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ABSTRACT 

 
Competitive learning algorithms adaptively compute the cluster centers in a dataset with 
clustered information. We investigate two such competitive learning algorithms that are 
primarily based on frequency sensitivity. Frequency sensitive competitive learning (FSCL) and 
Rival penalized competitive learning (RPCL) have interesting properties when applied on a 
dataset concurrently with equivalent weight initialisations. These algorithms when run 
concurrently tend to separate out the redundant prototypes based on a distance measure. 
The distance measure helps us distinguish between true cluster centers from redundant 
centers. The property of RPCL to push a redundant unit (which acts as the rival to a legitimate 
cluster center) far away from the corresponding FSCL unit (the legitimate cluster center) gives 
us the required distance measure. We have applied this algorithm to image segmentation 
apart from regular clustering analysis. 
 
1. INTRODUCTION 
 
Statistical datasets from several experiments often possess inherent structure and subtle 
important features. Data clustering aims at discovering and emphasizing structure that is 
hidden in a data set. A certain number of representatives (prototypes, cluster centers or units) 
encapsulate the essential information conveyed by the nature of the clusters in the data. 
Competitive learning is an adaptive strategy to find cluster centers. Competitive learning is 
unsupervised learning in nature, i.e., we try to minimize the Euclidean distance between a 
cluster center and the adjacent points in the dataset based on a learning rate instead of 
teaching by specifying input/output pairs. Competitive learning algorithms must attack several 
problems associated with clustering analysis. Some of the important problems are 
 

P1. Under-utilization problem or dead nodes problem Due to inappropriate 
initialisation of some cluster prototypes they never become the winner (winner is the 
prototype that has the smallest distance from the input data point), therefore have no 
contribution to learning. 
 
P2. Automatically finding the number of clusters and the respective cluster centers 
The very act of random initialisation of prototypes makes it impossible for us to ascertain 
the convergence of cluster centers to the respective clusters. In all probability there might 
be a cluster that remains undetected by the prototypes. 
 
P3.  Multiple prototypes per cluster This problem arises when one prototype wins the 
competition repeatedly. The other prototypes are deprived. This can partly be solved by 
making the competition sensitive to the frequency of winning of each prototype. The less 
frequent winners get a chance to win a point and hence distribute the load within all the 
prototypes. 

 
Several approximate techniques for competitive learning exist that try to solve the above 
problem in many intuitive ways. Due to the statistical nature of data it is impossible for anyone 
to claim that any of the algorithms in the literature give optimal results. 
 

We analyze two important algorithms from the literature – Frequency Sensitive 
Competitive Learning (FSCL) [3] and Rival Penalized Competitive Learning (RPCL) [2]. In 
Section 2 we discuss these algorithms. Following this analysis we elucidate subtle features in 
these algorithms that help us counter inherent problems in clustering analysis. We introduce 
Concurrent Competitive Learning (CCL) in Section 3, which is based on FSCL and RPCL. In 



Section 4 results of experimentation of CCL with data clustering and image segmentation 
problems is shown. We conclude in Section 5. 

 
2. TWO COMPETITIVE LEARNING ALGORITHMS 
 
Frequency sensitive competitive learning (FSCL) [3] and rival penalized competitive learning 
(RPCL) [2] algorithms are introduced in this section. We reiterate the fact, from the original 
literature, that they try to solve problem P1 and P3 specified in Section 1 of the paper. 
Incorporating some history/frequency sensitivity into the competitive learning rule provides a 
way to alleviate the problem of totally unlearned neurons or prejudiced training. There are two 
approaches:  

1. Modulate the selection of a winner by the frequency sensitivity.  
2. Modulate the learning rate by the frequency sensitivity.  

In Table 2.1 we list of the essential parameters and variable used in both FSCL and RPCL. In 
FSCL he rate of training can also be modulated by frequency sensitivity. Consider a dataset 
D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Detailed analysis for FSCL can be found in [3]. The most important observations one can 
make regarding FSCL are 
 

 All prototypes have equal chance The competition is based on the conscience 
factor which in turn is a function of the frequency of winning. Deprived prototypes will 
have lower conscience compared to the frequent winners. The lower conscience 
factor will allow the algorithm to push the infrequent winner to win more frequently. 
Hence, a balance is maintained and all the prototypes get a reasonably equal share 
of the input data. 

 Prototypes always win Since there is no de-learning involved (though there is a 
possibility of several prototypes occupying the same cluster) there is no chance for 
the prototypes to wander away from the cluster regions. This property is pivotal in the 
CCL algorithm. 

 
As an example, we present the following competitive learning rule: 
Function FSCL (D,k) 
 
Step 1: Randomly take a sample x from a data set D; for i=1,…, k, let 
 
 
 
ui   = 
 
 
 
 
 

1, if i=c such that γc ||x –wc||2 = mini γi || x – wi ||2,  

0, otherwise. 

(1a) 

k It is initial estimation of the number of clusters in the given data 
ui  1≤ i ≤k The output units or the output vector of dimension k 
wi  1≤ i ≤k  k - weight vectors each  of dimension d 
xi  1≤ i ≤ d The d-dimensional input vector from data set D 
0≤αc≤1 Learning rate for winner 
0≤αr≤1 Learning rate for rival 
wc d-dimensional weight vector corresponding to the winner 
wr d-dimensional weight vector corresponding to the rival 
ni  1≤ i ≤k Cumulative number of occurrences of ui = 1 

γj  =nj /  The conscience factor to reduce the winning rate of constant 
winners 

 

Table 2.1 Parameters used in FSCL and RPCL 

 



Step 2: Update the weight vector wi by 
 
 
 
Δwi =  
 
 
 
 
FSCL is widely used and is a very simple algorithm. The most important problem with FSCL is 
its inability to find exact number of cluster centers. 
 
RPCL [2] is a clever extension of the FSCL algorithm. The basic idea of frequency sensitivity 
has been preserved. In addition de-learning is introduced in the rivals (second best to the 
winner). This improvement in the algorithm automatically makes one prototype occupy one 
cluster. The rivals to a prototype are pushed away from the cluster it is trying to occupy, 
thereby becoming the only prototype to learn from the cluster. The rival penalization in turn 
implicitly pushes the rivals towards other clusters. Finally all the extra units are pushed far 
away from the clusters that already have a center. These extra units can be used later on if 
new data has to be trained. The algorithmic description for RPCL is 
 
Function RPCL (D, k) 
 
Step 1: Randomly take a sample x from a data set D, for i=1,…, k, let 
 
 
 
 
ui   = 
 
 
 
 
 
Step 2: Update the weight vector wi by 
 
 

 
 
 
 

 
The feature of RPCL to push the redundant units away from the center will provide important 
basis for CCL to compare FSCL and RPCL results.  

 
 
 
 
 

αc ( x − wi ), if ui = 1 

0, otherwise (1b) 

1, if i=c such that γc ||x –wc||2 = mini γi || x – wi||2,  

−1, if i=r such that γr ||x –wr||2 = mini≠c γi || x – wi ||2,  

0, otherwise. 

αc ( x − wi ), if ui = 1 

−αr (x − wi), if ui = −1 

0, otherwise 

(2a) 

(2b) Δwi =  

Fig.1 RPCL results (left) on a dataset with two clusters and 3 prototypes. Observe the rival 
unit being pushed far away. FSCL results with same conditions. All centers are close to the 
clusters. 



3. CONCURRENT COMPETITIVE LEARNING 
 
We showed how FSCL and RPCL solve problems P1 and P3 introduced in Section 1. In this 
section we develop an algorithm that attempts to tackle problem P2 from Section 1 (the 
problem of automatically finding the exact number of cluster centers). We can reiterate two 
important properties from FSCL and RPCL that will be the basis for CCL♣.  
 

 In FSCL all the cluster centers occupy regions close to the data points. Both the 
representatives and redundant centers are in close proximity. 

 Cluster centers in RPCL are de-learned when they act as rivals to the winner of a 
cluster. This way the redundant units are pushed far away from the proximity of the 
data set and other centers. 

 
We run FSCL and RPCL concurrently with the same random initialisation for weight vectors 
wf and wr each corresponding to the FSCL weight vector and the RPCL weight vector 
respectively.   If the weight vector wf is a representative of a center and so is wr then both are 
very close to each other. However, if wf and wr correspond to redundant centers both are 
pushed far away from each other and hence must be removed from the set of representative 
cluster centers. This process continues iteratively to weed out all the redundant centers and 
ultimately keep only the representative cluster centers. 
 
The distance between vector wr and wf must be above a certain threshold to be removed 
from the set of representative cluster centers. The aim of a competitive learning algorithm is 
to obtain cluster centers tuned to a particular region of input data. The concept of threshold 
for a cluster center is borrowed from [4]. The idea here is to check whether wr is within the 
hypersphere with the threshold as the radius measure and center wf. If wr is outside this 
hypersphere we conclude that it is redundant and remove it from the set of representative 
cluster centers. 
 
 
We enhance the general form of our activation function ui from equation (1a) from Section 2 
 
 
 
 
ui   = 
 
 
 
where Ti

f is the threshold for the ith prototype in FSCL. 
 
Also we make an equivalent change in the activation function from equation (2a) from Section 
2  
 
 
 
 
ui   = 
 
 
 
where Ti

r is the threshold for the ith prototype in RPCL. 
 
The thresholds are modified based on the following rule of standard learning [4]: 
 
Tf

i(t+1)=Tf
i(t)+ΔTf

i(t) 
 
                                         
♣ Note: All vectors are in bold. The variables with superscript f correspond to the variables for 
FSCL. The variables with superscript r correspond to the variables for RPCL. 

1, if i=c such that (Ti
f– γc ||x –wf

c||2) = mini (Ti
f– γi || x – wf

i ||2),  

0, otherwise. 
(3a) 

1, if i=c such that Ti
r– γc ||x –wr

c||2 = mini (Ti
r–γi || x – wr

i||2),  

−1, if i=r such that Ti
r–γr ||x –wr

r||2 = mini≠c (Ti
r–γi || x – wr

i ||2), 

0, otherwise. 
(3b) 



ΔTf
i(t)= αf

i ( ||x − wi||− Tf
i(t) ) 

 
Tr

i(t+1)=Tr
i(t)+ΔTr

i(t) 
 
ΔTr

i(t)= αr
i ( ||x − wi||− Tr

i(t) ) 
 
This dynamic change in the threshold values prevents a cluster center from affecting other 
clusters outside its region of operation.  
 
The weight units start with a random initialisation. The thresholds and the learning rates are 
initialised.  
 
Function CCL (D, k, TOL) 
 
Step 1. Randomly take a sample x from the data set D, for i=1…k 
 
 
 
uf

i   = 
 
 
 
 
 
 
ur

i   = 
 
 
 
 
Step 2. Update the weight vectors wf

i and wr
i adopting the modified competitive law 

 
 
 
 
 
Δwf

i =  
 
 
 
 
wf

i= wf
i+Δwf

i 

 
 
 

 
 
 
 

 
wr

i= wr
i+Δwr

i 

 
Step 3. Update the learning coefficients 
 
  αf

i       =   αf
i e-0.01 

  αr
ci   =   αr

ci e-0.01 

−αr
ri     = −αr

ri e-0.01 

 

Step 4. Update the threshold: 
 

1, if i=c such that (Ti
f– γc ||x –wf

c||2) = mini (Ti
f– γi || x – wf

i ||2),  

0, otherwise. 

(4a) 

1, if i=c such that Ti
r– γc ||x –wr

c||2 = mini (Ti
r–γi || x – wr

i||2),  

−1, if i=r such that Ti
r–γr ||x –wr

r||2 = mini≠c (Ti
r–γi || x – wr

i ||2), 

0, otherwise. 

(4b) 

αf
i ( x − wf

i ), if uf
i = 1 

0, otherwise 

(4c) 

αr
ci ( x − wr

i ), if ur
i = 1 

−αr
ri (x − wr

i), if ur
i = −1 

0, otherwise 

(4d) Δwr
i =  

(4e-g) 



Tf
i=Tf

i(t)+ΔTf
i 

 
ΔTf

i= αf
i ( ||x − wi||− Tf

i ) 
 
Tr

iTr
i(t)+ΔTr

i 
 
ΔTr

i= αr
i ( ||x − wi||− Tr

i) 
 
 

Step 5. Compute the distance and check 
 
If || wr

i − wf
i  || > Tf

i  then 
 

Remove ith weight vectors wr
i and wf

i   
k=k-1; 

end 
 
Step 6. Iterate to step1 until 
 
 
αf

i ≤ ε 
 
where ε is a constant coefficient (ε = 0.01). 
 
4. EXPERIMENTS  
 
In order to show the capability of CCL to find the correct number of cluster centers we 
generated random datasets in two-dimensional space with each cluster distributed in the 
sense of Gaussian.  
 
Sample dataset: 
 

Number of data points 200 
Exact number of clusters 5 
Initial estimate of the number of clusters 7 
Detected number of clusters 6 
Initial threshold Tf and Tr 0.5x10-4 

Initial learning rate αc 0.5 
Initial learning rate αr -0.02 

 
For simplicity we consider only a single threshold values for all elements and also single 
learning rate for all elements. This alleviation over the number of parameters has been done 
due to the low complexity of the test data. By making use of all the parameters we can very 
accurate results however the process of finding them will be slower. 
 

  
  
 

(4h-k) 

Fig. 2 (a) CCL output with detection of 6 cluster centers. (b) Variation of threshold 
until constant value is obtained 



Next, we consider the problem of image segmentation. Image segmentation is the process of 
grouping similar regions in a figure. 8-bit Greyscale images were considered for the 
segmentation tasks. The test images are shown in Fig. 3. 
 

   
 

 
 
For the image segmentation task we made initial estimates of 7 segments and took only 
about 150 points in random. This is contrary to regular segmentation algorithms like 
thresholding-based techniques that need to process every pixel for accurate segmentation. 

 
 
 
 
The number of regions detected by CCL for Fig. 3(a) was 6 and the number of regions 
detected by CCL for Fig. 3(b) was 5. Clearly we can see the compression that CCL can 
provide by automatically determining the correct number of cluster centers. 
 
6. CONCLUSION 
 
Concurrent competitive learning is different from other competitive learning algorithm in the 
sense of its mechanism to automatically determine the number of cluster centers.  However 
the most important drawback in CCL is the need to store twice the number of weights during 
the learning phase. Once the learning phase is over only the pertinent weight vectors may be 
stored as feature vectors for classification tasks.  
 
The inherently parallel nature of CCL makes it an ideal candidate for hardware 
implementation and implementation over distributed systems to solve large-scale problems. 
 
Note: MATLAB 5.3 version of CCL may be obtained from the author. Email the author at 
sagarsen@rediffmail.com 
 
 
 

Fig. 3. (a) and (b) Test images for image segmentation task. 

Fig. 4. (a) and (b) Results of segmentation on Fig. 3(a) and Fig. 3(b) 
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