
for k=1:size, x=X(:,k); z(k)=fitnessf(A,b,c,x,m); end
%Vector z gives fitness of each of the members in a generation

S.K. Sen and Sagar Sen, A shrinking-rectangle randomized algorithm with interpolation

for a complex zero of a function, Proc. 47
th

Congress of ISTAM (An International

Meet), Indian Institute of Technology, Guwahati, Dec 23-26, 2002, 72-80.

A Shrinking-rectangle Randomized Algorithm with Interpolation for a Complex Zero of a Function

S.K. Sen
1
 and Sagar Sen

2

Abstract A polynomial-time deterministic randomised algorithm is described to
compute a zero of a complex/real polynomial or a complex/real transcendental function
in a complex plane. The algorithm starts with a specified rectangle enclosing a complex
zero, shrinks it successively by at least 50% in each iteration somewhat like a two-
dimensional bisection, and then a single application of linear two-variable interpolation in
the highly shrunk rectangle provides the required zero. A parallel implementation of this
algorithm is discussed while its sequential and parallel computational complexities as
well as its space complexity are discussed. The algorithm is found to be reasonably good
for zero clusters and also for multiple zeros. This method can be extended to minimize
globally a polynomial or a transcendental function of several variables without resorting
to the computation of its partial derivatives and can be used along with the deflation of
the polynomial or with different specified initial rectangle

Keyword Complex zero, deterministic randomised algorithm, linear interpolation,
shrinking-rectangle, two-dimensional bisection

1.Introduction

There exist several deterministic nonrandomized polynomial-time algorithms in the literature

(Krishnamurthy and Sen 2001, Mathews 1994, Schilling and Harries 2002) to compute real and complex

roots of an algebraic or a transcendental equation. Specifically, automatic two-dimensional (2-D) bisection

methods (Sen and Lord 1990, Wilf 1978) have been described. These bisection methods needing only

function computations provide excellent accuracy for well-conditioned functions, i.e., functions without

zero-clusters (closely spaced zeros). A function with distinct well-separated zeros or one with multiple

zeros is well-conditioned with respect to its zero finding using a bisection method. We present here a

1Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012, India
2 Department of Computer Science and Engineering, Dr. Ambedkar Institute of Technology, Bangalore
560056, India

variation of the 2-D bisection method, called here the SRA algorithm, that differs widely from these

methods in its conceptual approach. We specify a reasonably small rectangle in the complex plane so that

it contains one of the complex zeros of the given one-variable function. We throw uniformly distributed

darts, say 100 of them, onto the rectangle and compute at each point of hit the value of the function. This

dart-throwing is accomplished by generating uniformly distributed pairs of pseudo-random numbers each

representing a point in the rectangle. We select the point of hit, that corresponds to the minimum value of

the norm of the function; replace the rectangle by one whose area is at least 50% less than the previous

one. This smaller rectangle now has in it the zero of the function. We continue this process a number of

times, say 10 times, and obtain the highly shrunk rectangle which contains this zero. Carry out a two-

variable linear interpolation to obtain the zero with sufficient accuracy. To obtain other complex zeros of

the function, one can deflate the function (algebraic) and follow the proposed algorithm on the deflated

function or one can choose a different rectangle that would contain the second zero of the function

(algebraic or trigonometric) and apply the algorithm. This algorithm can be modified for a function of

several variables by generating a set of several pseudorandom numbers instead of the pair and by using

multi-variable interpolation to obtain a global minimum of the function. We will not discuss this aspect

here.

The algorithm with the justification of each of its steps is described in Sec. 2 while its computational and

space complexities are discussed in Sec. 3. A Matlab program that not only takes care of complex zeros

with nonzero real and nonzero imaginary parts but also purely real as well as purely imaginary zeros is

presented in Sec. 4. Test examples and conclusions are included in Secs. 5 and 6, respectively.

2. The SRA Algorithm

Let f(x) be an algebraic or a transcendental function of the single variable x and be continuous and

bounded. The function f(x) may be real or complex. The problem is to find a complex zero of f(x), where

the zero may have (i) both real and imaginary parts nonzero or may be (ii) only real or (iii) only imaginary.

It can be seen that the two-variable interpolation needed for Case (i) is not applicable to any of Cases (ii)

and (iii). In the later two cases, we have to explicitly use distinct single variable interpolations.

Let the real part of the zero of the continuous bounded function f(x) lie in the interval [a, b] while the
imaginary part in the interval [c, d]. These intervals define a rectangle D (Fig. 1a), i.e. the domain of
search. The function values corresponding to each of the points of the domain will define a plane (i.e., a
hyperplane of dimension 2) R whose sides are in general curved (not straight lines) (Fig. 1b). Assume
that this domain contains only one zero for the sake of observing how the algorithm works, such an
assumption is not strictly needed though. This fact will be seen when we consider numerical test examples
that illustrate the algorithm.

 (a, d) (b, d)
 y3=f(a+jd) y2=f(b+jd)
 • •
 • •
 (a, c) (b, c) y0=f(a+jc) y1=f(b+jc)

Fig. 1a Rectangle D containing a zero Fig. 1b Plane R with curved sides
 of a function (Domain space) (Function space)

We now describe the steps of the algorithm with justification/explanation for each step.

S. 1 Throwing darts onto the rectangle D and choosing the one nearest zero Generate uniformly
distributed n1 (n1 = 20, say) ordered pairs of random numbers such that the first number of each pair lies in
[a, b] while the second lies in [c, d]. Each pair defines a complex random number. The first one of the pair
defines the real part while the second one the imaginary part of this complex random number. Let rand(1)
produce a random number in (0, 1). Then x = [rand(1)(b ! a) + a] + j [rand(1)(d ! c) + c] is a complex
random number inside the rectangle D. This number corresponds to a thrown dart inside D and the
corresponding f(x) will have a numerical value which is usually complex and which will lie inside the plane
R. Corresponding to n1 such complex random numbers within the rectangle D, we will have n1 function
values within the plane R. We choose that random number which produces the minimum absolute value of
the function. Call this number x1. Clearly this absolute value of f(x1) will be nearest the zero of f(x).

S. 2 Shrinking the Rectangle D by at least 50% Set b1 := real(x1) + .354(b ! a), a1:= real(x1) ! 0.354(b !
a), where real(x1) is the real part of x1. If b1 < b then set b := b1; if a1 > a then set a := a1.

Similarly, set d1 := imag(x1) + .354(d ! c), c1 := imag(x1) ! (d ! c), where imag(x1) is the imaginary part of
x1. If d1 < d then set d := d1; if c1 > c then set c := c1.

The step S. 2 reduces the rectangle D by at least half its size. The new rectangle will enclose the zero of
f(x) assuming that it is not too violently fluctuating or the zeros are not too closely spaced.

S. 3 Getting the smallest rectangle after k iterations Repeat the steps S. 1 and S. 2 for k (k = 10, say)
times. This step will produce a highly shrunk rectangle that contains the zero of f(x).

S. 4 Two-variable interpolation for a complex zero Use the two-variable Lagrange linear interpolation
using the most recent values of a, b, c, d and the corresponding function values. This interpolation includes
extrapolation automatically. Let (xi, yi) i = 0(1)3 be the table for interpolation, where xi as well as yi are
both complex and the interpolation (that includes extrapolation too) problem is posed as follows.

 x y

 x0 = a + jc y0 = f(x0)

 x1 = b + jc y1 = f(x1)

 x2 = b + jd y2 = f(x2)

 x3 = a + jd y3 = f(x3)

 x = ? y = f(x) = 0

 Hence, if a " 0, b " 0, a " b, d1 = y0 ! y1" 0 , d2 = y0 ! y2 " 0, d3 = y0 ! y3 " 0, d4 = y1 ! y2 " 0, d5 = y1 ! y3 "
0, d6 = y2 ! y3 " 0, d7 = y1y2, d8 = y1y3, d9 = y2y3, then

 x = ! x0y1d9/(d1d2d3) + x1y0d9/(d1d4d5) ! x2y0d8/(d2d4d6) + x3y0d7/(d3d5d6) (1)

This interpolation is carried out only once in the final highly shrunk rectangle. The x thus obtained is the

required zero of the function f(x).

Interpolation for computing only a real zero The foregoing interpolation formula (1) is not valid for
obtaining a real zero of f(x) since y0 = y3 and y1 = y2 and consequently d3 and d4 both are zero and each one
occurs in the denominator in the formula (1). Therefore, we use the modified interpolation formula

 x = !x0y1/d1+ x1y0/d1 (for real zeros only) (2)

Interpolation for computing only an imaginary zero The formula (1) is invalid here too. The modified
interpolation formula is

 x = ! x0y3/d3 + x3y0/d3 (for imaginary zeros only) (3)

The x that we obtain in the formula (1) or (2) or (3) is the required solution. The corresponding function
value f(x) will be sufficiently small so that the zero x could be accepted as the required zero for all
practical purposes.

S. 5 Error in (quality of) the zero x “How good is the quality of the zero?” is a very pertinent question that
is almost always asked. The answer is obtained through computing a relative error (i.e., error-bound) in the
zero x. Observe that an absolute error is not much meaningful in numerical computation. In the absence of
the knowledge of the exact zero (solution) which is never known (for if it is numerically known then we do
not bring error unnecessarily into the scene), we consider usually the solution (zero) of higher order
accuracy for the exact solution. Thus the error in the solution of lower order accuracy will be computed,
denoting the solution of higher order accuracy = xh and the solution of lower order accuracy = xt, as

 Er = (xh ! xt)/xh (4)

Clearly |f(xh)| < |f(xt)| by at least an order (Sen 2002). If we consider the interpolated zero (solution) x as
the zero (xt) of lower order accuracy then we do not have the zero (xh) of higher order accuracy. To
determine xh, we shrink the already highly shrunk rectangle once more and carry out the interpolation as in
the step S. 4. This interpolated zero will be the zero (xh) of higher order accuracy. Thus we can compute the
relative error Er. The step S. 5 has not been included in the MATLAB program for physical conciseness
and for better comprehension. The reader may achieve this step of error computation by running the
program for the second time replacing k by k + 1 and obtaining the zero xh of higher order accuracy.
Otherwise, he may automate the program by appropriately modifying it.

3. Computational and Space Complexities

The computational complexity of the SRA algorithm can be derived as follows.

To generate n1 pairs of random numbers using the multiplicative congruential generator or, equivalently,
the power residue method (Banks et al. 1998), we need 2n1 multiplications and 2n1 divisions (to carry out
mod operations). To obtain n1 complex random numbers in the specified rectangle D (Fig.1a), we need
further 2n1 multiplications and 2n1 additions. If we do not distinguish between a division and a
multiplication then so far we need 6n1 real multiplications and 2n1 real additions for generating n1 complex
random numbers. If the function f(x) is a polynomial of degree n, then the computation of f(x) using the
nested multiplication scheme (Krishnamurthy and Sen 2001) would need n complex multiplications and n
complex additions, i.e., 2n real multiplications and 2n real additions for each complex random number.
Hence, for n1 complex random numbers, we need 2n # n1 real multiplications + 2n # n1 real additions.
Since we have k rectangles before we reach the smallest one we need, for the computation of the smallest

rectangle, 6k # n1 + 2k # n # n1 multiplications and 2k # n1 + 2k # n # n1 additions. Since k, n1 are
independent of the size n of the function f(x), our computational complexity will O(2k # n1 # n) assuming
n very large (compared to n1 and k, and the size of the program) but finite. A typical value of k is 10 and
that of n1 is 20. These values, however, will be larger if the initial rectangle chosen is larger.

The space complexity, i.e., the storage space needed to store the input data, viz., the (n + 1) complex
coefficients of the nth degree polynomial f(x), we need 2n locations. We also need the storage space to
store the program. Since the storage space for the program is independent of the size, i.e., the degree n of
f(x), the space complexity is simply O(2n) assuming n very large but finite.

If the function f(x) is a transcendental function then the computational complexity will be O(2k # n1 #

number of operations needed to compute f(x)) while the space complexity will be the space needed for the

function. Observe that the transcendental function though may be written as a polynomial of degree $, does

not have the computational complexity O($) nor has the space complexity O($).

These complexities are comparable with those of other existing methods. The space complexity as well as

the computational complexity in terms of the input size n for all these methods will not be usually O(ns),

where s >1.

The parallel computational complexity using n processors will clearly depend only on the values of n1 and

k. If we use p < n processors then the complexity will increase proportionately. The space complexity,

however, will remain unchanged.

 4. MATLAB Program for the SRA Algorithm

This program is self-explanatory and computes a complex zero of a polynomial or a transcendental

function.

function[]=func2(rmin, rmax, imin, imax, nmax, eps, fun)
%func2 computes a complex zero of a function fun
%using a randomized algorithm with an interpolation

%Description of input parameters rmin, rmax, imin, imax, etc.

%[rmin, rmax]=interval of real part of the zero.
%[imin, imax]=interval of imaginary part of the zero.
%nmax=maximum no, of bisections (nmax=10 usually;
%for better accuracy, nmax may be taken as 20 0r 30.
%eps=.5*10^-4 usually; for better accuracy, eps=.5*10^-8.
%However, eps is used here as a relative error term and
%should be chosen compared to the input quantities involved.
%fun is the function, one of whose zeros is to be obtained.
%For example, fun='x^2+x+1' for the function f(x)=x^2+x+1.

for k=1:10
 %This number 10 implies that the original rectangle is
 % shrunk successively 10 times. This number seems reasonably
 %good; however, it may be increased depending on the accuracy
 % needed within the limit of the precision of the computer.

xvect=[];fvect=[]; absfvect=[];
for i=1:nmax
 x=(rand(1)*(rmax-rmin)+rmin)+j*(rand(1)*(imax-imin)+imin);
 f=eval(fun); absf=abs(f);
 xvect=[xvect;x];
 fvect=[fvect;f];
 absfvect=[absfvect; absf];
end;

x_f_absf=[xvect fvect absfvect];
x_f_absf_s=sortrows(x_f_absf, 3);
string 'sorted x, f(x), absolute f(x)'
x_f_absf_s
if abs(x_f_absf_s(1,3))<eps
 string 'root, function-value, absolute function value'
 x_f_absf_s(1,:)
 break
end;

x1=x_f_absf_s(1,1);
realdiff=rmax-rmin; imagdiff=imax-imin;
rmax1=real(x1)+0.354*realdiff; rmin1=real(x1)-0.354*realdiff;
if rmax1<rmax
 rmax=rmax1;
end;
if rmin1>rmin
 rmin=rmin1;
end;

 imax1=imag(x1)+0.354*imagdiff; imin1=imag(x1)-0.354*imagdiff;
 if imax1<imax
 imax=imax1;
 end;
 if imin1>imin
 imin=imin1;
 end;
 string 'rmax,rmin,imax,imin'
 rmax,rmin,imax,imin
end;

a=rmin; b=rmax; c=imin; d=imax;

%The foregoing statements reduce the rectangle to maximum half its
size.
%This reduction has resemblance with 2-D bisection for a complex zero.

 x=a+j*c; x0=x; y0=eval(fun); x=b+j*c; x1=x; y1=eval(fun);
 x=b+j*d; x2=x; y2=eval(fun); x=a+j*d; x3=x; y3=eval(fun);
 d1=y0-y1; d2=y0-y2; d3=y0-y3;d4=y1-y2; d5=y1-y3;d6=y2-y3;

 d7=y1*y2; d8=y1*y3; d9=y2*y3;

 if abs(d1)<eps, d1=1; end; if abs(d2)<eps, d2=1; end;if abs(d3)<eps,
d3=1; end;
 if abs(d4)<eps, d4=1; end; if abs(d5)<eps, d5=1; end;if abs(d6)<eps,
d6=1; end;

 xx0=-x0*y1*d9/(d1*d2*d3);
 xx1=-x1*y0*d9/(-d1*d4*d5);
 xx2=-x2*y0*d8/(d2*d4*d6);
 xx3=-x3*y0*d7/(-d3*d5*d6);

 if abs(c)<eps & abs(d)<eps, xx0=-x0*y1/d1; xx1=x1*y0/d1;xx2=0;
xx3=0; end;
 %This statement is for interpolation for only real zeros.

 string 'x0, yo, x3,y3,d3'
 % Imaginary x0 & x3 and corresponding y0 & y3 for linear
interpolation
 x0,y0,x3,y3,d3

 if abs(a)<eps & abs(b)<eps, xx0=-x0*y3/d3;xx3=x3*y0/d3;xx1=0;
xx2=0; end;
 %This statement is for inperpolation for only imaginary zeros.

 x=xx0+xx1+xx2+xx3;
 f=eval(fun); absf=abs(f);

 string 'interpolated (including extrapolated) zero, f-value, abs f-
value'

 x, f, absf

 if absf<eps
 string 'root,f-value, abs_f-value (correct up to 1/eps digits)'
 x, f, absf
 break
end;

5. Test Examples

To check the SRA algorithm, we have constructed several typical test functions (i.e., functions whose zeros

are exactly known using the MATLAB function poly.

Example 1 (A real quadratic function with complex zeros) f(x) = x2 + x + 1, whose exact roots are !0.5 +
i%3 and !0.5 ! i%3, where i =%!1.

The inputs are

rmin=-1;rmax=0;imin=0;imax=1;nmax=10;eps=.5*10^-4;fun='x^2+x+1';
func2(rmin,rmax,imin,imax,nmax,eps,fun)

The outputs are

x = -0.5000 + 0.8660i, f = -1.9222e-006 +2.8105e-007i, absf =1.9426e-006

Example 2 (A real quatric polynomial with only real zeros) f(x) = x4 ! 5.2x3 + 10.04x2
!8.528x + 2.688 whose exact zeros are 1, 1.2, 1.4, and 1.6 and which is constructed using
the MATLAB command poly([1 1.2 1.4 1.6]).

The inputs are

rmin=0;rmax=1.19;imin=0;imax=0;nmax=10;eps=.5*10^-8;fun='x^4-5.2*x^3+10.04*x^2-8.528*x+2.688';
func2(rmin,rmax,imin,imax,nmax,eps,fun)

The outputs are

x = 1.2015, f = 2.3317e-005, absf = 2.3317e-005.

The second run of the program with the same inputs produced the outputs

x = 1.1998, f = -3.0973e-006, absf = 3.0973e-006

The third run with the same inputs produced the outputs

x = 1.1998, f = -3.0969e-006, absf = 3.0969e-006

The fourth run with the same inputs resulted in the outputs

x = 1.0016, f = -7.5359e-005, absf = 7.5359e-005

Example 3 (A quatric real polynomial having only imaginary zeros) f(x) = x4 + 5x2 +4 whose exact zeros
are ! i, i, ! 2i, and 2i.

The inputs are

rmin=0;rmax=0;imin=-1.5;imax=-.5;nmax=10;eps=.5*10^-4;fun='x^4+5*x^2+4';
func2(rmin,rmax,imin,imax,nmax,eps,fun)

The outputs are

x = 0 - 1.0000i, f = -1.4188e-004, absf = 1.4188e-004.

Example 4 (A quatric complex polynomial with zero-clusters: a highly ill-conditioned problem) f(x) = x4 !

(8.04 + .22j)x3 + (24.2227 + 1.3266j)x2 ! (32.410446 + 2.665828j)x + (16.25009862 + 1.78524984j) whose
exact zeros are 2.01 + j.04, 2.01 +j.05, 2.01 + j.06, and 2.01 +j.07, where j = %!1.

The inputs are

rmin=2;rmax=2.019;imin=0;imax=0.045;nmax=10;eps=.5*10^-8;

» fun='x^4-(8.04+.22*j)*x^3+(24.2227+1.3266*j)*x^2-
(32.410446+2.665828*j)*x+(16.25009862+1.78524984*j)';
func2(rmin,rmax,imin,imax,nmax,eps,fun)

The outputs are

x = 2.0112 + 0.0470i, f = -6.5411e-009 -2.3059e-009i, absf = 6.9356e-009

When the program was rerun for the second time with the same foregoing inputs, the outputs became

x = 2.0110 + 0.0519i, f = 3.5115e-009 -1.4762e-009i, absf = 3.8092e-009

The foregoing results seem reasonably good for the precision of 15 digits.

Example 5(A quatric real polynomial with somewhat closely spaced real zeros) f(x) = x4 ! 9x3 + 30.35x2
! 45.45x + 25.5024 whose exact zeros are 2.1, 2.2, 2.3, and 2.4

The inputs are

rmin=2;rmax=2.19;imin=0;imax=0;nmax=10;eps=.5*10^-8;fun='x^4-9*x^3+30.35*x^2-45.45*x+25.5024';
func2(rmin,rmax,imin,imax,nmax,eps,fun)

The outputs are

x = 2.1997, f = -5.4080e-007, absf = 5.4080e-007.

When the program was rerun with the foregoing inputs, the outputs became

x = 2.1997, f = -5.3846e-007, absf = 5.3846e-007.

When the program was rerun for the third time with the same inputs the outputs became

x = 2.1001, f = -5.8460e-007, absf = 5.8460e-007

Examples 6 (A tenth degree real polynomial with large coefficients and distinct zeros)
f(x) = x10 ! 55x9 + 1320x8 ! 18150x7 + 157773x6 ! 902055x5 + 3416930x4 ! 8409500x3
+ 12753576x2 ! 10628640x + 3628800 whose zeros are 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.

The inputs are

» func2(.1,1.5,0,0,10, .5*10^-8,'x^10-55*x^9+1320*x^8-18150*x^7+157773*x^6-
902055*x^5+3416930*x^4-8409500*x^3+12753576*x^2-10628640*x+3628800')

The outputs are

x = 1.0000, f = -9.4986, absf = 9.4986

When the program was rerun with the same polynomial with changed inputs
» func2(.1,11,0,0,10, .5*10^-8,'x^10-55*x^9+1320*x^8-18150*x^7+157773*x^6-
902055*x^5+3416930*x^4-8409500*x^3+12753576*x^2-10628640*x+3628800')

we obtained the outputs

x = 6.0000, f = -0.0570, absf = 0.0570

When we reran the program with the foregoing inputs, then the outputs became

x = 5.9977, f = -6.5615, absf = 6.5615

For the third run with the foregoing inputs, we got outputs as

x = 4.0030, f = 12.9012, absf = 12.9012

For the fourth run with the foregoing inputs, the outputs became

x = 5.9988, f = -3.5642, absf = 3.5642

For the fifth run we got outputs as

x = 4.0015, f = 6.6179, absf = 6.6179

6. Conclusions

Shrinking rectangle converges faster than 2-D bisection. When k goes to 10, the initial rectangle D (Fig.
1a) that encloses/contains a zero of the function f(x) will be shrunk to the rectangle whose area will be less
than or equal to D/2k = D/210 = 0.00097656D. This shrinking is significantly rapid compared to the
automatic bisection for complex zeros (Sen and Lord 1990, Wilf 1978).

The non-existence of a zero in the wrongly chosen initial rectangle can be detected. The SRA algorithm
will come out indicating that the chosen rectangle D does not contain a zero if the choice is incorrect, i.e.,
if it really does not contain a zero.

Interpolation (including extrapolation) is carried out in the final highly shrunk rectangle only once It is
possible to interpolate linearly in each of the k (= 10) rectangles. However, it is not done because the linear
interpolation could be sufficiently inaccurate when the rectangle is large. Moreover, such repeated
interpolations will not only increase the computation but also might result in excluding the actual zero in
the rectangle-shrinking process.

The zero existing in the initial rectangle D will exist in the final shrunk rectangle. In our numerical
experiment with numerous functions and with reasonably chosen initial rectangle D, the zero that was
located in D always remained in the final shrunk rectangle. The SRA algorithm thus seems an efficient fail-
proof complex zero finding method and it is deterministic.

The SRA algorithm is not worse than most algorithms for finding a zero in a zero-cluster. A function
having zero-clusters (closely spaced zeros) is always an ill-conditioned problem with respect to finding a
zero accurately in the cluster. Any method so far existing as well as any method that could be proposed in
future would be only satisfactory to a varying extent for a specified precision. Our numerical experiment
depicts that the SRA algorithm is reasonably good when dealing with zero-clusters.

Multiple zeros do not pose any problem to the SRA algorithm. Unlike the Newton method and its variations
which need to compute derivatives of a function and in which an oscillation around a multiple zero (in a
finite precision machine) sets in, the SRA algorithm has absolutely no such problem. It gives, like bisection
methods, the multiple zero accurately as it does not depend on the computation of the derivatives of a
function. For a polynomial having multiple zeros, repeated deflations will provide the order of multiplicity.

Use deflation or different rectangles to seeve out all the zeros. One way of seeving all the zeros of a
polynomial with or without multiple zeros is to deflate the polynomial successively after computing a zero.
The other way is to choose different appropriate intervals/rectangles each enclosing a zero and compute all
the zeros. For a transcendental function that cannot be written as the product of a polynomial (with multiple
zeros) and another transcendental function, deflations may not be useful.

The SRA algorithm has a sequential complexity O(n) and its parallel implementation is straight-forward.
As we have seen in Sec. 3 that the SRA algorithm has a sequential computational complexity O(2k # n1 #
n) where the input size is O(2n) for an nth degree complex polynomial. Observe that k (=10, say) and n1
(=10 or 20, say) are independent of n. The parallel computational complexity, when we have n processors,
is O(k # n1) which is independent of the input size. For a fixed number of processors < n, this complexity
will increase proportionately.

The SRA algorithm can be extended to obtain the global minimum of a multi-variable function. Instead of
generating a pair of pseudorandom numbers for a complex zero of a function f(x), we have to generate an
ordered set of pseudorandom numbers for this purpose and suitably modify this algorithm.

References

Banks, J.;Carson, J.S., II; Nelson, B.L., Discrete-event Simulation (2nd ed.), Prentice-Hall of India, New
Delhi, 1998.

 Krishnamurthy, E.V.; Sen, S.K., Numerical Algorithms: Computations in Science and Engineering,
Affiliated East-West Press, New Delhi, 2001.

Mathews, J.H., Numerical Methods for Mathematics, Science, and Engineering, 2nd ed., Prentice-Hall of
India, New Delhi, 1994.

Schilling, R.J.; Harries, S.L., Applied Numerical Methods for Engineers, using MATLAB and C, Thomson
Asia Pvt. Ltd., Singapore, 2002.

Sen, S.K., Error and Computational Complexity in Engineering, in J.C. Misra (ed.), Computational

Mathematics, Modelling and Algorithms as Chap. 5, Narosa Publishing House, New Delhi, 2002, 110-
145.

Sen, S.K.; Lord, E.A., An automatic bisection to compute complex zeros of function, in S. Bandyopadhyay
(ed.), Information Technology: Key to Progress, Tata-McGraw-Hill, New Delhi, 1990, 9-13.

Wilf, H., A global bisection method for computing the zeros of a polynomial in the complex plane, J.
ACM, 415-420, 1978.

Arial Font of the foregoing paper with probably some minor changes

 A Shrinking-rectangle Randomized Algorithm with Interpolation for a Complex

Zero of a Function

S.K. Sen
Supercomputer Computer Education and Research Centre

Indian Institute of Science, Bangalore 560 012, India
e-mail: sksen@serc.iisc.ernet.in Fax:091-80-3602648

Sagar Sen

Department of Computer Science and Engineering
Dr. Ambedkar Institute of Technology, Bangalore 560 056, India

e-mail: sagarsen@rediffmail.com

ABSTRACT

 A polynomial-time deterministic randomised algorithm is described to compute a zero of a
complex/real polynomial or a complex/real transcendental function in a complex plane. The
algorithm starts with a specified rectangle enclosing a complex zero, shrinks it successively by at
least 50% in each iteration somewhat like a two-dimensional bisection, and then a single
application of linear two-variable interpolation in the highly shrunk rectangle provides the required
zero. A parallel implementation of this algorithm is discussed while its sequential and parallel
computational complexities as well as its space complexity are presented. The algorithm is found
to be reasonably good for zero clusters and also for multiple zeros. This method can be extended
to minimize globally a polynomial or a transcendental function of several variables without
resorting to the computation of its partial derivatives and can be used along with the deflation of
the polynomial or with different specified initial rectangle

1. INTRODUCTION

 There exist several deterministic nonrandomized polynomial-time algorithms in the literature

(Krishnamurthy and Sen 2001, Mathews 1994, Schilling and Harries 2002) to compute real and

complex roots of an algebraic or a transcendental equation. Specifically, automatic two-

dimensional (2-D) bisection methods (Sen and Lord 1990, Wilf 1978) have been described.

These bisection methods needing only function computations provide excellent accuracy for well-

conditioned functions, i.e., functions without zero-clusters (closely spaced zeros). A function with

distinct well-separated zeros or one with multiple zeros is well-conditioned with respect to its

zero-finding using a bisection method. We present here a variation of the 2-D bisection method,

called here the SRA algorithm, that differs widely from these methods in its conceptual approach.

We specify a reasonably small rectangle in the complex plane so that it contains one of the

complex zeros of the given one-variable function. We throw uniformly distributed darts, say 10 or

20 of them, onto the rectangle and compute at each point of hit the value of the function. This

dart-throwing is accomplished by generating uniformly distributed pairs of pseudo-random

numbers each representing a point in the rectangle. We select the point of hit, that corresponds to

the minimum value of the norm of the function; replace the rectangle by one whose area is at

least 50% less than the previous one. This smaller rectangle now has in it the zero of the

function. We continue this process a number of times, say 10 times, and obtain the highly shrunk

rectangle which contains this zero. Carry out a two-variable linear interpolation to obtain the zero

with sufficient accuracy. To obtain other complex zeros of the function, one can deflate the

function (algebraic) and follow the proposed algorithm on the deflated function or one can choose

a different rectangle that would contain the second zero of the function (algebraic or

trigonometric) and apply the algorithm. This algorithm can be modified for a function of several

variables by generating a set of several pseudorandom numbers instead of the pair and by using

multi-variable interpolation to obtain a global minimum of the function. We will not discuss this

aspect here.

 The algorithm with the justification of each of its steps is described in Sec. 2 while its

computational and space complexities are discussed in Sec. 3. A Matlab program that not only

takes care of complex zeros with nonzero real and nonzero imaginary parts but also purely real

as well as purely imaginary zeros is presented in Sec. 4. Test examples and conclusions are

included in Secs. 5 and 6, respectively.

2. The SRA Algorithm

 Let f(x) be an algebraic or a transcendental function of the single variable x and be

continuous and bounded. The function f(x) may be real or complex. The problem is to find a

complex zero of f(x), where the zero may have (i) both real and imaginary parts nonzero or may

be (ii) only real or (iii) only imaginary. It can be seen that the two-variable interpolation needed for

Case (i) is not applicable to any of Cases (ii) and (iii). In the later two cases, we have to explicitly

use distinct single variable interpolations.

 Let the real part of the zero of the continuous bounded function f(x) lie in the interval [a, b]

while the imaginary part in the interval [c, d]. These intervals define a rectangle D (Fig. 1a), i.e.

the domain of search. The function values corresponding to each of the points of the domain will

define a plane (i.e., a hyperplane of dimension 2) R whose sides are in general curved (not

straight lines) (Fig. 1b). Assume that this domain contains only one zero for the sake of

observing how the algorithm works, such an assumption is not strictly needed though. This fact

will be seen when we consider numerical test examples that illustrate the algorithm.

 (a, d) (b, d)
 y3=f(a+jd) y2=f(b+jd)
 • •
 • •
 (a, c) (b, c) y0=f(a+jc) y1=f(b+jc)

Fig. 1a Rectangle D containing a zero Fig. 1b Plane R with curved sides
 of a function (Domain space) (Function space)

We now describe the steps of the algorithm with justification/explanation for each step.

S. 1 Throwing darts onto the rectangle D and choosing the one nearest zero Generate uniformly

distributed n1 (n1 = 20, say) ordered pairs of random numbers such that the first number of each

pair lies in [a, b] while the second lies in [c, d]. Each pair defines a complex random number. The

first one of the pair defines the real part while the second one the imaginary part of this complex

random number. Let rand(1) produce a random number in (0, 1). Then x = [rand(1)(b ! a) + a] + j

[rand(1)(d ! c) + c] is a complex random number inside the rectangle D. This number

corresponds to a thrown dart inside D and the corresponding f(x) will have a numerical value

which is usually complex and which will lie inside the plane R. Corresponding to n1 such complex

random numbers within the rectangle D, we will have n1 function values within the plane R. We

choose that random number which produces the minimum absolute value of the function. Call this

number x1. Clearly this absolute value of f(x1) will be nearest the zero of f(x).

S. 2 Shrinking the Rectangle D by at least 50% Set b1 := real(x1) + .354(b ! a), a1:= real(x1) !

0.354(b ! a), where real(x1) is the real part of x1. If b1 < b then set b := b1; if a1 > a then set a :=

a1. Similarly, set d1 := imag(x1) + .354(d ! c), c1 := imag(x1) ! (d ! c), where imag(x1) is the

imaginary part of x1. If d1 < d then set d := d1; if c1 > c then set c := c1.

 The step S. 2 reduces the rectangle D by at least half its size. The new rectangle will

enclose the zero of f(x) assuming that it is not too violently fluctuating or the zeros are not too

closely spaced.

S. 3 Getting the smallest rectangle after k iterations Repeat the steps S. 1 and S. 2 for k (k = 10,

say) times. This step will produce a highly shrunk rectangle that contains the zero of f(x).

S. 4 Two-variable interpolation for a complex zero Use the two-variable Lagrange linear

interpolation using the most recent values of a, b, c, d and the corresponding function values.

This interpolation includes extrapolation automatically. Let (xi, yi) i = 0(1)3 be the table for

interpolation, where xi as well as yi are both complex and the interpolation (that includes

extrapolation too) problem is posed as follows.

 x x0 = a + jc x1 = b + jc x2 = b + jd x3 = a + jd x = ?

 y y0 = f(x0) y1 = f(x1) y2 = f(x2) y3 = f(x3) y = f(x) = 0

 Hence, if a " 0, b " 0, a " b, d1 = y0 ! y1" 0 , d2 = y0 ! y2 " 0, d3 = y0 ! y3 " 0, d4 = y1 ! y2 " 0, d5 =

y1 ! y3 " 0, d6 = y2 ! y3 " 0, d7 = y1y2, d8 = y1y3, d9 = y2y3, then

 x = ! x0y1d9/(d1d2d3) + x1y0d9/(d1d4d5) ! x2y0d8/(d2d4d6) + x3y0d7/(d3d5d6) (1)

This interpolation is carried out only once in the final highly shrunk rectangle. The x thus obtained

is the required zero of the function f(x).

Interpolation for computing only a real zero The foregoing interpolation formula (1) is not valid for

obtaining a real zero of f(x) since y0 = y3 and y1 = y2 and consequently d3 and d4 both are zero

and each one occurs in the denominator in the formula (1). Therefore, we use the modified

interpolation formula

 x = !x0y1/d1+ x1y0/d1 (for real zeros only) (2)

Interpolation for computing only an imaginary zero The formula (1) is invalid here too. The
modified interpolation formula is

 x = ! x0y3/d3 + x3y0/d3 (for imaginary zeros only) (3)

The x that we obtain in the formula (1) or (2) or (3) is the required solution. The corresponding

function value f(x) will be sufficiently small so that the zero x could be accepted as the required

zero for all practical purposes.

S. 5 Error in (quality of) the zero x “How good is the quality of the zero?” is a very pertinent

question that is almost always asked. The answer is obtained through computing a relative error

(i.e., error-bound) in the zero x. Observe that an absolute error is not much meaningful in

numerical computation. In the absence of the knowledge of the exact zero (solution) which is

never known (for if it is numerically known then we do not bring error unnecessarily into the

scene), we consider usually the solution (zero) of higher order accuracy for the exact solution.

Thus the error in the solution of lower order accuracy will be computed, denoting the solution of

higher order accuracy = xh and the solution of lower order accuracy = xt, as

 Er = (xh ! xt)/xh (4)

Clearly |f(xh)| < |f(xt)| by at least an order (Sen 2002). If we consider the interpolated zero

(solution) x as the zero (xt) of lower order accuracy then we do not have the zero (xh) of higher

order accuracy. To determine xh, we shrink the already highly shrunk rectangle once more and

carry out the interpolation as in the step S. 4. This interpolated zero will be the zero (xh) of higher

order accuracy. Thus we can compute the relative error Er. The step S. 5 has not been included

in the MATLAB program for physical conciseness and for better comprehension. The reader may

achieve this step of error computation by running the program for the second time replacing k by

k + 1 and obtaining the zero xh of higher order accuracy. Otherwise, he may automate the

program by appropriately modifying it.

3. COMPUTATIONAL AND SPACE COMPLEXITIES

 The computational complexity of the SRA algorithm can be derived as follows. To generate

n1 pairs of random numbers using the multiplicative congruential generator or, equivalently, the

power residue method (Banks et al. 1998), we need 2n1 multiplications and 2n1 divisions (to carry

out mod operations). To obtain n1 complex random numbers in the specified rectangle D (Fig.1a),

we need further 2n1 multiplications and 2n1 additions. If we do not distinguish between a division

and a multiplication then so far we need 6n1 real multiplications and 2n1 real additions for

generating n1 complex random numbers. If the function f(x) is a polynomial of degree n, then the

computation of f(x) using the nested multiplication scheme (Krishnamurthy and Sen 2001) would

need n complex multiplications and n complex additions, i.e., 2n real multiplications and 2n real

additions for each complex random number. Hence, for n1 complex random numbers, we need 2n

n1 real multiplications + 2n # n1 real additions. Since we have k rectangles before we reach the

smallest one we need, for the computation of the smallest rectangle, 6k # n1 + 2k # n # n1

multiplications and 2k # n1 + 2k # n # n1 additions. Since k, n1 are independent of the size n of the

function f(x), our computational complexity will O(2k # n1 # n) assuming n very large (compared

to n1 and k, and the size of the program) but finite. A typical value of k is 10 and that of n1 is 20.

These values, however, will be larger if the initial rectangle chosen is larger.

 The space complexity, i.e., the storage space needed to store the input data, viz., the (n + 1)

complex coefficients of the nth degree polynomial f(x), we need 2n locations. We also need the

storage space to store the program. Since the storage space for the program is independent of

the size, i.e., the degree n of f(x), the space complexity is simply O(2n) assuming n very large

but finite.

 If the function f(x) is a transcendental function then the computational complexity will be O(2k

n1 # number of operations needed to compute f(x)) while the space complexity will be the space

needed for the function. Observe that the transcendental function though may be written as a

polynomial of degree $, does not have the computational complexity O($) nor has the space

complexity O($).

 These complexities are comparable with those of other existing methods. The space

complexity as well as the computational complexity in terms of the input size n for all these

methods will not be usually O(n
s
), where s >1.

 The parallel computational complexity using n processors will clearly depend only on the

values of n1 and k. If we use p < n processors then the complexity will increase proportionately.

The space complexity, however, will remain unchanged.

 4. MATLAB PROGRAM FOR THE SRA ALGORITHM

 This program is self-explanatory and computes a complex zero of a polynomial or a

transcendental function.

function[]=func2(rmin, rmax, imin, imax, nmax, eps, fun)
%func2 computes a complex zero of a function fun
%using a randomized algorithm with an interpolation

%Description of input parameters rmin, rmax, imin, imax, etc.

%[rmin, rmax]=interval of real part of the zero.
%[imin, imax]=interval of imaginary part of the zero.
%nmax=maximum no, of bisections (nmax=10 usually;
%for better accuracy, nmax may be taken as 20 0r 30.
%eps=.5*10^-4 usually; for better accuracy, eps=.5*10^-8.
%However, eps is used here as a relative error term and
%should be chosen compared to the input quantities involved.
%fun is the function, one of whose zeros is to be obtained.
%For example, fun='x^2+x+1' for the function f(x)=x^2+x+1.

for k=1:10
 %This number 10 implies that the original rectangle is
 % shrunk successively 10 times. This number seems reasonably
 %good; however, it may be increased depending on the accuracy
 % needed within the limit of the precision of the computer.

xvect=[];fvect=[]; absfvect=[];
for i=1:nmax
 x=(rand(1)*(rmax-rmin)+rmin)+j*(rand(1)*(imax-imin)+imin);
 f=eval(fun); absf=abs(f);
 xvect=[xvect;x];
 fvect=[fvect;f];
 absfvect=[absfvect; absf];
end;

x_f_absf=[xvect fvect absfvect];
x_f_absf_s=sortrows(x_f_absf, 3);

string 'sorted x, f(x), absolute f(x)'
x_f_absf_s
if abs(x_f_absf_s(1,3))<eps
 string 'root, function-value, absolute function value'
 x_f_absf_s(1,:)
 break
end;

x1=x_f_absf_s(1,1);
realdiff=rmax-rmin; imagdiff=imax-imin;
rmax1=real(x1)+0.354*realdiff; rmin1=real(x1)-0.354*realdiff;
if rmax1<rmax
 rmax=rmax1;
end;
if rmin1>rmin
 rmin=rmin1;
end;

 imax1=imag(x1)+0.354*imagdiff; imin1=imag(x1)-0.354*imagdiff;
 if imax1<imax
 imax=imax1;
 end;
 if imin1>imin
 imin=imin1;
 end;
 string 'rmax,rmin,imax,imin'
 rmax,rmin,imax,imin
end;

a=rmin; b=rmax; c=imin; d=imax;

%The foregoing statements reduce the rectangle to maximum half its size.
%This reduction has resemblance with 2-D bisection for a complex zero.

 x=a+j*c; x0=x; y0=eval(fun); x=b+j*c; x1=x; y1=eval(fun);
 x=b+j*d; x2=x; y2=eval(fun); x=a+j*d; x3=x; y3=eval(fun);
 d1=y0-y1; d2=y0-y2; d3=y0-y3;d4=y1-y2; d5=y1-y3;d6=y2-y3;

 d7=y1*y2; d8=y1*y3; d9=y2*y3;

 if abs(d1)<eps, d1=1; end; if abs(d2)<eps, d2=1; end;if abs(d3)<eps, d3=1; end;
 if abs(d4)<eps, d4=1; end; if abs(d5)<eps, d5=1; end;if abs(d6)<eps, d6=1; end;

 xx0=-x0*y1*d9/(d1*d2*d3);
 xx1=-x1*y0*d9/(-d1*d4*d5);
 xx2=-x2*y0*d8/(d2*d4*d6);
 xx3=-x3*y0*d7/(-d3*d5*d6);

 if abs(c)<eps & abs(d)<eps, xx0=-x0*y1/d1; xx1=x1*y0/d1;xx2=0; xx3=0; end;
 %This statement is for interpolation for only real zeros.

 string 'x0, yo, x3,y3,d3'
 % Imaginary x0 & x3 and corresponding y0 & y3 for linear interpolation
 x0,y0,x3,y3,d3

 if abs(a)<eps & abs(b)<eps, xx0=-x0*y3/d3;xx3=x3*y0/d3;xx1=0; xx2=0; end;

 %This statement is for inperpolation for only imaginary zeros.

 x=xx0+xx1+xx2+xx3;
 f=eval(fun); absf=abs(f);

 string 'interpolated (including extrapolated) zero, f-value, abs f-value'
 x, f, absf

 if absf<eps
 string 'root,f-value, abs_f-value (correct up to 1/eps digits)'
 x, f, absf
 break
end;

5. TEST EXAMPLES

 To check the SRA algorithm, we have constructed several typical test functions (i.e.,

functions whose zeros are known through the MATLAB function poly). To conserve space we

present here just four examples.

Example 1 (A real quatric polynomial with only real zeros) f(x) = x4 ! 5.2x3 + 10.04x2

!8.528x + 2.688 whose exact zeros are 1, 1.2, 1.4, and 1.6 and which is constructed using

the MATLAB command poly([1 1.2 1.4 1.6]). The inputs are

rmin=0;rmax=1.19;imin=0;imax=0;nmax=10;eps=.5*10^-8;fun='x^4-5.2*x^3+10.04*x^2-
8.528*x+2.688';
func2(rmin,rmax,imin,imax,nmax,eps,fun)

The outputs are x = 1.1998, f = -3.0969e-006, absf = 3.0969e-006. The second run with the

same inputs resulted in the outputs x = 1.0016, f = -7.5359e-005, absf = 7.5359e-005

Example 2 (A quatric real polynomial having only imaginary zeros) f(x) = x

4
 + 5x

2
 +4 whose exact

zeros are ! i, i, ! 2i, and 2i. The inputs are

rmin=0;rmax=0;imin=-1.5;imax=-.5;nmax=10;eps=.5*10^-4;fun='x^4+5*x^2+4';
func2(rmin,rmax,imin,imax,nmax,eps,fun)

The outputs are x = 0 - 1.0000i, f = -1.4188e-004, absf = 1.4188e-004.

Example 3 (A quatric complex polynomial with zero-clusters: a highly ill-conditioned problem)

f(x) = x
4
 ! (8.04 + .22j)x

3
 + (24.2227 + 1.3266j)x

2
 ! (32.410446 + 2.665828j)x + (16.25009862 +

1.78524984j) whose exact zeros are 2.01 + j.04, 2.01 +j.05, 2.01 + j.06, and 2.01 +j.07, where j =

%!1. The inputs are

rmin=2;rmax=2.019;imin=0;imax=0.045;nmax=10;eps=.5*10^-8;
» fun='x^4-(8.04+.22*j)*x^3+(24.2227+1.3266*j)*x^2-
(32.410446+2.665828*j)*x+(16.25009862+1.78524984*j)';
func2(rmin,rmax,imin,imax,nmax,eps,fun)

The outputs are x = 2.0112 + 0.0470i, f = -6.5411e-009 -2.3059e-009i, absf = 6.9356e-009.

When the program was rerun with the same inputs, the outputs became x = 2.0110 + 0.0519i, f =

3.5115e-009 -1.4762e-009i, absf = 3.8092e-009. The foregoing results seem reasonably good

for the precision of 15 digits that MATLAB provides.

Examples 4 (A tenth degree real polynomial with large coefficients and distinct real

zeros) f(x) = x10 ! 55x9 + 1320x8 ! 18150x7 + 157773x6 ! 902055x5 + 3416930x4 !

8409500x3 + 12753576x2 ! 10628640x + 3628800 whose zeros are 1, 2, 3, 4, 5, 6, 7, 8, 9,

and 10. The inputs are

» func2(.1,1.5,0,0,10, .5*10^-8,'x^10-55*x^9+1320*x^8-18150*x^7+157773*x^6-
902055*x^5+3416930*x^4-8409500*x^3+12753576*x^2-10628640*x+3628800')

The outputs are x = 1.0000, f = -9.4986, absf = 9.4986. When the program was rerun with the
same polynomial with changed inputs

» func2(.1,11,0,0,10, .5*10^-8,'x^10-55*x^9+1320*x^8-18150*x^7+157773*x^6-
902055*x^5+3416930*x^4-8409500*x^3+12753576*x^2-10628640*x+3628800')

we obtained the outputs x = 6.0000, f = -0.0570, absf = 0.0570. When we reran the program with

the foregoing inputs for the second, third, fourth, and fifth times then the outputs became (a) x =

5.9977, f = -6.5615, absf = 6.5615, (b) x = 4.0030, f = 12.9012, absf = 12.9012, (c) x = 5.9988, f

= -3.5642, absf = 3.5642, (d) x = 4.0015, f = 6.6179, absf = 6.6179, respectively.

6. CONCLUSIONS

 Shrinking rectangle converges faster than 2-D bisection. When k goes to 10, the initial

rectangle D (Fig. 1a) that encloses/contains a zero of the function f(x) will be shrunk to the

rectangle whose area will be less than or equal to D/2
k
 = D/2

10
 = 0.00097656D. This shrinking is

significantly rapid compared to the automatic bisection for complex zeros (Sen and Lord 1990,

Wilf 1978).

 The non-existence of a zero in the wrongly chosen initial rectangle can be detected. The

SRA algorithm will come out indicating that the chosen rectangle D does not contain a zero if the

choice is incorrect, i.e., if it really does not contain a zero.

 Interpolation (including extrapolation) is carried out in the final highly shrunk rectangle only

once It is possible to interpolate linearly in each of the k (= 10) rectangles. However, it is not

done because the linear interpolation could be sufficiently inaccurate when the rectangle is large.

Moreover, such repeated interpolations will not only increase the computation but also might

result in excluding the actual zero in the rectangle-shrinking process.

 The zero existing in the initial rectangle D will exist in the final shrunk rectangle. In our

numerical experiment with numerous functions and with reasonably chosen initial rectangle D,

the zero that was located in D always remained in the final shrunk rectangle. The SRA algorithm

thus seems an efficient fail-proof complex zero finding method and it is deterministic.

 The SRA algorithm is not worse than most algorithms for finding a zero in a zero-cluster. A

function having zero-clusters (closely spaced zeros) is always an ill-conditioned problem with

respect to finding a zero accurately in the cluster. Any method so far existing as well as any

method that could be proposed in future would be only satisfactory to a varying extent for a

specified precision. Our numerical experiment depicts that the SRA algorithm is reasonably good

when dealing with zero-clusters.

 Multiple zeros do not pose any problem to the SRA algorithm. Unlike the Newton method and

its variations which need to compute derivatives of a function and in which an oscillation around a

multiple zero (in a finite precision machine) sets in, the SRA algorithm has absolutely no such

problem. It gives, like bisection methods, the multiple zero accurately as it does not depend on

the computation of the derivatives of a function. For a polynomial having multiple zeros, repeated

deflations will provide the order of multiplicity.

 Use deflation or different rectangles to seeve out all the zeros. One way of seeving all the

zeros of a polynomial with or without multiple zeros is to deflate the polynomial successively after

computing a zero. The other way is to choose different appropriate intervals/rectangles each

enclosing a zero and compute all the zeros. For a transcendental function that cannot be written

as the product of a polynomial (with multiple zeros) and another transcendental function,

deflations may not be useful.

 The SRA algorithm has a sequential complexity O(n) and its parallel implementation is

straight-forward. As we have seen in Sec. 3 that the SRA algorithm has a sequential

computational complexity O(2k # n1 # n) where the input size is O(2n) for an nth degree complex

polynomial. Observe that k (=10, say) and n1 (=10 or 20, say) are independent of n. The parallel

computational complexity, when we have n processors, is O(k # n1) which is independent of the

input size. For a fixed number of processors < n, this complexity will increase proportionately.

 The SRA algorithm can be extended to obtain the global minimum of a multi-variable

function. Instead of generating a pair of pseudorandom numbers for a complex zero of a function

f(x), we have to generate an ordered set of pseudorandom numbers for this purpose and suitably

modify this algorithm.

References

1. Banks, J.;Carson, J.S., II; Nelson, B.L., Discrete-event Simulation (2
nd

 ed.), Prentice-Hall

of India, New Delhi, 1998.

2. Krishnamurthy, E.V.; Sen, S.K., Numerical Algorithms: Computations in Science and

 Engineering, Affiliated East-West Press, New Delhi, 2001.

3. Mathews, J.H., Numerical Methods for Mathematics, Science, and Engineering, 2
nd

 ed.,

Prentice-Hall of India, New Delhi, 1994.

4. Schilling, R.J.; Harries, S.L., Applied Numerical Methods for Engineers, using MATLAB

and C, Thomson Asia Pvt. Ltd., Singapore, 2002.

5. Sen, S.K., Error and Computational Complexity in Engineering, in J.C. Misra

(ed.),Computational Mathematics, Modelling and Algorithms as Chap. 5, Narosa

Publishing House, New Delhi, 2002, 110-145.

6. Sen, S.K.; Lord, E.A., An automatic bisection to compute complex zeros of function, in S.

Bandyopadhyay (ed.), Information Technology: Key to Progress, Tata-McGraw-Hill,

New Delhi, 1990, 9-13.

7. Wilf, H., A global bisection method for computing the zeros of a polynomial in the

complex plane, J. ACM, 415-420, 1978.

