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Karmarkar Form of Linear Program and Algorithm: Precise
. Presentation

S.K. Sen' and S. Sen”

Abstract A linear program (LP), can be defined as Minimize (Min) z = ¢'x subject to Ax
<b, x>0, where A isan m x n matrix and 0 is the n-dimensicnal column vector (n-
vector) of 0s. A form of LP equivalent to the foregoing LP and an algorithm (for this
~ form), both due to N. Karmarkar, are presented here prec1sely and concisely. This
Karmarkar form of LP (KLP) is Min z = ¢'x subject to Ax =0, ex=1,x>0,x=enis
feasible, minimal z-value = 0, where e is the n-vector of 1s. Both the form and the
operational aspects of the algorithm presented here are more easily followed. The
algorithm is readily implementable/programmable on a computer. The Karmarkar
algorithm (KA) uses a transformation from projective geometry to create a set of
transformed variables y. This transformation f always transforms the current point into
the centre of the feasible region in the space defined by the transformed variables. If f
takes the point x into the point y then we write {x) = y. The KA begins in the
transformed space in a direction that tends to improve z without violating feasibility. -
This yields a point v, close to the boundary of the feasible region, in the transformed
space The new point is x' that satisfies Ax") = y'. The procedure is iterated replacing x°
by x' until the z-value for x* is sufficiently close to 0. An intelligent implementation of
KA, however, does need a deeper insight (into the algorithm) that avoids
redundant/partial duplication of computation/codes and that possibly reduces the number
of iterations. This projective transformation based polynomial-time interior-point
iterative algorithm is claimed to be more efficient ‘than the widely used exponential-time
exterior-point iterative method called the simplex algorithm for large LPs. The simplex
algorithm and its variations have been the most widely used methods in linear

optimization for over three decades (smﬂes——emhﬁes) and is still being extensively used
certainly for small and medium LPs. The KA is increasingly finding its place in
literature/textbooks on linear programming/operations research. It is also stimulating in
terms of visualizing every derived mathematical step geometrically (maximum three
dimensions can be visualized, higher dimensions are just straight-forward mathematical
extensions and cannot be visualized) or achieving the desired geometrical
path/destination using the appropriate mathematics. Thus, we believe that there is a scope
for such a presentation for the readers who desire to get a quick feel about this landmark
algorithm. A MATLAB program for the KA is appended for ready check and for a
quick feel about its convergence.
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1. Notations

We use the following convention and notations. A bold lower case letter (such as ¢, b, x)
always indicates a column vector. A bold zero, viz., 0, denotes a null column vector (i.e.,
a column vector of Os) of appropriate order (including the order 1). An upper case letter
(such as A, P) denotes a matrix and t, when used as a superscript, indicates the
transpose. The specific symbols used here have the following meaning.

Symbol Meaning

A an m x n matrix [a;]
c ~ an n-dimensional vector or smlply n-vector [c,] ={c; cz.. ¢
b an m-vector [bj]=[b; by .. by
e avector[1 1 ..1] of appropnate order
s an m-vector [5;] = [s; Sz .. Su] of slack variables
v an n-vector [vi] =[v1 va..va] of surplus varlables
X an n-vector [x] = [X; X2 .. Xu]'
x* or y* k-th iterate of the vector x or y ,
XS or va*  k-th iterate of the u-th element of x or y
diag(xk) n x n diagonal matrix whose (i,i)-th element is x;
j=1(On  j=1,2,..n -
Il Euclidean norm
o ’ a real positive number < 1
5y,520 x>20,y>20s>0
Min (Meax) Minimize (Maximize)
X" minimum-norm least- squares inverse (p—mverse) of the matrix X

k

2. Introduction

A linear programming problem or, equxvalenﬂy, a hnear program (LP) is defined, in the
standard form, as -
' Min ¢'x subjectto Ax="h, x>0. (1)

The LP (1) is solved by the simplex method/revised simplex method/a variation of the
simplex method (exterior-point method) designed and developed by G. Dantzig during
early 1950s [Dantzig 1963, Beale 1955, 1968, Luenberger 1973, Gass 1975, Vajda 1974,
Murty 1976, Krishnamurthy and Sen 2000]. This method dominated the linear
programming scene solving millions of optimization problems in almost all scientific and
engineering areas. However, considerable amount of research went into this area and
many special-purpose algorithms were designed and used with a significant success. All
these algorithms are exponential-time (nonpolynomial-time). The simplex method is
exponential-time in the worst case. This implies that if an LP of size' n is solved by the
simplex method, there exists a positive number p such that for any n, an LP of size n

! The size of an LP could be defined as the nurmber of symbols needed to represent the LP in binary
notation.




can be ;51\/‘ed in at most p2" operations. The simplex mehtod may even enter into a
cycling (infinite loop) though very rarely [Beale 1955]. Efforts to develop a polynomial-
time algorithm for LPs did not meet -with any success till almost the end of 1970s. In
1979, L.G. Khachiyan reported the first known interior-point iterative algorithm called
the Ellipsoid method [Khachiyan 1979] to solve LPs. Then, in 1984, N. Karmarkar
. . 354 - . L . :

proposed the second polynomial-time O(n™”) interior-point iterative method [Karmarkar
1984, Hooker 1986, Murty 1989, Winston 1994] based on a projective transformation.

We provide here, without proof, illustration, and explanation, the conversion of any LP to
the Karmarkar form of LP (KLP) in Sec. 3. For the proof and illustration, one could refer
the foregoing concerned references. In Sec. 4, we present Karmarkar Algorithm (KA)
precisely and concisely so that one could simply solve an LP just by mechanically
following the steps. Here also we omit the proof as well as much explanation which are
available in Karmarkar’s paper [Karmarkar 1984]. Conclusions appear in Sec.5. A
MATLAB Version 5.1 program for the KA is appended for ready verification and feel

about the algorithm.
3. Conversion of an LP to KLLP

A standard LP (constraints in an equality form) or any LP whose constraints are in an’
inequality form can be converted to a KLP as follows.

Consider the LP -

Max z = c'x subjectto Ax<h,x20. (2)
The dual of LP (2) is

Min w= b;ty' subjectto Aly > ¢, y 2 0. 3)
From the duality theorem, we know that if the n-vector x is feasible in (2), the m-vector
y is feasible in (3), and the z-value in (2) equals the w-value in (3) then x is maximal
for (2). This implies that any feasible solution of the following set of constraints will
produce the maximal solution of (2). ’

cx~bly=0, Ax < b,Ay>¢c x,y20 (4)
Inserting slack and surplus variables into (4) we get

c'x — b'y=0, Ax +I;s=b, Aty—Inv =¢, Xy,5v20, (5

where s=[s; s . Sm]' is the m-vector of slack variables, v=[ v, v, ..va]' is the n-

vector of surplus variables, I, is the unit matrix of order m, and I, is the unit matrix of
order n. We now append to (5) yet another constraint such that the feasible solution of

(5) satisfies the equation
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K extey+testev+d =k (6)

where k is to be found/supplied such that the sum of the values of all the variables < k.
The variable d; >°0 is a dummy (slack) variable. This yields

¢'x-b'y=0, Ax+l,s=b, Aty—Inv=c exte'yre'ste'vtdi=k, x y,s,v,d 20, (7)

To make nonzero right-hand sides of (7) zero, we mtroduce yet another dummy variable
dp, where d; =1. Thus, we obtain

c'x-b'y=0, Ax+lns—Tnbdy=0, A'y-TLyv—I,cd,=0, e'xte'y+e's+e'v+di—kd,=0,
- e'xte'yre'stelviditd =k + 1, x, y,s,v,d;,d220 . (8

Allowing the following change of variables
x=(k+ Dx, y=(k+ Dy, s=(k+1)s’, v=(k+ 1)v', di=(k+ D/, dy=(k + 1)d7’
we obtain

c‘x'—by =0, AX'Hns'~Inbd'=0, A'y'-Lyv'~Ledy'=0, e'x'+e'y+elsy+e'v'+d'~kd;'=0,
'+ey'+e‘s’+ev’+d1'+d2 =1, x,y,s,v dlsdl 20 O

We now enforce that a solution (geometrically, a point in [2n + 2m + 2] dimensional
polytope [Lord et al 1996] defined by (S) ) that sets all variables equal is feasible in 9.
This is achieved by adding the third dummy variable ds’ to the last but one constraint in
(9) and then adding a multiple of d3’ to edch of its preceding constraints. This multiple is
chosen so that the sum of the coefficients of all variables in each constraint (except the
last two) equals zero. This yields KLP (10).

Min d3 sub]ect fo

c'x'~bly (e c—e ‘b)d3 =0, Ax'+Is'~Inbdy’ — [Ae + In(1-dy)e]ds'=0,
Aly'-Lv'-ILedy —[A e—In(l dg')e]d3 ’0 e'x'te'y+e's'+e'v'+d,/—kd,’ —(2n+2m+1-k)ds'=0,
ex'te'y'+e's'+e'v'+d; +dy + dy'= , xX,y,s,v,d/,d,d’20 - .. (10)

Observe that we cannot write the expressmn e'x'+e'y'+e's'+e'v’ as e'(X+y'+s'+v') since
the order of e' differs from X’ toy’, in general In the KLP (10) the solution (point) [x,’
' X Yy eeye s s s vV vl A &Y T =(1/2n+2m+3))e' is
feamble. Since d3’ should be zero in a feasible solution of (9), we need to minimize ds’ in
(10). If (9) is feasible then the minimum value of d3’ in KLP (10) will be zero and the
remaining 2n+2m+2 variables in a minimal solution of (10) will give a feasible solution
to (9). The values of xy, Xy, . ., X, in the minimal solution of (10) will produce an
optimal solution of the original LP (2). The KLP (10) is now ready for solution by the

KA.




Lxample Cénéider the LP Max c'x subject to Ax < b, x>0, where

A= [ 1 2 »1] b=17], o727, x= [xyx2 x5]' m=2, n=3.
~4 -2 3 L:z -7 _ '
T 2

From KLP (10), we have, choosing k=20 (conservatively) and setting x=21x; j =
I, yi=21yi’ i=1(Dm, s=21s i=1(1)m, vj=21v; j=1(1)n, d;=21dy’, d;=21d,’,
Min ds' subject to
2721200000 00 10[x] =[0]
121 0 010000 0-1 —4]||x 0
-4 -2 320 00 1 00 0 0-2 14" |x 0
OO~01—4OO-—100022y1’ -0
0002~2000—1007;6y2' 0
0 0 0 1::30 0 0 0-1 0 -2 ZFl|s 0
1 11171111 11 1=20 9} 0
1'1111111_‘11115"1, __1_4
Va2
L v
. dl,
dy’
ds’
- All variables > 0. |

The foregoing LP is the required KLP for the KA. Thus, without any confusion or loss of
generality, the general form of KLLP can be written as

- Min z=c'x subjectto Ax=0, e'x = 1, x>0, x = e/n is feasible, minimal z-value =0, (11) o
where the matrix A is m x n. We will be using this general form for the KA.
4. The Karmarkar Algorithm (KA)
Consider the KLP (11). Assume that a feasible solution having a minimal z-value <g (e
is a small positive value compared to the average element of A, b, ¢) is acceptable. The
KA is then as follows.
Step 1 Input A, b, ¢, m, n. Set n-vector e=[1 1.: 17

Step 2 Set the feasible point (solution) x° = e/n, the iterate k = 0.

Step 3 If ¢'x*<¢ then stop else go to Step 4.
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Step 4 Compute the new point (an n-vector) ¥ in the transtormed n-dimensional unit
simplex S (S is the set of points y satisfying e'y=1, x> 0) given by

¥ =5 — ae/[Vam-1)lle |,
where

¢, = (L~P'(PPY P)[diag(x)]c, P = Ex{diagt(xk)]],' 0<a<1.
€

a=10.25 is known to ensure convergence. Pis the (m+ 1) x n matrix whose last row el
is a vector of 1s. (PP')" is the p-inverse (Lakshmikantham et al 1996) of the matrix PP

Step 5 Compute now a new point x! in the original space using the Karmarkar
Centring transformation to determine the point corresponding to the point ¥

x = /()
q = [diag(x)]y""".

Increase k by 1 and return to Step 3.

where

Remark The computation of x*'! ip Step 5 may equivzﬂenﬂy be written as ! =
Xjky_jk+l/Z(thYtk+l) J= 1(1)n, where the summation runs from t = 1 to n

-

Example Consider the example of Sec. 3. If we now call the 8 x 13 matrix A, the left-
hand side 13- vector x, and the right-hand side 8-vector b then the KA gives us, in the
first iteration, ' ’

¥ =[0672 0683 .0701 .0753 .0709 .0706 0770 0692 .0824 .0733 0769 .0750 07817,
x' = [.0068 0 .0408 .0136 .0272 0 0 0°3061 0 5578 0476 0%

To obtain 4 decimal places accuracy in_the elements of X, we need to'go up to 1247
iterations. Thus, retaining the elements of x correct up 4 places, we have

x**=[.0068 0 .0407 .0139 .0272 .0003 0001 .0006 .3066 .0001 .5560 .0476 0]

Observe that here x=[x;" %, X'y oy st s v vy vy dy dy’ d3']". Hence x,’ =
.0068, X2'=0,..,ds’ =0. Thus the required (true) solution correct up to 3 places is,
noting that k= 20, x; = 21x), x2= 21y, .., dy = 21dy’,

[Xi X2 X3 Y1 Y281 82 Vi v v3 d dz d3']t .
= [.143 0 .855 292 571 .001 .003 012 6.439 .002 11.675 1 .001]‘.

Ainan (:.'S e (O\’G ) [“‘) ) ) = AL ;L} ~AA a/{C_
. X ] ~L/ '
R e VO
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5. Conclusions

Need for d5' Tt is not readily seen a priori that the original LP is feasible. If it is known
that the LP is feasible then we need not bring d;" in the KA at all. If the LP is not feasible
due to inconsistency in the constraints and we do not use dy’ then we will end up getting
incorrect solution. While the simplex algorithm needs artificial variables to tackle/detect

inconsistency in the constraints, the KA needs dy’.

Enhanced dimension of KLP If the original LP is in an inequality form (Ax < b) then the
corresponding KLP will have 2(n+m)+3 variables where A is m x n. Clearly there has
been an increase of n+2m+3 variables (and hence the increase in the dimension of the
polytope defined by Ax < b, x> 0) over the original LP. If, on the other hand, the
original LP is in an equality form (Ax = b) then the corresponding KLP will have
relatively small dimension. , . )

Non-feasibility of error-free computation The KA needs the computation of (n(n-1))
which cannot be computed exactly, in general. Hence, unlike simplex and other methods
[Lakshmikantham et al 1993, 1997, 2000], the KA is not amenable to error-free
computation. :

Polynomial-time noniterative algorithm — an open problem The KA is polynomial-time
iterative needing clearly too. many iterations -compared to the. simplex algorithm. A
mathematically noniterative (direct) polynomial algorithm for an LP is still an open
problem However, a heuristic direct polynomial algorithm which is significantly useful
in solving many real world LPs does exist [Sen and Ramful 2000]. It may be seen that the
nonnegativity condition (x20) is thé feal difficulty in the way of developing direct
algorithm.

Farallel implementation The KA is rélatively easy to be implemented/programmed on a
-parallel machine unlike the simplex method.

General Observe that max ¢'x is the same as min —c's. There has been a surge of
interest among scientists/operations researchers to relook into the LP after the publication
of the KA in 1984 [Renegar 1988, Lord et al 1996, Hooker 1986, Barnes 1986, Sen et al -
1995, Murty 1989]. Consequently, there have been several inerior-point polynomial-time
iterative algorithms (which are indeed excellent) reported in the literature. We do feel
that a through conceptual knowledge of the KA, specifically from the geometrical point
of view, is not only refreshing and enjoyable but also an important basis for further
research in linear optimization. f
: Appendix
MATLAB Program for Karmarkar Algorithm (KA)

AMATLAB 5.1 version program for the KA is presented below for the reader to readily
check the algorithm for different kind of LPs including extreme ones (not large) and get a
feel of it. No effort has been made to make the program more efficient so as to differ
from the KA presented here. Observe that a MATLAB program is-not meant to solve




really large LPs. The inputs to this program are A, b, ¢, k (a parameter that differs from
problem to problem), m, n.

function[ ] = kannarkar(A,b,c,k,m,n);

%A isan mxn matrix; e=n-vector of Is needed later. :

%This is KA for the LP .min z= c x s.t. Ax=0, x>=0, e’ x=1, x=e/n is feasible, o ‘b .
Yominimal z-value=0. k =20 here, k differs from problem to problem. » @&zb;zg’ 5/
e=ones(n, 1); x0=e/n; x=x0; alp=0.25; I=eye(n);&ps=0.00003) n2=sqri(n(n-1)); ™ '
%eps=0.00005 should be replaced by eps=0.00005*(average of the elements of ADb, & ¢)

Yofor 4 significant digit accuracy in the solution (not the true sohition) by KA.

for j=1:3000
i T |
string ' eps, iteration no., x '
eps, J, x'
break
end
P=[Axdiag(x);e’]; -
cp=(I—-Pl'*pinv(P *P)*P)y*diag(x)*c;
y=x0—-alp*cp/(n2*norm(cp));
q=diag(x)*y,
x=q/(e™*q); - :
string 'The iteration no. and solution are'
j’ X'
end;
xt=(k+1)*x;
string 'The iteration no. and true solution are' :
xt' . e ' . N . Co
/J\:#nxy j T he ﬁj}’?i L\,W’) ﬂ;m c(/ugyrg Lf o i %hgﬁ"@am\f KQ\\?/;f
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