
for k=1:size, x=X(:,k); z(k)=fitnessf(A,b,c,x,m); end 
%Vector z gives fitness of each of the members in a generation 
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Abstract  A polynomial-time deterministic randomised algorithm is described to 
compute a zero of a complex/real polynomial or a complex/real transcendental function 
in a complex plane. The algorithm starts with a specified rectangle enclosing a complex 
zero, shrinks it successively by at least 50% in each iteration somewhat like a two-
dimensional bisection, and then a single application of linear two-variable interpolation in 
the highly shrunk rectangle provides the required zero. A parallel implementation of this 
algorithm is discussed while its sequential and parallel computational complexities as 
well as its space complexity are discussed. The algorithm is found to be reasonably good 
for zero clusters and also for multiple zeros. This method can be extended to minimize 
globally a polynomial or a transcendental function of several variables without resorting 
to the computation of its partial derivatives and can be used along with the deflation of 
the polynomial or with different specified initial rectangle  
 
Keyword  Complex zero, deterministic randomised algorithm, linear interpolation, 
shrinking-rectangle, two-dimensional bisection 
 
 
1.Introduction 

 

There exist several deterministic nonrandomized polynomial-time algorithms in the literature 

(Krishnamurthy and Sen 2001, Mathews 1994, Schilling and Harries 2002) to compute real and complex 

roots of an algebraic or a transcendental equation. Specifically, automatic two-dimensional (2-D) bisection 

methods (Sen and Lord 1990, Wilf 1978) have been described. These bisection methods needing only 

function computations provide excellent accuracy for well-conditioned functions, i.e., functions without 

zero-clusters (closely spaced zeros).  A function with distinct well-separated zeros or one with multiple 

zeros is well-conditioned with respect to its zero finding using a bisection method. We present here a 

                                                             
1Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012, India  
2 Department of Computer Science and Engineering, Dr. Ambedkar Institute of Technology, Bangalore 
560056, India  



variation of the 2-D bisection method, called here the SRA algorithm, that differs widely from these 

methods in its conceptual approach.  We specify a reasonably small rectangle in the complex plane so that 

it contains one of the complex zeros of the given one-variable function. We throw uniformly distributed 

darts, say 100 of them, onto the rectangle and compute at each point of hit the value of the function.  This 

dart-throwing is accomplished by generating uniformly distributed pairs of pseudo-random numbers each 

representing a point in the rectangle. We select the point of hit, that corresponds to the minimum value of 

the norm of the function; replace the rectangle by one whose area is  at least 50% less than the  previous 

one. This smaller rectangle now has in it the zero of the function. We continue this process a number of 

times, say 10 times, and obtain the highly shrunk rectangle which contains this zero. Carry out a two-

variable linear interpolation to obtain the zero with sufficient accuracy. To obtain other complex zeros of 

the function, one can deflate the function (algebraic) and follow the proposed algorithm on the deflated 

function or one can choose a different rectangle that would contain the second zero of the function 

(algebraic or trigonometric) and apply the algorithm. This algorithm can be modified for a function of 

several variables by generating a set of several pseudorandom numbers instead of the pair and by using 

multi-variable interpolation to obtain a global minimum of the function. We will not discuss this aspect 

here. 

 
The algorithm with the justification of each of its steps is described in Sec. 2 while its computational and 

space complexities are discussed in Sec. 3. A Matlab program that not only takes care of complex zeros 

with nonzero real and nonzero imaginary parts but also purely real as well as purely imaginary zeros is 

presented in Sec. 4. Test examples and conclusions are included in Secs. 5 and 6, respectively.  

 
 
2. The SRA Algorithm 
 
Let f(x) be an algebraic or a transcendental function of the single variable x and be continuous and 

bounded. The function f(x) may be real or complex. The problem is to find a complex zero of f(x), where 

the zero may have (i) both real and imaginary parts nonzero or may be (ii) only real or (iii) only imaginary. 

It can be seen that the two-variable interpolation needed for Case (i) is not applicable to any of Cases (ii) 

and (iii). In the later two cases, we have to explicitly use distinct single variable interpolations. 



 
Let the real part of the zero of the continuous bounded function f(x) lie in the interval [a, b] while the 
imaginary part in the interval [c, d]. These intervals define a rectangle D (Fig. 1a), i.e. the domain of 
search. The function values corresponding to each of the points of the domain will define a plane (i.e., a 
hyperplane of dimension 2) R  whose sides are in general curved (not straight lines) (Fig. 1b).   Assume 
that this  domain contains only one zero for the sake of observing how the algorithm works, such an 
assumption is not strictly needed though. This fact will be seen when we consider numerical test examples 
that illustrate the algorithm. 
 
             (a, d)                     (b, d)                            
                                                                                              y3=f(a+jd)         y2=f(b+jd) 
                                                                                                       •                  • 
                                                                                                       •                 •     
              (a, c)                    (b, c)                                              y0=f(a+jc)      y1=f(b+jc) 
 
Fig. 1a Rectangle D containing a zero                       Fig. 1b Plane R with curved  sides                  
            of a function (Domain space)                                                  (Function space) 
 
 
We now describe the steps of the algorithm with justification/explanation for each step. 
 
S. 1 Throwing darts onto the rectangle D and choosing the one nearest zero  Generate uniformly 
distributed n1 (n1 = 20, say) ordered pairs of random numbers such that the first number of each pair lies in 
[a, b] while the second lies in [c, d]. Each pair defines a complex random number. The first one of the pair 
defines the real part while the second one the imaginary part of this complex random number. Let rand(1) 
produce a random number in (0, 1). Then  x = [rand(1)(b ! a) + a] + j [rand(1)(d ! c) + c] is a complex 
random number inside the rectangle D. This number corresponds to a thrown dart inside D and the 
corresponding f(x) will have a numerical value which is usually complex and which will lie inside the plane 
R. Corresponding to n1 such complex random numbers within the rectangle D, we will have n1 function 
values within the plane R. We choose that random number which produces the minimum absolute value of 
the function. Call this number x1. Clearly this absolute value of f(x1) will be nearest the zero of f(x). 
 
S. 2  Shrinking the Rectangle D by at least 50%  Set  b1 := real(x1) + .354(b ! a),  a1:= real(x1) ! 0.354(b ! 
a), where real(x1) is the real part of x1. If b1 < b then set b := b1; if a1 > a then set a := a1. 
 
Similarly, set d1 := imag(x1) + .354(d ! c), c1 := imag(x1) ! (d ! c), where imag(x1) is the imaginary part of 
x1.  If d1 < d then set d := d1; if c1 > c then set c := c1. 
 
The step S. 2 reduces the  rectangle D by at least half its size. The new rectangle will enclose the zero of 
f(x) assuming that it is not too violently fluctuating or the zeros are not too closely spaced. 
 
S. 3 Getting the smallest rectangle after k iterations   Repeat the steps S. 1 and S. 2 for k (k = 10, say) 
times. This step will produce a highly shrunk rectangle that contains the zero of f(x).    
 
S. 4 Two-variable interpolation for a complex zero  Use the two-variable Lagrange linear interpolation 
using the most recent values of a, b, c, d and the corresponding function values. This interpolation includes 
extrapolation automatically. Let (xi, yi)    i = 0(1)3 be the table for interpolation, where xi as well as  yi are 
both complex and the interpolation (that includes extrapolation too) problem is posed as follows. 
 
    x                          y 

 

  x0 =  a + jc        y0 = f(x0) 
 
  x1 = b + jc        y1 = f(x1) 
 
 x2 = b + jd         y2 = f(x2) 



 
 x3 = a + jd         y3 = f(x3) 
 
 x = ?                 y = f(x) = 0 
 
 
 Hence, if a " 0, b " 0, a " b, d1 = y0 ! y1" 0 , d2 = y0 ! y2 " 0, d3 = y0 ! y3 " 0, d4 = y1 ! y2 " 0, d5 = y1 ! y3 " 
0, d6 = y2 ! y3 " 0, d7 = y1y2, d8 = y1y3, d9 = y2y3, then  
 
  x =  ! x0y1d9/(d1d2d3)  + x1y0d9/(d1d4d5) ! x2y0d8/(d2d4d6) + x3y0d7/(d3d5d6)        (1) 
 
This interpolation is carried out only once in the final highly shrunk  rectangle. The x thus obtained is the 

required zero of the function f(x).  

 
Interpolation for computing only a real zero The foregoing interpolation formula (1) is not valid for 
obtaining a real zero of f(x) since y0 = y3 and y1 = y2 and consequently d3 and d4 both are zero and each one 
occurs in the denominator in the formula (1). Therefore, we use the modified interpolation formula 
 
 x = !x0y1/d1+ x1y0/d1   (for real zeros only)                 (2) 
 
Interpolation for computing  only an imaginary zero The formula (1) is invalid here too. The modified 
interpolation formula is 
 
 x = ! x0y3/d3 + x3y0/d3 (for imaginary zeros only)      (3) 
 
The x that we obtain in the formula (1) or (2) or (3) is the required solution. The corresponding function 
value f(x)  will be sufficiently small so that the zero x could be accepted as the required zero for all 
practical purposes.  
 
S. 5 Error in (quality of) the zero x “How good is the quality of the zero?” is a very pertinent question that 
is almost always asked.  The answer is obtained through computing a relative error (i.e., error-bound) in the 
zero x. Observe that an absolute error is not much meaningful in numerical computation. In the absence of 
the knowledge of the exact zero (solution) which is never known (for if it is numerically known then we do 
not bring error unnecessarily into the scene), we consider usually the solution (zero) of higher order 
accuracy for the exact solution. Thus the error in the solution of lower order accuracy will be computed, 
denoting the solution of higher order accuracy = xh and the solution of lower order accuracy = xt, as  
 
    Er = (xh ! xt)/xh                                                          (4) 
 
Clearly |f(xh)| < |f(xt)| by at least an order (Sen 2002). If we consider the interpolated zero (solution) x as 
the zero (xt) of lower order accuracy then we do not have the zero (xh) of higher order accuracy. To 
determine xh, we shrink the already highly shrunk rectangle once more and carry out the interpolation as in 
the step S. 4. This interpolated zero will be the zero (xh) of higher order accuracy. Thus we can compute the 
relative error Er. The step S. 5 has not been included in the MATLAB program for physical conciseness 
and for better comprehension. The reader may achieve this step of error computation by running the 
program for the second time replacing k by k + 1 and obtaining the zero xh of higher order accuracy. 
Otherwise, he may automate the program by appropriately modifying it. 
 
3. Computational and Space Complexities  

 

The computational complexity of the SRA algorithm can be derived as follows. 



 

To generate n1 pairs of random numbers using the multiplicative congruential generator or, equivalently, 
the power residue method (Banks et al. 1998), we need 2n1 multiplications and 2n1 divisions (to carry out 
mod operations). To obtain n1 complex random numbers in the specified rectangle D (Fig.1a), we need 
further 2n1 multiplications and 2n1 additions. If we do not distinguish between a division and a 
multiplication then so far we need 6n1 real multiplications and 2n1 real additions for generating n1 complex 
random numbers. If the function f(x) is a polynomial of degree n, then the computation of  f(x) using the 
nested multiplication scheme (Krishnamurthy and Sen 2001) would need n complex multiplications and n 
complex additions, i.e., 2n  real multiplications and 2n real additions for each complex random number. 
Hence, for n1 complex random numbers, we need 2n # n1 real multiplications + 2n # n1 real additions. 
Since we have k rectangles before we reach the smallest one we need, for the computation of the smallest 

rectangle,  6k # n1 + 2k  # n # n1 multiplications and 2k # n1 + 2k # n # n1 additions. Since k, n1 are 
independent of the size n of the function f(x), our computational complexity will O(2k #  n1 #  n) assuming 
n very large (compared to n1 and k, and the size of the program) but finite. A typical value of k is 10 and 
that of n1 is 20. These values, however, will be larger if the initial rectangle chosen is larger. 
 

The space complexity, i.e., the storage space needed to store the input data, viz., the (n + 1) complex 
coefficients of the nth degree polynomial f(x), we need 2n locations. We also need the storage space to 
store the program. Since the storage space for the program is independent of the size, i.e., the degree n of  
f(x), the space complexity is simply   O(2n) assuming n very large but finite. 
 
If the function f(x) is a transcendental function then the computational complexity will be O(2k # n1 # 

number of operations needed to compute f(x)) while the space complexity will be the space needed for the 

function. Observe that the transcendental function though may be written as a polynomial of degree $, does 

not have the computational complexity O($) nor has the space complexity O($). 

 

These complexities are comparable with those of other existing methods. The space  complexity as well as 

the computational complexity in terms of the input size n for all these methods will not be usually O(ns), 

where s >1.   

 

The parallel computational complexity using n processors will clearly depend only on the values of n1 and 

k. If we use p < n processors then the complexity will increase proportionately.  The space complexity, 

however, will remain unchanged. 

 

 4. MATLAB Program for the SRA Algorithm 

 



This program is self-explanatory and computes a complex zero of a polynomial or a transcendental 

function. 

 

function[]=func2(rmin, rmax, imin, imax, nmax, eps, fun) 
%func2 computes a complex zero of a function fun 
%using a randomized algorithm with an interpolation 
 
%Description of input parameters rmin, rmax, imin, imax, etc. 
 
%[rmin, rmax]=interval of real part of the zero. 
%[imin, imax]=interval of imaginary part of the zero. 
%nmax=maximum no, of bisections (nmax=10 usually;  
%for better accuracy, nmax may be taken as 20 0r 30. 
%eps=.5*10^-4 usually; for better accuracy, eps=.5*10^-8. 
%However, eps is used here as a relative error term and  
%should be chosen compared to the input quantities involved. 
%fun is the function, one of whose zeros is to be obtained. 
%For example, fun='x^2+x+1' for the function f(x)=x^2+x+1. 
 
for k=1:10  
   %This number 10 implies that the original rectangle is 
   % shrunk successively 10 times. This number seems reasonably  
   %good; however, it may be increased depending on the accuracy 
   % needed within the limit of the precision of the computer. 
    
xvect=[];fvect=[]; absfvect=[]; 
for i=1:nmax 
   x=(rand(1)*(rmax-rmin)+rmin)+j*(rand(1)*(imax-imin)+imin); 
   f=eval(fun); absf=abs(f); 
   xvect=[xvect;x]; 
   fvect=[fvect;f]; 
   absfvect=[absfvect; absf]; 
end; 
 
x_f_absf=[xvect fvect absfvect]; 
x_f_absf_s=sortrows(x_f_absf, 3); 
string 'sorted x, f(x), absolute f(x)' 
x_f_absf_s 
if abs(x_f_absf_s(1,3))<eps 
   string 'root, function-value, absolute function value' 
   x_f_absf_s(1,:) 
   break 
end; 
 
x1=x_f_absf_s(1,1); 
realdiff=rmax-rmin; imagdiff=imax-imin; 
rmax1=real(x1)+0.354*realdiff; rmin1=real(x1)-0.354*realdiff; 
if rmax1<rmax 
   rmax=rmax1; 
end; 
if rmin1>rmin 
   rmin=rmin1; 
end; 



 
    
   imax1=imag(x1)+0.354*imagdiff; imin1=imag(x1)-0.354*imagdiff; 
   if imax1<imax 
      imax=imax1; 
   end; 
   if imin1>imin 
      imin=imin1; 
   end; 
   string 'rmax,rmin,imax,imin' 
   rmax,rmin,imax,imin 
end; 
 
a=rmin; b=rmax; c=imin; d=imax; 
 
%The foregoing statements reduce the rectangle to maximum half its 
size. 
%This reduction has resemblance with 2-D bisection for a complex zero. 
 
 
   x=a+j*c; x0=x; y0=eval(fun); x=b+j*c; x1=x; y1=eval(fun); 
   x=b+j*d; x2=x; y2=eval(fun); x=a+j*d; x3=x; y3=eval(fun); 
   d1=y0-y1; d2=y0-y2; d3=y0-y3;d4=y1-y2; d5=y1-y3;d6=y2-y3; 
    
   d7=y1*y2; d8=y1*y3; d9=y2*y3; 
    
   if abs(d1)<eps, d1=1; end; if abs(d2)<eps, d2=1; end;if abs(d3)<eps, 
d3=1; end; 
   if abs(d4)<eps, d4=1; end; if abs(d5)<eps, d5=1; end;if abs(d6)<eps, 
d6=1; end; 
    
   
       xx0=-x0*y1*d9/(d1*d2*d3); 
       xx1=-x1*y0*d9/(-d1*d4*d5); 
       xx2=-x2*y0*d8/(d2*d4*d6); 
       xx3=-x3*y0*d7/(-d3*d5*d6); 
        
       if abs(c)<eps & abs(d)<eps, xx0=-x0*y1/d1; xx1=x1*y0/d1;xx2=0; 
xx3=0; end;  
       %This statement is for interpolation for only real zeros. 
        
       string 'x0, yo, x3,y3,d3'  
       % Imaginary x0 & x3 and corresponding y0 & y3 for linear 
interpolation 
       x0,y0,x3,y3,d3  
        
       if abs(a)<eps & abs(b)<eps, xx0=-x0*y3/d3;xx3=x3*y0/d3;xx1=0; 
xx2=0;  end; 
      %This statement is for inperpolation for only imaginary zeros. 
    
  
        
       x=xx0+xx1+xx2+xx3; 
   f=eval(fun); absf=abs(f); 
    
   string 'interpolated (including extrapolated) zero, f-value, abs f-
value' 



   x, f, absf 
    
 if absf<eps 
   string 'root,f-value, abs_f-value (correct up to 1/eps digits)' 
   x, f, absf 
   break 
end; 

 

 

5. Test Examples 

 

To check the SRA algorithm, we have constructed several typical test functions (i.e., functions whose zeros 

are exactly known using the MATLAB function poly. 

 

Example 1 (A real quadratic function with complex zeros)  f(x) = x2 + x + 1, whose exact roots are !0.5 + 
i%3 and !0.5 ! i%3, where i =%!1.  
 
The inputs are   
 
rmin=-1;rmax=0;imin=0;imax=1;nmax=10;eps=.5*10^-4;fun='x^2+x+1'; 
func2(rmin,rmax,imin,imax,nmax,eps,fun) 
 
The outputs are 
 
x = -0.5000 + 0.8660i,  f = -1.9222e-006 +2.8105e-007i, absf =1.9426e-006 
 
Example 2 (A real quatric polynomial with only real zeros) f(x) = x4 ! 5.2x3 + 10.04x2 
!8.528x + 2.688 whose exact zeros are 1, 1.2, 1.4, and 1.6 and which is constructed using 
the MATLAB command poly([1  1.2  1.4  1.6]). 
 
The inputs are 
 
rmin=0;rmax=1.19;imin=0;imax=0;nmax=10;eps=.5*10^-8;fun='x^4-5.2*x^3+10.04*x^2-8.528*x+2.688'; 
func2(rmin,rmax,imin,imax,nmax,eps,fun) 
 
The outputs are 
 
x = 1.2015,  f = 2.3317e-005,  absf = 2.3317e-005. 
 
The second run of the program with the same inputs produced the outputs 
 
x = 1.1998,  f =  -3.0973e-006,  absf =  3.0973e-006 
 
The third run with the same inputs produced the outputs 
 



x = 1.1998,  f = -3.0969e-006,  absf = 3.0969e-006 
 
The fourth run with the same inputs resulted in the outputs 
 
x = 1.0016,  f = -7.5359e-005,  absf = 7.5359e-005 
 
 
Example 3 (A quatric real polynomial having only imaginary zeros) f(x) = x4 + 5x2 +4 whose exact zeros 
are ! i, i, ! 2i, and 2i. 
 
The inputs are 
  

rmin=0;rmax=0;imin=-1.5;imax=-.5;nmax=10;eps=.5*10^-4;fun='x^4+5*x^2+4'; 
func2(rmin,rmax,imin,imax,nmax,eps,fun) 
 
The outputs are 
 
x = 0 - 1.0000i,  f = -1.4188e-004,  absf = 1.4188e-004. 
 
Example 4 (A quatric complex polynomial with zero-clusters: a highly ill-conditioned problem) f(x) = x4 ! 

(8.04 + .22j)x3 + (24.2227 + 1.3266j)x2 ! (32.410446 + 2.665828j)x + (16.25009862 + 1.78524984j) whose 
exact zeros are 2.01 + j.04, 2.01 +j.05, 2.01 + j.06, and 2.01 +j.07, where j = %!1. 

 
The inputs are 
 
rmin=2;rmax=2.019;imin=0;imax=0.045;nmax=10;eps=.5*10^-8; 
 
» fun='x^4-(8.04+.22*j)*x^3+(24.2227+1.3266*j)*x^2-
(32.410446+2.665828*j)*x+(16.25009862+1.78524984*j)'; 
func2(rmin,rmax,imin,imax,nmax,eps,fun) 
 
The outputs are 
 
x = 2.0112 + 0.0470i,  f = -6.5411e-009 -2.3059e-009i,  absf = 6.9356e-009 
 
When the program was rerun for the second time with the same foregoing inputs, the outputs became 
 
x = 2.0110 + 0.0519i,  f = 3.5115e-009 -1.4762e-009i,  absf =  3.8092e-009 
 
The foregoing results seem reasonably good for the precision of 15 digits. 
 
Example 5(A quatric real polynomial with somewhat closely spaced real zeros) f(x) = x4  ! 9x3 + 30.35x2  
! 45.45x + 25.5024 whose exact zeros are 2.1, 2.2, 2.3, and 2.4 
 
The inputs are 
 
rmin=2;rmax=2.19;imin=0;imax=0;nmax=10;eps=.5*10^-8;fun='x^4-9*x^3+30.35*x^2-45.45*x+25.5024'; 
func2(rmin,rmax,imin,imax,nmax,eps,fun) 
 
The outputs are 
 
x = 2.1997,  f = -5.4080e-007,   absf =  5.4080e-007. 
 
When the program was rerun with the foregoing inputs, the outputs became 
 



x = 2.1997,  f = -5.3846e-007,  absf =  5.3846e-007. 
 
When the program was rerun for the third time with the same inputs the outputs became 
 
x = 2.1001,  f =  -5.8460e-007,  absf = 5.8460e-007 
 
Examples 6 (A tenth degree real polynomial with large coefficients and  distinct zeros) 
f(x) = x10 ! 55x9  + 1320x8 ! 18150x7 + 157773x6 ! 902055x5 + 3416930x4 ! 8409500x3 
+ 12753576x2 ! 10628640x + 3628800 whose zeros are 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. 
 
The inputs are 
 
» func2(.1,1.5,0,0,10, .5*10^-8,'x^10-55*x^9+1320*x^8-18150*x^7+157773*x^6-
902055*x^5+3416930*x^4-8409500*x^3+12753576*x^2-10628640*x+3628800') 
 
The outputs are 
 
x = 1.0000,  f = -9.4986,  absf = 9.4986 
 
When the program was rerun with the same polynomial with changed inputs  
» func2(.1,11,0,0,10, .5*10^-8,'x^10-55*x^9+1320*x^8-18150*x^7+157773*x^6-
902055*x^5+3416930*x^4-8409500*x^3+12753576*x^2-10628640*x+3628800') 
 
we obtained the outputs 

 
x = 6.0000, f = -0.0570,  absf = 0.0570 
 
When we reran the program with the foregoing inputs, then the outputs became 
 
x = 5.9977,  f = -6.5615,  absf = 6.5615 
 
For the third run with the foregoing inputs, we got outputs as 
 
x = 4.0030,  f = 12.9012, absf = 12.9012 
 
For the fourth run with the foregoing inputs, the outputs  became 
 
x = 5.9988, f = -3.5642,   absf = 3.5642 
 
For the fifth run we got outputs as 
 
x = 4.0015,  f = 6.6179,  absf = 6.6179 
 
6. Conclusions 

 

Shrinking rectangle converges faster than 2-D bisection. When k goes to 10, the initial rectangle D (Fig. 
1a) that encloses/contains a zero of the function f(x) will be shrunk to the rectangle whose area will be less 
than or equal to D/2k = D/210 = 0.00097656D. This shrinking is significantly rapid compared to the 
automatic bisection for complex zeros (Sen and Lord 1990, Wilf 1978). 
 
The non-existence of a zero in the wrongly chosen initial rectangle can be detected.  The SRA algorithm 
will come out indicating that the chosen rectangle D does not contain a zero  if the choice is incorrect, i.e., 
if it really does not contain a zero. 
 



Interpolation (including extrapolation) is carried out in the final highly shrunk rectangle only once It is 
possible to interpolate linearly in each of the k ( = 10) rectangles. However, it is not done because the linear 
interpolation could be sufficiently inaccurate when the rectangle is large. Moreover, such repeated 
interpolations will not only increase the computation but also might result in excluding the actual zero in 
the rectangle-shrinking process. 
 
The zero existing in the initial rectangle D will exist in the final shrunk rectangle. In our numerical 
experiment with numerous functions and with reasonably chosen initial  rectangle D, the zero that was 
located in D always remained in the final shrunk rectangle. The SRA algorithm thus seems an efficient fail-
proof complex zero finding method and it is deterministic. 
 
The SRA algorithm is not worse than most algorithms for finding a zero in a zero-cluster. A function 
having zero-clusters (closely spaced zeros) is always an ill-conditioned problem with respect to finding a 
zero accurately in the cluster. Any method so far existing as well as any method that could be proposed in 
future would be only satisfactory to a varying extent for a specified precision. Our numerical experiment 
depicts that the SRA algorithm is reasonably good when dealing with zero-clusters. 
 
Multiple zeros do not pose any problem to the SRA algorithm. Unlike the Newton method and its variations 
which need to compute derivatives of a function and in which an oscillation around a multiple zero (in a 
finite precision machine) sets in, the SRA algorithm has absolutely no such problem. It gives, like bisection 
methods,  the multiple zero accurately as it does not depend on the computation of the derivatives of a 
function. For a polynomial having multiple zeros, repeated deflations will provide the order of multiplicity.  
 
Use deflation or different rectangles to seeve out all the zeros. One way of seeving all the zeros of a 
polynomial with or without multiple zeros is to deflate the polynomial successively after computing a zero. 
The other way is to choose different appropriate intervals/rectangles each enclosing a zero and compute all 
the zeros. For a transcendental function that cannot be written as the product of a polynomial (with multiple 
zeros) and another transcendental function, deflations may not be useful. 
 
The SRA algorithm has a sequential complexity O(n) and its parallel implementation is straight-forward. 
As we have seen in Sec. 3 that the SRA algorithm has a sequential computational complexity O(2k # n1 # 
n) where the input size is O(2n) for an nth degree complex polynomial. Observe that k (=10, say) and n1 
(=10 or 20, say) are independent of n. The parallel computational complexity, when we have n processors, 
is O(k # n1) which is independent of the input size. For a fixed number of processors < n, this complexity 
will increase proportionately. 
 
The SRA algorithm can be extended to obtain the global minimum of a multi-variable function. Instead of 
generating a pair of pseudorandom numbers for a complex zero of a function f(x), we have to generate an 
ordered set of pseudorandom numbers for this purpose and suitably modify this algorithm. 
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ABSTRACT 
 
       A polynomial-time deterministic randomised algorithm is described to compute a zero of a 
complex/real polynomial or a complex/real transcendental function in a complex plane. The 
algorithm starts with a specified rectangle enclosing a complex zero, shrinks it successively by at 
least 50% in each iteration somewhat like a two-dimensional bisection, and then a single 
application of linear two-variable interpolation in the highly shrunk rectangle provides the required 
zero. A parallel implementation of this algorithm is discussed while its sequential and parallel 
computational complexities as well as its space complexity are presented. The algorithm is found 
to be reasonably good for zero clusters and also for multiple zeros. This method can be extended 
to minimize globally a polynomial or a transcendental function of several variables without 
resorting to the computation of its partial derivatives and can be used along with the deflation of 
the polynomial or with different specified initial rectangle  
 
 
1. INTRODUCTION 
 
       There exist several deterministic nonrandomized polynomial-time algorithms in the literature 

(Krishnamurthy and Sen 2001, Mathews 1994, Schilling and Harries 2002) to compute real and 

complex roots of an algebraic or a transcendental equation. Specifically, automatic two-

dimensional (2-D) bisection methods (Sen and Lord 1990, Wilf 1978) have been described. 

These bisection methods needing only function computations provide excellent accuracy for well-

conditioned functions, i.e., functions without zero-clusters (closely spaced zeros).  A function with 

distinct well-separated zeros or one with multiple zeros is well-conditioned with respect to its 

zero-finding using a bisection method. We present here a variation of the 2-D bisection method, 



called here the SRA algorithm, that differs widely from these methods in its conceptual approach.  

We specify a reasonably small rectangle in the complex plane so that it contains one of the 

complex zeros of the given one-variable function. We throw uniformly distributed darts, say 10 or 

20 of them, onto the rectangle and compute at each point of hit the value of the function.  This 

dart-throwing is accomplished by generating uniformly distributed pairs of pseudo-random 

numbers each representing a point in the rectangle. We select the point of hit, that corresponds to 

the minimum value of the norm of the function; replace the rectangle by one whose area is  at 

least 50% less than the  previous one. This smaller rectangle now has in it the zero of the 

function. We continue this process a number of times, say 10 times, and obtain the highly shrunk 

rectangle which contains this zero. Carry out a two-variable linear interpolation to obtain the zero 

with sufficient accuracy. To obtain other complex zeros of the function, one can deflate the 

function (algebraic) and follow the proposed algorithm on the deflated function or one can choose 

a different rectangle that would contain the second zero of the function (algebraic or 

trigonometric) and apply the algorithm. This algorithm can be modified for a function of several 

variables by generating a set of several pseudorandom numbers instead of the pair and by using 

multi-variable interpolation to obtain a global minimum of the function. We will not discuss this 

aspect here. 

 
       The algorithm with the justification of each of its steps is described in Sec. 2 while its 

computational and space complexities are discussed in Sec. 3. A Matlab program that not only 

takes care of complex zeros with nonzero real and nonzero imaginary parts but also purely real 

as well as purely imaginary zeros is presented in Sec. 4. Test examples and conclusions are 

included in Secs. 5 and 6, respectively.  

 
2.  The SRA Algorithm 
 
       Let f(x) be an algebraic or a transcendental function of the single variable x and be 

continuous and bounded. The function f(x) may be real or complex. The problem is to find a 

complex zero of f(x), where the zero may have (i) both real and imaginary parts nonzero or may 

be (ii) only real or (iii) only imaginary. It can be seen that the two-variable interpolation needed for 

Case (i) is not applicable to any of Cases (ii) and (iii). In the later two cases, we have to explicitly 

use distinct single variable interpolations. 

       Let the real part of the zero of the continuous bounded function f(x) lie in the interval [a, b] 

while the imaginary part in the interval [c, d]. These intervals define a rectangle D (Fig. 1a), i.e. 

the domain of search. The function values corresponding to each of the points of the domain will 

define a plane (i.e., a hyperplane of dimension 2) R  whose sides are in general curved (not 

straight lines) (Fig. 1b).   Assume that this  domain contains only one zero for the sake of 



observing how the algorithm works, such an assumption is not strictly needed though. This fact 

will be seen when we consider numerical test examples that illustrate the algorithm. 

             
             (a, d)                     (b, d)                            
                                                                                              y3=f(a+jd)         y2=f(b+jd) 
                                                                                                       •                  • 
                                                                                                       •                 •     
              (a, c)                    (b, c)                                              y0=f(a+jc)      y1=f(b+jc) 
 
Fig. 1a Rectangle D containing a zero                                  Fig. 1b Plane R with curved  sides                  
            of a function (Domain space)                                                (Function space) 
 
We now describe the steps of the algorithm with justification/explanation for each step. 
 
S. 1 Throwing darts onto the rectangle D and choosing the one nearest zero  Generate uniformly 

distributed n1 (n1 = 20, say) ordered pairs of random numbers such that the first number of each 

pair lies in [a, b] while the second lies in [c, d]. Each pair defines a complex random number. The 

first one of the pair defines the real part while the second one the imaginary part of this complex 

random number. Let rand(1) produce a random number in (0, 1). Then  x = [rand(1)(b ! a) + a] + j 

[rand(1)(d ! c) + c] is a complex random number inside the rectangle D. This number 

corresponds to a thrown dart inside D and the corresponding f(x) will have a numerical value 

which is usually complex and which will lie inside the plane R. Corresponding to n1 such complex 

random numbers within the rectangle D, we will have n1 function values within the plane R. We 

choose that random number which produces the minimum absolute value of the function. Call this 

number x1. Clearly this absolute value of f(x1) will be nearest the zero of f(x). 

 

S. 2  Shrinking the Rectangle D by at least 50%  Set  b1 := real(x1) + .354(b ! a),  a1:= real(x1) ! 

0.354(b ! a), where real(x1) is the real part of x1. If b1 < b then set b := b1; if a1 > a then set a := 

a1. Similarly, set d1 := imag(x1) + .354(d ! c), c1 := imag(x1) ! (d ! c), where imag(x1) is the 

imaginary part of x1.  If d1 < d then set d := d1; if c1 > c then set c := c1. 

       The step S. 2 reduces the  rectangle D by at least half its size. The new rectangle will 

enclose the zero of f(x) assuming that it is not too violently fluctuating or the zeros are not too 

closely spaced. 

 

S. 3 Getting the smallest rectangle after k iterations   Repeat the steps S. 1 and S. 2 for k (k = 10, 

say) times. This step will produce a highly shrunk rectangle that contains the zero of f(x).    

 

S. 4 Two-variable interpolation for a complex zero  Use the two-variable Lagrange linear 

interpolation using the most recent values of a, b, c, d and the corresponding function values. 

This interpolation includes extrapolation automatically. Let (xi, yi) i = 0(1)3 be the table for 

interpolation, where xi as well as  yi are both complex and the interpolation (that includes 

extrapolation too) problem is posed as follows. 



 
 x       x0 =  a + jc      x1 = b + jc       x2 = b + jd     x3 = a + jd      x = ?                                               
 
 y       y0 = f(x0)         y1 = f(x1)          y2 = f(x2)       y3 = f(x3)        y = f(x) = 0 
              

 Hence, if a " 0, b " 0, a " b, d1 = y0 ! y1" 0 , d2 = y0 ! y2 " 0, d3 = y0 ! y3 " 0, d4 = y1 ! y2 " 0, d5 = 

y1 ! y3 " 0, d6 = y2 ! y3 " 0, d7 = y1y2, d8 = y1y3, d9 = y2y3, then  

 

  x =  ! x0y1d9/(d1d2d3)  + x1y0d9/(d1d4d5) ! x2y0d8/(d2d4d6) + x3y0d7/(d3d5d6)        (1) 

 
 
This interpolation is carried out only once in the final highly shrunk rectangle. The x thus obtained 

is the required zero of the function f(x).  

 

Interpolation for computing only a real zero The foregoing interpolation formula (1) is not valid for 

obtaining a real zero of f(x) since y0 = y3 and y1 = y2 and consequently d3 and d4 both are zero 

and each one occurs in the denominator in the formula (1). Therefore, we use the modified 

interpolation formula 

 

 x = !x0y1/d1+ x1y0/d1   (for real zeros only)                 (2) 

 
Interpolation for computing  only an imaginary zero The formula (1) is invalid here too. The 
modified interpolation formula is 
 

 x = ! x0y3/d3 + x3y0/d3 (for imaginary zeros only)      (3) 

 
The x that we obtain in the formula (1) or (2) or (3) is the required solution. The corresponding 

function value f(x)  will be sufficiently small so that the zero x could be accepted as the required 

zero for all practical purposes.  

 

S. 5 Error in (quality of) the zero x “How good is the quality of the zero?” is a very pertinent 

question that is almost always asked.  The answer is obtained through computing a relative error 

(i.e., error-bound) in the zero x. Observe that an absolute error is not much meaningful in 

numerical computation. In the absence of the knowledge of the exact zero (solution) which is 

never known (for if it is numerically known then we do not bring error unnecessarily into the 

scene), we consider usually the solution (zero) of higher order accuracy for the exact solution. 

Thus the error in the solution of lower order accuracy will be computed, denoting the solution of 

higher order accuracy = xh and the solution of lower order accuracy = xt, as  

 

    Er = (xh ! xt)/xh                                                          (4) 

 
Clearly |f(xh)| < |f(xt)| by at least an order (Sen 2002). If we consider the interpolated zero 

(solution) x as the zero (xt) of lower order accuracy then we do not have the zero (xh) of higher 



order accuracy. To determine xh, we shrink the already highly shrunk rectangle once more and 

carry out the interpolation as in the step S. 4. This interpolated zero will be the zero (xh) of higher 

order accuracy. Thus we can compute the relative error Er. The step S. 5 has not been included 

in the MATLAB program for physical conciseness and for better comprehension. The reader may 

achieve this step of error computation by running the program for the second time replacing k by 

k + 1 and obtaining the zero xh of higher order accuracy. Otherwise, he may automate the 

program by appropriately modifying it. 

 

3. COMPUTATIONAL AND SPACE COMPLEXITIES  
 
       The computational complexity of the SRA algorithm can be derived as follows. To generate 

n1 pairs of random numbers using the multiplicative congruential generator or, equivalently, the 

power residue method (Banks et al. 1998), we need 2n1 multiplications and 2n1 divisions (to carry 

out mod operations). To obtain n1 complex random numbers in the specified rectangle D (Fig.1a), 

we need further 2n1 multiplications and 2n1 additions. If we do not distinguish between a division 

and a multiplication then so far we need 6n1 real multiplications and 2n1 real additions for 

generating n1 complex random numbers. If the function f(x) is a polynomial of degree n, then the 

computation of  f(x) using the nested multiplication scheme (Krishnamurthy and Sen 2001) would 

need n complex multiplications and n complex additions, i.e., 2n  real multiplications and 2n real 

additions for each complex random number. Hence, for n1 complex random numbers, we need 2n 

# n1 real multiplications + 2n # n1 real additions. Since we have k rectangles before we reach the 

smallest one we need, for the computation of the smallest rectangle,  6k # n1 + 2k  # n # n1 

multiplications and 2k # n1 + 2k # n # n1 additions. Since k, n1 are independent of the size n of the 

function f(x), our computational complexity will O(2k #  n1 #  n) assuming n very large (compared 

to n1 and k, and the size of the program) but finite. A typical value of k is 10 and that of n1 is 20. 

These values, however, will be larger if the initial rectangle chosen is larger. 

       The space complexity, i.e., the storage space needed to store the input data, viz., the (n + 1) 

complex coefficients of the nth degree polynomial f(x), we need 2n locations. We also need the 

storage space to store the program. Since the storage space for the program is independent of 

the size, i.e., the degree n of  f(x), the space complexity is simply   O(2n) assuming n very large 

but finite. 

       If the function f(x) is a transcendental function then the computational complexity will be O(2k 

# n1 # number of operations needed to compute f(x)) while the space complexity will be the space 

needed for the function. Observe that the transcendental function though may be written as a 

polynomial of degree $, does not have the computational complexity O($) nor has the space 

complexity O($). 



       These complexities are comparable with those of other existing methods. The space  

complexity as well as the computational complexity in terms of the input size n for all these 

methods will not be usually O(n
s
), where s >1.   

       The parallel computational complexity using n processors will clearly depend only on the 

values of n1 and k. If we use p < n processors then the complexity will increase proportionately.  

The space complexity, however, will remain unchanged. 

 

 4. MATLAB PROGRAM FOR THE SRA ALGORITHM 

 

       This program is self-explanatory and computes a complex zero of a polynomial or a 

transcendental function. 

 

function[]=func2(rmin, rmax, imin, imax, nmax, eps, fun) 
%func2 computes a complex zero of a function fun 
%using a randomized algorithm with an interpolation 
 
%Description of input parameters rmin, rmax, imin, imax, etc. 
 
%[rmin, rmax]=interval of real part of the zero. 
%[imin, imax]=interval of imaginary part of the zero. 
%nmax=maximum no, of bisections (nmax=10 usually;  
%for better accuracy, nmax may be taken as 20 0r 30. 
%eps=.5*10^-4 usually; for better accuracy, eps=.5*10^-8. 
%However, eps is used here as a relative error term and  
%should be chosen compared to the input quantities involved. 
%fun is the function, one of whose zeros is to be obtained. 
%For example, fun='x^2+x+1' for the function f(x)=x^2+x+1. 
 
for k=1:10  
   %This number 10 implies that the original rectangle is 
   % shrunk successively 10 times. This number seems reasonably  
   %good; however, it may be increased depending on the accuracy 
   % needed within the limit of the precision of the computer. 
    
xvect=[];fvect=[]; absfvect=[]; 
for i=1:nmax 
   x=(rand(1)*(rmax-rmin)+rmin)+j*(rand(1)*(imax-imin)+imin); 
   f=eval(fun); absf=abs(f); 
   xvect=[xvect;x]; 
   fvect=[fvect;f]; 
   absfvect=[absfvect; absf]; 
end; 
 
x_f_absf=[xvect fvect absfvect]; 
x_f_absf_s=sortrows(x_f_absf, 3); 



string 'sorted x, f(x), absolute f(x)' 
x_f_absf_s 
if abs(x_f_absf_s(1,3))<eps 
   string 'root, function-value, absolute function value' 
   x_f_absf_s(1,:) 
   break 
end; 
 
x1=x_f_absf_s(1,1); 
realdiff=rmax-rmin; imagdiff=imax-imin; 
rmax1=real(x1)+0.354*realdiff; rmin1=real(x1)-0.354*realdiff; 
if rmax1<rmax 
   rmax=rmax1; 
end; 
if rmin1>rmin 
   rmin=rmin1; 
end; 
    
   imax1=imag(x1)+0.354*imagdiff; imin1=imag(x1)-0.354*imagdiff; 
   if imax1<imax 
      imax=imax1; 
   end; 
   if imin1>imin 
      imin=imin1; 
   end; 
   string 'rmax,rmin,imax,imin' 
   rmax,rmin,imax,imin 
end; 
 
a=rmin; b=rmax; c=imin; d=imax; 
 
%The foregoing statements reduce the rectangle to maximum half its size. 
%This reduction has resemblance with 2-D bisection for a complex zero. 
 
   x=a+j*c; x0=x; y0=eval(fun); x=b+j*c; x1=x; y1=eval(fun); 
   x=b+j*d; x2=x; y2=eval(fun); x=a+j*d; x3=x; y3=eval(fun); 
   d1=y0-y1; d2=y0-y2; d3=y0-y3;d4=y1-y2; d5=y1-y3;d6=y2-y3; 
    
   d7=y1*y2; d8=y1*y3; d9=y2*y3; 
    
   if abs(d1)<eps, d1=1; end; if abs(d2)<eps, d2=1; end;if abs(d3)<eps, d3=1; end; 
   if abs(d4)<eps, d4=1; end; if abs(d5)<eps, d5=1; end;if abs(d6)<eps, d6=1; end; 
    
       xx0=-x0*y1*d9/(d1*d2*d3); 
       xx1=-x1*y0*d9/(-d1*d4*d5); 
       xx2=-x2*y0*d8/(d2*d4*d6); 
       xx3=-x3*y0*d7/(-d3*d5*d6); 
        
       if abs(c)<eps & abs(d)<eps, xx0=-x0*y1/d1; xx1=x1*y0/d1;xx2=0; xx3=0; end;  
       %This statement is for interpolation for only real zeros. 
        
       string 'x0, yo, x3,y3,d3'  
       % Imaginary x0 & x3 and corresponding y0 & y3 for linear interpolation 
       x0,y0,x3,y3,d3  
        
       if abs(a)<eps & abs(b)<eps, xx0=-x0*y3/d3;xx3=x3*y0/d3;xx1=0; xx2=0;  end; 



      %This statement is for inperpolation for only imaginary zeros. 
        
       x=xx0+xx1+xx2+xx3; 
   f=eval(fun); absf=abs(f); 
    
   string 'interpolated (including extrapolated) zero, f-value, abs f-value' 
   x, f, absf 
    
 if absf<eps 
   string 'root,f-value, abs_f-value (correct up to 1/eps digits)' 
   x, f, absf 
   break 
end; 
 

 

5. TEST EXAMPLES 

 

       To check the SRA algorithm, we have constructed several typical test functions (i.e., 

functions whose zeros are known through the MATLAB function poly). To conserve space we 

present here just four examples. 

 

 

Example 1 (A real quatric polynomial with only real zeros) f(x) = x4 ! 5.2x3 + 10.04x2 

!8.528x + 2.688 whose exact zeros are 1, 1.2, 1.4, and 1.6 and which is constructed using 

the MATLAB command poly([1  1.2  1.4  1.6]). The inputs are 

 
rmin=0;rmax=1.19;imin=0;imax=0;nmax=10;eps=.5*10^-8;fun='x^4-5.2*x^3+10.04*x^2-
8.528*x+2.688'; 
func2(rmin,rmax,imin,imax,nmax,eps,fun) 
 
The outputs are x = 1.1998,  f = -3.0969e-006,  absf = 3.0969e-006. The second run with the 

same inputs resulted in the outputs x = 1.0016,  f = -7.5359e-005,  absf = 7.5359e-005 

 
Example 2 (A quatric real polynomial having only imaginary zeros) f(x) = x

4
 + 5x

2
 +4 whose exact 

zeros are ! i, i, ! 2i, and 2i. The inputs are 

  
rmin=0;rmax=0;imin=-1.5;imax=-.5;nmax=10;eps=.5*10^-4;fun='x^4+5*x^2+4'; 
func2(rmin,rmax,imin,imax,nmax,eps,fun) 
 
The outputs are x = 0 - 1.0000i,  f = -1.4188e-004,  absf = 1.4188e-004. 
 



Example 3 (A quatric complex polynomial with zero-clusters: a highly ill-conditioned problem) 

f(x) = x
4
 ! (8.04 + .22j)x

3
 + (24.2227 + 1.3266j)x

2
 ! (32.410446 + 2.665828j)x + (16.25009862 + 

1.78524984j) whose exact zeros are 2.01 + j.04, 2.01 +j.05, 2.01 + j.06, and 2.01 +j.07, where j = 

%!1. The inputs are 

 
rmin=2;rmax=2.019;imin=0;imax=0.045;nmax=10;eps=.5*10^-8; 
» fun='x^4-(8.04+.22*j)*x^3+(24.2227+1.3266*j)*x^2-
(32.410446+2.665828*j)*x+(16.25009862+1.78524984*j)'; 
func2(rmin,rmax,imin,imax,nmax,eps,fun) 
 
The outputs are x = 2.0112 + 0.0470i, f = -6.5411e-009 -2.3059e-009i,  absf = 6.9356e-009. 

When the program was rerun with the same inputs, the outputs became x = 2.0110 + 0.0519i,  f = 

3.5115e-009 -1.4762e-009i,  absf =  3.8092e-009. The foregoing results seem reasonably good 

for the precision of 15 digits that MATLAB provides. 

 

Examples 4 (A tenth degree real polynomial with large coefficients and  distinct real 

zeros) f(x) = x10 ! 55x9  + 1320x8 ! 18150x7 + 157773x6 ! 902055x5 + 3416930x4 ! 

8409500x3 + 12753576x2 ! 10628640x + 3628800 whose zeros are 1, 2, 3, 4, 5, 6, 7, 8, 9, 

and 10. The inputs are 

 
» func2(.1,1.5,0,0,10, .5*10^-8,'x^10-55*x^9+1320*x^8-18150*x^7+157773*x^6-
902055*x^5+3416930*x^4-8409500*x^3+12753576*x^2-10628640*x+3628800') 
 
The outputs are x = 1.0000,  f = -9.4986,  absf = 9.4986. When the program was rerun with the 
same polynomial with changed inputs  
 
» func2(.1,11,0,0,10, .5*10^-8,'x^10-55*x^9+1320*x^8-18150*x^7+157773*x^6-
902055*x^5+3416930*x^4-8409500*x^3+12753576*x^2-10628640*x+3628800') 
 
we obtained the outputs x = 6.0000, f = -0.0570,  absf = 0.0570. When we reran the program with 

the foregoing inputs for the second, third, fourth, and fifth times then the outputs became (a) x = 

5.9977,  f = -6.5615,  absf = 6.5615, (b) x = 4.0030,  f = 12.9012, absf = 12.9012, (c) x = 5.9988, f 

= -3.5642,   absf = 3.5642, (d) x = 4.0015,  f = 6.6179,  absf = 6.6179, respectively. 

 
6. CONCLUSIONS 
 
       Shrinking rectangle converges faster than 2-D bisection. When k goes to 10, the initial 

rectangle D (Fig. 1a) that encloses/contains a zero of the function f(x) will be shrunk to the 

rectangle whose area will be less than or equal to D/2
k
 = D/2

10
 = 0.00097656D. This shrinking is 

significantly rapid compared to the automatic bisection for complex zeros (Sen and Lord 1990, 

Wilf 1978). 



       The non-existence of a zero in the wrongly chosen initial rectangle can be detected.  The 

SRA algorithm will come out indicating that the chosen rectangle D does not contain a zero  if the 

choice is incorrect, i.e., if it really does not contain a zero. 

       Interpolation (including extrapolation) is carried out in the final highly shrunk rectangle only 

once It is possible to interpolate linearly in each of the k ( = 10) rectangles. However, it is not 

done because the linear interpolation could be sufficiently inaccurate when the rectangle is large. 

Moreover, such repeated interpolations will not only increase the computation but also might 

result in excluding the actual zero in the rectangle-shrinking process. 

       The zero existing in the initial rectangle D will exist in the final shrunk rectangle. In our 

numerical experiment with numerous functions and with reasonably chosen initial  rectangle D, 

the zero that was located in D always remained in the final shrunk rectangle. The SRA algorithm 

thus seems an efficient fail-proof complex zero finding method and it is deterministic. 

       The SRA algorithm is not worse than most algorithms for finding a zero in a zero-cluster. A 

function having zero-clusters (closely spaced zeros) is always an ill-conditioned problem with 

respect to finding a zero accurately in the cluster. Any method so far existing as well as any 

method that could be proposed in future would be only satisfactory to a varying extent for a 

specified precision. Our numerical experiment depicts that the SRA algorithm is reasonably good 

when dealing with zero-clusters. 

       Multiple zeros do not pose any problem to the SRA algorithm. Unlike the Newton method and 

its variations which need to compute derivatives of a function and in which an oscillation around a 

multiple zero (in a finite precision machine) sets in, the SRA algorithm has absolutely no such 

problem. It gives, like bisection methods,  the multiple zero accurately as it does not depend on 

the computation of the derivatives of a function. For a polynomial having multiple zeros, repeated 

deflations will provide the order of multiplicity.  

       Use deflation or different rectangles to seeve out all the zeros. One way of seeving all the 

zeros of a polynomial with or without multiple zeros is to deflate the polynomial successively after 

computing a zero. The other way is to choose different appropriate intervals/rectangles each 

enclosing a zero and compute all the zeros. For a transcendental function that cannot be written 

as the product of a polynomial (with multiple zeros) and another transcendental function, 

deflations may not be useful. 

       The SRA algorithm has a sequential complexity O(n) and its parallel implementation is 

straight-forward. As we have seen in Sec. 3 that the SRA algorithm has a sequential 

computational complexity O(2k # n1 # n) where the input size is O(2n) for an nth degree complex 

polynomial. Observe that k (=10, say) and n1 (=10 or 20, say) are independent of n. The parallel 

computational complexity, when we have n processors, is O(k # n1) which is independent of the 

input size. For a fixed number of processors < n, this complexity will increase proportionately. 



       The SRA algorithm can be extended to obtain the global minimum of a multi-variable 

function. Instead of generating a pair of pseudorandom numbers for a complex zero of a function 

f(x), we have to generate an ordered set of pseudorandom numbers for this purpose and suitably 

modify this algorithm. 
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