpart. This changes the range of cost and
data quality available for different configurations as seen in
Fig. 9.
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Figure 9: Availability, Data Quality and Cost of the
pairwise configurations of eHealth.

6.3 Comparison with Random Sampling
It has been shown in [5] that pairwise interaction testing of
such configurations is advantageous over random sampling of
the sample space due to efficient coverage and greater control
over systematic testing. With random runs, it is impossible
to determine if all the atomic services have been invoked
at least once. The configurations leading to extreme test
case values need not be necessarily generated during ran-
dom runs and there may be many redundant configurations
invoked repeatedly. Setting SLAs based on random runs is
both non-robust and can lead to habitual deviance. Gener-
ating families of configuration with accurately fixed bounds
on QoS is also not possible. For these reasons, pairwise gen-
eration has comparative advantages over random runs. The
pairwise setting ensures that every atomic service is invoked
at least once in the sample.

Three sets of random configurations were generated as shown
in Fig. 10, each with original configuration size 185. In each
case, the number of valid configurations was found to be
17, 21 and 24 resulting in a maximum efficient generation
percentage of 12.97%. Not only are there deviations in the
number of valid configurations for each run (17, 21, 24), but
also in the QoS metrics output in each run. SLA devia-
tions are a result of resorting to such insufficient random

runs of a composite service, which might generate invalid
and redundant scenarios. To test the efficacy of combinato-
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Figure 10: Three runs of random generation of con-
figurations for C 3MS .

rial testing the 185 pairwise configurations were compared
with random samples for the C 3MS . All the mandatory
features were set to be invoked with the constrained and
optional features randomized in invocation for the random
case. This random sampling was performed by a Markov
decision process of traversing features in the FD, which will
always lead to generation of valid configurations (based on
constraints). The comparison with pairwise is shown in Fig.
11 and it is seen that random generation can cover a large
range of QoS values if sufficient number of configurations
are generated. To determine that number, however, requires
analysis of pairwise interactions. The random configurations
are deficient as they cannot guarantee a) invocation of every
possible service at least once; b) generating the extreme con-
figurations for a particular composite service in every sam-
ple. When compared to the pairwise generation scheme that
covered all pairs of services, the random generation covered
only 8.8% of the service pairs. This shows that the same set
of services are redundantly invoked in many configurations
during random generation. Thus, for such orchestrations
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Figure 11: Comparison of pairwise and random re-
sponse time (arranged in increasing order) of per-
centile values for 185 configurations of C 3MS .

with numerous configurations, using pairwise interactions
is a sufficient choice in order to examine the entire sample
space. This answers the question Q5 in Section 1, referring
to the comparison between pairwise and random sampling.

6.4 Consistency of Pairwise Samples
Given one orchestration, there can be many different sets
of configurations that cover pairwise services interactions.
Thus, we compute QoS behavior over different samples of
configurations. This aims at evaluating the stability of pair-
wise interaction coverage as a sampling heuristic to estimate
the global QoS for an orchestration. A collection of 10 sam-
ples that satisfy the pairwise interaction testing were gen-
erated for the eHealth case. The percentile statistics of the
configurations in each sample was collected through 10,000
Monte-Carlo runs and is shown in Fig. 12. The lowest and



Percentile 25(min.) 25(max.) 50(min.) 50(max.) 75(min.) 75(max.) 90(min.) 90(max.)
Pairwise Standard Deviation(seconds) 2.18 1.52 2.59 1.73 2.90 1.82 3.19 1.83
Random Standard Deviation(seconds) 4.14 4.17 4.21 4.51 4.43 4.76 4.63 5.07

Table 5: Standard Deviation values for pairwise and random samples.

highest percentile values of the configurations in each sam-
ple were collected. The mean inter-sample difference for the
random case is 12.94 seconds compared to 6.44 seconds
for the pairwise case. Further, these were compared with
10 samples of randomly generated configurations (with 300
configurations in each sample) in Fig. 12. Again, all the
mandatory features were set to be invoked with the con-
strained and optional features randomized in invocation for
the random configurations. The number of valid configu-
rations for each sample ranged between 3.5% to 9% of the
300 configurations. Comparing the two cases, the stabil-
ity of the pairwise generation is demonstrated through its
consistently low standard deviation values in Table 5 when
compared to random samples. Once again, the lowest and
the highest percentile values of all the configurations in a
particular sample are compared. This answers the question
Q4 in Section 1, referring to the stability of pairwise sam-
pling.
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Figure 12: Comparing stability of pairwise and ran-
dom samples for eHealth.
7. PERSPECTIVES DUE TO ANALYSIS
The methodology evaluated for the C 3MS and the eHealth
orchestrations can lead to many possibilities for improving
QoS metrics for composite services. This includes setting
the SLA keeping into account the worst performing config-
uration. This will prevent contract deviation during actual
deployment of the service.

A family of SLAs for a set of configurations taking into ac-
count trade-offs between QoS metrics and the output quality
of configurations may be proposed. This leads to families of
composite services with extensively analyzed SLAs. Config-
urations may be grouped along with their QoS behavior to
develop an extended product line of composite services. For
example, categories of services may be constructed for the
C 3MS orchestration (based on Figs. 5 and 7) as shown in
Table 6. Similarly, the two categories of service families for
the eHealth case (Figs. 8 and 9) is shown in Table 7. In
both cases, the family of services with higher data quality is
traded-off by a slightly higher response time.

While the diversity in QoS families for the C 3MS is due to
optional services that may / may not be included, the vari-
ability in the eHealth case is mainly due to other factors.
An inherent choice in replacing a slow atomic service with a
fast counterpart can lead to a range of QoS values. Gener-
ated configuration families can use of combination of these
options of optimally compose atomic services to specific QoS
bounds. These service families can have associated contracts
(albeit in the soft-sense as in [19]) to monitor deviations from

specifications. These instances provide answers to the ques-
tion Q3 in Section 1, that pertains to developing families of
composite service orchestration with significantly different
QoS behavior. With numerous possible combinations of

Configuration Families Bronze Silver Gold
90 percentile Response Time (T ) < 183 s < 216 s ≥ 216 s
Median Response Time (T ) < 150 s < 179 s ≥ 179 s
Availability (α) > 0.75 > 0.71 ≥ 0.71
Cost (χ) < 60 < 70 ≥ 70
Linear Data Quality (ξ) < 3 < 3.5 ≥ 3.5
Exponential Data Quality (ξ) < 20 < 30 ≥ 30

Table 6: Configuration families for C 3MS .

Configuration Families Standard Premium
90 percentile Response Time (T ) < 171 s ≥ 171 s
Median Response Time (T ) < 139 s ≥ 139 s
Availability (α) > 0.85 ≤ 0.85
Cost (χ) ≤ 40 > 40
Linear Data Quality (ξ) ≤ 2 > 2
Exponential Data Quality (ξ) ≤ 8 > 8

Table 7: Configuration families for eHealth.
atomic services, such a dedicated families of services with
significantly different QoS outputs enable accurate monitor-
ing of services provided. The pairwise scheme is both a
robust and compact representation of the behavior space of
the set of orchestrations. This provides an effective pre-SLA
technique to enunciate the QoS metrics and threshold levels.

8. THREATS TO VALIDITY
This section considers the threats to the validity of the ex-
perimental results. These may be internal (whether there
is a bias/error in the experimental design which could affect
the causal relationship) or external (ability to generalize the
results of the experiment to industrial practice).

The hypothesis studied in this paper concerns the use of
pairwise sampling to evaluate QoS of large orchestrations.
Sources of internal error can be a result of the MiniSAT
solver used to generate the pairwise configurations or the
MATLAB statistical tools used for QoS evaluation. These
tools have not been compared with available alternatives
for consistency of results. Furthermore, the assumption is
that for each sample of configurations, the pairwise analysis
scheme can provide consistently large range of QoS values.
Systematic bias in QoS may be introduced in samples when
extreme cases are not generated.

To ensure scalability to large industry level FDs, the pair-
wise generation in [18] makes use of incremental growth /
binary splitting schemes. Redundancies in the number of
configurations can be seen due to these schemes. For gen-
erating more than one sample of solutions, the symmetry
breaking scheme in Alloy was used. This introduces more
constraints with each proceeding sample, which increases the
time required to generate such samples.

9. RELATED WORK
The combinatorial testing framework described by Cohen
et al. [5] has been applied extensively to efficient testing
for fault detection. In the work of Cohen et al. [6], this
technique is extended to software product lines with highly
configurable systems. Modeling variability in SPLs using
feature models is the work of Jaring and Boschet [9] where
they show that the robustness of a SPL architecture is re-
lated to the type of variability. To ensure that constraints in
the FD are incorporated in the efficient sampling of t-wise
tests, the scalable solver proposed by Perrouin et al. [18] is
used. In [14], variability in software as a service applications
are modeled using the orthogonal variability model to study
the customization choices in such workflows.



Pre-deployment testing of SLAs has been studied by Di
Penta et al. [17], where they make use of genetic algorithms
to generate test data causing SLA violations. Analysis of
white and black box approaches are provided in the paper.
In [2], Bruno et al. make use of regression testing to en-
sure that an evolving service maintains the functional and
QoS assumptions. The service consistency verification due
to evolution is done by executing test suites contained in a
XML encoded facet attached to the service.

The use of probabilistic QoS and soft contracts was intro-
duced by Rosario et. al [19] and Bistarelli et al. [1]. Instead
of using fixed hard bound values for parameters such as re-
sponse time, the authors proposed a soft contract monitoring
approach to model the QoS measurement. The composite
service QoS was modeled using probabilistic processes by
Hwang et al. [8] where the authors combine orchestration
constructs to derive global probability distributions.

In our paper, we extend these two notions to analyze the QoS
of a composite orchestration under various configurations.
Effective sampling of orchestrations is necessary specially in
conjunction with exceedingly flexible and large configuration
spaces. When combined with the probabilistic behavior QoS
behavior of services, this provides an accurate portrayal of
the composite service’s end-to-end QoS.

Though formal analysis of end-to-end QoS has been studied
in Cardoso et al. [4], there are no practical testing tools
available for the composite service provider. The pairwise
testing procedure has been shown to outperform other test-
ing techniques in [5]. We extend this testing tool to develop
a generic testing methodology to query end-to-end QoS of a
web service. Related empirical studies of optimal QoS com-
positions make use of genetic programming in Canfora et
al. [3] and linear programming in Zeng et al. [23]. These
are dynamic techniques to choose the best possible atomic
services and configurations for SLAs. The goal in our pa-
per is to analyze the dynamic configurations that may result
due to invocation/non-invocation of particular web services
when atomic SLAs have already been established.

10. CONCLUSIONS
Effective computation of offline QoS tradeoff analysis is ben-
eficial to ensure efficient portrayal of composite service be-
havior. In this paper, we sample large orchestration spaces
with configurations satisfying pairwise interactions between
services. This emanates from the intuition of pairs of service
combinations lead to significant changes in composite service
QoS. As demonstrated in the paper, such pairwise analysis
scheme is able to reduce the number of configurations dras-
tically, while still successfully analyzing significant ranges of
QoS variance. It has been shown to be robust over both
large FDs (C 3MS and eHealth) as well as over many sam-
ples of solutions. When compared to random generation of
configurations, the experiments show superior performance
of pairwise relating to efficiency and stability of results. To
generate robust SLAs, it is beneficial to make use of sys-
tematic sampling rather than variable random sampling. It
allows creation of many families of composite services that
can be leveraged at varying prices and SLA ranges. Post-
deployment QoS variance is minimized due to the exten-
sive analysis of the host of orchestrations that may be con-
structed.

A feature model driven variability analysis of web services
orchestrations can lead to useful analysis tools. An area of
future work can result in automatic generation of orches-
trations keeping feature model specialization as a causality
measure. Generating these valid orchestrations and auto-

matically synthesizing QoS behavior relieves the need for
manual synthesis of orchestrations.
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