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Abstract

The constant growth in complexity of real-world engineered systems has led to the concurrent
development of software tools to store and reuse the knowledge for simplifying the creation
of such systems. Software models that encode structure and behaviour of components in the
system and the system itself are currently being developed based on the techniques prescribed
by Model Driven Engineering (MDE). We use concepts in MDE to develop modelling formalisms
to create models of a target Engineered Physical System (EPS) at different levels of abstrac-
tion. Each level of abstraction presents a certain view of the EPS to a domain expert in the
development team. For instance, a high-level view is suitable for a person in a managerial role.
An engineer who deals with the same system at a lower level of abstraction develops a mo-
del using idealized physical components. A physicist’s concern is the physical meaningfulness
of the model. The physicist’s model verifies if the model prescribed by the manager via the
engineer adheres to the laws of conservation of energy and momentum. Finally, a mathema-
tician or a computer scientist obtains a solution to the dynamical system (which is usually a
set of Differential Algebraic Equations provided by the physicist) by solving it analytically or
numerically.

We also present transformations to automatically transform the model of an EPS in a high
level of abstraction to one at the behavioral level. Therefore we have two phases in the MDE

based framework. The first phase is the development of a modelling language at each level of
abstraction. We specify modelling languages, to constrain modellers, using visually expressed
meta-models and textually expressed constraints. The high-level description of an EPS is speci-
fied using the High-level Physical System Model (HLPSM) modelling language. The ideal physical
components in the EPS and their interconnection with each other is modelled using the Idealized

Physical Model (IPM) modelling language. We specify the Hybrid Bond Graph (HBG) modelling
language for developing a physical domain-independent modelling language for encoding the
energy flow structure in the EPS. We then use the Modelica physical modelling language to
represent the set of equations obtained from a HBG model. Finally, a model in the Trajectory

modelling language represents the behaviour of the high-level EPS model. The abstract syntax
of models in all the visual modelling languages, namely, HLPSM, IPM, and HBG are represented
using hierarchical labelled graphs.

In the second phase we specify model transformations to automatically transform models from
high to low abstraction levels. The transformations are performed via graph rewriting on the
abstract syntax graph representation of models. Graph Grammar (GG) rules with pre-actions,
post-actions, and pre-conditions are used to define the transformations between models of visual
languages. The final transformations involve code generation and simulation/execution of low-
level models to obtain the behavior of the model. The model transformation MT HLPSM 2 IPM

maps a model conforming to HLPSM to one that conforms to IPM. The transformation MT IPM 2 HBG

maps IPM models to those that conform to HBG. An internal transformation MT HABG 2 HCBG

assigns causality to an acausal HBG (HABG) model which results in a causal HBG (HCBG).
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This transformation gives us some insight into the physical meaningfulness of the initial model.
Modelica code is generated from the HCBG via the transformation MT HABG 2 HCBG. The
Modelica code is an object-oriented representation of a system of Differential Algebraic Equa-

tions (DAE). The DAEs are solved via the transformation MT Modelica 2 Trajectory which is
nothing but the simulation of the model. The result is a set of plots in the Trajectory language
that describes the behavior of the system.

Many times the complexity of a target model is so high that it is difficult for a team of modellers
to come up with an optimal model for a specific task. Under such circumstances the need for
automatically modifying an existing basic model to obtain optimal models becomes useful.
We extend this study to explore the model design space created by the meta-models for each
modelling language. A point in a model design space is a model represented as the abstract
syntax graph. Therefore, a model design space is a space of graphs. A modification to an
embryonic model in the graph form is done via the application of mutation operators to the
model. If a mutation operator results in a graph that does not conform to the meta-model or
does not satisfy its constraints then the model is outside the model design space. We present a
set of mutation operators MT Heuristics HBG described as GG rules to transform HBG models
for exploration of their design space. A genetic algorithm is executed to construct optimal plans
that comprise of these mutation operators. We present our results for the evolution of the model
of simple hoisting device.

Our MDE based framework is an introduction to a new approach for automating a large part of
the design and development of EPSs. This framework is based on visual languages and graph
rewriting making it viable to quick model and transformation specification due the graphical
nature of the models as opposed to textual programs. This framework although currently
describes a complete methodology to model electro-mechanical EPSs, can be extended to other
physical domains such as hydraulics, chemical and thermodynamics.
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Introduction

Science and engineering have evolved hand in hand, one complimenting the other’s development.
Everyday there is new knowledge and new technology. With the growth in technology there is
also a steady growth in complexity of engineered systems in the real-world. A desktop computer
and the Internet are examples of a very complex real-world systems. The need to reuse and
store the art and the science of developing complex devices of today has led to the development
of software that encode engineering principles and scientific laws.

Modelling languages are used to represent software models or simply models of real-world
systems. Practical examples of modelling tools include high-level programming langauges for
software and visual languages to model domain-specific systems. Modelling Engineered Physical

System (EPS) especially for its application to the construction of embedded systems has led
to development of several modelling tools. Notably, MATLAB Simulink [Mat] and Modelica

[Mat97] are widely used for modelling and simulation of plant-controller systems. Simulink now
is packaged with several libraries with visual modelling elements to build very sophisticated
and accurate models. Simulink libraries to model the signal domain for electrical circuits
and controllers have been under extensive use in both industry and academia. Modelling
libraries such as SimMechanics [GW03] and SimHydraulics [sim] are new additions to Simulink’s
repertoire for modelling mechanical and hydraulic systems. Modelica is an object-oriented
language for modelling physical systems. A Modelica model is represented as a set of state
variables and equations (or laws). This allows the modeller to encode the behavior as physical
law equations and constraints instead of functions or operations in traditional object-oriented
languages. Therefore, the modeller does not have to specify the causality of operation. The
causality is automatically assigned via computer algebra. The non-causal nature of Modelica

is the key feature that distinguishes it from Simulink. Modelica is rapidly gaining popularity
for its application to modelling EPSs and embedded systems.

The existing modelling languages seem to provide domain-specific libraries are written in a
Turing complete high-level programming language and the modeller is unconstrained. This
makes it easy for an experienced modeller to encode knowledge in his/her domains in the same
language, such as Matlab m-scripts. Same is the case with Modelica. The programmer will have
to minimize the number of errors he commits for writing a tool for a specific domain. He/she
can achieve this by writing several test cases and by using an implicit style of programming to
write modelling elements. This implicit style or pattern is nothing but a mix of the modeller’s
experience with the domain and his prior experience with writing equivalent libraries. This
approach leaves the domain knowledge in subjective form either in the modeller’s mind, in text,
or as a high-level program that knows nothing about the domain. The only responsibility of
the program is to execute logically. These are the problems plaguing most existing tools. A
domain expert with such a tool in his hand will have the freedom to build anything without
any conceptual feedback (simple errors are always reported) about the meaningfulness of his
model. Therefore we ask, can the modeller be explicity constrained given the structural and
behavioral knowledge we have about the target domain?

To answer this question we present Model Driven Engineering (MDE) based techniques [Ken02]
to develop domain-specific modelling languages for EPSs. These languages constrain a modeller
to his/her domain allowing the creation of mostly valid models. A meta-model with textually
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expressed constraints is first constructed to specify the set of valid models. A domain-specific
modelling language is then synthesized from the meta-model plus constraints specification. We
use meta-modelling to synthesize visual modelling languages [CLOP02] that allow the creation
of models at a visual abstraction level. A meta-model is analogous to a grammar used to
specify the syntax for textual programming languages. A model specified in one visual language
is transformed to a model specified in another visual language via graph rewriting [HER99].
This process in general can also be called model transformation Using this framework of meta-
models, modelling languages, and graph rewriting we separate the process of engineering a
physical system into several steps.

The automatic synthesis of a modelling language from a meta-model specification and the
graphical nature of model transformations presents a key difference with respect to existing
modelling tools such as Simulink and Modelica. Further, the constrained nature of a mod-
elling language makes it very easy for a domain expert to master the language and minimize
development errors.

We finally present a set of Graph Grammar (GG) rules to modify physical system models.
These rules are designed to be automatically executed by a genetic algorithm. A plan that
comprises of a set of GG rules is executed to evolve a model to meet specific design criteria or
a fitness function. This is an attempt to investigate answers the long-standing question “ Can
a computer replace or augment human invention ?”. The constrained space of models specified
by a meta-model is the search space for exploration by various artificial intelligence planning
techniques. Our preliminary attempts to search the space of EPS models is presented in this
thesis.

In Chapter 1 we present the development of modelling languages used to develop EPS models
at different abstraction levels. This is followed by Chapter 2 that presents the model trans-
formations to transform models between visual languages. In Chapter 3 we present a set of
GG rules for exploring the design space of EPS models. In the same chapter we present a
genetic algorithm and preliminary results for design space exploration for a simple example.
We conclude in Chapter 4.



1
Modelling Languages for Engineered Physical

Systems

1.1 Introduction

Today, modelling is the first step taken toward realizing a complex real-world system. This said,
we ask, how do we express a model ? We need a language or a modelling language to express
a model. A modelling language specifies the syntax that all its model must adhere to. The
syntax of a modelling language is specified by a meta-model (for visual languages) or grammar
in Backus-Naur Form (for textual languages) [BJV60]. An immediate next question is, how
do we express the syntax of the meta-model itself? Obviously, we need to express this too in
another modelling language. Such a language is specified using a meta-meta-model. But, does
this hierarchy of languages that express models of other languages not stop? The answer is,
yes it does. A modelling language specified by a meta-meta-model is usually expressive enough
to express itself. As, we can see there are three levels of models: model, meta-model, and
meta-meta-model. A model is an instance of a modelling language specified by a meta-model.
A meta-model is an instance of a modelling language specified by a meta-meta model. The
meta-model for a meta-meta-model can be expressed using the modelling language specified by
the meta-meta-model. This is called bootstrapping.

Before we start discussing the modelling languages used to model an Engineered Physical System

(EPS), it is important that we understand the role of a meta-meta-model in the MDE framework.
The industry standard for the meta-meta-model is Meta-object Facility (MOF) [OMG03]. The
architecture for MOF and Essential Meta-object Facility (EMOF) are shown in Figure 1.1. The
EMOF is used to describe meta-models and hence is our focus. Other parts of the MOF are
implementation details that are not of conceptual concern and are not used to describe our
meta-models.

The EMOF suggests that a meta-model comprises of classes and these classes are associated
with properties. A property can be an attribute or a reference. An attribute is of primitive
type and can either be a Float, Integer, Boolean, or a String. Although, the official EMOF does
not contain a definition for Float, we have introduced it in our meta-models to express real
variables. A reference is a relationship end between two classes. The reference in a class to an
object of another class is used to express complex types in a class. A reference is associated
with a multiplicity that constrains the number of objects that could be referred to.

An inheritance relationship between classes can exist where the properties of a super-class
are inherited by its sub-classes. An inheritance between the super class and a sub class is
represented using a arrow with a white triangular head at the super-class end of the inheritance
relationship. For instance, the class State inherits properties of class AbstractState as shown in
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Figure 1.1: The Meta-object Facility
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Figure 1.2: Attributes View of Abstract Syntax Graph of HFSM Model

Figure 1.3: References View of Abstract Syntax Graph of HFSM Model

the Figure 1.4. A containment relationship or a composition is a special kind of relationship
which enforces the constraint that the container class strictly contains a certain number of
objects of an other class. An attempt to create a model where a contained class attempts to
contain its container will result in an error when the meta-model is processed. A containment
relationship between a container class and the contained class is expressed as an arrow with
a black rhombus head. For instance, the class HFSM is a container for the contained classes
AbstractState and Transition as shown in the Figure 1.4.

The meta-model, which is a model of EMOF, is not expressive enough to incorporate arbitrary
constraints that are invariants, pre-conditions, and post-conditions during model generation
or transformation. These constraints that restrict the properties of a model are expressed
using a constraint language such as Object Constraint Language (OCL) [OMG] or a high-level
programming language such as Python. We express constraints as Python code.

We present the meta-models of three visual languages, used to model the same Engineered

Physical System (EPS), as instances of EMOF: High-level Physical System Model (HLPSM) in
Section 1.2, Idealized Physical Model (IPM) in Section 1.3, and Hybrid Bond Graph (HBG) in
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Figure 1.4: EMOF Meta-model for Hierarchical Finite State Machine

Figure 1.5: An Example HFSM Model in Concrete Visual Syntax

Section 1.4. Visual modelling languages are synthesized from these meta-models. A model
specified using a visual language is expressed in two ways. The model has a concrete visual
syntax and an abstract syntax graph representation. The concrete visual syntax of a modelling
language is a domain-specific visual notation used to describe the entities in the model. The
abstract syntax graph is a hierarchical labelled graph as implemented in the Himesis sub-graph
matching kernel [Pro05].

An Himesis graph comprises of nodes and connections. There are two types of nodes, either just
a node or a primitive node. Each node is associated with a label and a unique name. Primitive
nodes have an extra property called the value. The value in a primitive node stores the value of
a primitive data type such as String, Float, Boolean, and Integer. Everything in a valid graph is
a graph in its own right as a single node is a graph too. There are two kinds of connections. A
parent-child edge between nodes is used for representing hierarchy. A connection edge between
nodes is used to represent a link between graph nodes. An object that is an instance of a class
can be constructed using a graph node representing an empty object (referred to as object
node) and its attributes and references created as nodes that are linked to the object node
using a parent-child edge where the object node is the parent and the attributes and references
are its children. A relationship between related objects is created by a connection edge between
the associated references in two classes.



1.1 Introduction 9

Figure 1.6: Object Diagram for the HFSM Model

We use the Hierarchical Finite State Machine (HFSM) modelling language as a toy example to
illustrate the types of model representation. The meta-model for HFSM is shown in Figure 1.4.
A model HFSM which is an instance of the meta-model is shown in Figure 1.5. In the MDE

and software engineering community it is common practice to represent the model in computer
memory as an object diagram as shown in Figure 1.6. The abstract syntax graph for the model
is split into two figures. In Figure 1.2 we see the attributes view of the abstract syntax graph
of the example model. In Figure 1.3 we see the references view of the abstract syntax graph
of the example model. The attributes are connected to the parent object using a parent-child
edge which a directed dotted blue line. For instance, in Figure 1.2, isFinal is an attribute of
StateObject2 which is an object of the State class. A relationship is a black connection edge
between two graph nodes. For instance in Figure 1.3 we see that outgoingTransition reference
of StateObject2 is connected to source reference of TransitionObject5. The label, name
and value of each attribute node or primitive node is specified in the abstract syntax graph.
Similarly, the label and name for a node is also specified in the visual representation.

The representation of an EPS model, as code that describes the Differential Algebraic Equations

for the system, is expressed in a Modelica program. We briefly discuss the grammar for Modelica

in Section 1.5, which is in essence the meta-model for Modelica. The behaviour of a model is
expressed as an instance of the Trajectory language. The Trajectory language is a visual language
consisting of plots that show the time-dependent behaviour of the state variables in the model.
A meta-model for Trajectory is described in Section 1.6.

The running example of a Hoisting Device [Bro] is used to illustrate the models of the same
system in all the modelling languages.
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Hoisting Device

AC Mains
Motor

Domain−specifc Model of Hoisting Device

Pulley

Load

Modeller

Figure 1.7: The First Model of a Hoisting Device

1.2 High-Level Physical Model Modelling Language

A modeller begins the modelling process by visualizing the system at a high-level of abstraction
where he/she sketches the top-level components of the system. This form of modelling is
typically done by someone in a managerial role. In Figure 1.7 we show an actual hoisting
device and a possible high-level physical model as imagined by a modeller. The high-level
model comprises of visual syntax to represent the electrical mains, the motor, the pulley and
the load. The high-level visual notation implies that the high-level model is domain-specific.

Our goal is to provide the modeller with domain-specific modelling tools to realize his imagi-
nation in the form of a model with syntax and semantics. A meta-model is first developed to
specify the properties of the objects we see in a high-level view of the physical system. An ex-
tension to the meta-model are special constraints one may observe in the system. For example
a power outlet can be only connected to a compatible power inlet, a mechanical device cannot
be connected to an electrical device without an intermediate transducer. An EMOF based
meta-model for the HLPSM modelling language is shown in Figure 1.9. Note that the HLPSM

meta-model is given only to consist of components of a hoisting device. It can be extended to
other domains simply by changing the classes in the diagram according in the system.

The top-level container class in the meta-model is the HLPSM class. There always exists one
HLPSM object in any model as indicated by the multiplicity in the meta-model. A HLPSM object
can contain 0 or 1 Plant objects and is associated with a name. A Plant object consists of 0
to any number (represented by a * in the EMOF model) of PlantEntity objects. The classes
that inherit from PlantEntity are the domain-specific components in the system. According to
the meta-model the Mains class is connected via a Wire to Motor. The Motor class is connected
to a CableDrum class via a Shaft class. The CableDrum class subtends a Load class using a Rope

class. It can be observed that due to the multiplicities the modeller is highly restricted and
can only build structurally valid hoisting devices.

A visual modelling environment is automatically synthesized from the meta-model and con-
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Figure 1.8: Screenshot of HLPSM Visual Modelling Environment

straint specification of the modelling language. We use the tool AToM3 [VdL04] to achieve
this transformation where a visual editor is synthesized from the meta-model. In Figure 1.8 we
see the visual editor for HLPSM models. The visual editor performs syntax directed checking
implying that it checks if the modeller, as he/she is constructing the model, is violating a local
constraint such as going outside the multiplicity bounds.

The underlying Abstract Syntax Graph of a HLPSM model is expressed as a hierarchical labelled
graph. Any transformation to the model is performed on the abstract syntax graph. The
meaning or the semantics of the HLPSM language is given by transformation to the Idealized

Physical Model modelling language as discussed in Chapter 2, Section ??.

In Figure 1.10(a) we show an example model of the HLPSM for building electro-mechanical
hoisting devices.

The HLPSM model is given to an engineer who constructs an Idealized Physical Model (IPM)
from it. The IPM modelling language is described next.

1.3 Idealized Physical Model Modelling Language

Following the development of a high-level physical system model, the modeller associates mean-
ing with the components of the domain-specific physical model by dissecting it into components
with idealized physical behavior. A domain expert for creating such a model would be an en-
gineer or a group of engineers (mechanical, electrical, chemical). An Idealized Physical Model

(IPM) is constructed such that the model consists of only ideal elements with well defined
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Figure 1.9: EMOF Meta-model and Concrete Visual Syntax for HLPSM to Model Hoisting
Devices

Figure 1.10: Hoisting device model in the HLPSM formalism
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physics. In our case we restrict our systems to lumped-parameter models where aggregate phe-
nomena is described using classical physics [Mac03]. An EMOF based meta-model is specified
for the Idealized Physical Model modelling language. The IPM modelling language in general
constitutes entities from different engineering domains: electrical, mechanical, hydraulic, chem-
ical, and thermodynamic. We present the IPM meta-model to model electro-mechanical systems
comprising of electrical, translational mechanical, and rotational mechanical components. An
extension to the hydraulic, chemical, and thermodynamic domains is straightforward if a similar
meta-modelling pattern is followed.

1.3.1 The Electrical Domain

The electrical domain in the idealized physical modelling language contains two-pin electrical
components such as resistors, capacitors, inductors, voltage, and current sources. Every elec-
trical component consists of a positive pin and a negative pin. A positive pin can be connected
using a wire to a negative pin only and vice versa. An electrical circuit is a combination of
electrical components connected by wires. Voltage and current are conjugate variables that
carry energy in an electrical circuit.
There are many different sources (voltage or current) of electrical energy. They are distin-
guished based on input wave forms and functions. For instance, we can have a constant energy
source, a table with a set of energy values that are interpolated over time, or a sinusoidal wave-
form commonly observed in alternating supplies. Resistors are energy dissipators that convert
part of the input electrical energy to heat energy. Energy is lost only from a resistor since all
other elements are ideal. Energy storage components are capacitors and inductors. Capacitors
store current and inductors store voltage.
Electrical energy is transformed to rotational mechanical energy using a motor. Therefore, a
motor has a positive pin, a negative pin and a mechanical output pin. An electrical transformer
steps up or steps down input electrical energy and the output is electrical energy as well. An
electrical transformer has two pairs of positive and negative pins. A generator converts rota-
tional mechanical energy to electrical energy and has a mechanical input pin. To represent the
physical concepts in the electrical domain we construct a meta-model for the electrical part of
the IPM modelling language. The electrical domain meta-model is shown in Figure 1.11.
Looking at the meta-model we see that the IPMElement class is the super-class for all IPM com-
ponents. The IPMElement class consists of two properties, Element and Type. In the electrical
domain the value of Type is “Electrical”. ElectricalElement inherits from IPMElement and con-
tains the property Value. The content of Value depends on the nature of the classes inheriting
ElectricalElement. For instance, a resistor will store the resistance in Value and a capacitor will
store the capacitance.
There are two types of components in the electrical domain. The first is a TwoPin class of
objects that inherits from the ElectricalElement class. The second is the ElectroMechEnergy-

Transform class which acts as an interface between electrical and mechanical devices and is a
super-class for devices that act as transducers.

Every object of type TwoPin contains the properties PositivePin1 and NegativePin1 which are
graph nodes used for connecting two objects in the electrical domain. In the model they repre-
sent ports of connection. Two sub-classes of TwoPin are Resistor and Earth. The TwoPin class is
further categorized as TwoPinStorage and TwoPinSource. The sub-classes of TwoPinStorage in-
clude the electrical Capacitor and Inductor. The InitialValue property for TwoPinStorage elements
contain the initial amount of energy stored in the device. The sub-classes of TwoPinSource in-
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Figure 1.11: IPM Modelling Language Meta-model for the Electrical Domain

clude voltage sources and current sources. The voltage sources are Voltage, tableVoltage, and
sinVoltage. The current sources are Current, tableCurrent, and sinCurrent. The class tableVoltage

contains three attributes which have a graph representation. The properties are table, offset,
and startTime. Similarly, other TwoPinSource classes have their own attributes as shown in the
meta-model.
The ElectroMechEnergyTransform class is inherited by three kinds of energy transformers namely,
Motor, Transformer, and Generator. The ElectroMechEnergyTransform class has the properties
PositivePin1 and NegativePin1 as ports. The Motor class has MechOutPin1 for electrical to
mechanical energy conversion. The Generator class has a MechInPin1 node for mechanical to
electrical energy conversion. The Transformer class represents an electrical transformer that
steps up or steps down voltage and has additional port nodes PositivePin2 and NegativePin2.

The concrete visual syntax for the concrete classes presented in the electrical domain part of the
IPM meta-model is shown in Figure 1.12. The concrete visual syntax for the concrete classes
in the electrical to mechanical energy transformation meta-model is shown in Figure 1.13.

1.3.2 The Translational Mechanical Domain

The translational mechanical domain consists of mechanical devices that operate on the basis of
linear/translational force and velocity applied to it. Each mechanical device has an mechanical
input port and a mechanical output port. A translational mechanical damper provides resis-
tance against an input force or a velocity. Force is stored in a translational mechanical spring
while momentum is stored in a translational mechanical inertance such as mass. Sources of
translational mechanical forces and velocities have a mechanical output port. These concepts
are modelled in the translational mechanical part of the IPM meta-model as shown in Figure
1.14.

Like the electrical domain element a translational mechanical element TranMechElement in-
herits from the super-class IPMElement. The TranMechElement class has properties Value and
Unit. The contents of Value and Unit depend on the sub-classes of TranMechElement. The Tran-
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Figure 1.12: Concrete Visual Syntax for Electrical Elements in IPM

Figure 1.13: Concrete Visual Syntax for Electrical to Mechanical Elements in IPM
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Figure 1.14: IPM Modelling Language Translational Mechanical Domain Meta-model

MechTwoPin class inherits the properties of TranMechElement. The TranMechTwoPin class and
its sub-classes share the common properties MechInPin1 and MechOutPin1. The TranDamper

class directly inherits from the TranMechTwoPin class.
The TranMechStorage class contains the property InitialValue. It is inherited by TranSpring and
TranInertance. The TranMechSource class has sub-classes for force and velocity sources as shown
in the meta-model. The properties of the sub-classes of TranMechSource sources are equivalent
to those of the classes in the electrical domain and rotational mechanical domain.

The concrete visual syntax for the concrete classes in the translational mechanical domain part
of IPM is shown in Figure 1.15.

1.3.3 The Rotational Mechanical Domain

The rotational mechanical domain consists of mechanical devices that operate on the basis of
the torque and angular velocity applied to it. Each mechanical device has an mechanical input
port and a mechanical output port. A rotational mechanical damper provides resistance against
an input torque or an angular velocity. Torque is stored in a rotational mechanical spring while
momentum is stored in a rotational mechanical inertance such as rotational inertia. Sources
of rotational mechanical torques and angular velocities have a mechanical output port. These
concepts are modelled in the rotational mechanical part of the IPM meta-model as shown in
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Figure 1.15: Concrete visual syntax for translational mechanical elements in IPM
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Figure 1.16: Idealized Physical Modelling formalism Rotational Mechanical Domain Meta-model

Figure 1.16.

The RotMechElement inherits from the IPMElement class. The RotMechElement class has prop-
erties Value and Unit. The contents of Value and Unit depends on the sub-classes of RotMechEle-

ment. For instance, a RotDamper object will have the units of Nm/s¿ The RotMechTwoPin

class inherits the properties of RotMechElement. The RotMechTwoPin class and its sub-classes
have share the common properties MechInPin1 and MechOutPin1. The RotDamper class directly
inherits from the RotMechTwoPin class.

The RotMechStorage class contains the property InitialValue. It is inherited by RotSpring and
RotInertance. The RotMechSource class has sub-classes for torque and angular velocity sources
as shown in the meta-model. The properties of the sub-classes of the RotMechSource are
equivalent to those of the classes in the electrical domain and translational mechanical domain.

The concrete visual syntax for the concrete classes in the rotational mechanical domain part
of IPM is shown in Figure 1.17.

Transducers for transforming mechanical energy to mechanical energy are inherited from the
MechEnergyTransform class. Unlike the electromechanical transducers the mechanical to me-
chanical transducers have an input port MechInPin1 and an output port MechOutPin1. The
Cantilever scales up or down translational mechanical energy. The MechGear scales up or down
rotational mechanical energy. The Pulley transforms rotational mechanical energy to transla-
tional mechanical energy. The Pump transforms rotational mechanical energy to pneumatic
energy. The Turbine is responsible for transforming pneumatic energy to rotational mechanical
energy. The concrete visual syntax for the concrete classes for the mechanical to mechanical
transducers is given in Figure 1.18.

A visual modelling environment is synthesized from the meta-model using our tool AToM3. A
screenshot is shown in Figure 1.20. The model of the hoisting device in IPM is shown in Figure
1.19.
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Figure 1.17: Concrete visual syntax for rotational mechanical elements in IPM
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Figure 1.18: Concrete Visual Syntax for Mechanical to Mechanical Elements in IPM

Figure 1.19: IPM Model of Hoisting Device
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Figure 1.20: A Visual Modelling Environment Synthesized for IPMs in AToM3
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1.4 Hybrid Bond Graph Modelling Language

Models in the IPM modelling can directly be given concrete mathematical meaning in the form
of Differential-algebraic Equations (DAE) or Ordinary Differential Equations (ODE). An alternative
we take is to transform the IPM first to the Bond Graph (BG) modelling language. The BG

modelling language can be used to verify the model’s physical meaningfulness. This is done by
verifying the laws of conservation of energy and momentum via causality assignment.

The Hybrid Bond Graph (HBG) modelling language comprises of the Bond Graph (BG) mod-
elling language for plant modelling and the Causal Block Diagram(CBD) modelling language for
controller modelling. Therefore, in general a HBG model can comprise of a BG sub-model and
a CBD sub-model or just either one of them. The hybrid in HBG is due to the combination
of CBD and BG elements in one language. The interface between the CBD sub-model and the
BG sub-model is due to two possibilities. Certain components of the BG plant model are either
sensed (diagnostic BG elements) and processed by the CBD model or controlled (modulated
BG elements) by it. A HBG without causality assignment is called the Hybrid Acausal Bond

Graph (HABG). The hoisting device example in HABG is shown in Figure 3.9. After causality
assignment it is called the Hybrid Causal Bond Graph (HCBG). The hoisting device in HCBG is
shown in Figure 1.24.

The EMOF based meta-model for the BG part of the HBG modelling language is shown in
Figure 1.21. The CBD part of the meta-model is shown in Figure 1.27. A visual modelling
environment is synthesized from the meta-model specification. A screenshot is shown in Figure
1.25. The visual syntax for HBG is shown in Figure 1.23. We start our discussion on the
HBG modelling language by explaining the BG modelling language. This is followed by an
explanation of the CBD modelling language.

1.4.1 The Bond Graph Modelling Language

The Bond Graph modelling language is a domain-independent graphical representation of energy
flow structure in a physical system. The domain independence means that physical systems
from different domains such as electrical, mechanical, hydraulic, chemical, and thermodynamics
are all modelled using the same notation and give rise to equivalent dynamical equations. The
BG formalism was first developed by Paynter [H.M61]. The idea was further popularized by
Karnopp and Rosenberg [DKR00]. Today, it has evolved into a systems theory under the
name of Port Hamiltonian Systems [Mac03] which uses Generalized Hamiltonian Formulation
to model plant and controller systems.

The BG modeller is given the Idealized Physical Model1 of a physical system. The modeller first
identifies the elementary physical concepts from the IPM. This process is called reticulation.
A concept or BG element manipulates energy. Energy, is an aggregate phenomena [Zun94],
which can be calculated in many domains: electrical, mechanical, chemical, hydraulic, and
thermodynamic. A BG element can be an energy source, energy store, energy transformer, or
an energy dissipator irrespective of the domain. Also, the mathematical equations describing
the energetic behaviour of the BG elements are identical for equivalent physical concepts across
domains. Energy is exchanged between the BG elements via bonds connected to a junction
structure.

The BG modelling language is now explained with the help of an example. The example,
shown in Figure 1.26 is designed to show how idealized physical models from different domains

1Idealized Physical Model (IPM)
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Figure 1.21: Hybrid Bond Graph meta-model for the Bond Graph formalism
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Figure 1.22: Hybrid Acausal Bond Graph

Figure 1.23: Concrete visual syntax for HBG
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Figure 1.24: Hybrid Causal Bond Graph

Figure 1.25: Screenshot of Visual Modelling Environment for HABG in AToM3
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(electrical and mechanical in this case) become domain-independent when transformed to the
BG modelling language. Two systems are considered in the example of Figure 1.26. First, we
have a purely electrical serial LCR (Inductor, Capacitor, Resistor) circuit as shown in Figure
1.26(a). The second system is a purely mechanical damped mass-spring system as shown in
Figure 1.26(b).

We transform the LCR circuit to an electrical domain BG in the following steps:

1. Draw the electrical domain elements, separating them by their positive and negative pins.
These elements appear in rectangular boxes as shown in Figure 1.26(c).

2. We now attach a port called a power port with each of these rectangular boxes containing
electrical elements.

3. To this port we connect a bond or a power bond that denotes the exchange of energy
between elements. The bond is drawn like an edge with a half arrow tip. The direction
of energy flow is determined by the direction of the half arrow.

4. We now add a 1−junction to the electrical BG model. The 1−junction indicates that the
current i in the serial LCR circuit is constant but the voltage across each electric element
varies.

5. The voltage source is the source of energy hence it is connected to the 1−junction with
the half arrow toward the 1−junction. The inductor and capacitor elements store energy
hence the half arrow is in the direction of the respective electric elements. The resistor
dissipates consumed energy bringing the half arrow direction from the 1−junction toward
itself.

Similarly, the damped mass-spring idealized physical model from the translational mechani-
cal domain is transformed to a mechanical domain BG. The transformation process yields an
equivalent mechanical domain BG as shown in Figure 1.26 (d).

These examples serve as a good trailer to understand the modelling elements of a BG. We can
see that two variables voltage and current play the role of transferring energy between elements
in the electrical domain. The product of these two variables is power. Similarly, the product of
force and velocity is power in the translational mechanical domain and the product of torque
and angular velocity is power in the rotational mechanical domain. This common trend implies
that quantities like voltage, force, and torque on the one hand and current, velocity, and angular
velocity on the other are analogous quantities. Variables such as voltage, force, and torque are
called effort variables. Similarly, variables such as current, velocity, and angular velocity are
called flow variables. The energy flow between elements has the physical dimension of power
which is the product of effort and flow. Therefore effort and flow are known as power-conjugated
variables.

The analogy between domains is not just between effort and flow variables but it also exists
between the basic elements of the different domains (electrical and mechanical in our example).
Here is a list of analogies observed in the elements of the electrical and mechanical elements in
our example:

• The damper is analogous to the resistor

• The spring is analogous to the capacitor

• The mass is analogous to the inductor

• The force source is analogous to the voltage source
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Figure 1.26: (a) Idealized Physical Model of LCR Circuit (b) Idealized Physical Model of Damped
Mass-Spring System (c) Bond Graph model of LCR Circuit using Electrical Domain Notation
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• The common velocity is analogous to the loop current

The analogies in the basic elements enables us to finally specify the standard BG model. This
is shown in Figure 1.26 (e). The voltage or force source are effort sources hence the standard
bond graph notation Se is used to represent an effort source. The R symbol represents an
energy dissipator, I is the flow store, C is the effort store. The equations that describe the
dynamics of the electrical elements are given below:

uR = iR

uC = 1
C

∫
idt

uL = Ldi
dt

or iL = 1
L

∫
udt

where uR is the voltage across the resistor, uC is the voltage across the capacitor, uL is the
voltage across the inductor, i is the current flowing in the circuit, R is the resistance , C is the
capacitance, and L is the inductance of the LCR circuit. The quantity iL is accumulated in
the inductor. The inductor is a flow store, in the electrical domain it stores the current.

The equations that describe the dynamics of the mechanical elements are given below:

Instances of the BG modelling language comprising of an interconnection of elementary com-
ponents itself is a component. This component has an interface that can used (reused) as a
module in a parent bond graph. Further, the non-causal nature of BG components make it a
hierarchically composed formalism.

The dynamical behaviour of a BG can be obtained by mapping it onto a Causal Block Diagram

and simulated the CBD or by writing out Differential Algebraic Equations and solving the set of
equations.

First, we describe the BG elements of the HBG modelling language. The meta-model, shown
in Figure 1.21, is used to specify the properties of BG elements.

Bonds

A bond represents the flow of power, P, from one point of a physical system to another. It
is represented by a harpoon. There are two physical variables associated with each bond, an
effort, e, and a flow, f. The product of these two variables represents the power: P = e × f .

When causality is assigned to a bond it gets a computational order. The fBond class implies
that the Bond has received an effort-out causality. The eBond class implies that the Bond has
received a flow-out causality. The equations for the bonds is given in Table 1.1. The ports for
the non-causal Bond class are BondCon1 and BondCon2. The ports for fBond, eBond classes are
eBondCon1 and fBondCon1. Each BG element with one or more ports have names BondCon1,
BondCon2,...and so on. The Bond class and its sub-classes fBond and eBond connect to other
BG elements via these ports.

Energy Sources

Energy sources are interfaces of the BG with its environment. In the real world examples of
energy sources are: voltage and current in the electrical domain, force and velocity in the
mechanical domain. In the bond graph modelling language sources of voltages, force, and
torque are called effort sources and sources of current, velocity, and angular velocity are called
flow sources.

In Table 1.2 we present the equations that represent the semantics of the energy sources in the
meta-model for HBG. The basic effort source is Se and a basic flow source is Sf. The tableSe
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Table 1.1: Equations for Bond Graph Bonds

BG Element Equation

Bond BondCon2.e(t) = BondCon1.e(t), BondCon2.f(t) = BondCon1.f(t)

BondCon1.d = −1, BondCon2.d = +1

fBond fBondCon1.e(t) = eBondCon1.e(t), eBondCon1.f(t) = fBondCon1.f(t)

eBondCon1.d = −1, fBondCon1.d = +1

eBond fBondCon1.e(t) = eBondCon1.e(t), eBondCon1.f(t) = fBondCon1.f(t)

fBondCon1.d = −1, eBondCon1.d = +1

Table 1.2: Equations for Bond Graph Energy Sources

BGElement Equation

Se e(t) = e0

tableSe e(t) = TimeTable(table, startT ime, offset)

sinSe e(t)=sin(e0, freq, offset, phase, startT ime)

Sf f(t) = f0

sinSf f(t) = sin(f0, freq, offset, phase, startT ime)

tableSf f(t) = TimeTable(table, startT ime, offset)

mSe e0 = s, e(t) = s, s is the input signal

mSf f0 = s, f(t) = s, s is the input signal

and tableSf are tabular sources. The table contains two element tuples. A linear interpolation
is performed from one tuple to the next to obtain a continuous function. The sinSe and sinSf

source are sources as sinusoidal wave forms. The amplitude, frequency, start time, and offset
are parameters for the sinusoidal sources. The sources mSe and mSf are modulated sources.
The modulated sources are controlled by the signal domain, hence they have an input s which
represents the value of a signal from a controller or an other external signal source.

Energy Dissipators

Energy dissipators are responsible for consuming energy from the system model. They are
called resitors in the HBG modelling language and are associated with a resistance. In the
electrical domain an electrical resistor, in the translational mechanical domain a damper and
in the rotational mechanical domain a rotational damper are all modelled as a BG resistor R.
The semantics of an R element is given in Table 1.3.

A modulated resistor, mR, is controlled by the signal domain. The semantics of a modulated
resistor is presented is presented in Table 1.3. The s signal gives variable resistance to the R

element. The s variable is controlled by an external controller or an other signal source.

Energy Storage

Energy storage in the BG modelling language is of two kinds. The storage of flow takes place
in the capacitor element C. The storage of effort takes place in the inductor element I. The
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Table 1.3: Equations for Bond Graph Energy Dissipators

BG Element Equation

R e(t) = R ∗ f(t)

mR R = s, e(t) = R ∗ f(t)

Table 1.4: Equations for Bond Graph Storage

BG Element Equation

C f(t) = C ×
de(t)
dt

I e(t) = I ×
df(t)
dt

mC e(t) = s, f(t) = C ×
de(t)
dt

mI f(t) = s, e(t) = I ×
df(t)
dt

equations are presented in Table 1.4. Effort is stored in the electrical inductor of the electrical
domain and flow is stored in the electrical capacitor. In the translational mechanical domain
effort is stored in the inertance and flow is stored in the spring. Finally, in the rotational
mechanical domain effort is stored in the rotational inertance and flow in the rotational spring
elements.

Energy Transformers

Energy transformation can be formed by two kinds of elements, a transformer and a gyrator.
If the input to the transformer TF is an effort the output is also an effort scaled up or down
by a certain factor. A gyrator GY transforms effort to flow and flow to effort each scaled up
or down by a certain factor. A transformer usually transforms energy within the same do-
main. Examples of transformers are the electrical transformer (electrical domain), cantilever
(translational mechanical domain), and the mechanical gear (rotational mechanical domain).
A gyrator transforms energy between two domains. Examples of gyrators include the motor
(electrical to rotational mechanical), generator (rotational mechanical to electrical), pump (ro-
tational mechanical to pneumatic), pulley (rotational mechanical to translational mechanical),
and turbine (pneumatic to rotational mechanical). The equations that describe the semantics
of TF and GY elements in given in Table 1.5. The scaling factors are m for transformers and r
for gyrators.

Table 1.5: Equations for Bond Graph Transformers

BG Element Equation

TF e1(t) = m × e2(t), f2(t) = m × f1(t)

GY e1(t) = r × f2(t), e2(t) = r × f1(t)

mTF m = s, e1(t) = m × e2(t), f2(t) = m × f1(t)

mGY r = s, e1(t) = r × f2(t), e2(t) = r × f1(t)
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Table 1.6: Equations for Bond Graph Junctions

BG Element Equation

0−Junction e[2 : 6](t) = e[1 : 5](t),
∑

f(t) = 0

1−Junction f [2 : 6] = f [1 : 5],
∑

e(t) = 0

Junctions

Junctions couple two or more BG elements in a power continuous way: there is no energy
storage or dissipation in a junction. Examples are a series connection or a parallel connection
in an electrical network, a fixed coupling between parts of a mechanical system. Junctions
are portsymmetric: the ports can be exchanged in the constitutive equations. Following these
properties, it can be proven that there exist only two pairs of junctions: the 1junction and the
0junction.

The 0junction represents a node at which all efforts of the connecting bonds are equal. An
example is a parallel connection in an electrical circuit. Due to the power continuity, the sum
of the flows of the connecting bonds is zero, considering the sign. The power direction (i.e.
direction of the half arrow) determines the sign of the flows: all inward pointing bonds get a
plus and all outward expansion pointing bonds get a minus. This summation is the Kirchhoff
current law in electrical networks: all currents connecting to one node sum to zero, considering
their signs: all inward currents are positive and all outward currents are negative. We can
depict the 0junction as the representation of an effort variable, and often the 0junction will be
interpreted as such. The 0junction is more than the (generalised) Kirchhoff current law, namely
also the equality of the efforts (like electrical voltages being equal at a parallel connection).

The 1junction is the dual form of the 0junction (roles of effort and flow are exchanged). The
1−junction represents a node at which all flows of the connecting bonds are equal. An example
is a series connection in an electrical circuit. The efforts sum to zero, as a consequence of the
power continuity. Again, the power direction (i.e. direction of the half arrow) determines the
sign of the efforts: all inward pointing bonds get a plus and all outward pointing bonds get a
minus. This summation is the Kirchhoff voltage law in electrical networks: the sum of all voltage
differences along one closed loop (a mesh) is zero. In the mechanical domain, the 1junction
represents a force balance (also called the principle of dAlembert), and is a generalisation of
Newtons third law, action = reaction). Just as with the 0junction, the 1junction is more than
these summations, namely the equality of the flows. Therefore, we can depict the 1junction as
the representation of a flow variable, and often the 1−junction will be interpreted as such.

The equations for BG junctions is given in Table 1.6.

Diagnostic Elements

A BG contains many diagnostic elements that can be used to read an effort, flow, the generalized
position and momentum from a junction. All diagnostic elements in the BG language inherit
from DiagnosticOnePort. The description for the diagnostic elements in a BG is given in Table
1.7.
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Table 1.7: Equations for Bond Graph Diagnostic Elements

BG Element Equation

De Outport1 = e(t), f(t) = 0

Description This component is used to sense the value of effort in a junction

Df Outport1 = f(t), e(t) = 0

Description This component is used to sense the value of flow in a junction

Dp Outport1 =
∫

e(t)dt

Description This component is used to sense the value of generalized momentum in a
junction

Dq Outport1 =
∫

f(t)dt

Description This component is used to sense the value of generalized position in a junction

Block

+BlockGraph: Graph
+Value: Float:Graph

XIXO
X := M(Mul t ip le), S(Sin gle)

I ( Input), O (O utput)

+nin: Int:Graph = 1
+nout: Int:Graph = 1

Constant

Delay

+samplePeriod: Float
+startTime: Float
+y_start: Float

Integrator

+y_start: Float

Derivative

+T: Float

Sum

Feedback

+u1: Graph
+u2: Graph
+y: Graph

PID

+Ti: Float:Graph
+Td: Float:Graph
+Nd: Graph

TimeTable

+Table: String:Graph
+offset: Float:Graph
+startTime: Float:Graph

Generic

+param: String:Graph
+Type: String:Graph

Figure 1.27: Causal Block Diagram part of the Hybrid Bond Graph Meta-model
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1.4.2 The Causal Block Diagram Modelling Language

A causal block diagram processes signals. A causal block diagram consists of input/output
control blocks. These control blocks are either continuous, discrete, logical, or table blocks.
Each block can have zero, single or multiple inputs or outputs depending on the operation
performed. Input signals are processed by a control block and the output is a signal. We present
a meta-model for the Causal Block Diagram modelling langauge with a subset of operation blocks
in Figure 1.27

Each block has a certain number of inputs and outputs and a output signal value based on the
operation it performs. In the meta-model the class Block contains the properties BlockGraph and
Value. The BlockGraph property is the root node of the abstract syntax graph that represents a
CBD model. The Value property contains the signal value. The class XIXO inherits from Block

and has properties that depict the number of inputs, nin, and outputs nout.

The concrete classes inherit from XIXO and represent the operation blocks that are used in a
CBD. The various operation blocks and their description is given in Table 1.8.

1.5 Modelica Language

In this section we present the modelling of an EPS in the object-oriented physical system mod-
elling language called Modelica. Modelica is based on an object-oriented textual representation
of a common mathematical framework of Differential Algebraic Equations (DAE). DAE systems
possess both discrete and continuous behaviour. This allows for the representation of HBG

models which can contain both continuous Ordinary Differential Equations for the BG dynamics
and discrete transitions due to algebraic equations obtained from the controller expressed as a
CBD.
The Modelica language describes a model using the construct model. A model is a class that
contains state objects and equations. State objects are instances of models of the components
in the system. Equations either describe the DAE governing the evolution of the state objects
or specify a connection between objects. The connection implies that there is flow of a physical
quantity or information between objects. A Modelica model is flattened to obtain the algebraic
assignment equations that are used to connect objects. For more information on Modelica refer
to the citation [Fri03] [Mat97]. The BNF grammar for Modelica in essence specifies the meta-
model for the Modelica langauge. For information on the Modelica language specification see
[Mod05].

The Modelica language comes with a standard library which contains model elements for causal
blocks. A BG modeling library written by Prof. Francois Cellier is also available [Cel05]. We
use these libraries to represent HBG models in Modelica.

The concrete textual syntax for the main module for the hoisting device model in textual
Modelica form is given below:

model HoistingDeviceHABG

"Hoisting Device Model in Modelica using Bond Graph Library"

BondLib.Junctions.J1p4 J1p4_1;

BondLib.Bonds.fBond fBond1;

BondLib.Passive.I I1(I=0.05);

BondLib.Passive.R R1(R=0.5);

BondLib.Bonds.eBond eBond2;

BondLib.Passive.GY GY1(r=3);
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Table 1.8: Equations for Causal Block DiagramElements

CBD Element Equation

Constant y = k, k = 0 , where k is a Real Number

Description A constant signal value is given as output. There is no input.

Sum y = Σu, where u is the input vector

Description The sum of the input signals is given as a single/multiple output(s). The
number of input signals is two or more.

Integrator y =
∫ t

0 udu, where u is the input vector

Descrition The integrator is a continuos block that integrates the incoming signal upto
the current simulation time.

Derivative y = du
dt

, where u is the input vector

Description This block outputs the derivative of a input signal with respect to the current
and previous time steps

Delay y = pre(u), where u is the input vector

Description This block outputs the value of the signal at the previous time steps

PID y = Nde(t) + Nd

Ti

∫ t

0 e(t)dt + NdTd
de(t)
dt

+ u0 , where e is the error signal

Nd is the gain, Ti is the time constant of the integrator, and Td is the time
constant of derivative

Description This block outputs the proportional, integral, derivative control signal based
on error feedback

TimeTable y = table, table = [0, 0; 0, 10; 0, 100], where table is a collection of tuples

Description This block outputs the a value at a given time from the interpolated function
of the values in the table

Generic y = f(u, t), where f is a generic function

Description This block processes the input signal using an arbitrary generic function

Feedback y = u1 − u2 , where u1 and u2 are input vectors

Description This block outputs the difference in two input signals
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BondLib.Junctions.J1p4 J1p4_2;

BondLib.Bonds.eBond eBond5;

BondLib.Passive.I I2(I=667);

BondLib.Passive.R R2(R=1);

BondLib.Passive.TF TF1(m=0.11);

BondLib.Bonds.eBond eBond6;

BondLib.Bonds.eBond eBond7;

BondLib.Bonds.eBond eBond8;

BondLib.Passive.I I3(I=500);

BondLib.Bonds.fBond fBond3;

BondLib.Sensors.Dq Dq1;

BondLib.Junctions.J1p4 J1p4_3;

BondLib.Bonds.Bond Bond1;

BondLib.Bonds.eBond eBond3;

BondLib.Bonds.fBond fBond4;

BondLib.Bonds.eBond eBond1;

BondLib.Bonds.eBond eBond4;

BondLib.Sources.tableSe tableSe1(table=[0,0; 50,0; 50,110; 100,110]);

BondLib.Sources.tableSe tableSe2(table=[0,0; 50,0; 50,-4900; 100,-4900]);

equation

connect(fBond1.fBondCon1, J1p4_1.BondCon1);

connect(J1p4_1.BondCon3, eBond2.fBondCon1);

connect(eBond2.eBondCon1, R1.BondCon1);

connect(J1p4_2.BondCon3, eBond5.fBondCon1);

connect(eBond5.eBondCon1, R2.BondCon1);

connect(J1p4_2.BondCon2, eBond6.fBondCon1);

connect(eBond6.eBondCon1, TF1.BondCon1);

connect(TF1.BondCon2, eBond7.fBondCon1);

connect(eBond8.eBondCon1, I3.BondCon1);

connect(fBond3.fBondCon1, J1p4_3.BondCon2);

connect(eBond7.eBondCon1, J1p4_3.BondCon4);

connect(J1p4_3.BondCon3, eBond8.fBondCon1);

connect(J1p4_3.BondCon1, Bond1.BondCon1);

connect(Bond1.BondCon2, Dq1.BondCon1);

connect(J1p4_1.BondCon4, eBond3.fBondCon1);

connect(eBond3.eBondCon1, I1.BondCon1);

connect(J1p4_1.BondCon2, fBond4.eBondCon1);

connect(fBond4.fBondCon1, GY1.BondCon1);

connect(GY1.BondCon2, eBond1.fBondCon1);

connect(eBond1.eBondCon1, J1p4_2.BondCon1);

connect(J1p4_2.BondCon4, eBond4.fBondCon1);

connect(eBond4.eBondCon1, I2.BondCon1);

connect(tableSe1.BondCon1, fBond1.eBondCon1);

connect(tableSe2.BondCon1, fBond3.eBondCon1);

end HoistingDeviceHABG;
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Figure 1.28: Meta-model for the Trajectory Language

1.6 Trajectory Language

We see the behavior of an Engineered Physical System as a model of it. The Trajectory modelling
language is specified to represent the evolution of the state of a model. A Trajectory model is
obtained by solving a set of DAE or ODE that mathematically represent the model of the EPS.
The system of DAE is solved using a solver such as DASSL [AP98]. The result of solving the
system is the trajectory of the state variables in the model with respect to time.

A Trajectory model consists of several trajectories. Each tracjectory consists of several state
points or just points. A point is associated with a time stamp and a value. We present the
meta-model for the Trajectory modelling language (Figure 1.28) to represent the syntax of Tra-

jectory models. The ModelTrajectory class has a Name attribute which is of type String. It is the
container class for 0..* Trajectory objects. Each Trajectory object has a Name attribute which
is the name of a state variable in the system model. The range of values a state variable or
a Trajectory object takes is a collection of 0..* Point objects. Each Point object consists of a
Value attribute which is of type Float and its Time of occurence.

The concrete syntax for a Trajectory model is a set of plots. Two important plots for hoisting
device example are shown in Figure 1.29. The voltage applied to the hoisting device is shown
in Figure 1.29 (b). The voltage is zero until 50 seconds and then it is brought up to 110 V
for the next 50 seconds. A mass of 500 kg is being lifted by the hoisting device. It is assumed
to be laying on the ground. The reactive force from the ground stops the mass from plunging
into the earth. Therefore, a downward force comes into play as soon as the hoisting device
attempts to lift the mass off the ground. This occurs at 50 seconds. At the end of 100 seconds
the hoisting device lifts the mass to a height of around 15 meters as shown in Figure 1.29 (a).
The parameters for all the components in the hoisting device are given in Table 1.9.
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Figure 1.29: Trajectory Model of the Hoisting Device

Table 1.9: Hoisting Device Parameters

Component

Name

Parameter Value Unit

tableSe1 table [0, 0; 50, 0; 50, 110; 100, 110] Volts

tableSe1 startTime 0 Seconds

tableSe1 offset 0 Volts

tableSe2 table [0, 0; 50, 0; 50,−4900; 100;−4900] Newton

R1 R 0.5 Ω

I1 I 0.05 Henry

GY1 r 3 NA

I2 I 667 Nm/rad

R2 R 1 Nms/rad

TF1 m 0.11 NA

I3 I 500 kg
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The Trajectory model is the final model a modeller can observe for a system. It is the behavior
of the EPS. Therefore, this model can also be regarded as the true semantics of the models
described in all the modelling languages in the previous sections.



2
Model Transformations

2.1 Introduction

In the previous chapter we introduced several modelling languages that specify the syntax for
representing an EPS at different abstraction levels. In this chapter we specify the semantics
for each of the modelling languages. The specification of the semantics along with the syntax
of a modelling language makes it a modelling formalism.

Most of the modelling languages described earlier are visual modelling languages. Models that
are an instance of a visual language have a concrete visual syntax and an abstract syntax graph
representation as we have seen for the hoisting device example. The graph data structure for
the abstract syntax of a visual model makes it viable to the application of graph rewriting
[Aga03] [HER99] for model transformation. We use the Himesis sub-graph matching kernel
[Pro05] to facilitate graph rewriting.

Graph rewriting on a model is performed by an ordered set of Graph Grammar (GG) rules. A
GG rule consists of an LHS graph and an RHS graph. The rule is applied on a host graph which
is the abstract syntax graph of the current model. Sub-graph matching between the LHS graph
and the host graph is performed. The result of matching is a set of matching nodes in the host
graph that correspond the nodes of the LHS graph. These matching nodes have the same label
(or type) as the that of the LHS graph pattern. The matched nodes can be further checked for
some properties before application of the rule. A pre-condition is a truth statement about some
properties in the match. If it is true then the rule is applied. As a result of the application the
nodes in the RHS effect the change in the model. Some properties of graph node values can
also be set as specifications or they may simply be copied from the LHS. The execution of the
set of rules can either be programmed or be executed in a sequence.

To better understand the specification of a GG rule let us look back at the HFSM modelling
language example. In Figure 2.1 we present an example rule that can be applied to HFSM

model. The abstract syntax, concrete syntax, and the adjoining textually expressed parts of
the rule are shown. The rule createObjectOfType State creates a new object and adds it to
the top-level model graph. The LHS of the rule contains a pattern with label HFSMlabelgraph.
The sub-graph matching algorithm in Himesis looks for a node with label HFSMlabelgraph and
returns a set of matches. Each match is tuple with two elements. The first element is the LHS

node and the second element is the matching node in the host graph. An object of type State is
now added to the host graph (or abstract syntax graph of the model) with a unique name and
default values for its attributes. The specification of the default values are shown as textual
specifications.

The denotational semantics of the visual modelling language HLPSM is given by transforming
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Figure 2.1: Graph Grammar Rules for HFSM

an HLPSM model to the IPM modelling language. The GG rule set MT HLPSM 2 IPM for
this transformation is given in Section 2.2. The denotational semantics for the IPM modelling
language is obtained by a transformation to the HBG modelling language. Therefore, the
transformation MT IPM 2 HABG (presented in Section 2.3) transforms the IPM to an acausal
HBG or HABG. The computational direction for evaluating the efforts and flows in the HABG is
obtained by applying the transformation MT HABG 2 HCBG (in Section 2.4) which performs
causality assignment on a HABG model. The set of rules mentioned so far are based on graph
rewriting.

The next transformation from HCBG to Modelica is a graph traversal algorithm. This trans-
formation MT HCBG 2 Modelica is presented in Section 2.5. The conversion of Modelica code
to efficient C code that implements a DAE solver and its execution/simulation is discussed in
the transformation MT Modelica 2 Trajectory given in Section 2.6.

During formalism transformation we have a model in a source formalism that is transformed
to a model in a target formalism. The model elements in the source formalism could be related
to each other. The application of a GG rule may introduce the counterpart model element
from the target formalism for a model element in the source formalism. Removing the source
formalism model elements at this stage will destroy all its relationships and hence we have
no way to find out what it connects to. Moreover, the rule may be applied to several source
formalism model elements. To precisely identify which source formalism element was connected
to which target formalism element we introduce a special model element called a GenericLink.
In most transformations this link is described by a dotted purple line.

The GenericLink connects model elements in the source and target formalism. Consider the
situation, a source model element A is connected to another model element B in the source
formalism. Let X be the model element in the target formalism that ultimately replaces A and
is connected to A via a GenericLink. The replacement for B in the target formalism is Y and
Y needs to be related to X. A pattern that associates A to X has already been created using a
GenericLink, hence we can easily formulate a rule that finds the X that corresponds to A and
can be associated with Y that is the counterpart for B. Therefore, a GenericLink is a special
model element that is used during formalism transformation and does not exist otherwise when
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Table 2.1: Graph Grammar rules in execution order for MT HLPSM 2 IPM

Order Rule Name Description

1 Mains 2 IPM HLPSM of electrical mains is transformed to IPM

electrical circuit with resistance, capacitance, voltage
source, and motor

2 Motor 2 IPM HLPSM of a motor is transformed to IPM components
of the rotational mechanical domain with rotational
inertance and damping and connected to the motor.

3 CableDrum 2 IPM HLPSM of the cable drum is transformed to an IPM

pulley and connected to the rotational inertance
4 Load 2 IPM HLPSM load is transformed to IPM mass which is con-

nected to the pulley
5 delete HLPSM Load HLPSM load is deleted from the graph
6 delete HLPSM Cabledrum HLPSM cabledrum is deleted from the graph
7 delete HLPSM Motor HLPSM motor is deleted from the graph
8 delete HLPSM Mains HLPSM mains is deleted from the graph
9 delete GenericLink GenericLinks are deleted from the graph

a model conforms to its modelling language.

As a note, in the rules all the elements have an unique label but labels are shown only for the
nodes relevant to the transformation.

2.2 High-level Physical System Model to Idealized Physical Model

We now present the GG rules used to transform a HLPSM model to an IPM model. The rules
are presented in concrete visual syntax with textually expressed parts where necessary. Each
rule is executed according to an execution order. If one rule is executed the next rule to be
checked is the first rule in the order. Hence, after executing every matching rule the execution
starts from the first rule. The order prescribed is one of the many possible orders of execution.
Some rules can be executed in parallel.

The rules are shown in Figures 2.2 and 2.3. The list of rules, their execution order and short
descriptions are given in Table 2.1.

2.3 Idealized Physical Model to Hybrid Acausal Bond Graph

The Idealized Physical Model (IPM) is obtained by applying the transformation MT HLPSM 2 IPM

to the abstract syntax graph of the HLPSM model. The next step is to obtain the Hybrid Bond

Graph model for the IPM. A step by step process to perform this transformation is textually
described in [Bro99]. We present the GG rules to perform the transformation in Figures 2.4,
2.5, 2.6, 2.7, 2.8, 2.9. The rules for simplifying the structure of the obtained BG are given in
Figures 2.10, 2.11.

The rules for transforming IPM to HABG are executed in the order described in Table 2.2.
The rules for simplifying the structure of a HABG are described in Table 2.3. The order is not
unique. Depending on the independence of one rule with respect to another the rules can either
be executed in a different order or even in parallel.
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Figure 2.2: Model Transformation HLPSM to IPM: Rules 1-4
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Figure 2.3: Model Transformation HLPSM to IPM: Rules 5-9
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Table 2.2: Graph Grammar rules in execution order for MT IPM 2 HABG

Order Rule Name Description

1 identify efforts E 2 E IPM electrical link is converted to a 0-junction
2 identify efforts M 2 M IPM mechanical link is converted to a 1-junction
3 effort differences Resistor An R element is inserted between junctions at the ends

of an IPM resistor
4 effort differences Capacitor A C element is inserted between junctions at the ends

of an IPM capacitor
5 effort differences Inductor An I element is inserted between junctions at the ends

of an IPM inductor
6 effort differences tableVoltageA tableSe element is inserted between junctions at the

ends of an IPM table voltage
7 flow differences RotDamper An R element is inserted between junctions at the ends

of an IPM rotational damper
8 flow differences RotInertanceAn I element is inserted between junctions at the ends

of an IPM rotational inertance
9 flow differences Inertance An I element is inserted between junctions at the ends

of an IPM translational inertance
10 motor 2 GY A GY element is inserted between junctions at the ends

of an IPM motor
11 pulley 2 TF A TF element is inserted between junctions at the ends

of an IPM pulley
12 delete E 2 E All IPM E 2 E links are deleted (for all matches)
13 delete M 2 M All IPM M 2 M links are deleted (for all matches)
14 delete Resistor All IPM Resistor elements are deleted (for all matches)
15 delete Capacitor All IPM Capacitor elements are deleted (for all

matches)
16 delete Inductor All IPM Inductor elements are deleted (for all

matches)
17 delete Voltage All IPM Voltage elements are deleted (for all matches)
18 delete RotInertance All IPM RotInertance elements are deleted (for all

matches)
19 delete RotDamper All IPM RotDamper elements are deleted (for all

matches)
20 delete Motor All IPM Motor elements are deleted (for all matches)
21 delete Pulley All IPM Pulley elements are deleted (for all matches)
22 delete Inertance All IPM Inertance elements are deleted (for all

matches)
23 deleteEarth All IPM Earth elements are deleted (for all matches)
24 delete GenericLink All GenericLinks are deleted
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Figure 2.4: Model Transformation IPM to HABG: Rules 1-4
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Figure 2.5: Model Transformation IPM to HABG: Rules 5-8
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Figure 2.6: Model Transformation IPM to HABG: Rules 9-12
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Figure 2.7: Model Transformation IPM to HABG: Rules 13-16
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Figure 2.8: Model Transformation IPM to HABG: Rules 17-20



50 Model Transformations

Figure 2.9: Model Transformation IPM to HABG: Rules 21-24
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Figure 2.10: Model Transformation IPM to HABG: Rules 22-28
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Figure 2.11: Model Transformation IPM to HABG: Rules 29-30
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Table 2.3: Graph Grammar rules in execution order for optimizing BG

Order Rule Name Description

25 optimize ZJ Transform redundant LHS 0-junction pattern to a single 0-
junction

26 optimize OJ Transform redundant LHS 1-junction pattern to a single 1-
junction

27 optimize ZJ ZJ Transform redundant structure on LHS to simplified RHS
28 optimize OJ OJ Transform redundant structure on LHS to simplified RHS
29 optimize ZJ OJ ZJ Transform redundant structure on LHS to simplified RHS
30 optimize OJ ZJ OJ Transform redundant structure on LHS to simplified RHS

2.4 Hybrid Acausal Bond Graph to Hybrid Causal Bond Graph

We now discuss the transformation MT HABG 2 HCBG to perform causality assignment on an
acausal BG. We perform causality assignment to given computational direction the bonds in
the bond graph. Each bond is either given an effort-out or a flow-out causality.

The Se type effort source elements always have an effort-out causality. The Sf element always
has a flow-out causality. The fixed causalities assigned by the sources are propagated by
constrained causalities to other bonds. Fixed causalities are shown in Figure 2.12.

The causality assigned by fixed causalities are propagated to the connected junction. The
Causality of a junction is set to +1 if the assigned causality is an effort-out causality from an
effort source to a 0-junction. The Causality is set to -1 if the assigned causality is a flow-out
causality from a flow source to a 1-junction. The fixed causalities are described in Table 2.4.

This causality is further propagated to connected bonds via constrained causalities. Con-
strained causalities are shown in Figures 2.13, 2.14,2.15,2.16,2.17,2.18, and 2.19. The rule
execution order and a short description for each rule is given in Table 2.5.



54 Model Transformations

Figure 2.12: Model Transformation HABG to HCBG: Rules 1-4
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Table 2.4: Graph Grammar rules for fixed causality in transformation MT HABG 2 HCBG

Order Rule Name Description

1 FC SE 2 ZJ Transform redundant 0-junction-¿0-junction to a single 0-
junction

2 FC SE 2 OJ Transform redundant 1-junction-¿1-junction to a single 1-
junction

3 FC SF 2 OJ Transform redundant structure on LHS to simplified RHS
4 FC SF 2 ZJ Transform redundant structure on LHS to simplified RHS

If none of the constrained causalities match the BG model then a preferred causality is assigned
to storage elements. The C element gets an effort-out fixed causality while the I element gets
a flow-out fixed causality. The rules to assign the causality to the bonds are shown in Figures
2.19 and 2.20. The execution order of the rule in the graph grammar and a short description
for each rule is given in Table 2.6.

The bond to an R element gets indifferent causality (if not constrained causality) which means
that it does not matter if flow or effort comes in. The indifferent causalities are shown in Figure
2.20. The execution order for indifferent causality rules and a description are given in Table
2.6.

The execution resumes from the first rule of the GG and continues until no rule is matched.
At this point the HABG has been completely assigned causality and is a HCBG. If any of the
storage elements that is C or I have got a non-preferred causality due to propagation of causality
constraints then we can say that there is a problem with the physical meaningfulness of the
model. In other words a capacitor or an inductor element does not store energy in the sense of
integration the incoming flow or effort. At this point the modeller has to change the physical
model to make it causally correct and physically meaningful.
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Table 2.5: Graph Grammar rules for constrained causality propagation in MT HABG 2 HCBG

Order Rule Name Description

5 CC ZJ 2 R Effort-out causality assigned if LHS 0-junction causality is 1
6 CC ZJ 2 C Effort-out causality assigned if LHS 0-junction causality is 1
7 CC ZJ 2 I Effort-out causality assigned if LHS 0-junction causality is 1
8 CC ZJ 2 ZJ Effort-out causality assigned if LHS 0-junction causality is 1
9 CC ZJ 2 OJ Effort-out causality assigned if LHS 0-junction causality is 1
10 CC ZJ 2 TF Effort-out causality assigned if LHS 0-junction causality is 1
11 CC ZJ 2 GY Effort-out causality assigned if LHS 0-junction causality is 1
12 CC OJ 2 R Flow-out causality assigned if LHS 1-junction causality is -1
13 CC OJ 2 C Flow-out causality assigned if LHS 1-junction causality is -1
14 CC OJ 2 I Flow-out causality assigned if LHS 1-junction causality is -1
15 CC OJ 2 OJ Flow-out causality assigned if LHS 1-junction causality is -1
16 CC OJ 2 ZJ Flow-out causality assigned if LHS 1-junction causality is -1
17 CC OJ 2 TF Flow-out causality assigned if LHS 1-junction causality is -1
18 CC OJ 2 GY Flow-out causality assigned if LHS 1-junction causality is -1
19 CC J GY J fBond Flow-out causality assigned from GY input effort-out causality
20 CC J GY J eBond Effort-out causality assigned from GY input flow-out causality
21 CC J TF J fBond Effort-out causality assigned from TF input effort-out causality
22 CC J TF J eBond Flow-out causality assigned from TF input Flow-out causality
23 CC ZJ 2 De Effort-out causality assigned if LHS 0-junction causality is 1
24 CC ZJ 2 Df Effort-out causality assigned if LHS 0-junction causality is 1
25 CC ZJ 2 Dp Effort-out causality assigned if LHS 0-junction causality is 1
26 CC ZJ 2 Dq Effort-out causality assigned if LHS 0-junction causality is 1
27 CC OJ 2 De Flow-out causality assigned if LHS 1-junction causality is -1
28 CC OJ 2 Df Flow-out causality assigned if LHS 1-junction causality is -1
29 CC OJ 2 Dp Flow-out causality assigned if LHS 1-junction causality is -1
30 CC OJ 2 Dq Flow-out causality assigned if LHS 1-junction causality is -1

Table 2.6: Graph Grammar rules for preferred and indifferent causality in MT HABG 2 HCBG

Order Rule Name Description

31 PC ZJ 2 C Preferred effort-out causality assigned to 0-junction to C bond
32 PC ZJ 2 I Preferred flow-out causality assigned to 0-junction to I bond
33 PC OJ 2 C Preferred effort-out causality assigned to 1-junction to C bond
34 PC OJ 2 I Preferred flow-out causality assigned to 1-junction to I bond
35 IC ZJ 2 R Indifferent flow-out causality assigned to 0-junction to R bond
36 IC OJ 2 R Indifferent flow-out causality assigned to 1-junction to R bond
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Figure 2.13: Model Transformation HABG to HCBG: Rules 5-8
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Figure 2.14: Model Transformation HABG to HCBG: Rules 9-12
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Figure 2.15: Model Transformation HABG to HCBG: Rules 13-16
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Figure 2.16: Model Transformation HABG to HCBG: Rules 17-20
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Figure 2.17: Model Transformation HABG to HCBG: Rules 21-24
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Figure 2.18: Model Transformation HABG to HCBG: Rules 25-28
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Figure 2.19: Model Transformation HABG to HCBG: Rules 29-32
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2.5 Hybrid Causal Bond Graph to Modelica

The HCBG model obtained from the transformation MT HABG 2 HCBG is now ready to be
converted to a set of Differential Algebraic Equations (DAE). Instead of directly transforming
a model in the differential equation form we generate Modelica code. Modelica code is an
object-oriented textual representation of DAEs.

The main routine, HCBG 2 Modelica, and its helper routines to transform the abstract syntax
graph of a HCBG model to Modelica are given below:

#Main Routine to transform HCBG to Modelica

def HCBG_2_Modelica(HCBGGraph):

ModelicaCode="model " + HCBGGraph.getName() + "\n"

# Define and Initialize the Physical Objects

ModelicaCode+=getHABGObjects(HCBGGraph) + "\n"

# Define the Equations of the Physical Model

ModelicaCode+="equation"

ModeliaCode+=getConnects(HCBGGraph) + "\n"

ModelicaCode+="end "+HCBGGraph.getName()+";\n"

return ModelicaCode

#Routine to obtain physical object declarations

def getHABGObjects(HCBGGraph):

Code=" "

for aNode in HCBGGraph.iterateAll():

if self.getModelicaObject(aNode)!=None:

Code+="\t"+getModelicaObject(aNode)+";\n"

return Code

#Routine to obtain physical object connections

def getConnects(HCBGGraph):

Code=" "

for aNode in HCBGGraph.getAllConnTuples():

connectCode="connect("+aNode[0].Parent.Name+"."+aNode[0].Name+","

+aNode[1].Parent.Name+"."+aNode[1].Name+");"

Code=Code+"\t"+connectCode+"\n"

return Code

#Routine to obtain Modelica code for a physical component

def getModelicaObject(aNode):

nodeType=Type(aNode)

if nodeType=="SE":

return "BondLib.Sources.Se "+aNode.Name+

"(e0="+str(aNode.Value)+");"
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Figure 2.20: Model Transformation HABG to HCBG: Rules 33-36
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elif nodeType=="SF":

return "BondLib.Sources.Sf "+aNode.Name+

"(f0="+str(aNode.Value)+");"

elif nodeType=="mSE":

return "BondLib.Sources.mSe "+aNode.Name+";"

elif nodeType=="mSF":

return "BondLib.Sources.mSf "+aNode.Name+";"

elif nodeType=="sinSE":

return "BondLib.Sources.sinSe "+aNode.Name+

"(e0="+str(aNode.Value)+",phase="+

str(aNode.PhaseAngle)+",freqHz="+str(aNode.Frequency)+

",offset="+str(aNode.Offset)+"

,startTime="+str(aNode.startTime)+");"

elif nodeType=="sinSF":

return "BondLib.Sources.sinSf "+aNode.Name+

"(e0="+str(aNode.Value)+",phase="+

str(aNode.PhaseAngle)+",freqHz="+str(aNode.Frequency)+

",offset="+str(aNode.Offset)+

",startTime="+str(aNode.startTime)+");"

elif nodeType=="tableSE":

return "BondLib.Sources.tableSe "+aNode.Name+

"(e0="+str(aNode.Value)+",

offset="+str(aNode["Offset"].getValue())+

",startTime="+str(aNode.startTime)+")"

elif nodeType=="tableSF":

return "BondLib.Sources.tableSf "+aNode.Name+

"(f0="+str(aNode.Value)+",offset="+

str(aNode["Offset"].getValue())+",startTime="+str(aNode.startTime)+")"

#Bond Graph Junctions

elif nodeType=="OJ":

numberOfBondsConnected=getOutDegree(aNode)+aNode.getInDegree(aNode)

return "BondLib.Junctions.J1p"+numberOfBondsConnected+" "+aNode.Name

elif nodeType=="ZJ":

numberOfBondsConnected=getOutDegree(aNode)+getInDegree(aNode)

return "BondLib.Junctions.J0p"+numberOfBondsConnected+" "+aNode.Name

elif nodeType=="fBond":

return "BondLib.Bonds.fBond"+" "+aNode.Name
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elif nodeType=="eBond":

return "BondLib.Bonds.eBond"+" "+aNode.Name

elif nodeType=="I":

return "BondLib.Passive.I"+" "+aNode.Name+"(I="+str(aNode.Value)+")"

elif nodeType=="C":

return "BondLib.Passive.C"+" "+aNode.Name+"(C="+str(aNode.Value)+")"

elif nodeType=="R":

return "BondLib.Passive.R"+" "+aNode.Name+"(R="+str(aNode.Value)+")"

elif nodeType=="TF":

return "BondLib.Passive.TF"+" "+aNode.Name+"(m="+str(aNode.Value)+")"

elif nodeType=="GY":

return "BondLib.Passive.GY"+" "+aNode.Name+"(r="+str(aNode.Value)+")"

elif nodeType=="mI":

return "BondLib.Passive.mI"+" "+aNode.Name

elif nodeType=="mC":

return "BondLib.Passive.mC"+" "+aNode.Name

elif nodeType=="mR":

return "BondLib.Passive.mR"+" "+aNode.Name

elif nodeType=="mTF":

return "BondLib.Passive.mTF"+" "+aNode.Name

elif nodeType=="mGY":

return "BondLib.Passive.mGY"+" "+aNode.Name

elif nodeType=="De":

return "BondLib.Sensors.De"+" "+aNode.Name

elif nodeType=="Df":

return "BondLib.Sensors.Df"+" "+aNode.Name

elif nodeType=="Dp":

return "BondLib.Sensors.Dp"+" "+aNode.Name

elif nodeType=="Dq":

return "BondLib.Sensors.Dq"+" "+aNode.Name

#CBD Declarations
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elif nodeType=="Constant":

return "Modelica.Blocks.Sources.Constant"+" "+

aNode.Name+"(k="+str(aNode.Value)+")"

elif nodeType=="Delay":

return "Modelica.Blocks.Discrete.UnitDelay"+" "+

aNode.Name+"(y_start="+str(aNode.Value)+")"

elif nodeType=="Integrator":

return "Modelica.Blocks.Continuous.Integrator"+

" "+aNode.Name+"(k="+str(aNode.Value)+

",y_start="+str(aNode.y_start)+")"

elif nodeType=="Derivative":

return "Modelica.Blocks.Continuous.Derivative"+

" "+aNode.Name+"(k="+aNode.Value+

",y_start="+str(aNode.T)+")"

elif nodeType=="Sum":

return "Modelica.Blocks.Math.Sum"+" "+aNode.Name

elif nodeType=="Product":

return "Modelica.Blocks.Math.Product"+" "+aNode.Name

elif nodeType=="Feedback":

return "Modelica.Blocks.Math.Feedback"+" "+aNode.Name

elif nodeType=="PID":

return "Modelica.Blocks.Continuous.PID"+

" "+aNode.Name+"(k="+str(aNode.Value)+",Ti="+

str(aNode.Ti)+",Td="+str(aNode.Td)+",Nd="+str(aNode.Nd)+")"

elif nodeType=="TimeTable":

return "Modelica.Blocks.Sources.TimeTable"+" "+aNode.Name+"(table="+

str(aNode["Table"].getValue())+",offset="+

str(aNode.Offset)+",startTime="+str(aNode.startTime)+")"

elif nodeType=="Generic":

return "Modelica.Blocks.Sources."+str(nodeType)+str(aNode.Parameters)

else:

return None

2.6 Modelica to Trajectory

The Modelica code is now compiled to generate C code consisting of a DAE solver. We use
DASSL [AP98] to solve DAEs generated from the Modelica code as C code. DASSL uses
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backward differentiation formula (BDF) methods [Gea71] to solve a system of DAEs or ODEs.
The methods are variable step-size variable order. The system of equations in DASSL is written
in an implicit ODE form like

F (t, y, y′) = 0,

where y′ denotes the time derivatives of y. The BDF methods used in DASSL require the
solution of a large system of nonlinear equations

F (tn, yn, αnyn + βn) = 0

on each time step. Here, αn and βn are scalars which depend on the method and stepsize. In
DASSL, this system is solved by a modified Newton iteration. Each iteration of the Newton
method requires the solution of a linear system

Ayn(k + 1) = bn(k),

where the matrix A is given by

A = αn
∂F

∂y′
+

∂F

∂y
.

The one-dimensional PDEs generates a matrix which is block tridiagonal. In DASSL, this linear
system is solved via a banded direct solver. Because the CPU cost to solve this linear system
is proportional to the bandwidth of the matrix, this solver is quite efficient if the bandwidth of
the matrix is relatively small. Different moving mesh strategies result in different bandwidths,
which is a very important factor in considering the efficiency of the method. The reader can
refer to [Pet83] for details.

The results of solving the system of DAE is a Trajectory model consisting of the time varying
behavior of all the state variables in the physical system model.
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3
Design Space Exploration

3.1 Introduction

Design space exploration is the search through the space of possible solutions to a problem. A
solution is a model which is a point in the model design space defined by the meta-model of a
modelling language. The model design space is further constrained by usage of OCL constraints
specified along with the meta-model. Using models to guide search in design space has always
been useful [AG98].

We perform design space exploration of HABG models. An overview of the procedure is shown
in Figure 3.1. We present parameterized Graph Grammar (GG) rules or mutation operators in
Section 3.2 to evolve the model of a physical system. The rules only modify the physical part of
the HABG. Evolution of controllers described as CBD and other formalism in the signal domain
are well established and a survey of techniques is available in [MC95]. Our focus is in the
evolution of the physical system. Evolution of the plant or the physical system models based
on genetic programming [BF97], [HGS03] is described in [JWG05]. Matching an evolving BG

to a mathematical function such as a filter is discussed in [AMP05].

In our case the evolution process is guided by a genetic algorithm. We present a genetic
algorithm in Section 3.3. We first develop a simple experimental setup for the evolution in
Section 3.4. Finally, we briefly discuss the results of the evolution process for the experimental
setup in Section 3.5.

3.2 Heuristics for Evolving Physical System Models

The heuristic rules or mutation operators for evolving/mutating a physical system are defined
for evolving Hybrid Acausal Bond Graph (HABG) in Figures 3.2, 3.3, 3.4, 3.5, 3.6, and 3.7. The
rules not required to be executed in any particular order. The order of rule execution is based
on a plan. A plan will be discussed in the next section. A description of the heuristic rules are
given in Table 3.1. All the rules are parameterized and obtain as input a BG element.

3.3 Genetic Algorithm

We now describe a genetic algorithm [Hol92] that evolves physical system models in the HABG

modelling language. Before a genetic algorithm can be put to work on any problem, a method
is needed to encode potential solutions to that problem in a form that a computer can process.
The input to our genetic algorithm is an embryo model. We define a plan that is a sequence
of paramterized heurisitic rules that are applied on the input model to mutate it. The plan is
a potential solution to an evolution task.

The structure of plan is illustrated in Figure 3.8. The plan comprises of an unit which consists
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Figure 3.1: Design Space Exploration of Physical System Models
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Figure 3.2: Model Evolution Heuristics: Rules 1-4
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Figure 3.3: Model Evolution Heuristics: Rules 5-8
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Figure 3.4: Model Evolution Heuristics: Rules 9-12
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Figure 3.5: Model Evolution Heuristics: Rules 13-16
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Figure 3.6: Model Evolution Heuristics: Rules 17-20
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Figure 3.7: Model Evolution Heuristics: Rules 21-22
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Table 3.1: Graph Grammar rules for preferred and indifferent causality in MT HABG 2 HCBG

Order Rule Name Description

1 add R ZJ(R1) Add a R element to a 0-junction without an R element
2 add R OJ(R1) Add a R element to a 1-junction without an R element
3 add C ZJ(C1) Add a C element to 0-junction without an C element
4 add C OJ(C1) Add a C element to 1-junction without an C element
5 add I ZJ(I1) Add a I element to 0-junction without an I element
6 add I OJ(I1) Add a I element to 1-junction without an I element
7 replace R ZJ(R2) Replace an R element connected to a 0-junction R1 with an-

other R element R2
8 replace R OJ(R2) Replace an R element connected to a 1-junction R1 with an-

other R element R2
9 replace C ZJ(C2) Replace an C element connected to a 0-junction R1 with an-

other C element C2
10 replace C OJ(C2) Replace an C element connected to a 1-junction R1 with an-

other C element C2
11 insert ZJ(ZeroJunction1)Insert a 0-junction between a Bond element
12 insert OJ(OneJunction1)Insert a 1-junction between a Bond element
13 insert ZJ GY ZJ(GY1)Insert a GY element between two 0-junctions
14 insert OJ GY OJ(GY1)Insert a GY element between two 1-junctions
15 insert ZJ GY OJ(GY1)Insert a GY element between a 0-junction and a 1-junction
16 insert OJ GY ZJ(GY1)Insert a GY element between a 0-junction and a 1-junction
17 insert ZJ TF ZJ(TF1)Insert a TF element between a 0-junction and a 0-junction
18 insert OJ TF OJ(TF1)Insert a TF element between a 1-junction and a 1-junction
19 insert ZJ TF OJ(TF1)Insert a TF element between a 0-junction and a 1-junction
20 insert OJ TF ZJ(TF1)Insert a TF element between a 1-junction and a 0-junction
21 replace I ZJ(I2) Replace an I element connected to a 0-junction R1 with another

I element I2
22 replace I OJ(I2) Replace an I element connected to a 1-junction R1 with another

I element I2
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Figure 3.8: The Structure of a Plan

of two parts. The first part of the unit contains the opCode or the rule number of the heuristic
to be applied. The second part of the unit contains a floating point number between 0 and
1. The is number is used to choose an element from an Inventory. Before the evolution starts
we initialize an inventory containing potential building blocks that can be used to evolve the
model. In an industrial setting these building elements can be considered as off the shelf
resistors, capacitors, gears etc. that are available as resources. A rule removes the parameter
element from the inventory and puts it into the model according to a rule.

Now that we know what a plan is and the notion of an inventory is clear we present a the
pseudocode for the genetic algorithm.

1. Initialize the Emrbyo Model

2. Initialize the Inventory with Objects of Different Elements

3. Initialize PopulationSize, MutationProbability (Probability of applying the genetic mu-
tation operator), ChildCull (Number of children to remove in each generation)

4. Initialize Population of Plans P

5. While True:

6. P.generate() //Generate or mutate a population of plans

7. P.applyPlansToEmbryo() //Apply the plans to the embryo model

8. P.assignCausality() //Assign causality to all models

9. P.getModelica() //Generate Modelica Code

10. P.simulate() // Simulate models in the population

11. P.computeFitness() //Compute the fitnesses

12. best=P.best() //Obtain the fittest individual

13. currentfitness = best.fitness() //Obtain the fitness of the fittest individual

14. if currentfitness >= maxFitness: //If the fittess condition is satisfied the algorithm
has reached its goal
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Figure 3.9: ACausal Bond Graph of the Embryo Model

15. print ’End of Evolution’

16. break()

The genetic algorithm described does not include crossover. The only genetic operation that
takes place is, mutation. A fitness function is defined to evaluate the optimality of a plan
and in turn a model which helps in guiding the search. In the next section we describe an
experimental setup to evolve a hoisting device model using the above algorithm.

3.4 Experiment Setup

We first construct an embryo model for a hoisting device. The model is capable of lifting 500
kg of load without breaking down. The parameters for the embryo model are given in Table
3.2. The embryo model is represented in the HABG modelling language and is shown in Figure
3.9.

The maximum input voltage to the hoisting device is 110V as supplied by tableSe1. The mass
is initially on the ground therefore the downward force is compensated by the reactive force.
At 50 secs the hoisting device attempts to lift a mass of 500 kg. At this instant the downward
force comes into play as described in tableSe2. The current model is able to lift the 500 kg
mass without any problem. This is shown in Figure 3.10 (a).

We now increase the load to 1000 kg. At this point the physical system cannot handle the load
anymore and it breaks down. The effect is shown in Figure 3.10 (b). The question is, keeping
the input voltage fixed can we modify the model of the physical system to lift a load of 1000
kg ?

The fitness function is very simple. We simply return the height h or Dq1.OutPort1 which is
the sensor value for the height of the load. The fitness improves if h goes from the negative to
the positive domain. The height h is measured at 60 seconds from start time. The length of the
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Table 3.2: Embryo Hoisting Device Parameters

Component

Name

Parameter Value Unit

tableSe1 table [0, 0; 50, 0; 50, 110; 100, 110] Volts

tableSe1 startTime 0 Seconds

tableSe1 offset 0 Volts

tableSe2 table [0, 0; 50, 0; 50,−4900; 100;−4900] Newton

R1 R 0.5 Ω

I1 I 0.05 Henry

GY1 r 3 NA

I2 I 667 Nm/rad

R2 R 1 Nms/rad

TF1 m 0.11 NA

I3 I 500 kg

program or the number of heuristic rules applied to the model is limited to 3. The inventory
comprised of 1 transformer with ratio 0.11 and a 1-junction. This limited inventory size is used
to observe if the genetic algorithm can automatically detect the use of gears.

We run our genetic algorithm to see if something useful turns out. The results are presented
in the next section.

3.5 Results

The genetic algorithm is run with a maximum of 10 models in the population as performing
a simulation is computationally expensive. The simualtion is run for 2 generations. Plans are
applied to each model and the resulting fitness is computed.

After 2 generations the fittest individual is able to lift the load of 1000 kg with the same
input voltage of 110 V. The plan inserts a 1-junction in the mechanical domain by executing
the insert OJ rule. Following this the algorithm inserts a transformer TF element between the
1-junctions, by applying the heuristic rule OJ TF OJ.

Physically the genetic algorithm is able to discover the role of gears. The inclusion of the
transformer allows the hoisting device to lift the load of 1000 kg. The structural variation on
the embryo model is shown in Figure 3.11.

The graph showing the height vs. time behaviour of the new model is shown in Figure 3.12.
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Figure 3.10: (a) Height attained by hoisting device for 500 kg mass (b) Hoisting device breaks
down due to heavy mass
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Figure 3.11: The Application of Optimal Heuristics to the Embryo Model
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Figure 3.12: Behavior of improved Hoisting Device
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4
Conclusion

In this thesis we presented a methodology for developing models of a physical system at dif-
ferent abstraction levels. We illustrate the importance of dividing the modelling process into
different levels or viewpoints. Using MDE based ideas it is now very easy to synthesize a com-
plete modelling environment or a modelling language from a meta-model specification. This
empowers modellers of one system at different viewpoints to cast their ideas into completely
executable code.

The transformations between visual languages have been specified using GG rules. The vi-
sual specification of models and also their transformations makes the process of development
much faster that traditional techniques. The visual specification of rules is far less error prone
than specifying rules textually. The rules are compact and give a clearer understanding of a
transformation. The GG rules by themselves are usually self-explanatory.

Finally, we see with the help of a simple hoisting device example that meta-models provide
a consistent way to describe a model design space. The model design space of a physical
system is an ideal candidate for exploration by many existing and newly developed artificial
intelligence (AI) techniques. We specify heuristic rules as GG rules. Again, we notice the
power of a visual rule. The first ideas in the mind of an engineer is usually visual and also
domain specific. Encoding such a heuristic as a visual rule is faster, error-free and closer to
the modeller’s experiencial knowledge. The rules are executed in a sequence prescribed by the
genetic algorithm.

As future work it would be interesting to build two-way transformations between modelling
languages. The transformation from a low-level modelling language to a high-level modelling
language will usually pose many possibilities. For instance when a BG model is transformed to
an IPM model a BG element can be assigned many different domains. Coming to the general
notion of the model design space of a modelling language. It would be useful to come up with
a method that can do efficient constrain satisfication and design space search for any given
meta-model and constraints specification.
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